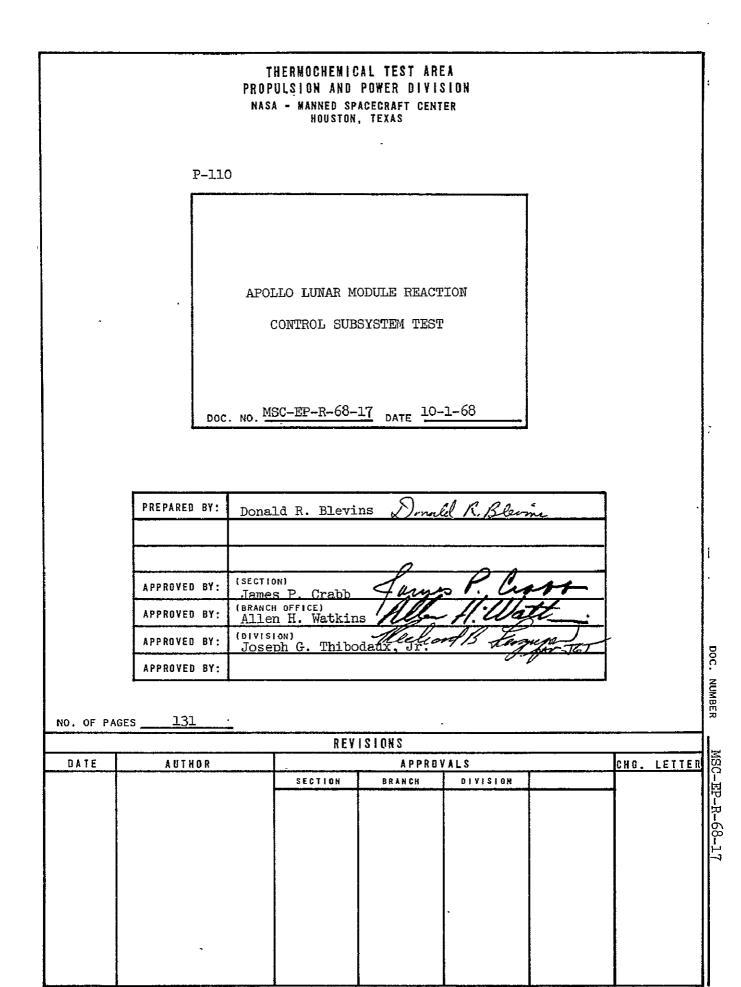

" EP4 TTAPile


NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

INTERNAL NOTE NO. MSC-EP-R-68-17

# APOLLO LUNAR MODULE REACTION

CONTROL SUBSYSTEM TEST





.

| THERMOCHEMICAL TEST AREA          | DOC. NO.        | REVISION      | DACE       |      |
|-----------------------------------|-----------------|---------------|------------|------|
|                                   | MSC-EP-R-68-17  | New           | PAGE<br>OF | _11  |
|                                   | L               |               |            |      |
| CONT                              | ENTS            |               |            |      |
| Section                           |                 |               |            | Page |
| INTRODUCTION                      |                 |               | •          | l    |
| TEST ARTICLE DESCRIPTION          |                 |               | •          | 3    |
| TEST PROGRAM                      |                 | • • • • • • • | •          | 6    |
| Phase I - Pretest Operations      |                 |               | ٠          | 6    |
| Phase II — Baseline Performance D | uty Cycles      |               | •          | 6    |
| Phase III - Mission Duty Cycles   |                 |               | •          | 6    |
| Phase IV — Special Duty Cycles .  |                 |               | •          | 7    |
| Phase V - Post-test Checkout and  | Decontamination |               | •          | 7    |
| TEST PROCEDURE                    |                 |               | •          | 8    |
| Phase I - Pretest Operations      |                 |               | •          | 8    |
| Phase II — Baseline Performance D | uty Cycles      |               | •          | 12   |
| Phase III — Mission Duty Cycles   |                 |               | •          | 12   |
| Phase IV — Special Duty Cycles .  |                 |               | •          | 13   |
| Phase V - Post-test Checkout and  | Decontamination |               | •          | 14   |
| RESULTS AND DISCUSSION            |                 |               | •          | 16   |
| Phase I - Pretest Operations      |                 |               | •          | 16   |
| Phase II — Baseline Performance D | uty Cycles      |               | •          | 22   |
| Phase III — Mission Duty Cycles   |                 |               | •          | 24   |
| Phase IV - Special Duty Cycles .  |                 |               | •          | 26   |
| Special analyses                  |                 |               | •          | 33   |
| CONCLUSIONS                       |                 |               | •          | 36   |
| REFERENCES                        |                 |               | •          | 39   |

| - THERMOCHEMICAL TEST AREA       | DOC. NO.        | REVISION | PAGE         |
|----------------------------------|-----------------|----------|--------------|
|                                  | MSC-EP-R-68-17  | New      | 0F <u>ix</u> |
|                                  |                 |          |              |
| <b>.</b> .                       |                 |          | 1            |
|                                  |                 |          |              |
| Section                          |                 |          | Page         |
| ABBREVIATIONS                    | • • • • • • •   |          | 4ı           |
| SYMBOLS                          |                 |          | կկ           |
| TABLES                           |                 |          | • • 45       |
| FIGURES                          |                 |          | •• 61        |
| APPENDIX A ENGINE FIRING RECORD  | AND RUN CHRONOL | OGY      | ••• A-1      |
| APPENDIX B — DATA SUMMARY        |                 |          | ••• B-1      |
| APPENDIX C EQUIPMENT LIST        |                 |          | · · C-1      |
| APPENDIX D INSTRUMENTATION SETUR |                 |          | ••• D-1      |
| APPENDIX E ENGINE III U/5 ANOMAI | Y REPORT        |          | ••• E1       |

••

| DOC. NO.       | REVISION | PAGE | i |
|----------------|----------|------|---|
| MSC-EP-R-68-17 | New      | OF   | i |

.

x

## TABLES

| Table |                                                                                                    | Page |
|-------|----------------------------------------------------------------------------------------------------|------|
| I     | MISSION DUTY CYCLES RUN TIMES                                                                      | 45   |
| II    | PROPELLANT LATCH VALVE CHECKOUT DATA                                                               | 47   |
| III   | REGULATOR CHECKOUT DATA                                                                            | 48   |
| IV    | RELIEF VALVE CHECKOUT DATA                                                                         | 49   |
| v     | PRESSURE SWITCH CHECKOUT DATA                                                                      | 51   |
| VI    | ENGINE GAS FLOW DATA                                                                               | 52   |
| VII   | BASELINE SYSTEM PERFORMANCE                                                                        | 54   |
| VIII  | ENGINE PERFORMANCE DURING SIMULATED MISSION DUTY CYCLES                                            | 55   |
| IX    | SUMMARY OF LM RCS PROPELLANT FEED SYSTEM HYDRAULIC<br>CHARACTERISTICS                              | 56   |
| х     | ENGINE PERFORMANCE FOR HYDRAULIC TRANSIENT DUTY CYCLES                                             | 57   |
| XI    | PRESSURE SWITCH PERFORMANCE                                                                        | 58   |
| XII   | CROSSFEED EFFECTS ON MDC PERFORMANCE                                                               | 59   |
| XIII  | PROPELLANT CONSUMPTION AND ENGINE FIRING SUMMARY FOR<br>MISSION DUTY CYCLES AND TOTAL TEST PROGRAM | 60   |

-

| DOC. NO.       | REVISION | PAGE | v  |
|----------------|----------|------|----|
| MSC-EP-R-68-17 | New      | OF   | ix |

# FIGURES

| Figure |                                                                               | Page             |
|--------|-------------------------------------------------------------------------------|------------------|
| l      | Complete IM RCS assembly in building 36 cleanroom                             | 61               |
| 2      | IM RCS test article and support equipment schematic                           | 62               |
| 3      | LM RCS installation                                                           | 63               |
| 4      | Helium isolation configuration utilized during pretest operations             | 64               |
| ,<br>5 | Load cell installation                                                        | 65               |
| 6      | Typical cluster assembly                                                      | 66               |
| 7      | Typical heater installation                                                   | 67               |
| 8      | IM RCS engine injector head modifications                                     | 68               |
| 9      | Cluster installation showing thermal blanket and shield assembly              | 69               |
| 10     | Series aiding and arc suppression network for<br>LM RCS engines               | 70               |
| 11     | Test setup — system B tankage module                                          | 71               |
| 12     | Crossover assembly                                                            | 72               |
| 13     | Excerpt from LM1 mission phase 9 (first DPS burn)<br>duty cycle               | 73               |
| 14     | Excerpt from LMl mission phase 13 (second APS burn)<br>duty cycle             | 7 <sup>1</sup> 4 |
| 15     | Excerpt from lunar mission abort from hover duty cycle                        | 75               |
| 16     | Excerpt number 1 from lunar mission coelliptic sequence initiation duty cycle | 76               |
| 17     | Excerpt number 2 from lunar mission coelliptic sequence initiation duty cycle | 77               |
| 18     | Excerpt from lunar mission coelliptic delta height duty cycle                 | 78               |

| - THERM | IOCHEMICAL TEST AREA                              | DOC. NO.         | REVISION   | PAGE | vi   |
|---------|---------------------------------------------------|------------------|------------|------|------|
|         |                                                   | MSC-EP-R-68-17   | New        | 0F   | ix   |
|         |                                                   | L                |            |      |      |
| Figure  |                                                   |                  |            |      | Page |
| 19      | Excerpt from lunar mission tr<br>duty cycle       | ansfer point ini | itiation   | • •  | 79   |
| 20      | Excerpt from lunar mission mi<br>duty cycle       | dcourse correcti | lons       | ••   | 80   |
| 21      | Face of injector S/N 1003 as                      | received at MSC  |            |      | 81   |
| 22      | Effects of arc suppression ne coil response       |                  |            | ••   | 82   |
| 23      | Sample heater warmup historie                     | ·s               |            | ••   | 85   |
| 24      | LM RCS engine flow data, fuel                     | . system A       |            |      | 86   |
| 25      | LM RCS engine flow data, fuel                     | . system B       |            |      | 87   |
| 26      | IM RCS engine flow data, oxid                     | lizer system A . |            | • •  | 88   |
| 27      | LM RCS engine flow data, oxid                     | izer system B .  |            | • •  | 89   |
| 28      | Propellant manifold pressure<br>method (system B) | history for LMl  | priming    | ••   | 90   |
| 29      | Propellant manifold pressure<br>method (system A) |                  |            |      | 91   |
| 30      | Baseline propellant inlet pre<br>and I D/14       | ssures for engin | nes IV D/2 |      | 92   |
| , 31    | Baseline propellant inlet pre<br>and IV U/1       |                  |            | • •  | 93   |
| 32      | Baseline propellant inlet pre<br>and II U/9       |                  |            | •••  | 94   |
| 33      | Run II-A-2-34 (first pulse) -<br>on engine IV D/2 |                  |            | • •  | 95   |
| 34      | Run II-A-2-35 (first pulse) -<br>on engine IV D/2 |                  |            |      | 96   |
| 35      | Run II-A-2-36 (first pulse) -<br>on engine IV D/2 |                  |            |      | 97   |
|         |                                                   |                  |            |      |      |

# - THERMOCHEMICAL TEST AREA

|        | IOCHEMICAL TEST AREA                                                                                  | DOC. NO.         | REVISION                 | PAGE | vii    |
|--------|-------------------------------------------------------------------------------------------------------|------------------|--------------------------|------|--------|
|        |                                                                                                       | MSC-EP-R-68-17   | New                      | OF   | <br>ix |
|        |                                                                                                       |                  |                          | l    |        |
|        |                                                                                                       |                  |                          |      |        |
| Figure |                                                                                                       |                  |                          |      | Page   |
| 36     | Baseline and mission duty cyc<br>engine IV D/2                                                        |                  | for<br>• • • • • • • • • |      | 98     |
| 37     | Baseline and mission duty cyc<br>engine IV S/4                                                        |                  | for<br>• • • • • • • • • | • •  | 99     |
| 38     | Baseline and mission duty cyc<br>engine II F/11                                                       | le performance i | for<br>• • • • • • • • • | •••  | 100    |
| 39     | Baseline and mission duty cyc<br>engine I U/13                                                        | le performance i | for<br>                  | • •  | 101    |
| 40     | Run IV-B-2-2 (first two pulse<br>simultaneously                                                       |                  | nes pulsing              | •••  | 102    |
| ¥1     | Comparison of engine IV D/2 p<br>hydraulic transient effects<br>hydraulic transient effects<br>cycles | s in normal mode | , and                    | • •  | 103    |
| 42     | Comparison of engine IV S/4 p<br>hydraulic transient effects<br>hydraulic transient effects<br>cycles | s in normal mode | , and                    |      | 104    |
| 43     | Comparison of engine I U/13 p<br>hydraulic transient effects<br>hydraulic transient effects<br>cycles | s in normal mode | , and                    |      | 105    |
| 44     | Run IV-B-3-1 (first three pul<br>ing and two steady state                                             | Lses) — two engi |                          | · •  | 106    |
| 45     | Run IV-B-4-9 (first three pul<br>ation, pulsing out of phase                                          |                  |                          | · •  | 107    |
| 46     | Run IV-B-8-1 (first three pulpulsing simultaneously .                                                 |                  |                          | ••   | 108    |
| 47     | Run IV-B-8-2 (first three pulpulsing simultaneously .                                                 |                  |                          | • •  | 109    |
| 48     | Run IV-D-3-1 (first pulse) —<br>switch performance at minim                                           |                  |                          | ••   | 110    |
| 49     | Examples of pressure switch of                                                                        | oscillations     |                          | • •  | 111    |

•

THERMONUCHICAL TEST ADEA

| - THER | MOCHEMICAL TEST AREA                                         | DOC. NO.         | REVISION     | BAC |                     |
|--------|--------------------------------------------------------------|------------------|--------------|-----|---------------------|
|        |                                                              | MSC-EP-R-68-17   | New          | OF  | e <u>viii</u><br>ix |
|        |                                                              |                  | <u> </u>     | L   |                     |
|        |                                                              |                  |              |     |                     |
| Figure |                                                              |                  |              |     | Page                |
| 50     | Oxidizer cold flow run IV-                                   | D-5-6 (engine II | [F/11)       | •   | 112                 |
| 51     | Oxidizer cold flow — run IV-<br>III S/8                      | D-5-6, engines 1 | IV S/4 and   | •   | 113                 |
| 52     | Simulation of inadvertent fue<br>closure                     | l cluster isolat | ion valve    | •   | 114                 |
| 53     | LM RCS mixture ratio as a fun<br>on-time                     | ction of engine  | electrical   | •   | 115                 |
| 54     | LM RCS propellant consumption<br>electrical on-time          |                  | of engine    | •   | 116                 |
| 55     | Baseline manual coil 30 msec<br>(run IV-1-16, first pulse)   |                  |              | •   | 117                 |
| 56     | Baseline manual coil 50 msec<br>(run IV-1-16, first pulse)   |                  | IV S/4       | •   | 118                 |
| 57     | Baseline manual coil 100 msec<br>(run IV-1-17, first pulse)  |                  | e IV S/4<br> | •   | 119 .               |
| 58     | Simulated engine "on" failure isolation valve closure .      | resulting in cl  | Luster       | •   | 120                 |
| 59     | Short pulse ignition characte                                | ristics (engine  | IV S/4)      | •   | 121                 |
| 60     | Comparison of automatic and m<br>baseline firings (engine IV | <b>-</b>         | ormance for  | •   | 122                 |
| 61     | Comparison of automatic and m<br>baseline firings (engine I  |                  |              | •   | 123                 |
| 62     | Injector head temperature as<br>various duty cycles — engi   |                  |              | •   | 124                 |
| 63     | Injector head temperature as<br>various duty cycles — engi   |                  |              | •   | 125                 |
| 64     | Effects of engine firing on "<br>cluster outboard thermal bl |                  |              | •   | 126                 |
| 65     | Effects of engine firing on i<br>of cluster outboard thermal |                  | er layers    | •   | 127                 |
| 66     | Comparison of PQMD output wit                                | h theoretical ou | ıtput        | •   | 128                 |
|        |                                                              |                  |              |     |                     |

| - וחבמו | MOCHEMICAL TEST AREA ——                                                          | DOC. NO.          | REVISION   | PAGE | ix   |
|---------|----------------------------------------------------------------------------------|-------------------|------------|------|------|
|         |                                                                                  | MSC-EP-R-68-17    | New        | OF   | ix   |
|         |                                                                                  |                   |            |      |      |
| Figure  |                                                                                  |                   | `          |      | Page |
| 67      | Comparison of PQMD and load<br>data — system A                                   | . cell propellant | _          |      | 129  |
| 68      | Comparison of PQMD and load<br>data — system B                                   |                   | -          |      | 130  |
| 69      | Temperature profile for clu<br>mission duty cycle transf<br>tion (run III-B-4-1) | er point initiati | on simula- |      | 131  |
|         | ,                                                                                |                   |            |      |      |

| DOC. NO.       | REVISION | PAG | = <u> </u> |
|----------------|----------|-----|------------|
| MSC-EP-R-68-17 | New      | OF  | <u>131</u> |

### INTRODUCTION

The Lunar Module Reaction Control Subsystem (LM RCS) performs the following functions:

- a. Provides small thrust impulses to stabilize the Lunar Module.
- b. Provides necessary thrust impulses to control the vehicle attitude and translation movements during hover, rendezvous, and docking maneuvers.
- c. Provides necessary thrust impulses to accomplish the Lunar Module - Command Service Module separation maneuver.
- d. Provides necessary thrust impulses to accomplish accelerations for ullage and settling for the ascent and descent propellant storage tanks as required.

The complete LM RCS consists of two similar and independent systems, identified as system A and system B. Each system consists of a pressurized helium storage and distribution system, hypergolic propellant storage and distribution system, and eight rocket engines. The LM RCS test was conducted with both systems A and B.

The primary objectives of this test program were to define the general operational characteristics of the LM RCS under simulated altitude conditions and to obtain performance data on individual subsystem components. Specific areas of investigation were:

- a. Determination of the hydraulic transients resulting from various operational modes and the effects of these transients on engine performance.
- b. Evaluation of various RCS priming techniques.
- c. Evaluation of the LM RCS compatibility with the Caution and Warning Subsystem (CWS).
- d. Determination of propellant consumption as a function of pulse width and/or pulse mode.
- e. Determination of the oxidizer to fuel mixture ratios for the mission duty cycles.
- f. Evaluation of the capability of the subsystem to successfully perform simulated mission duty cycles.
- g. Evaluation of subsystem performance during contingency and failure modes.

- THERMOCHEMICAL TEST AREA —

| DOC. NO.       | REVISION | PAGE 2        |
|----------------|----------|---------------|
| MSC-EP-R-68-17 | New      | 0F <u>131</u> |

- h. Evaluation of the rocket engine cluster heater system and thermal insulation blanket.
- i. Determination of the magnitude and effects of regulator overshoot.
- j. Evaluation of the thrust chamber assembly (TCA) failure detection pressure switches.
- k. Evaluation of the propellant quantity measuring system.

The LM RCS test was conducted by the Propulsion Test Section, Thermochemical Test Branch, Propulsion and Power Division, in response to a request from the Auxiliary Propulsion and Pyrotechnics Branch (ref. 1).

| DOC. N | 0.       | REVISION | PAGE | 3   |
|--------|----------|----------|------|-----|
| MSC-E  | PR-68-17 | New      | OF   | 131 |

#### TEST ARTICLE DESCRIPTION

The test article was a complete LM RCS with all qualified components except the combustion chamber pressure switches. Most of the subsystem components and all propellant lines were previously used in tests on the HR-3 design verification test (DVT) subsystem at the Marquardt Corporation's (TMC) Magic Mountain Test Facility. The results of these Marquardt tests are documented in reference 2.

The HR-3 DVT subsystem was disassembled and shipped to MSC after completion of testing at Magic Mountain. The shipment included the entire LM RCS and the test frame (ref. 3) in a disassembled condition. The system A tankage module was shipped via Grumman Aircraft Engineering Corporation (GAEC) where post-test functional tests were conducted.

After receipt at MSC, the individual components were acceptance tested to verify conformity with the operational requirements of the applicable GAEC specifications. Acceptance tests also included proof tests and cleanliness checks of the propellant tanks. Engine repairs were performed as required. The propellant manifold, propellant injection pressure, and engine chamber pressure transducers were calibrated at MSC. Acceptance test results are recorded in references 4, 5, and 6.

After acceptance testing, the components and tubing were individually cleaned to the level N requirements specified in reference 7 and moved to the class 100 cleanroom at building 36, NASA/MSC, where subsystem assembly was performed. After assembly, the propellant distribution system was flushed with freon TF and verified clean to the requirements specified in reference 8. Figure 1 is a photograph of the complete test article assembly in the cleanroom.

On September 27, 1967, the assembled subsystem was transported to the subsystems chamber (SSC) in building 353 of the Thermochemical Test Area. The LM RCS was installed in the subsystems chamber and verified dry in accordance with the requirements outlined in reference 9. Support and servicing equipment were then installed as shown schematically in figure 2. Figure 3 illustrates the complete LM RCS installation relative to the Lunar Module structure and includes the engine numbering code which will be used in this document.

During the process of subsystem assembly, the HR-3 DVT configuration was modified and updated as required to meet specific test objectives and to incorporate the latest changes to flight subsystems. Deviations from the original HR-3 DVT configuration as tested at Marquardt included the following:

- a. Propellant quantity measuring devices (PQMD) were installed in each helium tank.
- b. The mechanical fittings at the helium inlets to the propellant tanks were disconnected and capped to facilitate checkout operations (fig. 4).

| DOC. NO.       | REVISION | PAGE | 4   |
|----------------|----------|------|-----|
| MSC-EP-R-68-17 | New      | OF   | 131 |

- c. The propellant tank mounting brackets were modified and the tanks were mounted on load cells (fig. 5) for propellant quantity measurements.
- d. Propellant inlet pressure transducers (16) and drain lines (16) were installed in the y-block fittings (fig. 6). The eight flight-type propellant inlet pressure transducers in system A were replaced with Kistler model 601A pressure transducers.
- e. Propellant temperature transducers (16) were installed in the fittings originally occupied by the propellant injection pressure transducers (fig. 6).
- f. The system A, quad IV, fuel cluster isolation valve LSC 310-403-204, S/N 0048, was replaced with a new valve, LSC 310-403-206, S/N 214.
- g. The fuel interconnect valves LSC 310-403-204, S/N 0044; and LSC 310-403-204, S/N 0055 were replaced with valves LSC 310-403-103, S/N 0026; and LSC 310-403-204, S/N 0051.
- Propellant manifold pressure transducers P-13, P-14, P-15, and P-16 were replaced with Kistler model 601A pressure transducers.
- i. One flight-type thruster heater, LSC 310-601-11, was installed on each system A engine, and one flight-type thruster heater, LSC 310-601-12, was installed on each system B engine (fig. 7).
- j. A propellant filter (Marquardt P/N 229494) was installed in each engine injector valve.
- k. The engine injector head assemblies were modified as shown in figure 8 to accomodate both a pressure switch and a pressure transducer.
- 1. The L-605 nozzle extensions were removed from all but the downfiring engines (fig. 7).
- m. The eight system B engine chamber pressure transducers were replaced with Taber model 185 pressure transducers (fig. 7).
- n. A pressure switch, LSC 310-651-3, was installed in each of 15 engine injector heads. Engine IV D/2 was equipped with a backup pressure switch manufactured by Electro-Optical Systems.
- o. A partial cluster insulation blanket and shield assembly, LSK 280-11127-1, was installed on the cluster III downfiring engine (fig. 9).
- p. Flight-type arc suppression circuitry was installed on each engine (fig. 10).

|                     | ADEA |                |          |        |
|---------------------|------|----------------|----------|--------|
| THERMOOLEMIÇAE IESI | ARLA | DOC. NO.       | REVISION | PAGE 5 |
|                     |      |                |          | OF 131 |
|                     |      | MSC-EP-R-68-17 | New      |        |

A complete test article schematic is included in figure 2, and all components and instrumentation are identified in appendix C, Equipment List. Figures 11 and 12 are photographs of sections of the LM RCS after installation in the subsystems chamber.

| DOC.   | NO.         | REVISION | PAGE | 6          |
|--------|-------------|----------|------|------------|
| . MSC- | -EP-R-68-17 | New      | OF   | <u>131</u> |

### TEST PROGRAM

## Phase I - Pretest Operations

The objectives of this phase of the program were to assemble, check out, and load the LM RCS. Assembly of the subsystem included acceptance testing of individual components, cleanroom buildup, and cleanliness verification. Checkout was then performed to verify the operational capability of the subsystem and all auxiliary test equipment immediately prior to subsystem testing. Propellant and helium loading operations were performed to prepare the subsystem for hot-firing and to evaluate the LM1 and LM3 manifold priming techniques.

### Phase II - Baseline Performance Duty Cycles

Phase II of the test program was designed to bleed-in each engine and to observe nominal performance characteristics for the subsystem components during subsystem operation at altitude. The bleed-in firings were also used as a final validation of the data acquisition system operation. The baseline duty cycles performed are included in appendix A, Engine Firing Record and Run Chronology.

## Phase III - Mission Duty Cycles

The objective of this portion of the program was to run simulated LMl and lunar mission duty cycles utilizing both Primary Guidance Navigation and Control System (PGNCS) and Abort Guidance System (AGS) firing modes. The propellant distribution system operated in the normal mode during the mission duty cycles; that is, crossfeed and interconnect valves were closed. Representative portions of the following simulated missions were performed:

- a. IM1 Mission phase 7 separation
- b. LM1 Mission phase 9 first Descent Propulsion System (DPS) burn
- c. IM1 Mission phase 11 second DPS burn, fire-in-the-hole (FITH), and first Ascent Propulsion System (APS) burn
- d. LM1 Mission phase 13 second APS burn
- e. Lunar Mission abort from hover
- f. Lunar Mission coelliptic sequence initiation
- g. Lunar Mission coelliptic delta height

| DOC. NO.       | REVISION | page 7        | _ |
|----------------|----------|---------------|---|
| MSC-EP-R-68-17 | New      | OF <u>131</u> |   |

h. Lunar Mission - transfer point initiation

i. Lunar Mission - midcourse corrections

Simulations a through d (above) utilized the PGNCS mode and e through i utilized the AGS mode. Individual engine firing summaries are included in appendix A.

## Phase IV - Special Duty Cycles

This portion of the program included various special duty cycles designed to accomplish specific test objectives and evaluate subsystem performance when subjected to worst case duty cycles. Areas of special interest in this phase included:

- a. Hydraulic transient effects (normal and crossfeed modes)
- b. Pressure switch evaluation
- c. Propellant consumption and oxidizer-fuel (O/F) mixture ratio duty cycles
- d. Mission duty cycle performance in crossfeed mode
- e. Failure modes
- f. Pulse widths of less than minimum impulse
- g. Baseline performance with manual (direct) coils
- h. Manual coil maneuvers
- i. High-low voltage effects
- j. Effects of short pulses on injector temperature
- k. Cluster insulation evaluation

A summary of the duty cycles performed in this phase is included in appendix A.

Phase V - Post-test Checkout and Decontamination

The objectives of this portion of the program were to determine component performance after completion of the test program described above and to decontaminate the LM RCS for storage. As the result of facility scheduling problems, only very limited post-test component checks were performed. A partial subsystem decontamination was performed immediately after the completion of the test program; however, a complete decontamination was not performed until 4-1/2 months later.

| DOC. NO.       | REVISION | PAGE | 8          |
|----------------|----------|------|------------|
| MSC-EP-R-68-17 | New      | OF   | <u>131</u> |

### TEST PROCEDURE

#### Phase I - Pretest Operations

<u>Component acceptance tests</u>.- Since the HR-3 DVT components had been previously used in the Magic Mountain testing, it was considered necessary to conduct partial acceptance tests on the components before initiating test article buildup. Acceptance tests were conducted on the tankage module components, propellant filters, and propellant latch valves as described in reference 4. Static calibration checks were performed on the propellant manifold, propellant injection, and engine chamber pressure transducers to verify specification compliance. Engine acceptance tests were conducted as delineated in references 5 and 6.

<u>Cleanroom buildup and cleanliness verification</u>.- After completion of the components acceptance tests, all components and tubing were individually cleaned to the level N requirements specified in reference 7. The hardware was then moved into the class 100 cleanroom, building 36, NASA/MSC, where buildup and cleanliness verification were performed. Cleanliness verification of the assembled IM RCS was accomplished by flushing freon TF through the propellant manifolds and obtaining and analyzing samples for particulate matter until two successive samples from each outlet met the requirements specified in reference 8. Samples were then taken and analyzed for nonvolatile residue according to reference 8.

Buildup and cleanliness verification were accomplished in two steps. Samples were extracted from the propellant manifolds at the cluster isolation valve outlets <u>before</u> the filters and cluster tubing were installed. Samples were then extracted at the engine inlet fittings (Dynatubes) <u>after</u> the filters and cluster tubing were installed. In both of the above cases the flush fluid was admitted through the service couplings with the main shutoff valves closed. The helium pressurization systems were not verified clean since they were sealed and kept intact after testing at TMC.

Prior to transfer of the assembled LM RCS to the test chamber the crossover section between the tankage modules was removed and the tube ends were sealed. Installation of the LM RCS in the subsystem chamber and dryness verification procedures are delineated in reference 9.

<u>Subsystem checkout.</u> Subsystem checkout was initiated November 13, 1967, with the LM RCS test article and support equipment configured as shown in figure 2. Subsystem checkout was accomplished in accordance with references 10 and 11. Within the limitations of the available support equipment, the checkout procedures conformed to GAEC Operational Checkout Procedures OCP-GF-31008, OCP-GF-31022, and OCP-GF-31031 (refs. 12, 13, and 14). During helium component checkouts, the helium panels were isolated from the propellant tanks by mechanical fittings as shown in figure 4.

| DOC. NO.       | REVISION | PAGE | 9   |
|----------------|----------|------|-----|
| MSC-EP-R-68-17 | New      | OF   | 131 |

Proof test of the high pressure helium systems (upstream of the regulators) and leak checks of the entire helium pressurization systems were simultaneously performed on the system A and system B tankage modules. The helium tanks and all plumbing upstream of the regulators were pressurized to 3600 psig and maintained at that pressure for 5 minutes for proof testing. Pressurization of the helium tanks resulted in pressurization of the low pressure helium systems (below the regulators) to lockup pressure since the helium initiation squib valves had been previously activated. The low pressure helium systems were not subjected to proof pressure at this time since they had been pressurized to 300 psig during acceptance testing as described in reference 4.

Following proof pressure testing, the helium tank pressures were reduced to 1500 psig for leak checking. Leak checks were performed on all brazed joints, disconnect couplings, mechanical fittings, et cetera, in the helium system with Leak Tec solution.

Regulator checkouts were conducted on the primary and secondary stages of the system A and system B regulator assemblies. Flowrates were maintained by a regulated helium source at the helium fill couplings (D-1 and D-34) and a metering hand value at the low pressure helium couplings (D-9 and D-42). Flowrates were measured with an orifice type flowmeter (Foxboro) installed in line with the metering hand value. Regulator stages were deactivated as required by pressurizing the reference ports with 50 psig GHe.

Overall check value assembly cracking and reseating differential pressures were measured by admitting GHe at the high pressure helium couplings (D-2 and D-35) and observing flow through a volumetric leak detector (VLD) attached to the helium vent couplings (D-16, D-17, D-49, and D-50). Pressures were measured with a 0-50 psia gage attached to the low pressure helium couplings. Overall check value assembly reverse leakages were determined by admitting GHe at the helium vent couplings and monitoring for leakage at the low pressure helium couplings with a VLD.

Relief value checkouts were accomplished in the following manner. The relief value inlets were pressurized to 180 psig GHe and burst disc leakages measured for 30 minutes with a VLD attached at the relief value couplings (D-14, D-15, D-48 and D-47). Relieving and reseating pressures and relief value leakages were determined by monitoring a VLD attached to the relief value vent ports while simultaneously pressurizing the relief value inlets and couplings. Bleed value closing and opening pressures were determined during the above pressurization cycles by monitoring the VLD attached to the vent ports.

The helium supply lines were connected to the propellant tanks at the Gamah fittings before initiating the propellant system component checkouts (fig. 4).

Propellant tank bladder leakages were determined by attaching a VLD to the appropriate helium vent coupling and maintaining an internal pressure of 10  $\pm$   $\frac{9}{10}$  psig GHe through the propellant bleed couplings (D-18, D-19, D-51, and D-52).

| DOC. NO.       | REVISION | PAGE | 10  |
|----------------|----------|------|-----|
| MSC-EP-R-68-17 | New      | OF   | 131 |

Reverse leakage checks were performed on the main shutoff values by pressurizing the propellant manifold to 180 psig GHe and measuring leakage rates with a VLD at the bleed couplings. Proof pressure tests were performed on the propellant manifolds by pressurizing them to  $270 \pm 5$  psig GHe with the main shutoff values closed. The pressure was then decreased to 180 psig and leak checks performed on all brazed joints and mechanical fittings with Leak Tek solution.

Cluster isolation valve leak tests were performed by pressurizing the propellant manifolds to 200 psig GHe and measuring leakage rates with a VLD attached to the appropriate y-block drain line. Crossfeed and ascent interconnect valve leakages were also measured at 200 psig.

The injector values were cycled utilizing both the automatic and direct (manual) coils at nominal operating voltage (23-24 V dc) and 25 psig GHe inlet pressures. Value voltage traces were obtained through the Data Acquisition System (DAS) in order to verify engine wiring and value response times.

Pressure switch checkouts were performed by slowly evacuating and pressurizing the engine combustion chambers through a throat plug. The pressures at which the switches opened and closed were measured by simultaneously monitoring the oscillograph recorder and a test gage installed in the vacuum line.

Thruster heater checkouts were conducted by applying voltage to the heaters and monitoring the injector head and cluster temperatures through the DAS until heater cycling occurred.

Engine gas flow checkout was conducted in accordance with reference 11. Basically, the engine gas flow test was used to determine the relative flow capacities of each RCS engine. Regulated  $GN_2$  was admitted to the system A fuel service coupling through the orifice flow control panel as shown in figure 2. The crossfeed valves were opened and a gage (G-3) was attached to the fuel service coupling in system B to measure manifold pressure. The engine IV D/2 fuel valve was opened and the pressure regulated until G-3 had stabilized to  $40.00 \pm 0.05$  psia and G-1, G-2, and G-3 were recorded. The engine IV S/4 fuel valve was then opened and the engine IV D/2 fuel valve closed. Readings were again taken after stabilization. This process was repeated until values had been recorded for all system A fuel valves. A similar procedure was utilized for the remaining fuel and oxidizer valves.

After completion of the engine gas flow checkout, forward leakage checks were performed on all engine injector valves with 100 psig GN2.

<u>System loading</u>.- The propellant and helium tanks were loaded in accordance with reference 15.

Two priming methods were evaluated for propellant manifold loading. The system A propellant manifolds were primed by the LM3 method and the

| DOC. NO.       | REVISION | PAGE | וו  |
|----------------|----------|------|-----|
| MSC-EP-R-68-17 | New      | OF   | 131 |

system B manifolds by the LM1 method. Both techniques involved evacuating the propellant lines downstream of the main shutoff valves and performing the priming operation with the helium system pressurized with 50 psia GHe. The helium systems were vented upstream of the check valves to simulate a system with squib valves intact. In the LM1 method the manifolds were primed to the engine valves in one step by opening the main shutoff valves (MSOV's) with the isolation valves (TPIV's) open, whereas in the LM3 method, the manifolds were primed in a two step operation by first opening the MSOV's with the TPIV's closed and then opening the TPIV's to complete the priming to the engine valves.

After propellant manifold loading was accomplished, the helium tanks were loaded according to the standard flight loading envelope to the following conditions:

System A, 3130 psia at 80° F System B, 3140 psia at 84° F

This step pressurized the low pressure system to regulator lockup since the squib valves had been previously activated.

### NOTE

Phases II, III, and IV were the hot-firing portion of the test program (ref. 16). The following general procedures were utilized for all runs during these phases unless otherwise specified:

- a. All engine firings were controlled by a programméd firing tape
- b. Injector valve voltage was maintained at 23-24 V dc
- c. Analog and digital recorders were sequenced to start 10 seconds prior to run initiation and stop 5 seconds after run termination
- d. The Electro-Instrument (EI) printer and Esterline Angus (EA) recorders ran continuously except during prolonged periods of inactivity
- e. All firings were performed at pressure-altitudes in excess of 97 000 feet and at ambient temperature
- f. Subsystem valve positions (except engine valves) were manually controlled

| THERMOCHENICAL                                                                                              | TEST ADEA                                                                           |                                                        |                                |                       |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------|-----------------------|
| THEN NOCHEMICAL                                                                                             | IEST AREA                                                                           | DOC. NO.                                               | REVISION                       | page 12               |
|                                                                                                             |                                                                                     | MSC-EP-R-68-17                                         | New                            | OF 131                |
|                                                                                                             |                                                                                     |                                                        |                                |                       |
| g.                                                                                                          | Red-line parameter<br>cathode ray tube<br>recorders                                 |                                                        |                                |                       |
| h.                                                                                                          | Real time oscillog<br>during each run fo<br>of system performa                      | or "quick-look"                                        |                                |                       |
| i.                                                                                                          | Pertinent operation<br>recorded before and<br>the test conductor<br>tem operation   | nd after each ru                                       | in to provide                  |                       |
| j.                                                                                                          | The normal propel<br>figuration was ut<br>connect valves clo                        | ilized (crossfee                                       |                                |                       |
| k.                                                                                                          | Hydraulic and temp<br>allowed between ru                                            |                                                        | zation was                     |                       |
| 1.                                                                                                          | Engine firings wer<br>circuit television<br>camera per cluster<br>recorded on video | n monitors (one<br>r); two of the c                    | monitor and                    |                       |
| Pha                                                                                                         | se II Baseline 1                                                                    | Performance Duty                                       | Cycles                         |                       |
| <u>Bleed-in firi</u><br>formed on each of<br>operation and to r<br>propellant lines d<br>used to evaluate t | emove any gas bubb<br>uring the priming ]                                           | in order to ver<br>Les which may ha<br>procedures. The | ify engine an<br>we been trapp | d system<br>ed in the |

Baseline single engines.- Baseline single engine firings were performed on all 16 thrusters as recorded in appendix A (runs II-A-2-17 through II-A-2-192).

# Phase III --- Mission Duty Cycles

Simulated mission duty cycles were performed for the periods of major activity in the LMI mission and the lunar abort from hover mission. Excerpts from the LMI and lunar mission duty cycles performed are shown in figures 13 through 20. These trilevel traces, which were obtained from the engine firing program tapes, indicate the electrical on times for each engine for duty cycles representative of the various mission phases.

The LM1 duty cycles and the lunar mission duty cycles were obtained from mission simulations described in references 17 and 18, respectively. Specific run numbers and run times are recorded in table I. These simulations were based on a nominal LM1 mission and a lunar abort from hover • THERMOCHEMICAL TEST AREA —

| DOC. NO.       | REVISION | PAGE | _13 |
|----------------|----------|------|-----|
| MSC-EP-R-68-17 | · New    | OF   | 131 |

case with no engine or component failures. Grumman Aircraft Engineering Corporation data tapes from the above mentioned simulations were used to generate the program tapes required to control engine firings. Long ullage runs were omitted due to facility limitations.

The LML simulation utilized the PGNCS, and the lunar abort from hover simulation utilized the AGS. Additional information concerning the simulations may be found in references 17 and 18.

## Phase IV - Special Duty Cycles

Hydraulic transient effects (normal and crossfeed modes).- Special duty cycles designed to produce dynamic interactions in the LM RCS which should represent worst case hydraulic conditions were performed as recorded in appendix A (runs IV-B-1-1 through IV-B-10-10 and IV-C-2-1 through IV-C-10-9). These duty cycles were based on maneuvers which might be performed in the PGNCS mode and included two, four, six, and eight engine operation. Identical duty cycles were performed in both the normal and crossfeed configurations for comparison purposes.

<u>Pressure switch evaluation</u>.- Special duty cycles designed to evaluate pressure switch performance for minimum impulse firings, short off times, and simulated oxidizer cold flows were performed as shown in appendix A (runs IV-D-1-1 through IV-D-5-6). Identical duty cycles were performed on three engines equipped with flight-type pressure switches and on the engine equipped with a special backup switch (engine IV D/2). The engine IV D/2 pressure switch was designed to switch at 23 psia instead of the normal 3-10.5 psia. Injector valve voltages of 20-21, 23-24, and 27-28 V dc were utilized to evaluate the effects of valve voltage on switch performance characteristics. Pressure switch performance was also determined from several other phases of the test program in addition to these special duty cycles.

Propellant consumption and O/F ratio duty cycles. - Special duty cycles designed to define the relationship between propellant consumption and oxidizer to fuel mixture ratio and pulse duration were executed on one engine in each system as shown in appendix A (runs IV-E-1 through IV-E-13). Injector valve voltage was maintained at 23-24 V dc and propellant quantities were determined from the propellant tank load cells.

<u>Mission duty cycle performance in crossfeed mode.</u> The LMI mission phase 11 (second DPS burn — FITH — first APS burn) simulated duty cycle was repeated in the crossfeed mode utilizing the system A propellant supply (run IV-F-1A in appendix A).

Failure modes.- Duty cycles designed to simulate the following failure modes were performed (appendix A, runs IV-G-2-2 through IV-G-6-6):

a. Cluster isolation valve pair closure as the result of an engine "on" failure.

THERMOCHENICAL TEST AREA -

| DOC. NO.       | REVISION | PAGE | 14  |
|----------------|----------|------|-----|
| MSC-EP-R-68-17 | New      | OF   | 131 |

b. Inadvertent fuel cluster isolation valve closure.

Isolation valve actuations were performed manually from the control console.

Pulse widths of less than minimum impulse.- These duty cycles consisted of two pulses of less than design minimum impulse followed by a 20-msec pulse. Off times between the pulses were 2.5 seconds in order to simulate AGS commands. Pulse widths of 4, 6, 7, 8. 9, and 10 msec were performed on engines IV S/4 and II F/11 as shown in appendix A (runs IV-H-1-1 through IV-H-2-12).

Baseline performance with manual coils. - Baseline single engine firings were performed on engines IV S/4 and I U/13 utilizing the manual coils as recorded in appendix A (runs IV-I-16 through 20 and 61 through 65).

<u>Manual coil maneuver</u>. - Manual coil duty cycles designed to simulate + roll, + pitch, and + yaw maneuvers in both two- and four-jet logic were performed as shown in appendix A (runs IV-J-1 through 11).

<u>High-low voltage effects</u>.- The lunar mission transfer point initiation duty cycle was repeated with the injector valve voltage set at 27-28 and 20-21 V dc (runs IV-K-1 and IV-K-2 in appendix A).

Effects of short pulses on injector temperature.- Duty cycles as described in runs IV-L-1-1 through 6 and IV-L-2-1 through 6 in appendix A were performed on the engine with flight-type cluster insulation (engine III D/6, fig. 9) and an uninsulated engine (engine I D/14). The pulse duration for the firings was maintained at 17 msec (PGNCS normal minimum impulse duration) and off times were varied in an attempt to establish the duty cycle which produced the maximum injector head cooling rate.

<u>Cluster insulation evaluation</u>.- A 20-second steady state firing was performed on an uninsulated downfiring engine (engine I D/l4) to establish baseline information. The firing was followed by a 10-pulse series of 17 msec on and 183 msec off when the maximum injector head soakback temperature was reached. The same duty cycles were then performed on a downfiring engine (engine III D/6) on which flight-type cluster insulation had been installed (fig. 9). Run descriptions are included in appendix A (runs IV-M-1-1 and IV-M-2-2).

Phase V - Post-test Checkout and Decontamination

At the completion of Phase IV, the LM RCS propellant tanks and propellant manifolds were drained of propellants and purged with ambient temperature GHe. The propellant manifolds were than vacuum dried by opening SV-106

|  | THER | MOCHE | <b>IICAL</b> | TEST | AREA |
|--|------|-------|--------------|------|------|
|--|------|-------|--------------|------|------|

| DOC. NO.       | REVISION | PAGE | 15  |
|----------------|----------|------|-----|
| MSC-EP-R-68-17 | New      | OF   | 131 |

and SV-308 (fig. 2) and allowing the SSC steam system to evacuate the manifolds to 2.5 mm Hg. The LM RCS was then pressurized to the following pressures with GHe for temporary in-place storage:

System A helium, 25 psia System B helium, 25 psia System A and B fuel feed systems, 38 psia System A and B oxidizer feed systems, 38 psia

The post-test component checkouts were deleted from the program because of facility scheduling problems; however, the LM RCS remained in the SSC for IMl post-flight support.

| DOC. NO.       | REVISION |  |
|----------------|----------|--|
| MSC-EP-R-68-17 | New      |  |

PAGE

OF

<u>16</u> 131

# RESULTS AND DISCUSSION

### Phase I - Pretest Operations

<u>Component acceptance tests</u>.- Results of the partial tankage module component acceptance tests are included in reference 4. The limited acceptance tests performed indicated that all the major components in the tankage modules were operating within specification and the modules were considered acceptable for the LM RCS subsystem test. Cleanliness verification tests revealed that all propellant tanks except the system B oxidizer tank complied with the required cleanliness specification (ref. 8) as received. The system B oxidizer tank was only slightly out of specification and was, therefore, utilized without further cleaning.

Results of the propellant inline filter acceptance tests, which consisted of a differential pressure test and a visual inspection, were all within specification.

The propellant latch valve acceptance tests revealed that many valves did not operate within specification on receipt from TMC. Acceptance test data are recorded in reference 4 and table II. Further discussion of the latch valve deficiencies is included later in this section.

Inspection of the HR-3 DVT propellant feed system tubing revealed a reddish-brown deposit or residue on the brazed joints in the oxidizer tubing. This residue could not be removed by a detergent solution; however, a passivation solution consisting of a diluted nitric acid did remove the residue.

Analysis of a residue buildup similar to this, which occurred on the PA-1 IM RCS test article at the White Sands Test Facility (WSTF), is included in the report on TTA Test No. 2T999, "Lunar Module Reaction Control System Plumbing (PA-1)". The report (ref. 19) concluded that the deposits consisted largely of iron, with a small amount of nickel, which seems to indicate corrosion in the area of the oxidizer brazed joints.

Calibration checks on the propellant manifold, propellant injection, and engine chamber pressure transducers indicated that all the transducers were linear; however, some of the slopes from a plot of pressure versus voltage output had shifted slightly out of specification. This shift was especially prevalent on the engine chamber pressure transducers. The transducers were considered acceptable for use on this test since they were linear and repeatable and, therefore, compatible with the DAS.

Thruster acceptance tests revealed that fuel injector valve S/N 140, from engine assembly S/N 1013, leaked in excess of specification limits; consequently, a new valve seat assembly was installed. In general, the engines were dirty, with an overall poor appearance on arrival at MSC.

| DOC. NO.       | REVISION | PAGE | 17  |
|----------------|----------|------|-----|
| MSC-EP-R-68-17 | New      | ° OF | 131 |

After partial disassembly, cleaning, and checkout, they were acceptable for test operation. All 16 engines were retrofitted with engine inlet filters and new orifices just prior to installation on the LM RCS. Subsequent to retrofit, water calibrations were performed on eight of the engines to determine the effects of the addition of the filters and new orifices. In general, the addition of engine inlet filters reduced the water flowrates through both the fuel and oxidizer valves; however, all the water flowrates measured after the filters were installed remained within the allowable limits of  $\frac{+2}{+4}$ percent of the preburn flowrates recorded in the engine log books. The overall O/F ratios were probably reduced since the addition of filters reduced the oxidizer valve water flowrates more than the fuel valve water flowrates. The face of injector head S/N 1003 was severely pitted around the main doublets as shown in figure 21. The injector head was replaced with injector head S/N 0007. Complete engine acceptance test results are included in references 5 and 6.

During checkout operations, several leaks were discovered in the stem area of the propellant ground half couplings. The couplings had been refurbished during the HR-3 DVT testing at TMC. All 16 couplings were returned to the manufacturer for refurbishment and complete checkout prior to test initiation.

<u>Cleanroom assembly and cleanliness verification</u>. The entire propellant distribution system downstream of the main shutoff valves was verified clean . to the requirements specified in table II of reference 8. During the process of cleanliness verification, it was necessary to maintain a high freon flowrate in order to obtain a valid sample. Samples obtained at a low flowrate : (less than 1 gpm) appeared much cleaner than samples obtained at a flowrate of 3-5 gpm. Consequently, all particulate samples were obtained while the effluent vas flowing into the sample bottle at a rate of 3-5 gpm. In general, achieving acceptable cleanliness levels was a difficult operation.

System dryness was verified to the following levels:

| Component        | Concentration (ppm) |
|------------------|---------------------|
| A-50             | <100                |
| N204             | <100                |
| freon            | < 25                |
| IPA              | < 25                |
| H <sub>2</sub> O | < 25                |

System checkout. - Proof tests of the high pressure helium systems were successful. No leakage was observed during leak checks of the brazed joints, disconnect couplings, mechanical fittings, et cetera, in the helium pressurization systems.

| DOC. NO.       | REVISION | PAGE | 18  |
|----------------|----------|------|-----|
| MSC-EP-R-68-17 | New      | OF   | 131 |

The results of the regulator checkouts are included in table III. The system A primary regulator exhibited low outlet pressure at the high flowrate, and the system A secondary regulator exhibited low outlet pressure at both the high and low flowrates. These values were only slightly out of specification and were within the accuracy of the instrumentation. In addition, the propellant tank ullages were not simulated in the flow tests. The system B primary regulator outlet pressure oscillated between 178.4 and 179.3 psig at a frequency of approximately one Hz when subjected to the high flowrate. However, these values were within the specification limits. The above flow pressure conditions were not considered detrimental to successful completion of the test program.

The results of the check valve cracking and reseating checks are shown below. All values were within specification limits except for the second check of the system A fuel check valve. All check valve reverse leakages were within specification limits.

|                                                             | Spec.<br>limits | CV 110<br>sys. A,<br>oxid. | sys. A, | CV 210<br>sys. B,<br>oxid. | CV 209<br>sys. B,<br>fuel |
|-------------------------------------------------------------|-----------------|----------------------------|---------|----------------------------|---------------------------|
| Overall crack-<br>ing pressure,<br>psid                     |                 |                            |         |                            |                           |
| Check no. 1                                                 | 3 ± 1           | 3.96                       | 2.16    | 3.89                       | 3.19                      |
| Check no. 2                                                 | 3±1             | 3.81                       | 1.61    | 3.74                       | 3.14                      |
| Overall reseating pressure, psid                            |                 |                            |         |                            |                           |
| Check no. l                                                 | None            | 2.81                       | 0.56    | 2.09                       | 1.38                      |
| Check no. 2                                                 | None            | 2.81                       | 0.16    | 2.39                       | 1.59                      |
| Reverse leakage<br>at 0.6 ± 0.1<br>psid, scc/30 min         | 2.5             | 0                          | 0       | 0                          | 0                         |
| Reverse leakage<br>at 180 <sup>#5</sup> psid,<br>scc/15 min | 1.25            | 0                          | 0       | 0                          | 0                         |

Relief value checkout results are summarized in table IV. The system A oxidizer relief value produced anomalous results in three areas. The bleed value did not completely seat until a pressure of 170 psig was reached. In addition, the second relief pressure check and the first and

| THERMOONENION TEET ADEL       |             |          |                   |
|-------------------------------|-------------|----------|-------------------|
| — THERMOCHEMICAL TEST AREA —— | DOC. NO.    | REVISION | 10                |
|                               |             |          | PAGE 19           |
|                               |             |          | <sub>OF</sub> 131 |
|                               | MSC-EP-R-68 | 3-17 New |                   |

second reseat pressure checks produced slightly out of specification readings; however, three subsequent checks were made with acceptable and repeatable values. Also, after reseat was reached on the relief valve assembly, leakage continued at about 7 scc/min until the pressure was decreased to approximately 203-206 psig. No explanation is offered for the anomalous performance other than the previous testing at Magic Mountain and the extended storage period. The anomalous conditions were not considered detrimental to successful completion of the test program. The burst disc in the system A fuel relief valve was inadvertently ruptured during leak and functional testing.

Results of the propellant bladder leakage checks were as follows:

| Tank              | Specification limits | Measured leakage,<br>scc/15 min <sup>a</sup> |
|-------------------|----------------------|----------------------------------------------|
| System A oxidizer | 143 scc/15 min       |                                              |
| Check no. 1       |                      | 92                                           |
| Check no. 2       |                      | 100                                          |
| System A fuel     | 120 scc/15 min       |                                              |
| Check no. 1       |                      | 110                                          |
| Check no. 2       |                      | 105                                          |
| System B oxidizer | 143 scc/15 min       |                                              |
| Check no. 1       |                      | 80                                           |
| Check no. 2       |                      | 82                                           |
| System B fuel     | 120 scc/15 min       |                                              |
| . Check no. 1     |                      | 80                                           |
| Check no. 2       |                      | 80                                           |

<sup>a</sup>Two consecutive samples must be within 10 scc of each other to insure stabilization.

As can be seen from the above results, all bladder leakage rates were within specification limits; however, the system A fuel bladder leakage test was repeated six times before two acceptable rates within  $\pm$  10 scc of each other were obtained. This seems to indicate that gas was trapped between the bladder and the tank shell at the beginning of the test. - THERMOCHEMICAL TEST AREA DOC. NO. REVISION PAGE 20

|       |   | MSC-EP-R- | -68-1 | 7 . N | lew | OF | 1.31 |   |
|-------|---|-----------|-------|-------|-----|----|------|---|
|       |   |           |       |       |     | ·  |      | ] |
| <br>- | - |           |       | • • • |     |    |      |   |

The main shutoff valve leakage rates were all within specification as shown in table II. During the propellant manifold leak check, several small leaks were detected in mechanical fittings. These were repaired by retorquing or seal replacement. The results of all propellant latch valve leakage checks are recorded in table II. Table II also includes leakage rates on the valves as they were received from TMC following the HR3-DVT test and latch currents after cycling at 24 V dc.

The following observations were made during propellant latch valve checkouts:

- a. Position indicator switch failures occurred on latch valves no. 222 and no. 219.
- b. The position indicator switch produced an open indication at all times when voltage was applied to the valve. A closed indication was produced only when the valve was closed and no voltage was applied. This characteristic was common to all valves.
- c. Fifty percent of the valves leaked at rates in excess of the specification limit. Variations in leakage rates between consecutive leak checks were as large as several thousand scc/15 min if cycling had occurred in the interim.
- d. The valves were received at MSC with an average of only 32 days propellant exposure and an average of 45 actuations; therefore, the number of valves which did not meet leakage specifications in acceptance testing seemed high.
- e. Two values (no. 130 and no. 226) which exhibited extremely high leakage rates during acceptance testing were corrected to acceptable limits by cleaning, but this approach was unsuccessful on the seven other cluster isolation values with high leakage rates.
- f. Initial leak checks of valves no. 120 and no. 122 on the test stand indicated that they were out of specification. This was corrected by removing tube loads which were inadvertently induced during system assembly. This corrective process was also applied to valve no. 220 with no significant change in leakage rate. It is possible that some of the cluster isolation valves which leaked at a higher rate after subsystem assembly than before were influenced by excessive tube loading. The cluster isolation valve mounting brackets were modified during valve installation in an attempt to prevent tube loading.
- g. All but three of the valves checked had latch currents which were above the recently established acceptable level of 0.85 amps. Latch current is defined as the minimum current required to actuate the valve from the open to closed position or vice versa.

| DOC. NO.       | REVISION | PAGE 21 |
|----------------|----------|---------|
| MSC-EP-R-68-17 | New      | OF 131  |

h. Valve LSC 310-403-204, S/N 0048 was returned to the manufacturer for failure investigation after gold particles were observed in the valve effluent.

During the injector valve checkouts, it was discovered that the flight-type arc suppression circuitry as shown in figure 10 increased the indicated valve response times and suppressed the transient associated with voltage removal. Automatic coil signature traces were obtained by recording the induced voltage across the direct coils. Figure 22 contains sample automatic coil traces from engine II D/10 comparing voltage traces with and without the arc suppression network installed. These traces indicate that the arc suppression network had no appreciable effect on the valve opening times; however, the network did increase the fuel and oxidizer valve closing times by about 1.5 and 2.0 msec, respectively. Consequently, the effective engine on time should be increased accordingly for a given electrical on time.

The results of the pressure switch checkouts are shown in table V. Pressure switch S-156 did not operate, and switch S-154 did not open within specification limits. Switching pressures varied slightly as a function of the pressurization rate. Switch S-151 was a special backup switch developed by the Instrumentation and Electronics Systems Division of MSC and was designed to switch at a higher pressure than the flight-type switches.

During heater checkout, the heaters would not heat the engines above approximately  $90 - 100^{\circ}$  F at atmospheric pressure because of convective cooling; therefore, the checkout was completed at altitude. At altitude (130 000 feet) all heaters operated according to specification. It should be noted that the clusters were not insulated with flight-type blanket and shield assemblies and only one heater per engine was used instead of the two normally used in flight. Figure 23 illustrates the warmup period for a sample heater from each cluster. The clusters were insulated from the cluster mounts by phenolic strips in order to prevent excessive heat conduction into the heavy aluminum cluster mounts. During the heater checkout, one phenolic strip was missing from cluster III; therefore, the heaters on cluster III did not warm up as rapidly as the other clusters. This is shown by the slower temperature increase of engine III F/7 in figure 23. This situation was corrected before the start of hot-firing by installing the missing insulation. The warmup depicted in figure 23 was performed at altitude after the heaters had been on for 1-1/2 hours at sea level resulting in an initial temperature of 90 - 100° F. Direct extrapolation of the curves in figure 23 to ambient temperature indicates a total warmup time of approximately 2 hours for the test configuration.

Results of the engine gas flow checkout are shown in table VI and figures 24, 25, 26, and 27 which illustrate the relationship between flow pressures and the pretest water flowrates.

The system B water flowrates were obtained from TMC data before engine filter installation, and the system A water flowrates were obtained from MSC data generated after engine filters were installed. This arrangement

| DOC. NO.       | REVISION | PAGE 22 |
|----------------|----------|---------|
| MSC-EP-R-68-17 | New      | OF 131  |

was necessary since only the system A engines were water calibrated after filter installation. The above mentioned figures indicate a distinct inverse relationship between gas flow pressure and water flowrate. The engine IV U/1 fuel valve seat was replaced at MSC because of excessive leakage; therefore, MSC water flowrate was used for engine IV U/1 on figure 25. None of the engines appeared to have significant flow obstructions, but the engine II F/11 oxidizer flow was marginal based on the acceptance band used for flight vehicles.

All engine injector values exhibited zero leakage with 100 psig  ${\rm GN}_{\odot}$  inlet pressure.

<u>System loading</u>.- The following table is a summary of the propellant quantities loaded and a comparison with nominal mission values:

|                                      | Fuel A | Fuel B | Oxid A | Oxid B |
|--------------------------------------|--------|--------|--------|--------|
| Propellant quantities<br>loaded, 1bs | 101.7  | 104.2  | 204.1  | 204.2  |
| Nominal mission<br>quantities, lbs   | 103.5  | 103.5  | 203.7  | 203.7  |

Comparative propellant manifold pressure histories for the two priming techniques are shown in figures 28 and 29. These figures clearly indicate that no pressure levels occurred in either method which would damage the propellant lines or components. In addition, the first firings from each system produced chamber pressure and hydraulic characteristics indicative of normal ignition with the absence of gas bubbles.

Phase II --- Baseline Performance Duty Cycles

<u>Bleed-in firings</u>.- The bleed-in firings produced no evidence of gas bubbles and indicated nominal performance on all engines with the exception of engine III U/5. The engine III U/5 chamber pressure indicated reduced performance (90 psia steady state). This anomaly was attributed to a problem in the DAS and not the engine (see Appendix E).

<u>Baseline single engines.</u> Sample baseline engine performance and hydraulic conditions are included in appendix B for engines IV D/2, IV S/4, II F/11, and I U/13 (runs II-A-2-28 through II-A-2-158). Figures 30, 31, and 32 illustrate the variation in engine inlet hydraulic conditions for single 50 msec pulses at various engine locations. Engines located at comparable positions in system A and system B were plotted on the same figure to permit direct comparison. As expected, the major characteristics of the inlet pressure fluctuations for these engines were similar. The following general observations can be made from figures 30, 31, and 32:

a. The oxidizer natural frequency was approximately 21 Hz.

- THERMOCHEMICAL TEST AREA DOC. NO. REVISION PAGE 23 OF 131

MSC-EP-R-68-17

New

b. The fuel natural frequency was approximately 28 Hz.

- c. The fuel recovery time (time required after value opening to regain initial pressure) for the engines located farthest from the tankage modules (engines IV D/2, I D/14, II U/9, and III S/8) was an average of 19 msec. The fuel recovery time for the engines located nearest the tankage module (engines I U/13 and IV U/1) was an average of 8 msec.
- d. The oxidizer recovery time for the engines located farthest from the tankage modules was an average of 25 msec. The oxidizer recovery time for the engines located nearest the tankage module was an average of 11 msec.
- e. In several cases, harmonic frequencies appeared to be superimposed on the natural frequency.
- f. Minimum pressures following valve opening ranged from 97 to 127 psia for fuel and from 95 to 116 psia for oxidizer.
- g. Maximum pressures following valve closing ranged from 244 to 264 psia for fuel and from 250 to 276 psia for oxidizer.

Figures 33, 34, and 35 include sample oscillograms illustrating engine and feed system characteristics for baseline pulses of 17, 50, and 100 msec on engine IV D/2.

Pressure waves of varying amplitudes were transmitted across the crossfeed valves from the propellant system in which the engine was firing to the other propellant system. This phenomenon can be readily observed from the data recorded for system B manifold pressure in appendix B. Special tests (runs SP-2 and SP-3 in appendix A) were performed to determine if this tranfer resulted from the crossfeed valve poppet lifting partially off its seat and transferring fluid into the other system. On one system, the main shutoff valves were closed and then an engine was pulsed to reduce the manifold pressures. On the other system, an engine was then pulsed in an attempt to transfer propellant to the low pressure system. The oxidizer manifolds were "soft" (little reaction to valve motion), and the fuel manifolds were "hard" (significant reaction to valve motion) during the special tests. No increase in pressure was detectable in the low pressure system for either propellant. This test was repeated, reversing the systems, with a similar lack of detectable propellant transfer. The wave transfer mechanism, therefore, seemed to be through bellows flexures in the crossfeed valves.

Table VII is a summary of system performance characteristics during the baseline firings. Chamber pressure rise times for the engines nearest the tankage module (engines II F/11 and I U/13) were significantly shorter than for the more distant engines (engines IV D/2 and IV S/4). The chamber pressure rise times (time to 75 percent of steady state Pc minus ignition delay) were 10.2, 9.7, 8.6, 8.4 msec for engines IV D/2, IV S/4, II F/11, and I U/13, respectively. The propellant feed system transients THERMOCHEMICAL TEST AREA DOC. NO. REVISION PAGE 24 MSC-EP-R-68-17 New OF 131

were of greater magnitude on the more distant engines. Minimum and maximum fuel inlet pressures for these single engine firings were 86 and 310 psia. Minimum and maximum oxidizer inlet pressures were 71 and 324 psia. In general, the manifold pressure extremes were about 10 to 60 psia less than the inlet pressure extremes, and the oxidizer transients were more severe than the fuel transients.

Figures 36, 37, 38, and 39 illustrate baseline engine performance (integrated chamber pressure) as a function of pulse width. The normal linear relationship was observed for all engines. Variations from engine to engine were small with engine II F/11 exhibiting the highest performance for the four sample engines. Baseline data used for analysis purposes included runs II-A-2-23 through 37, II-A-2-55 through 59, II-A-2-132 through 136, and II-A-2-154 through 158.

## Phase III --- Mission Duty Cycles

The LM RCS successfully completed the simulated LMl and lunar abort from hover mission duty cycles. The mission duty cycles provided an excellent system test since both the AGS and PGNCS modes were simulated. The LMl mission phase 13 run was aborted after 7 minutes 50 seconds because of overheating of the altitude test chamber.

General observations from the LM1 mission duty cycle indicated that the prevalent minimum impulse firing duration was 17 msec with a minimum firing duration of 15 msec. This is assumed to be representative of the PGNCS operation. PGNCS operation was consistent with the design pulse frequency limit of 5 pulses/second (fig. 13).

The abort from hover duty cycles were often extremely active. Because of facility constraints on free air temperature and vacuum pressure, only limited portions of the various mission phases could be fired; however, the portions were selected to be representative of the periods of major activity. The upfiring engines were deactivated in the midcourse correction simulation because the test cell pressure exceeded the 10 mm Hg red-line for upfiring operation. The lunar mission coelliptic sequence initiation duty cycle included periods in which each of the four down-firing engines was pulsed at a 30 to 45 percent duty cycle (fig. 17). Figures 19 and 20 include periods of extreme activity on all 16 engines. Cases were observed in which as many as eight engines were firing simultaneously (fig. 16).

Many engine commands of less than minimum impulse (13 msec) were observed during the lunar mission duty cycles. A maximum of 19 consecutive engine commands of less than 13 msec duration were observed on engine II U/9 during the coelliptic delta height simulation (run III-B-3-1). The duration of these 19 pulses ranged from 1 to 4 msec. In most cases the short pulses occurred as isolated pulses on a particular engine; however, in some cases they occurred on a vertical engine immediately before startup or immediately subsequent to shutdown of the opposing vertical engine. While the short pulses did not damage the RCS engines,

| DOC. NO.       | REVISION | PAGE | 25  |
|----------------|----------|------|-----|
| MSC-EP-R-68-17 | New      | OF   | 131 |

they could have caused the LM Caution and Warning System to indicate a failed thruster since only seven consecutive engine commands of less than 80 msec with no corresponding indication of ignition are required to signal a failure. Because the AGS design limited the off times between short pulses to a minimum of 1 to 2 seconds, engine damage due to fuel cold flows (which sometimes were the result of short pulses) was prevented. This off time was probably sufficient to allow the propellants in the chamber to vaporize between pulses; however, the short firings associated with a firing on the opposing thruster as mentioned above were not subject to a minimum off time. Apparent nominal pulses vere sometimes interrupted by short off times on the order of 0 to 10 msec duration. Sample engine commands illustrating the above anomalies are included in figures 16 through 20.

Refer to appendix A for a summary of the total pulses and total on time for each engine during the simulated mission duty cycles (runs III-A-1-1 through III-A-4-1 and III-B-1-1 through III-B-5-1). Table I is a record of the simulation run numbers and run times performed in this test program. Sample engine and system performance characteristics are included in appendix B for engines IV D/2, IV S/4, II F/11, and I U/13. Figures 36, 37, 38, and 39 are comparisons of sample mission duty cycle engine performance with baseline performance. From these figures, it can be seen that integrated chamber pressure was generally slightly less for the mission duty cycle firings than for the baseline firings. This is probably the result of the more extreme hydraulic transients and lower feed pressures associated with multiple engine firings. The linear relationships shown in figures 36, 37, and 39 were derived using the least-squares technique. The standard deviations for the relationships shown ranged from 0.105 to 0.395 psia-seconds for the mission duty cycle firings and from 0.0701 to 0.168 psia-seconds for the baseline firings. Deletion of the most extreme data point in figure 39 would probably result in a more realistic relationship.

Table VIII is a summary of engine performance during the simulated mission duty cycle runs. Ignition delays and times required to attain 75 percent of steady state chamber pressure compare favorably with baseline data (table VII).

Table IX is a comparison of the propellant feed system characteristics for the various mission phases. This table is based on sample pulses from the four engines chosen for analysis and recorded in appendix B. Using manifold pressures as the criterion, the mission duty cycle hydraulic transients appeared to be slightly more severe than the baseline transients. It should be noted that the effects of helium saturation have not been considered in this table. This may account for the somewhat smaller extremes experienced during the lunar mission duty cycle simulation which was performed near the end of the test program (appendix A).

| DOC. NO.       | REVISION | page 26 |
|----------------|----------|---------|
| MSC-EP-R-68-17 | New      | OF 131  |

## Phase IV --- Special Duty Cycles

Hydraulic transient effects .- Table X contains a comparison of pertinent engine operating characteristics for the baseline, hydraulic effects in normal mode, and hydraulic effects in crossfeed mode duty cycles. This table, which was tabulated from sample pulses from engines IV D/2, IV D/4, and I U/13, indicates slightly lower performance in the crossfeed mode than in the normal mode. The crossfeed mode average performance was 10.6 percent less than baseline, and the normal mode average performance was 8.2 percent less than baseline. Engine performance in the crossfeed mode was as much as 48 percent less than baseline for 17 msec pulses. The average differences in ignition delay and chamber pressure rise time were insignificant; however, chamber pressure rise times were significantly increased in the runs in which four engines in the same system were simultaneously started. The time required to reach 75 percent of steady state chamber pressure was a maximum of 34.6 msec on the first pulse on engine I U/13 in run IV-B-2-4. Figure 40 illustrates this characteristic for engines IV D/2, IV S/4, III S/8 and I U/13 starting simultaneously in the normal mode. Engines IV D/2 and IV S/4 required 31 and 32.4 msec, respectively, to attain 75 percent of steady state chamber pressure. This characteristic was not repeated when the identical duty cycles were performed in the crossfeed mode using the system A tankage module. Apparently, the additional manifold aided feed pressure recovery for this particular duty cycle. It should be noted that the engines chosen for analysis were all in the system used for propellant supply during the crossfeed mode runs.

Figures 41, 42, and 43 are comparisons of engine performance (using integrated chamber pressure as the performance measurement) during the baseline and hydraulic effects duty cycles. These plots are based on randomly selected sample pulses from three engines chosen to be representative of the system. As can be seen from the curves, integrated chamber pressure was consistently lower during the hydraulic transient effects duty cycles at all pulse widths in both the normal and crossfeed modes. Crossfeed mode performance was consistently lower than normal mode performance.

Figures 40 and 44 through 47 are sample oscillograms which are indicative of engine and system performance characteristics during the normal mode hydraulic transient effects duty cycles. It should be noted that the parameters associated with only two engines of the programmed four or eight engine duty cycles are included in the oscillograms.

Table IX provides a comparison of the propellant feed system characteristics during the hydraulic transients effects duty cycles with other portions of the test program. This table indicates that the extremes experienced during these duty cycles were more severe than those experienced in other portions of the test program; however, the difference between the crossfeed and normal modes appears to be insignificant. This is probably true since only pressures in system A, which was utilized as the propellant supply during the crossfeed mode, were analyzed. More - THERMOCHEMICAL TEST AREA ----

| DOC. NO.       | REVISION | PAGE | 27  |
|----------------|----------|------|-----|
| MSC-EP-R-68-17 | New      | OF   | 131 |

variation would probably be observed if the system B hydraulic characteristics were analyzed.

The hydraulic effects duty cycles were performed successfully by the test article. The hydraulic pressure transients created in the propellant system during the programmed "worst case" duty cycles produced significant effects on engine performance and feed pressure amplitudes; however, no engine or feed system damage was observed.

<u>Pressure switch evaluation</u>.- A summary of pressure switch performance during baseline and special pressure switch evaluation duty cycles is included in table XI. Pressure switch closing time is defined as the time from engine electrical on to switch closure; pressure switch opening time is the time from engine electrical off to switch opening; and pressure at switch opening is the engine chamber pressure at the time of switch opening.

Anomalies and questionable performance observed in pressure switch operation included:

| Switch no.    | Engine no.     | Failure mode | Run no.     | Total firings |
|---------------|----------------|--------------|-------------|---------------|
| S-253         | IV U/l         | Closed       | II-A-2-19   | 16            |
| <b>S-</b> 256 | III D/6        | Open         | IV-L-1-6    | 625           |
| S-257         | II U/9         | Closed       | II-A-2-112  | 31            |
| S-156         | <b>II</b> D/10 | Closed       | failed in c | heckout       |

a. Four switch failures occurred during the program.

Switch S-156 on engine 10 indicated a "failed on" condition during system checkout but worked intermittently during the test program.

- b. Pressure switch opening times ranged from 30 to 74 msec for the flight-type switches summarized in table XI. Consequently, engine electrical off times of less than the above values did not permit the switches to open between pulses.
- c. The backup switch (S-151) setting was too high to provide a sufficient signal for proper CWS operation at pulse widths of less than approximately 12 msec (fig. 48).
- d. Switch oscillations were often observed during a pulse as the result of chamber pressure fluctuations during buildup or decay periods (fig. 49).
- e. Oxidizer cold flows of 100 msec produced firing indications (switch closure) on two out of three pressure switches tested (figs. 50 and 51). Therefore, a fuel injector valve failed closed or an oxidizer injector valve failed open could occur without immediately being detected by the CWS.

THERMOCHEMICAL TEST AREA -

| DOC. NO.       | REVISION | PAGE | 28  |
|----------------|----------|------|-----|
| MSC-EP-R-68-17 | New      | OF   | 131 |

Chamber pressures were in the 7.5 to 8.5 psia range. The closing pressure switches had switching pressures slightly below these values, and those not closing, slightly above. A series of 10 oxidizer cold flows at 75 msec on and 125 msec off on two engines only produced switch actuations on the first pulse. This indicated that the oxidizer cold flows cooled the combustor and injector head resulting in lower chamber pressures. It should be noted that although oxidizer could react with the engine post shutdown residue, the chamber pressure does not appear to have been influenced because the indicated chamber pressure increased very gradually and remained stable until valve closure — no abrupt reactions were noted.

f. Seven short pulses of 17 msec subsequent to a simulated fuel cluster isolation valve closure produced ignition indications; consequently, a fuel cluster isolation valve could inadvertently close without being immediately detected (fig. 52).

The pressure switches utilized on this test were not flight qualified switches; however, the operating limits and characteristics were identical to flight switches. Flight qualified switches are equipped with a backup shoulder behind the Belleville washers (disk spring). Three of the four failed switches have been forwarded to GAEC for failure analyses.

Results of the special tests on pulses of less than minimum impulse (appendix A, runs IV-H-l-l through 6 and IV-H-2-7 through 12) indicated that the switches would actuate at a minimum pulse duration of 7 msec. Of course, this value is a function of the presence of ignition and the switching levels of the individual pressure switches.

<u>Propellant consumption and O/F ratio duty cycles.</u> Results of these duty cycles showing the relationship between propellant consumption and O/F mixture ratio and pulse duration are included in figures 53 and 54. The two engines selected for this study should approximate the system extremes since engine III D/6 is near the system B tankage module and engine IV D/2 is the most distant engine from the system A tankage module (fig. 3). In addition, the system B manifold pressure was about 3 psi higher than the system A manifold pressure.

Figure 53 indicates that the LM RCS O/F mixture ratio was slightly less than was experienced in engine qualification testing for pulse widths greater than 20 msec. This can be partially attributed to the injector valve voltage which was 27 V dc during qualification testing.

At pulse widths of less than 20 msec, the O/F mixture ratio began to increase with decreasing pulse width to a value of 1.95 at 14 msec. This is a significant departure from the previous single engine test results. The apparent reason for this phenomenon was the presence of an extremely soft oxidizer system and a hard fuel system during the propellant consumption duty cycles. Figures 55, 56, and 57 illustrate this

| THEDROOMERICAL | TTOT |                |          |      |     |  |
|----------------|------|----------------|----------|------|-----|--|
| THERMOCHEMICAL | 1521 | DOC. NO.       | REVISION | PAGE | 29  |  |
|                |      | MSC-EP-R-68-17 | New      | OF   | 131 |  |

propellant condition for the baseline manual coil runs performed immediately after the propellant consumption duty cycles. The entire O/F ratio curves shown in figure 53 were probably affected. It should be noted that the oxidizer propellant feed system became gradually "softer" as the test program progressed because of apparent helium ingestion.

Figure 54 is a plot of propellant consumed as a function of electrical on time for engines III D/6 and IV D/2. These curves are almost identical to engine qualification data. Engine III D/6, which was closer to the propellant module and fed by a higher propellant pressure, had higher propellant consumption than engine IV D/2.

<u>Mission duty cycle performance in crossfeed mode</u>.- Table XII is a comparison of system performance during a simulated mission duty cycle for normal and crossfeed operation. Identical pulses were randomly selected from each mode to provide the data shown in the table; consequently, all performance parameters should be directly comparable.

As can be seen from the table, the total impulse for the crossfeed mode was slightly higher than for the normal mode. This result is consistent for the four sample engines chosen for analysis. These four engines were all located in the system with the active tankage module. No significant variations between the two modes were noted for the ignition delay and the time required to attain 75 percent of steady state chamber pressure. In summary, it appears that there were no significant variations between the crossfeed and normal mode performance for the simulated mission duty cycle performed. The LM RCS successfully performed the simulated mission duty cycle in the crossfeed mode.

<u>Failure modes</u>.- The simulated engine "on" failures resulting in cluster isolation valve closure were completed with no problems. Figure 58 is an oscillogram illustrating the system conditions during a simulated failure of engine IV D/2. The abrupt decrease in chamber pressure and propellant inlet pressure correspond to cluster isolation valve closure. The manifold pressure fluctuations occurring every 250 msec were caused by engine II F/11 which was firing at a duty cycle of 50 msec on and 200 msec off. The apparent fluctuations in propellant inlet pressure which occur after isolation valve closure were the result of transducer shift and should be disregarded.

Figure 52 is an oscillogram illustrating system conditions during the simulated inadvertent fuel cluster isolation valve closure. The decrease in fuel propellant inlet pressure (P-19) corresponds to fuel cluster isolation valve closure. The duty cycle was designed for fuel cluster isolation valve closure to occur at the end of the 2 second firing in engine IV S/4; however, closure did not occur until after the first pulse of a programmed series of seven 17 msec pulses. Ignition occurred on the six remaining pulses accompanied by a pressure switch indication; consequently, this particular failure mode would not have been detected by the CWS.

THERMOCHEMIGAL TEST AREA -

| DOC. NO.       | REVISION | PAGE | 30  |
|----------------|----------|------|-----|
| MSC-EP-R-68-17 | New      | OF   | 131 |

An indication of momentary combustion instability occurred during the 2 second firing in engine IV S/4. Since the previous firing on this engine was the simulated engine "on" failure described above, a small gas bubble may have been trapped in the propellant lines while the engine valves were open and the cluster isolation valves closed. From previous history, it is known that gas bubbles can produce combustion instability.

Pulse widths of less than minimum impulse.- Figure 59 is an oscillogram comparing system performance for pulse widths of 4, 6, and 7 msec on engine IV S/4. As can be seen from the figure, the 4 msec pulse width produced no reaction in the fuel or oxidizer manifolds; the 6 msec pulse width produced an indication of fuel valve opening with no ignition, and the 7 msec pulse produced an indication of both fuel and oxidizer valve opening with ignition. The 7 msec pulse also produced an indication of ignition on the engine IV S/4 pressure switch. Unfortunately, the engine IV S/4 injector valve voltage traces were recorded erroneously on these runs, precluding an accurate determination of the injector valve voltage characteristics. Engine II F/ll produced the same results as engine IV S/4; that is, ignition first occurred on a 7 msec pulse.

The engines successfully completed the short pulse width duty cycles without damage or failure. The duty cycles performed in this block were supplemented by the short pulses in the lunar mission duty cycles as previously mentioned. Again it appears that the long minimum off times in the AGS design allowed sufficient time for vaporization of the raw fuel between pulses which caused fuel cold flows, or the fuel accumulation was insufficient to cause problems.

Baseline performance with manual coils. Sample results of the baseline single engine firings utilizing the manual (or direct) coils are included in appendix B (runs IV-I-16, 17, 18 and IV-I-61, 62, 63). Figures 60 and 61 include a comparison of baseline performance using the automatic and manual coils for engines IV S/4 and I U/13, respectively. These figures indicate that the decrease in performance in the manual mode is almost constant for the pulse widths shown. This is the result of a constant decrease in effective pulse duration caused by the slower manual coil opening response; therefore, the performance for all pulse widths would be decreased by this constant amount.

Figures 55, 56, and 57 are sample oscillograms of 30, 50, and 100 msec pulses, respectively, in the manual mode on engine IV S/4. A comparison of these figures with the automatic coil baseline firings on engine IV D/2 (figs. 33, 34, and 35) clearly illustrate the "softer" hydraulic conditions. The "softer" feed system was probably the result of both helium ingestion in the propellants and large helium ullage in the propellant tanks.

<u>Manual coil maneuvers</u>.- Based on real-time observations, no problems were encountered in these simulated maneuvers. Data from these runs were not reduced. THERMOCHEMICAL TEST AREA-

| DOC. NO.       | REVISION | PAGE | 31  |
|----------------|----------|------|-----|
| MSC-EP-R-68-17 | New      | OF   | 131 |

<u>High-low voltage effects.</u> Appendix B contains a tabulation of pertinent system operating characteristics for identical pulses randomly selected from the high-low voltage duty cycle (runs IV-K-1 and IV-K-2). Comparable data for the nominal voltage case are included for run III-B-4-1. The following table illustrates the effects of voltage variation on engine performance for two sample engines (IV D/2 and IV S/4) during the simulated transfer point initiation duty cycle.

| Run no.   | Injector valve<br>voltage, V dc | Description | Ignition delay,<br>msec | Time to 75<br>percent Pc,<br>msec |                              |
|-----------|---------------------------------|-------------|-------------------------|-----------------------------------|------------------------------|
| IV-K-l    | 27-28                           | Maximum     | 10.5                    | 21.3                              |                              |
| -         |                                 | Average     | 10.1                    | 19.8                              | 5.22 at<br>avg.              |
|           |                                 | Minimum     | 9.5                     | 18.6                              | pulse<br>width of<br>59 msec |
| III-B-4-1 | 2324                            | Maximum     | 11.7                    | 22.4                              |                              |
|           |                                 | Average     | 11.2                    | 20.6                              | 5.13 at<br>avg.              |
|           |                                 | Minimum     | 10.8                    | 19.2                              | pulse<br>width of<br>59 msec |
| IV-K-2    | 20-21                           | Maximum     | 13.2                    | 24.0                              |                              |
|           |                                 | Average     | 11.9                    | 21.9                              | 5.10 at<br>avg.              |
|           |                                 | Minimum     | 10.5                    | 19.4                              | pulse<br>width of<br>59 msec |

NOTE: The above data were obtained from appendix B.

This table indicates about a 1 msec change in ignition delay and time to 75 percent Pc per each 3 to 4 volt change in injector valve voltage. The quality of the valve traces did not permit an accurate measurement of valve opening and closing traces; however, it is assumed that the valve opening times were similarly affected. Average integrated Pc for the average pulse width of 59 msec decreased slightly as the voltage decreased. A more accurate determination of the effects at various pulse widths may be obtained by examination of the data in appendix B. It should be noted that the values in the above table may have been affected by changes in tank ullage and system hydraulics.

Effects of short pulses on injector temperature. - The programmed duty cycles were insufficient for establishing the worst case injector head cooling

THERMOCHEMICAL TEST AREA -----

| DOC. NO.       | REVISION | PAGE <u>32</u> |
|----------------|----------|----------------|
| MSC-EP-R-68-17 | New      | OF <u>131</u>  |

duty cycle. The fifty 17-msec pulses fired in each run did not provide sufficient time for the minimum temperature to be reached or for indentification of the maximum overall cooling rate. The following limited data were recorded:

| Duty cycle<br>(time in sec.) | No. pulses | Initial injector<br>temperature,<br>°F | Final injector<br>temperature,<br>°F | Cooling rate   |
|------------------------------|------------|----------------------------------------|--------------------------------------|----------------|
| 0.017 on/0.183 off           | 50         | 130                                    | 130                                  | 0° F/10 sec.   |
| 0.017 on/0.283 off           | 50         | 130                                    | 130                                  | 0° F/15 sec.   |
| 0.017 on/0.383 off           | 50         | 130                                    | 130                                  | 0° F/20 sec.   |
| 0.017 on/0.483 off           | 50         | 132                                    | 127                                  | 5° F/25 sec.   |
| 0.017 on/0.983 off           | 50         | 131                                    | 121                                  | 10° F/50 sec.  |
| 0.017 on/2.500 off           | 50         | 131                                    | 121                                  | 10° F/125 sec. |

In order to obtain more conclusive data, the injector head temperature behavior during the propellant consumption duty cycles (runs IV-E-1 through IV-8-13) was plotted. Figure 62 illustrates the injector head temperature as a function of time and duty cycle for a typical uninsulated engine. A minimum of  $98^{\circ}$  F was obtained with a duty cycle of 0.014 seconds on and 1.000 seconds off. Figure 63 illustrates the injector head temperature as a function of time and duty cycle for the insulated engine. This figure indicates that the 0.014 seconds on/0.500 seconds off duty cycle produced the highest initial cooling rate (curves 1 through 5). In general, a comparison of curves 1 through 5 indicates that the initial cooling rate increases as the off time decreases for the off times tested; however, a comparison of curves 4 and 5 illustrates that the trend would not have continued since 5 appears to be crossing 4. Curve 6 indicates that the 0.014 seconds on/1.000 seconds off duty cycle produced the minimum injector head temperature of 102° F.

It should be noted that the above discussion relates only to the test configuration and may not be representative of flight since only one heater was installed per engine, the cluster blanket and shield assembly was installed on only one engine, and the thermal environment of space was not simulated.

<u>Cluster insulation evaluation</u>.- The results of runs IV-M-1-1 and IV-M-2-2. were surprising. The engine with the thermal shield ran slightly cooler than the exposed engine; maximum chamber temperatures recorded between the chamber ribs, 180 degrees apart, were  $1100^{\circ}$  and  $1240^{\circ}$  F on the covered engine, and  $1200^{\circ}$  and  $1325^{\circ}$  F on the exposed chamber. Peak flange temperatures during the firings were  $155^{\circ}$  and  $163^{\circ}$  F on the covered and exposed engine, respectively, and  $290^{\circ}$  and  $312^{\circ}$  F at maximum soakback. The heater thermostat temperature on the shielded engine was  $135^{\circ}$  F during the firing and  $240^{\circ}$  F at maximum soakback. The heater thermostat temperature on the exposed engine was erratic - THERMOCHEMICAL TEST AREA DOC. NO. REVISION PAGE 33 MSC-EP-R-68-17 New OF 131

because of improper attachment of the thermocouple. The test was repeated with similar results. The instrumentation setup for this test was as shown in figure D3, appendix D. The above data suggest that the extension of the thermal blanket and shield assembly over the combustion chamber had little effect on the engine's thermal characteristics.

Figures 64 and 65 illustrate the effects of engine firings on the partial blanket and shield assembly. Some charring and degradation were observed in the vicinity of the combustion chamber on the H-film, aluminized H-film tape, and SiO-Al thermal control coating. It is probable that minor charring and degradation will occur in actual LM missions; however, design changes effective on LM3 and subsequent vehicles should minimize these effects.

## Phase V - Post-test Checkout and Decontamination

During the period following the decontamination as described in the test procedure section of this report, a columbium chamber evaluation test (ref. 20) and a LM1 anomalies investigation test (ref. 21) were performed on the system. A11 system components, with the exception of some Pc transducers, performed adequately on these tests. Consequently, it may be stated that the system components functioned properly after a  $\frac{1}{4}$  1/2 months exposure to an uncontrolled and unknown concentration of propellant. It should be noted that a complete checkout of the components was not performed before or after the referenced tests; therefore, the preceding statement was based only on the fact that sysbem performance was adequate for completion of the tests.

### Special Analyses

<u>Propellant consumption</u>.- Table XIII is a summary of the propellant consumption and engine firing distribution for the mission duty cycles performed and for the total test program. This table illustrates that the downfiring engines experienced the most pulses and total on time in MDC operation. The O/F ratios were slightly lower than were experienced in engine qualification testing. This can be partially attributed to the injector valve voltage which was 27 V dc during qualification testing and 23-24 V dc in this test. The mission duty cycle O/F ratios shown in table XIII were slightly lower than the single engine data shown in figure 53 for engine IV D/2, using average pulse widths. The total test program O/F ratio falls about midway between the single engine curves shown in figure 53.

<u>Propellant quantity measurement technique.</u> Figures 66, 67, and 68 illustrate PQMD operation for the test program. Figure 66 is a comparison of actual PQMD output with theoretical output based on measured helium tank temperatures and pressures. In general, the system A PQMD output was slightly higher than theoretical while the system B PQMD output was almost identical to theoretical. In all cases, the PQMD's operated within the four percent acceptable limit. - THERMOCHEMICAL TEST AREA ------

| DOC. NO.       | REVISION | PAGE 34       |
|----------------|----------|---------------|
| MSC-EP-R-68-17 | New      | OF <u>131</u> |

Figures 67 and 68 include propellant consumption histories as measured by both the load cell technique (fig. 5) and the PQMD's. Figure 67 indicates an almost constant bias of 5 to 7 lbs on the system A PQMD with PQMD readings higher than the corresponding load cell readings. This bias developed during the initial firings and was maintained for the remainder of the test program. The maximum difference between the system A PQMD and the system A load cells was about 12 lbs which was less than four percent of the total available propellants in system A. Figure 68 indicates close agreement between the system B PQMD and the system B load cell readings. The system B PQMD indicated higher than the load cells in the early portions of the test program but crossed over and became lower in the latter portions. The maximum difference observed was again about 12 lbs but most of the differences were less than 5 lbs. It should be noted that the differences discussed above could have resulted from inaccuracies in the load cells and/or the PQMD's. Appendix A may be used to correlate real time with test duty cycles.

<u>Compatibility of CWS monitored operating limits with CWS operation</u>.- The helium tank and regulator output pressures experienced during the test program appeared to be compatible with the CWS limits. A caution light illuminates in flight when the helium tank pressure falls below 1696 psia. The steady state regulator outlet pressures recorded during the test program were all well within the CWS limits of 164.4 to 204.3 psia.

Since no attempt was made to simulate the thermal environment of an actual mission, the cluster temperature limits could not be realistically evaluated; however, under the test conditions, the temperature limits of 119° to 190° F were compatible with CWS operation.

Several possible areas of incompatibility between the RCS and CWS were observed in the TCA failure detection system. These areas included the following:

- a. Four pressure switch failures occurred during the program.
- b. Short engine off times did not permit the pressure switches to open between pulses.
- c. Pressure switch oscillations were often observed during a pulse as the result of chamber pressure fluctuations during buildup and decay periods.
- d. Oxidizer cold flows (fuel injector valve inhibited) sometimes produced pressure switch signals; therefore, a fuel injector valve failed closed or an oxidizer injector valve failed open could occur without immediate detection.
- e. Seven short pulses of 17 msec subsequent to a simulated fuel cluster isolation valve closure produced ignition indications on the pressure switches; consequently, a fuel cluster isolation valve could inadvertently close without being immediately detected.

THERMOCHEMICAL TEST AREA -

| DOC. NO.       | REVISION | PAGE 35       |
|----------------|----------|---------------|
| MSC-EP-R-68-17 | New      | OF <u>131</u> |

f. Many engine commands of less than minimum impulse (13 msec) occurred during the simulated lunar mission duty cycles. This condition could result in an erroneous TCA failure indication since only seven consecutive engine commands of less than 80 msec with no corresponding indication of ignition are required to signal a failure. As previously noted, pulses of less than 7 msec will not normally produce ignition.

Heater system evaluation.- Heater system performance appeared to be satisfactory with the exception of the short pulse cooling effects mentioned earlier in the results and discussion section of this report. The cooling problem could not be properly evaluated with the test setup which utilized only one heater per engine, incomplete thermal insulation, and no simulation of space thermal environment.

In general, injector head temperatures were maintained at  $126^{\circ}$  to  $132^{\circ}$  F with the thermostat cycling off for about 2 minutes every 6 or so minutes, depending on ambient conditions. Cluster temperatures were generally  $3^{\circ}$  to  $5^{\circ}$  F warmer than the injector heads. Valve temperatures, measured near the seat, were in the  $110^{\circ}$  to  $120^{\circ}$  F range, with the fuel valve normally a few degrees warmer than the oxidizer valve. Combustion chamber temperatures were about  $127^{\circ}$  F.

The manual lead on one heater (engine II F/ll) was accidentally grounded to the test stand during pretest operations. Consequently, the thermostat was bypassed, resulting in a continuously on situation. The heater remained on for the entire test program and maintained the engine II F/ll injector head between  $145^{\circ}$  and  $155^{\circ}$  F.

Figure 69 is a representative temperature profile for cluster III during the lunar mission duty cycle transfer point initiation simulation.

- THERMOCHEMICAL TEST AREA ----

| DOC. NO.       | REVISION | PAGE | 36  |
|----------------|----------|------|-----|
| MSC-EP-R-68-17 | New      | OF   | 131 |

#### CONCLUSIONS

### Phase 1 - Pretest Operations

- 1. A reddish-brown deposit, which was analyzed in earlier testing (ref. 19) to consist primarily of iron, was discovered in the LM RCS oxidizer tubing in the vicinity of the brazed joints during pretest cleaning. The tubing had been previously exposed to design verification testing at TMC.
- 2. In general, the HR-3 DVT subsystem components performed within specification limits after testing at Marquardt and several months storage at MSC. Exceptions were as follows:
  - a. The propellant ground half couplings (GAEC specification number LSC 310-401) were subject to leakage in the stem area.
  - b. The system A oxidizer relief valve produced anomalous results in three areas during system checkout; however, the anomalous conditions were not severe enough to require replacement for test operations.
  - c. Numerous anomalies were observed during propellant latch valve (GAEC specification number LSC 310-403) checkouts. These included two position indicator switch failures, excessive leakage on 50 percent of the valves, and nonrepeatability of leakage rates.
- 3. Flight-type arc suppression circuitry delayed the fuel and oxidizer valve closing times by about 1.5 and 2.0 msec, respectively.
- 4. Both the IM1 and IM3 priming techniques were found to be acceptable.

Phase II - Baseline Performance Duty Cycles

- 1. Pressure waves of varying amplitudes were transmitted across closed crossfeed valves from the propellant system in which an engine was firing to the other propellant system. These waves were not accompanied by any detectable propellant transfer.
- 2. Baseline engine performance was comparable to single engine qualification data.

### Phase III - Mission Duty Cycles

1. The LM RCS test article successfully completed portions of simulated LM1 and lunar abort from hover mission duty cycles which had been generated in the GAEC FCI laboratory.

٢

THERMOCHEMICAL TEST AREA -

| DOC. NO.       | REVISION | PAGE _ 37     |
|----------------|----------|---------------|
| MSC-EP-R-68-17 | New      | 0F <u>131</u> |

- 2. The simulated mission duty cycles were found to contain numerous engine commands of less than minimum impulse (13 msec) and short off times on the order of 0 to 10 msec.
- 3. Engine performance during the mission duty cycles firings was slightly less than baseline performance.

## Phase IV - Special Duty Cycles

- 1. The LM RCS test article successfully completed the programmed "worst case" duty cycles. Hydraulic pressure transients created in the propellant system during these duty cycles produced significant effects on engine performance and feed pressure amplitudes; however, no engine or feed system damage was observed. Engine performance was reduced during "worst case" hydraulic duty cycles with the crossfeed mode experiencing a greater reduction than the normal mode.
- 2. Four of the 15 pressure switches (LSC 310-651-3) utilized in this test experienced failure. One switch failed with the contacts open and the other three failed with the contacts closed. The pressure switches did not include various design modifications which have been added to the flight switches.
- 3. The fuel and oxidizer hydraulic transients became progressively smaller in amplitude and frequency as the test program progressed. The oxidizer was affected to a greater extent than the fuel.
- 4. The O/F ratio and the propellant consumption for engines operating in the LM RCS were comparable to single engine qualification data for pulse widths of greater than 20 msec. The relatively "soft" (little reaction to valve motion) condition of the oxidizer manifold at the time of the O/F ratio testing apparently caused the O/F ratio to increase with decreasing pulse width at pulse widths of less than approximately 20 msec.
- 5. The LM RCS test article successfully completed a simulated mission duty cycle in the crossfeed mode with no significant reduction in engine performance.
- 6. The LM RCS test article successfully completed the following simulated failure modes:
  - a. Cluster isolation valve closure to isolate a failed "on" engine
  - b. Inadvertent fuel cluster isolation valve closure
- 7. LM RCS engines produced ignition at electrical pulse widths as low as 7 msec with 23-24 V dc injector valve voltage.

THERMOCHENICAL TEST AREA -

| DOC. NO.       | REVISION | PAGE 38       |
|----------------|----------|---------------|
| MSC-EP-R-68-17 | New      | OF <u>131</u> |

- 8. The LM RCS test article successfully completed the manual or direct coil baseline firings and simulated maneuvers. Manual coil performance was less than automatic coil performance by a constant amount which was independent of the pulse duration.
- 9. Engine performance increased as injector valve voltage was increased.
- 10. For the test article configuration and test environment, certain duty cycles cooled the engine injector heads from 130° to about 100° F.
- 11. For the conditions tested, the extension of the thermal blanket and shield assembly over the combustion chamber had little effect on the engine thermal characteristics.

Pháse V --- Post-test Checkout and Decontamination

1. The system performance was adequate for completion of subsequent testing (see refs. 20 and 21) after a 4-1/2 month exposure to an unknown and uncontrolled concentration of propellants.

### Special Analyses

- 1. The oxidizer to fuel mixture ratios during mission duty cycle operation were slightly less than comparable single engine system data; however, the total test program oxidizer to fuel mixture ratio was identical to single engine system data. Average pulse widths were used for the mission duty cycles and total test program in order to obtain these comparisons.
- 2. The system A and system B PQMD's operated within a four percent acceptance band throughout the test program. Load cells were utilized as the reference for calculating PQMD errors.
- 3. All the RCS operating limits which will be monitored by the CWS in LM flight appeared to be compatible with RCS operation except in the thrust chamber assembly failure detection system. Possible incompatibilities are listed in the results and discussion section of this report.
- 4. Heater system performance appeared to be satisfactory with the exception of the cooling effects mentioned in conclusion 10 above.

THERMOCHEMICAL TEST AREA -----

| DOC. NO.       | REVISION | PAGE | 39  |
|----------------|----------|------|-----|
| MSC-EP-R-68-17 | New      | OF   | 131 |

#### REFERENCES

- 1. Thermochemical Test Request Number 2T404, September 1, 1967.
- Design Verification Tests Lunar Module Reaction Control Subsystem; The Marquardt Corporation Report No. L1043, May 15, 1967.
- DVT System Assembly and Installation --- LEM; Marquardt Drawing No. 228403, September 30, 1966.
- 4. Test Procedure for Acceptance Testing LM RCS HR-3 DVT Components; Thermochemical Test Area Document No. TP-2T404-LM1, May 15, 1967.
- Test Procedure for Acceptance Testing LM RCS Injection Valves; Thermochemical Test Area Document No. TP-2T404-IM2, July 10, 1967.
- LM RCS Engine Assembly and Checkout; Thermochemical Test Area Document No. TP-2T404-LM3, July 3, 1967.
- 7. General Specification for Surface Cleanliness Level; GAEC Specification No. LSP14-0011B.
- General Purity and Cleanliness of LM Fluids; GAEC Specification No. LSP 14-0020.
- Test Procedure for LM RCS Test Article Installation and Drying; Thermochemical Test Area Document No. TP-2T404-LM5, September 21, 1967.
- 10. Test Procedure for Leak and Functional Tests of LM RCS; Thermochemical Test Area Document No. TP-2T404-LM4, October 18, 1967.
- Test Procedure for LM RCS Engine Gas Flow Checkout; Thermochemical Test Area Document No. TP-2T404-LM6, October 17, 1967.
- 12. Tankage Module Checkout; GAEC Document No. OCP-GF-31008.
- 13. Heater Checkout; GAEC Document No. OCP-GF-31022.
- 14. RCS Verification; GAEC Document No. OCP-GF-31031.
- 15. Test Procedure for LM RCS Operation and Servicing; Thermochemical Test Area Document No. TP-2T404-LM7, November 29, 1967.
- 16. Test Procedure for Hot-firing the LM RCS; Thermochemical Test Area Document No. TP-2T404-IM8, November 24, 1967.
- 17. LM GN&C LM1 PGNCS Test Report; GAEC Report No. LTR500-1010B, April 1967.

- THERMOCHEMICAL TEST AREA ----

| DOC. NO.       | REVISION | PAGE | 40  |
|----------------|----------|------|-----|
| MSC-EP-R-68-17 | New      | OF   | 131 |

- 18. FM-ES/FCI GN&C Design Mission Computer Program CTR Test Report; GAEC Report No. LTR 500-10020, October 1967.
- Lunar Module Reaction Control System Plumbing (PA-1); U.S. Government Memorandum from EP6 branch chief to EP4 branch chief, January 25, 1968.
- Results of LM RCS Columbium Chamber Evaluation Conducted March 17, 1968, through March 24, 1968 — Test No. 2N041; U.S. Government Memorandum from EP6 branch chief to EP4 branch chief, March 27, 1968.
- 21. Results of LM1 Anomalies Investigation; U.S. Government Memorandum from EP6 branch chief to EP4 branch chief, May 16, 1968.
- Test Results of the LM RCS Upfiring Failure Mode Studies Test No. 2N046; U.S. Government Memorandum from EP6 branch chief to EP4 branch chief, June 7, 1968.
- 23. Integrated RCS/APS PA-1 Series II Test Program Analysis of RCS Test Data, GAEC No. LED-310-7, May 1, 1967.

| - THERM | MOCHEMICAL TEST AREA DOC. NO. REVISION             | PAGE 41 |
|---------|----------------------------------------------------|---------|
|         | MSC-EP-R-68-17 New                                 | OF 131  |
|         |                                                    |         |
|         | ABBREVIATIONS                                      |         |
|         |                                                    |         |
| amps    | amperes                                            |         |
| AGS     | Abort Guidance System                              |         |
| APS     | Ascent Propulsion System                           |         |
| avg     | average                                            |         |
| chan    | channel                                            |         |
| CRT     | cathode ray tube                                   |         |
| XFV     | crossfeed valve                                    |         |
| CV      | check valve                                        |         |
| CWS     | Caution and Warning Subsystem                      |         |
| DAS     | Data Acquisition System                            |         |
| dia     | diameter                                           |         |
| DPS     | Descent Propulsion System                          |         |
| D       | down engine                                        |         |
| DVT     | design verification test                           |         |
| EA      | Esterline Angus                                    |         |
| EI      | Electro-Instruments                                |         |
| eng     | engine                                             |         |
| fig.    | figure                                             |         |
| fm      | frequency modulation                               |         |
| FCI     | Flight Controls Integration (GAEC, Bethpage, N.Y.) | )       |
| FITH    | fire-in-the-hole                                   |         |
| F       | forward engine, fahrenheit                         |         |
| galvo   | galvanometer                                       |         |
| GAEC    | Grumman Aircraft Engineering Corporation           |         |
| -       |                                                    |         |

.

# 

| — THERMO             | CHEMICAL TEST AREA          | DOC. NO.       | REVISION | PAGE     | 42                                            |
|----------------------|-----------------------------|----------------|----------|----------|-----------------------------------------------|
|                      |                             | MSC-EP-R-68-17 | New      | OF       | 131                                           |
|                      |                             |                |          | <b>I</b> | <u>· · · · · · · · · · · · · · · · · · · </u> |
| G                    | gage                        |                |          |          |                                               |
| gpm                  | gallons per minute          |                |          |          |                                               |
| hr                   | hours                       |                |          |          |                                               |
| inj                  | injector                    |                |          |          |                                               |
| ICV                  | ascent interconnect valve   |                |          |          |                                               |
| IPA                  | isopropyl alcohol           |                |          |          |                                               |
| TPIV                 | thruster pin isolation valv | re             |          |          |                                               |
| lbs                  | pounds                      |                |          |          |                                               |
| LM                   | Lunar Module                |                |          |          |                                               |
| max                  | maximum                     |                |          |          |                                               |
| min                  | minute, minimum             |                |          |          |                                               |
| mm.                  | millimeter                  |                |          |          |                                               |
| msec                 | millisecond                 |                |          |          |                                               |
| MSOV                 | main shutoff valve          |                |          |          | •                                             |
| misc                 | miscellaneous               |                |          |          |                                               |
| no.                  | number                      |                |          |          |                                               |
| 0/F                  | oxidizer/fuel               |                |          |          |                                               |
| oxid                 | oxidizer                    |                |          |          |                                               |
| PGNCS                | Primary Guidance Navigation | and Control Sy | stem     |          |                                               |
| P/N                  | part number                 |                |          |          |                                               |
| $\operatorname{pph}$ | pounds per hour             |                |          |          |                                               |
| ppm                  | pounds per minute           |                |          |          |                                               |
| PQMD                 | propellant quantity measuri | ing device     |          |          |                                               |
| press                | pressure                    |                |          |          |                                               |
| psia                 | pounds per square inch abso | olute          |          |          |                                               |
| psid                 | pounds per square inch diff | ferential      |          |          |                                               |

~

#### 1001 . . TFOT - - --

| — THERMO | CHEMICAL TEST AREA          | DOC. NO.                                     | REVISION | page 43 |
|----------|-----------------------------|----------------------------------------------|----------|---------|
|          |                             | MSC-EP-R-68-17                               | New      | OF 131  |
|          |                             | ,, <u>_</u> , <u>_</u> , <u>_</u> , <u>_</u> |          |         |
| psig     | pounds per square inch gage |                                              |          |         |
| ref      | reference                   |                                              |          |         |
| RCS      | Reaction Control Subsystem  |                                              |          |         |
| RV       | relief valve                |                                              |          | :       |
| s/c 、    | strip chart                 |                                              |          |         |
| scc      | standard cubic centimeter   |                                              |          |         |
| sec      | second                      |                                              |          |         |
| SEL      | System Engineering Laborato | ry                                           |          |         |
| s/N      | serial number               |                                              |          |         |
| S.S.     | steady state                |                                              |          |         |
| SSC      | subsystems chamber          |                                              |          | :       |
| sym      | symbol                      |                                              |          |         |
| S        | side engine                 |                                              |          |         |
| temp     | temperature                 |                                              |          |         |
| TCA      | thrust chamber assembly     |                                              |          |         |
| TMC      | The Marquardt Corporation   |                                              |          |         |
| TP       | test procedure              |                                              |          |         |
| TTA      | Thermochemical Test Area    |                                              |          |         |
| U        | up engine                   |                                              |          |         |
| V đc     | volts direct current        |                                              |          |         |
| VLD      | volumetric leak detector    |                                              |          |         |
| WSTF     | White Sands Test Facility   |                                              |          |         |
|          |                             |                                              |          |         |

| — IHER           | MOCHEMICAL TEST AREA     | DOC. NO.       | REVISION | PAGE 44 |
|------------------|--------------------------|----------------|----------|---------|
|                  |                          | MSC-EP-R-68-17 | New      |         |
|                  | S                        | YMBOLS         |          |         |
|                  |                          |                |          |         |
| $^{A}$ T         | area of throat           |                |          |         |
| A-50             | Aerozine-50              |                |          |         |
| с <sub>г</sub>   | coefficient of thrust    |                |          |         |
| F                | farenheit                |                |          |         |
| GHe              | gaseous helium           |                |          |         |
| <sup>GN</sup> 2  | gaseous nitrogen         |                |          |         |
| Hg               | mercury                  |                |          |         |
| Н <sub>2</sub> 0 | water                    |                |          |         |
| Hz               | Hertz                    |                |          |         |
| I <sub>T</sub>   | total impulse            |                |          |         |
| N204             | nitrogen tetroxide       |                |          |         |
| Pc               | chamber pressure         |                |          |         |
| <<br>- •         | less than or equal to    |                |          |         |
| 2                | greater than or equal to |                |          |         |
| >                | greater than             |                |          |         |
| <                | less than                |                |          |         |
| Ж                | nearly equal to          |                |          |         |
|                  |                          |                |          |         |
|                  |                          |                |          |         |
|                  |                          |                |          |         |
|                  |                          |                |          |         |
|                  |                          |                |          |         |
|                  |                          |                |          |         |

# TABLE I.- MISSION DUTY CYCLES RUN TIMES

[See references 17 and 18 for a description of the mission simulations.]

| Run description                                                                              |      | mulat<br>art t |      |      | mulat<br>op ti |      | 1    | t run<br>rt ti        |      |      | t run<br>p tim |      |               |
|----------------------------------------------------------------------------------------------|------|----------------|------|------|----------------|------|------|-----------------------|------|------|----------------|------|---------------|
|                                                                                              | hrs. | min.           | sec. | hrs. | min.           | sec. | hrs. | min.                  | sec. | hrs. | min.           | sec. |               |
| IM1 — Mission phase 7<br>(separation)<br>GAEC run no. 266                                    | 20   | 49             | 3.66 | 20   | 57             | 04   | 20   | 54                    | 38   | 20   | 56             | 51   |               |
| LM1 - Mission phase 9<br>(first DPS burn)<br>GAEC run no. 103                                | 4    | 55             | 16   | 5    | 3              | 6    | 4    | 55                    | 30   | 5    | 2              | 0    | M             |
| IMI — Mission phase ll<br>(second DPS burn-<br>FITH — first APS<br>burn)<br>GAEC run no. 103 | 8    | 33             | 7    | 8    | 49             | 56   | 8    | 33                    | 50   | 8    | 49             | 50   | MSC           |
| IM1 — Mission phase 13<br>(second APS burn)<br>GAEC run no. 115                              | 6    | 8              | 42   | 6    | 19             | 43   | 6    | 9                     | 10   | 6    | 16             | 59.5 | New           |
| Lunar Mission Simulation<br>(abort from hover)<br>GAEC run no. 514 A                         | 0    | 10             | 1    | 0    | 19             | 0    | 0    | 10                    | l    | 0    | 11             | 3.5  |               |
| Lunar Mission Simulation<br>(coelliptic sequence<br>initiation)<br>GAEC run no. 514 B        | 0    | 44<br>         | 50   | ò    | 50             | 20   | 0    | <u>)</u> , <u>)</u> , | 55   | 0    | 48             | 9.1  | 0F <u>131</u> |

**THERMOCHEMICAL** TEST AREA

# TABLE I .- MISSION DUTY CYCLES RUN TIMES - Concluded

[See reference 17 and 18 for a description of the mission simulations.]

**THERMOCHEMICAL** 

TEST

AREA

DOC.

8

REVISION

PAGE OF

46 131

MSC-EP-R-68-17

New

| Run description                                                                    | L    | mulat<br>art t |              |                      | mulat<br>op ti: |      |          | t run<br>rt ti |      |      | t run<br>p tim |      |
|------------------------------------------------------------------------------------|------|----------------|--------------|----------------------|-----------------|------|----------|----------------|------|------|----------------|------|
| <u></u>                                                                            | hrs. | min.           | sec.         | hrs.                 | min.            | sec. | hrs.     | min.           | sec. | hrs. | min.           | sec. |
| Lunar Mission Simulation<br>(coelliptic delta height)<br>GAEC run no. 514 C        | l    | 36             | 52           | 1                    | 41<br>41        | 35   | 1        | 36             | 52   | 1    | 39             | 57.7 |
| Lunar Mission Simulation<br>(transfer point initi-<br>ation)<br>GAEC run no. 514 D | l    | 52             | 52           | 2                    | 10              | 32   | l        | 56             | 43   | 2    | 5              | 11   |
| Lunar Mission Simulation<br>(midcourse corrections)<br>GAEC run no. 514 E          | 2    | 16             | 1 <u>1</u> 4 | 2                    | 24              | 48   | 2        | 19             | 39   | 2    | 23             | 57   |
|                                                                                    |      |                |              | , •                  | ,               |      |          |                |      |      |                |      |
|                                                                                    |      |                |              | ion time<br>of facil |                 |      | -        | ulla           | gè   |      |                |      |
|                                                                                    |      |                |              |                      | ···             |      | <u> </u> |                |      |      |                |      |

# TABLE II .- PROPELLANT LATCH VALVE CHECKOUT DATA

[Leakage specification limits: 45 scc/15 min at 200 psid]

THERMOCHEMICAL

TEST

AREA

| lve no. | Valve S/N | Valve location  | leakage rate,<br>scc/15 min |             | scc/l   | 5 min   | am   | ps     |
|---------|-----------|-----------------|-----------------------------|-------------|---------|---------|------|--------|
|         |           |                 | Forward                     | Reverse     | Forward | Reverse | Open | Closed |
| 117     | 0059 (    | A MSOV-Fuel     |                             |             |         | 0       |      | Í      |
| 119     | 0026      | A ICV-Fuel      |                             |             |         | 0       |      |        |
| 121     | 0054      | XTV-Fuel        |                             |             |         | 0       | 1.10 | 1.30   |
| 123     | 214       | A-VI TPIV-Fuel  | New valve (no               | ot checked) | 0       |         |      |        |
| 125     | 0038      | A-III ICV-Fuel  | 3 213                       |             | 5 250   | ļ       | 1.25 | 1.22   |
| 127     | 0061      | A-II ICV-Fuel   | 0                           | 0           | 4 125   |         | .82  | 1.18   |
| 129     | 0028      | A-I ICV-Fuel    | 75                          | 28          | 615     |         | 1.30 | 1.30   |
| 217     | 0064      | B-ICV-Fuel      |                             |             |         | 0       |      |        |
| 219     | 0051      | B-ICV-Fuel      |                             |             |         | 60      | ļ    | } ]    |
| 221     | 0062      | B-IV TPIV-Fuel  | 2 043                       |             | 90 000  |         | 1.00 | 1.22   |
| 223     | 0041      | B-III TPIV-Fuel | 10 000                      |             | 3 270   | ]       | 1.12 | 1.68   |
| 225     | 0049      | B-II TPIV-Fuel  | 276                         |             | 7 500   |         | 1.10 | 1.42   |
| 227     | 0039      | B-I TPIV-Fuel   | 11 250                      |             | 30 000  |         | .68  | 1.22   |
| 118     | 0032      | A-MSOV-Oxid     |                             |             |         | 0       | .90  | 1.45   |
| 120     | 0021      | A-TCV-Oxid      | 0                           |             |         | 22      | 1.30 | 1.40   |
| 122     | 0057      | XFV-Oxid        |                             |             | 0       |         | 1.30 | 1.25   |
| 124     | 0030      | A-IV TPIV-Oxid  | ( 0 (                       | 0           | 0       | (       | 1.00 | 1.40   |
| 126     | 0069      | A-III TPIV-Oxid | Less than 1                 | 0           | 25      |         | 1.41 | 1.20   |
| 128     | 0033      | A-II TPIV-Oxid  | 26                          | 0           | 2 130   |         | 1.20 | 1.36   |
| 130     | 0062      | A-I TPIV-Oxid   | 5 040                       |             | 120     |         | 1.30 | 1.55   |
| 218     | 0043      | B-MSOV-Oxid     | ] ]                         |             |         | 0       |      |        |
| 220     | 0058      | B-ICV-Oxid      | 0                           |             |         | 10 340  | 1.10 | 1.42   |
| 222     | 0032      | B-IV TPIV-Oxid  | 46                          | 0           | 15      |         | .90  | 1.45   |
| 224     | 0065      | B-III TPIV-Oxid | (a)                         |             | 7 875   |         | 1 42 | 1.62   |
| 226     | 0036      | B-II TPIV-Oxid  | 3 465                       |             | 0       | ]       | .70  | 1.28   |
| 228     | 0063      | B-I TPIV-Oxid   | 3 465                       | [           | 130     |         | 1.25 | 1.50   |

TABLE III.- REGULATOR CHECKOUT DATA<sup>a</sup>

| Measurement                                | Specification<br>limits | No. 108<br>System A regulator                 | No. 208<br>System B regulator            |
|--------------------------------------------|-------------------------|-----------------------------------------------|------------------------------------------|
| Primary lockup pressure<br>before flow     | — .                     | 180 psig                                      | 181 psig                                 |
| Primary flow pressure<br>at 0.20 lb/min    | 178 to 184 psig         | 176.5 psig                                    | Oscillated between<br>178.4 - 179.3 psig |
| Primary flow pressure<br>at 0.038 lb/min   | 178 to 184 psig         | 178.6 psig                                    | 179.6 psig                               |
| Primary lockup after flow                  | ≤188 psig               | 179.5 psig                                    | 181.5 psig                               |
| Primary leakage rate                       | ≤1.5 psig/15 min        | -0.3 psig/15 min <sup>b</sup>                 | 0.2 psig/15 min                          |
| Secondary flow pressure<br>at 0.20 lb/min  | 182 to 188 psig         | 181.2 psig                                    | 182.0 psig                               |
| Secondary flow pressure<br>at 0.038 lb/min | 182 to 188 psig         | 181.3 psig                                    | 182.3 psig                               |
| Secondary lockup after flow                | ≤192 psig               | 183 psig                                      | 185 psig                                 |
| Secondary leakage rate                     | ≤1.35 psig/15 min       | 'l.4 psig/15 min<br>Repeated: 0.3 psig/15 min | -0.3 psig/15 min <sup>b</sup>            |

<sup>a</sup>Regulator inlet pressures maintained at 1500  $\pm$  50 psig throughout test.

<sup>b</sup>Negative pressure change was probably the result of temperature stabilization.

TEST AREA

THERMOCHEMICAL

.

**DOC. NO.** MSC-EP-R-68-17

REVISION

New

PAGE OF

48 131

| <u></u>                                                                 |                        |                                     |                                     |                                     |                                     |                |
|-------------------------------------------------------------------------|------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|----------------|
| Measurement<br>Identification                                           | Specification<br>limit | No. lll<br>System A fuel<br>side RV | No. 112<br>System A oxid<br>side RV | No. 211<br>System B fuel<br>side RV | No. 212<br>System B oxid<br>side RV |                |
| Burst disc leakage<br>at 180 psig inlet,<br>soc/30 min                  | 0 scc/30 min           | 0                                   | 0                                   | . 0                                 | 0                                   |                |
| Pressure at bleed valve closure, psig                                   | <150 psig              | 30                                  | <sup>a</sup> 40                     | 31                                  | 37                                  | ,              |
| Pressure at bleed<br>valve opening, psig                                | >20 psig               | 26                                  | 26                                  | 26                                  | 24                                  |                |
| RV relieving pressure, psig                                             |                        |                                     |                                     |                                     |                                     |                |
| Check No. 1<br>Check No. 2<br>Check No. 3<br>Check No. 4<br>Check No. 5 | 224-240 psig           | 228<br>228                          | 229<br>220<br>231<br>229<br>229     | 232.5<br>228<br>229                 | 232<br>229<br>229                   | MSC-EP-R-68-17 |
| RV reseating pressure, psig                                             |                        |                                     |                                     |                                     |                                     | New            |
| Check No. 1<br>Check No. 2<br>Check No. 3<br>Check No. 4                | ≥212 psig              | 216<br>216                          | 205<br>210<br>216<br>219            | 219<br>219<br>219                   | 223<br>223<br>223                   | New            |
| Check No. 5                                                             |                        |                                     | <sup>b</sup> 223                    |                                     |                                     | OF             |

TABLE IV. - RELIEF VALVE CHECKOUT DATA

<sup>a</sup>Leaked at about 6 scc/min until 170 psig was reached.

<sup>b</sup>Leakage rate at reseat pressure was 7 scc/min and leakage ceased when pressure decreased to approximately 203-206 psig.

MSC FORM 360B (JAN 67)

**THERMOCHEMICAL** TEST AREA

131 131

| Measurement<br>idenification                 | Specification<br>limit | No. lll<br>System A fuel<br>side RV | No. 112<br>System A oxid<br>side RV | No. 211<br>System B fuel<br>side RV | No. 212<br>System B oxid<br>side RV |
|----------------------------------------------|------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| RV leakage rate<br>at 200 psid<br>scc/15 min | 5 scc/15 min           | 0                                   | 0                                   | 0                                   | 0                                   |

•

TABLE IV.- RELIEF VALVE CHECKOUT DATA - Concluded

.

,

\_

.

| MSC-EP-R-68-17 |
|----------------|
| New            |

# THERMOCHEMICAL TEST AREA -

| DOC. NO.       | REVISION | PAGE 51 |
|----------------|----------|---------|
| MSC-EP-R-68-17 | New      | OF 131  |
|                |          |         |

#### Closing pressure, Opening pressure, Switch no. Switch location psia psia <sup>b</sup>S151 21.65 Engine #2 21.15 5.90 S152 Engine #4 3.85 7.45 Engine #5 4.90 S153 Engine #8 2.45 6.05 S154 7.75 S155 Engine #11 4.05 Engine #10 Switch failed closed **S1**56 8.05 Engine #13 4.30 S157 4.55 7.55 S158 Engine #15 4.60 9.60 S253 Engine #1 4.90 8.75 S254 Engine #3 4.25 7.30 S255 Engine #7 4.55 Engine #6 9.25 S256 4.75 7.35 \$257 Engine #9 Engine #12 4.25 8.25 S258 Engine #14 7.35 \$259 3.27 8.25 S260 Engine #16 3.25

TABLE V.- PRESSURE SWITCH CHECKOUT DATA<sup>a</sup>

<sup>a</sup>Specification limits: The pressure switch must open before 3.0 psia is reached while decreasing pressure and must close before 10.5 psia is reached while increasing pressure.

<sup>b</sup>Backup switch manufactured by Electro-Optical Systems.

G-1, regulated G-2, system G-3, manifold Propellant system Engine no. pressure, psia pressure, psig inlet pressure, psia 43.16 39.99 System A Fuel 15 190 43.57 40.45 13 190 43.09 39.88 10 190 43.52 40.39 11 190 8 42.95 39.75 190 40.07 5 4 43.25 190 190 43.02 39.77 43.65 40.53 2 190 16 43.53 40.23 191 System B Fuel 43.32 14 191 40.00 12 43.58 40.28 191 43.48 9 6 191 40.15 43.63 40.32 191 43.44 40.10 7 191 • 43.28 3 191 39.95 42.75 39.35 l 191 45.98 15 172 40.04 System A Oxidizer 46.79 40.96 172 13 172 46.25 40.32 10 41.87 11 172 47.55 8 46.19 40.24 172 46.07 40.09 <sup>+</sup> 5 172 4 45.95 172 39.95 46.74 40.88 2 172

TABLE VI.- ENGINE GAS FLOW DATA

THERMOCHEMICAL

DOC. NO, MSC-EP-R-68-17

REVISION

New

PAGE OF

<u>52</u> 131

| Propellant system | Engine no.                              | G-1, regulated pressure, psig                                 | G-2, system inlet pressure, psia                                     | G-3, manifold<br>pressure, psia                                      |
|-------------------|-----------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| System B Oxidizer | 16<br>14<br>12<br>9<br>6<br>7<br>3<br>1 | 171<br>171<br>171<br>171<br>171<br>171<br>171<br>171<br>. 171 | 45.97<br>46.42<br>45.76<br>46.03<br>46.07<br>45.61<br>46.29<br>46.42 | 40.00<br>40.52<br>39.67<br>40.05<br>40.09<br>39.53<br>40.35<br>40.50 |

TABLE VI.- ENGINE GAS FLOW DATA - Concluded

.

AREA DOC. NO. REVISION

**THERMOCHEMICAL** 

TEST

MSC-EP-R-68-17 New PAGE OF

131 131

# - THERMOCHEMICAL TEST AREA ----

| DOC. NO.       | REVISION | PAGE 54 |   |
|----------------|----------|---------|---|
| MSC-EP-R-68-17 | New      | 0F 131  | • |

a,

# TABLE VII.- BASELINE SYSTEM PERFORMANCE<sup>2</sup>

| Performance                                                                                             | 14 msec<br>pulse             | 17 msec<br>pulse             | րսեւշ                        | pul^e                        | 150 msec<br>pulse                |                              | ll bisc<br>nul.e t           |                              |
|---------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|----------------------------------|------------------------------|------------------------------|------------------------------|
| criterin                                                                                                | width,<br>average            | width,<br>average            | width,<br>average            | width,<br>average            | width,<br>average                | Min.                         | Avg.                         | Max.                         |
| Ignition Eng. 2<br>delay, Eng 1<br>msec Eng. 13                                                         | 11.5<br>10.8<br>11.3<br>11.8 | 11.1<br>11.2<br>11.3<br>12.2 | 11.7<br>10.5<br>11.2<br>12.1 | 12.2<br>10.6<br>11.2<br>11.6 | 11.0<br>10.5<br>10.7<br>12.4     | 10.6<br>9.0<br>10.1<br>10.6  | 11.5<br>10.8<br>11.1<br>12.0 | 13.0<br>12.1<br>12.2<br>12.8 |
| Time to Eng. 2<br>75% of S.S. Eng. 1<br>chamber Eng. 11<br>pressure, Eng. 13<br>msec                    | 20.7<br>19.8<br>19.1         | 22.2<br>21.0<br>19.4<br>20.6 | 20.6<br>20.4<br>19.9         | 22.9<br>21.1<br>20.4<br>20.3 | 21.4<br>20.7<br>20.2<br>20.2     | 20.4<br>18.9<br>18.2<br>19.8 | 21.7<br>20.5<br>19.7<br>20.4 | 24.?<br>22.4<br>20.8<br>21.1 |
| Integrated Eng. 2<br>chamber Eng. 4<br>pressure, Eng. 11<br>psia/sec Eng. 13                            | 0.90<br>1.03<br>0.94<br>0.84 | 1.10<br>1.41<br>1.23<br>1.18 | 4.43<br>4.71<br>4.56<br>4.47 | 9.46<br>9.64<br>9.59<br>9.61 | 14.24<br>14.77<br>14.89<br>14.41 |                              |                              |                              |
| Minimum<br>fuel inlet Eng. 2<br>pressure Eng. 4<br>at valve Eng. 11<br>opening, Eng. 13<br>psia         | 96<br>90<br>110<br>140       | 98<br>93<br>118<br>122       | 92<br>94<br>94               | 110<br>94<br>123             | 95<br>117<br>118                 | 92<br>86<br>103<br>92        | 98<br>95<br>127<br>118       | 110<br>137<br>155<br>143     |
| Minimum<br>oxidizer Eng. 2<br>inlet pres- Eng. 4<br>sure at Eng. 11<br>valve open- Eng. 13<br>ing, psia | 92<br>84                     | 90<br>88<br>130              | 90<br>90                     | 114<br>72<br><b>1</b> 17     | 90<br>76<br>116                  | 84<br>71<br>111              | 94<br>83<br>122              | 119<br>93<br>137             |
| Maximum<br>fuel inlet Eng. 2<br>pressure Eng: 4<br>at valve Eng. 11<br>closure, Eng. 13<br>psia         | 271<br>273<br>252<br>237     | 300<br>305<br>263<br>266     | 265<br>265<br>233<br>274     | 253<br>255<br>267            | 262<br>257<br>254                | 251<br>253<br>233<br>230     | 272<br>275<br>249<br>260     | 302<br>310<br>266<br>276     |
| Maximum<br>oxidizer Eng. 2<br>inlet pres- Eng. 4<br>sure at Eng. 11<br>valve clo- Eng. 13<br>sure, psia | 298<br>299                   | 306<br>315<br>252            | 271<br>262                   | 255<br>268<br>271            | 286<br>273<br>265                | 254<br>260<br>246            | 285<br>285<br>261            | 312<br>324<br>274            |
| Minimum<br>fuel mani-<br>fold pres-<br>sure for<br>pulse, psia                                          | 148<br>141<br>135<br>154     | 147<br>142<br>136<br>154     | 148<br>148<br>136<br>158     | 146<br>146<br>139<br>155     | 145<br>144<br>139<br>155         | 143<br>139<br>134<br>153     | 147<br>144<br>137<br>155     | 150<br>149<br>139<br>166     |
| Minimum<br>oxidizer Eng. 2<br>manifold Eng. 4<br>pressure Eng. 11<br>for pulse, Eng. 13<br>psia         | 121<br>115<br>143            | 120<br>108<br>142<br>151     | 126<br>127<br>145            | 124<br>119<br>141<br>123     | 124<br>118<br>130<br>152         | 113<br>102<br>121<br>122     | 123<br>117<br>141<br>143     | 133<br>131<br>150<br>154     |
| Maximum Eng. 2<br>fuel mani- Eng. 4<br>fold pres- Eng: 11<br>sure for Eng: 13<br>pulse, psia            | 242<br>236<br>218<br>207     | 243<br>239<br>225<br>219     | 221<br>217<br>204<br>205     | 209<br>210<br>187<br>205     | 209<br>207<br>187<br>205         | 207<br>204<br>186<br>203     | 226<br>224<br>207<br>209     | 246<br>241<br>227<br>219     |
| Maximum<br>oxidizer Eng. 2<br>manifold Eng. 4<br>pressure Eng. 11<br>for pulse, Eng. 13<br>psia         | 254<br>249<br>241            | 272<br>262<br>253<br>211     | 218<br>217<br>208            | 223<br>210<br>195<br>194     | 231<br>210<br>201<br>193         | 216<br>207<br>192<br>191     | 241<br>233<br>223<br>201     | 275<br>266<br>261<br>213     |

<sup>a</sup>Data obtained from appendix B, runs II-A-2-33 through <u>37, II-A-2-55</u> through <u>59, II-A-2-132</u> through 136, and II-A-2-154 through 158. Test conditions shown in appendices A and B.

TABLE VIII.- ENGINE PERFORMANCE DURING SIMULATED MISSION DUTY CYCLES<sup>a</sup>

| Test tit                  | le      | Engine IV D/2    |      |                | Engine IV S∕4 |      | Engine II F/ll |      | Engine I U/13 |       |      | Combination of<br>engines 2, 4,<br>11, and 13 |       |             |      |               |
|---------------------------|---------|------------------|------|----------------|---------------|------|----------------|------|---------------|-------|------|-----------------------------------------------|-------|-------------|------|---------------|
|                           |         | ъ <sup>т</sup> . | °2   | d <sub>3</sub> | 1             | 2    | 3              | 1    | 2             | 3     | 1    | 2                                             | 3     | ı'          | 2    | _3            |
|                           | Maximum | 11.8             | 24.6 | 18.7           | 11.7          | 21.1 | -11.3          | 10.7 | 20.0          | -12.9 | 10.9 | 20.5                                          | -22.0 | 11.8        | 24.6 | -22.0         |
| IML mission<br>duty cycle | Average | 10.8             | 21.3 | - 1.4          | 10.7          | 19.7 | - 6.9          | 10.4 | 18.7          | - 3.8 | 10.7 | 20.2                                          | - 8.7 | <u>11.1</u> | 20.1 | - 4.3         |
|                           | Minimum | 10.0             | 19.2 | -              | 10.3          | 18.5 | -              | 10.0 | 17.6          |       | 10.6 | 19.9                                          |       | 10.0        | 17.6 |               |
| Lunar abort               | Maximum | 11.8             | 23.9 | - 6.8          | 11.8          | 26.1 | -37.9          | 12.3 | 21.2          | -12.6 | 12.0 | 20.7                                          | -13.9 | 12.3        | 26.1 | - <u>37.9</u> |
| from hover                | Average | 11.0             | 21.0 | - 2.1          | 10.9          | 20.2 | -14.7          | 11.5 | 18.8          | - 4.8 | 11.5 | 20.0                                          | - 0.5 | 10.7        | 20.3 | - 3.9         |
| duty cycle                | Minimum | 10.3             | 19.4 | -              | 9.7           | 15.6 | -              | 10.3 | 14.9          | -     | 11.2 | 18.4                                          |       | 9.7         | 14.9 | -             |

<sup>a</sup>This table is based on data recorded in appendix B for sample pulses from the mission duty cycle runs.

Pulse widths analyzed were less than 150 msec duration.

,

<sup>b</sup>Column 1 is ignition delay (msec).

<sup>C</sup>Column 2 is time to reach 75 percent of steady state chamber pressure (msec).

<sup>d</sup>Column 3 is deviation of MDC integrated Pc from baseline integrated Pc (percentage).

# TABLE IX. - SUMMARY OF LM RCS PROPELLANT FEED SYSTEM HYDRAULIC CHARACTERISTICS<sup>a</sup>

| Test t                      | itle      | Min. fuel<br>inlet<br>pressure<br>at valve<br>cpening,<br>psia | Min. oxid.<br>inlet<br>pressure<br>at valve<br>opening,<br>psia | Max. fuel<br>inlet<br>pressure<br>at valve<br>closing,<br>psia | Max. oxid.<br>inlet<br>pressure<br>at valve<br>closing,<br>psia | Min. fuel<br>manifold<br>pressure,<br>system A,<br>psia | Min. oxid.<br>manıfold<br>pressure,<br>systen A,<br>psia | Max. fuel<br>manifold<br>pressure,<br>system A,<br>psia | Max. oxid.<br>manifold<br>pressure,<br>system A,<br>psia |
|-----------------------------|-----------|----------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|
|                             | Maximum   | 155                                                            | 137                                                             | 310                                                            | 324                                                             | 166                                                     | 154                                                      | 246                                                     | 275                                                      |
| Baseline<br>duty cycles     | Average   | 1.08                                                           | 96                                                              | 265                                                            | 280                                                             | 146                                                     | 129                                                      | 21.6                                                    | 228                                                      |
|                             | Minimum   | 86                                                             | 71                                                              | 230                                                            | 246                                                             | 13 <sup>4</sup>                                         | 102                                                      | 186                                                     | 191                                                      |
| LML mission                 | Maximum   |                                                                |                                                                 |                                                                |                                                                 | 1 <b>4</b> 5                                            | 140<br>140                                               | 314                                                     | 329                                                      |
| simulation                  | Average   |                                                                |                                                                 |                                                                |                                                                 | 136                                                     | 120                                                      | 238                                                     | 253                                                      |
|                             | Minimum   |                                                                |                                                                 |                                                                |                                                                 | 118                                                     | 86                                                       | 205                                                     | 221                                                      |
| Lunar abort                 | Maximum   |                                                                |                                                                 |                                                                |                                                                 | 151                                                     | 145                                                      | 246                                                     | 277                                                      |
| from hoven                  | Average   |                                                                |                                                                 |                                                                |                                                                 | 139                                                     | 117                                                      | 224                                                     | 240                                                      |
| simulation                  | Minimum   |                                                                |                                                                 |                                                                |                                                                 | 122                                                     | 94                                                       | 209                                                     | 206                                                      |
| Normal mode<br>hydraulic    | Maximum   | 137                                                            | 144                                                             | 462                                                            | 418                                                             | 145                                                     | 136                                                      | 335                                                     | 328                                                      |
| transient                   | Average   | 70                                                             | 86                                                              | 331                                                            | 301                                                             | 113                                                     | 109                                                      | 258                                                     | 269                                                      |
| effects<br>duty cycles      | llinimum  | 2                                                              | <b>`</b> 16                                                     | 241                                                            | 227                                                             | 68                                                      | 62                                                       | 216                                                     | 208                                                      |
| Crossfeed<br>mode hydrau-   | Maximum   | 123                                                            | 150                                                             | 445                                                            | 379                                                             | 142                                                     | 108                                                      | 314                                                     | 328                                                      |
| lic trans-                  | Average , | 50                                                             | 69                                                              | <b>3</b> 20                                                    | 289                                                             | 115                                                     | 103                                                      | 246                                                     | 305                                                      |
| ient effects<br>duty cycles | Minimum   | 0                                                              | 6                                                               | 230                                                            | 202                                                             | 82                                                      | 98                                                       | 205                                                     | 276 '                                                    |
| Manual coil                 | Maximum   | 124                                                            | 158                                                             | 302                                                            | 265                                                             |                                                         |                                                          |                                                         |                                                          |
| baseline                    | Average   | 113                                                            | 145                                                             | 255                                                            | 227                                                             |                                                         |                                                          | ſ                                                       |                                                          |
| duty cycles                 | Minimum   | 105                                                            | 128                                                             | 230                                                            | 206                                                             |                                                         |                                                          |                                                         |                                                          |

<sup>a</sup>Data extracted from appendix B

THERMOCHEMICAL TEST AREA

MSC-EP-R-68-17 New

PAGE 56 of 131 TABLE X .- ENGINE PERFORMANCE FOR HYDRAULIC TRANSIENT DUTY CYCLES

|                        | 4    | Position<br>of cross- | Engine                     | IV D/2                                             |                                                                           | Engir                      | ne IV D/4                                          |                                                                   | E      | ngine I                                            | U/13                                                              | Total o                    | f engine | s 2, 4, & 13 |
|------------------------|------|-----------------------|----------------------------|----------------------------------------------------|---------------------------------------------------------------------------|----------------------------|----------------------------------------------------|-------------------------------------------------------------------|--------|----------------------------------------------------|-------------------------------------------------------------------|----------------------------|----------|--------------|
| Test titl              | .e   | feed valves           | Ignition<br>delay,<br>msec | Time to<br>75% of<br>S.S. P <sub>c</sub> ,<br>msec | Percent<br>deviation<br>from base-<br>line inte-<br>grated P <sub>c</sub> | Ignition<br>delay,<br>msec | Time to<br>75% of<br>S.S. P <sub>c</sub> ,<br>msec | Percent<br>deviation<br>from base-<br>line inte-<br>grated P<br>c | delay, | Time to<br>755 of<br>S S. P <sub>c</sub> ,<br>mscc | Percent<br>acviation<br>from base-<br>line into-<br>grated P<br>c | Ignition<br>delay,<br>mscc | S.S. P   |              |
|                        | Max. | Closed                | 16.3                       | 33.6                                               | -36.0                                                                     | 14.0                       | 33.6                                               | -47.0                                                             | 14.0   | 34.6                                               | -16.0                                                             | 16.3                       | 34.6     | -47.0        |
| Hydraulic<br>transient | A    |                       | 12.2                       | 22.6                                               | -5.5                                                                      | 11.5                       | 23.0                                               | -14.4                                                             | 11.9   | 21.6                                               | -4.9                                                              | 11.9                       | 22.4     | -8.2         |
| effects                | Min, |                       | 8.7                        | 14.0                                               |                                                                           | 7.7                        | 18.3                                               |                                                                   | 8.9    | 18.8                                               |                                                                   | 7.7                        | 18.8     |              |
| Hydraulic<br>transient |      | Open                  | 13.8                       | 26.8                                               | -35.0                                                                     | 14.2                       | 25.0                                               | -48.0                                                             | 13.0   | 23.5                                               | -18.0                                                             | 14.2                       | 26.8     | -48.0        |
| effects                | Avg. |                       | 12.2                       | 22.4                                               | -8.8                                                                      | 11.9                       | 21.3                                               | -16.8                                                             | 11.6   | 20.7                                               | -6.5                                                              | 11.9                       | 21.5     | -10.6        |
|                        | Min. |                       | 10.8                       | 18.9                                               |                                                                           | 10.3                       | 19.0                                               |                                                                   | 9.8    | 17.9                                               |                                                                   | 9.8                        | 17.9     |              |
|                        | Max. | Closed                | 13.0                       | 24.2                                               |                                                                           | 12.1                       | 22.4                                               |                                                                   | 12.8   | 21.1                                               |                                                                   | 13.0                       | 24.2     |              |
| Baseline               | Avg, |                       | 11.5                       | 21.7                                               |                                                                           | 10.8                       | 20.5                                               |                                                                   | 12.0   | 20.1                                               |                                                                   | 11.4                       | 21.0     |              |
| engines                | Min. | <u>}</u>              | 10.6                       | 20.4                                               |                                                                           | 9.0                        | 18.9                                               |                                                                   | 10.6   | 193                                                |                                                                   | 9.0                        | 18.9     |              |

NOTE: These data are based on data recorded in appendix B for sample pulses from engines 2, 4, and 13 for runs IV-B-2-1 through IV-B-10-9 and IV-C-2-1 through IV-C-10-9. Fulse widths were from 17 to 150 meet and identical pulses and duty cycles were used for the normal and crossfeed mode hydraulic transist duty cycles. Baseline single engine performance data are from figures 36, 37, and 39. THERMOCHENICAL TEST AREA

REVISION

New

PAGE OF

131

- THERMOCHEMICAL TEST AREA -----

- -

•

| DOC. NO.       | REVISION | PAGE | 58  |
|----------------|----------|------|-----|
| MSC-EP-R-68-17 | New      | OF   | 131 |

# TABLE XI.- PRESSURE SWITCH PERFORMANCE<sup>a</sup>

| Test tit                                       | tle  | Pressuz | e switc)<br>mse | n closin <sub>é</sub><br>ec | ; time, | Pressu | re switch<br>mse |        | g time, | Pressure at switch opening,<br>psia |        |        |         |  |
|------------------------------------------------|------|---------|-----------------|-----------------------------|---------|--------|------------------|--------|---------|-------------------------------------|--------|--------|---------|--|
|                                                |      | Eng. 2  | Eng. 4          | Eng. 11                     | Eng.13  | Eng. 2 | Eng. 4           | Eng.11 | Eng.13  | Eng. 2                              | Eng. 4 | Eng.11 | Eng. 13 |  |
| Baseline                                       | Max. | 16.6    | 11.5            | 12.0                        | 12.9    | 20.7   | 74.2             | 61.9   | 62.5    | 39.7                                | 5.2    | 5.7    | 5.4     |  |
|                                                | Avg. | 14.3    | 10.5            | 10.7                        | 11.8    | 17.1   | 51.1             | 45.7   | 49.0    | 20.0                                | 4.1    | 4.6    | 4.6     |  |
|                                                | Min. | 10.6    | 9.0             | 9.2                         | 10.1    | 11.8   | 40.0             | 29.7   | 36.0    | 12.5                                | 2.4    | 0      | 3.6     |  |
| L'I Simu-                                      | Max. | 16.3    | 12.0            | 10.9                        | 11.3    | 20.2   | 67.6             | 38.0   | 56.7    | 23.8                                | 7.1    | 5.7    | 4.7     |  |
| lated<br>duty                                  | Avg. | 15.7    | 11.1            | 10.5                        | 10.9    | 17.3   | 47.9             | 35.8   | 49.8    | 17.2                                | 5.2    | 5.3    | 4.5     |  |
| cycle                                          | Min. | 15.1    | 10.3            | 10.0                        | 10.6    | 13.5   | 38.2             | 32.7   | 40.6    | 14.9                                | 3.8    | 4.8    | 3.8     |  |
| Lunar                                          | Max. | 15.9    | 12.3            | 12.5                        | 12.5    | 20.8   | 51.2             | 42.3   | 54.9    | 26.3                                | 7.0    | 6.6    | 6.1     |  |
| abort<br>from                                  | Avg. | 15.3    | 11.4            | 11.7                        | 11.9    | 18.3   | 43.2             | 36.6   | 47.2    | 18.3                                | 5.3    | 5.8    | 4.9     |  |
| hover<br>simulated<br>mission<br>duty<br>cycle | Min. | 14.4    | 10.0            | 10.9                        | 11.1    | 16.4   | 30.0             | 34.2   | 39.2    | 15.4                                | 4.7    | 4.5    | 3.8     |  |
| Hydraulie                                      | Max. | 19.3    | 13.0            | 13.3                        | 14.9    | 20.5   | 62.5             | 54.9   | 60.0    | 33.9                                | 6.2    | 5.7    | 6.0     |  |
| transient<br>effects                           | Avg. | 15.6    | 11.4            | 12.1                        | 12.0    | 17.7   | 48.6             | 45.1   | 45.3    | 18.7                                | 4.9    | 4.8    | 4.9     |  |
| (normal<br>mode)                               | Min. | 11.2    | - 9.7           | 9.9                         | 9.2     | 12.5   | 31.3             | 33.4   | 34.6    | 13.3                                | 3.3    | 4_0    | 3.3     |  |
| Hydraulie                                      | Max. | 18.9    | 16.0            |                             | 18.2    | 20.0   | 61.3             |        | 57.7    | 29.1                                | 6.6    |        | 6.1     |  |
| transient<br>effects                           | Avg. | 15.7    | 11.9            |                             | 12.0    | .17.5  | 47.4             |        | 44.9    | 18.7                                | 4.7    |        | 4.8     |  |
| (crøssfeed<br>mode)                            | Min. | ш.9     | 10.3            |                             | 9.2     | 12.8   | 35.9             |        | 32.8    | 13.7                                | 3.8    |        | 3.3     |  |
| Baseline                                       | Max. |         | 27.7            |                             | 26.9    |        | 63.8             |        | 62.1    |                                     | 4.8    |        | 6.4     |  |
| manual<br>coils                                | Avg. |         | 26.0            |                             | 26.6    |        | 53.6             |        | 49.8    |                                     | 4.1    |        | 4.4     |  |
|                                                | Min. |         | 25.3            |                             | 26.3    |        | 46.1             |        | 39.9    |                                     | 2.7    |        | 2.9     |  |

<sup>a</sup>Data extracted from appendix B. The engine 2 pressure switch was a special backup , switch with a higher pressure actuation level.

# TABLE XII.- CROSSFEED EFFECTS ON MDC PERFORMANCE

[Data based on sample pulses from IM1 mission II simulated duty cycles]

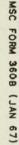
| n     | l |
|-------|---|
|       | Ľ |
| - 24  |   |
| FORM  |   |
|       | I |
| 360 B |   |
| ö     | l |
| ō     | ļ |
| ~     |   |
| JAN   |   |
| 67)   |   |
|       |   |

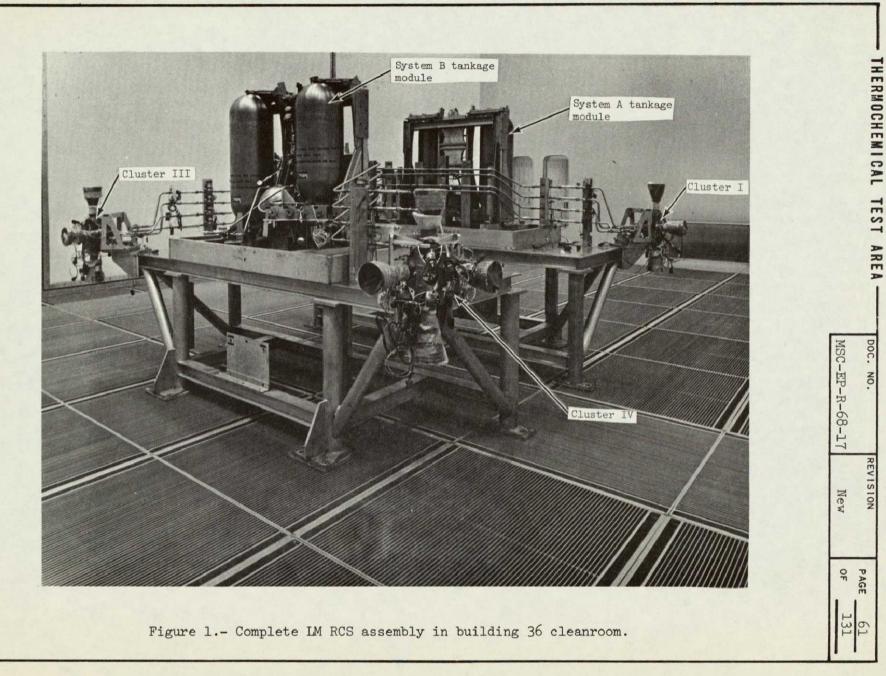
NS I

|               |      |                            |                      |                                              |                            | <u> </u>                                | En                                         | gine no. s                 | und location                            | n                                          |                              |           |                                              |                            |                                         |                                              |  |
|---------------|------|----------------------------|----------------------|----------------------------------------------|----------------------------|-----------------------------------------|--------------------------------------------|----------------------------|-----------------------------------------|--------------------------------------------|------------------------------|-----------|----------------------------------------------|----------------------------|-----------------------------------------|----------------------------------------------|--|
| Run no.       |      | Engane IV D/2              |                      |                                              | Engine IV S/4              |                                         |                                            | Engine II F/11             |                                         |                                            | Eng:                         | ine I U/1 | 3                                            | Summary                    |                                         |                                              |  |
|               |      | Ignition<br>delay,<br>msec | 75% P <sub>c</sub> , | Inte-<br>grated P <sub>c</sub><br>(psia-sec) | Ignition<br>delay,<br>msec | Time to<br>75% P <sub>c</sub> ,<br>msec | Inte-<br>grated P<br>psia-see <sup>c</sup> | Ignition<br>delay,<br>msec | Time to<br>75% P <sub>c</sub> ,<br>maec | Inte-<br>grated P <sub>c</sub><br>psia-sec | Ignition<br>, delay,<br>msec | -         | Inte-<br>grated P <sub>c</sub> ,<br>psia-sec | Ignition<br>delay,<br>msec | Time to<br>75% P <sub>c</sub> ,<br>msec | Inte-<br>grated P <sub>c</sub> ,<br>psia-sec |  |
| Run III-A-3-1 | Hax. | 11.0                       | 24.6                 |                                              | 10.3                       | 18.6                                    |                                            | 10.4                       | 20.0                                    |                                            | 10.6                         | 20.5      |                                              | 11.0                       | 24.6                                    |                                              |  |
| (Normal mode) | Avg. | Avg. 10.6                  | 21.7                 | <sup>a</sup> 2.56                            | 10.3                       | 18.6                                    | <sup>b</sup> 1.08                          | 10.2                       | 19.4                                    | °3-35                                      | 10.6                         | 20.4      | <sup>d</sup> 5.99                            | 10.4                       | 20.2                                    | e3.17                                        |  |
|               | Min. | 10.0                       | 19.2                 |                                              | 10.3                       | 18.5                                    |                                            | 10.0                       | 18.8                                    |                                            | 10.6                         | 20.2      |                                              | 10.0                       | 18.5                                    |                                              |  |
| Run IV-F-1A   | Max. | 11.0                       | 22.5                 |                                              | 11.3                       | 19.2                                    | <sup>b</sup> 1.20                          | 11.1                       | 20.1                                    | °3.75                                      | 11.2                         | 20.6      | <sup>d</sup> 6.17                            | 11.3                       | 22.7                                    | <sup>e</sup> 3.35                            |  |
| (Crossfeed    | Avg. | 10.9                       | 21.5                 | a2.64                                        | 11.1                       | 18.7                                    |                                            | 10.7                       | 19.2                                    |                                            | 11.0                         | 20.6      |                                              | 10.9                       | 20.0                                    |                                              |  |
| mode)         | Min. | 10.6                       | 19.7                 |                                              | 10.9                       | .9 18.2                                 |                                            | 10.3                       | 18.2                                    |                                            | 10.8                         | 20.5      |                                              | 10.3                       | 18.2                                    |                                              |  |

 $d_{Average integrated P_c}^c$  for average pulse duration of 77 msec.  $e_{Average integrated P_c}^c$  for average pulse duration of 42 msec.

DOC.


NO.


REVISION

New

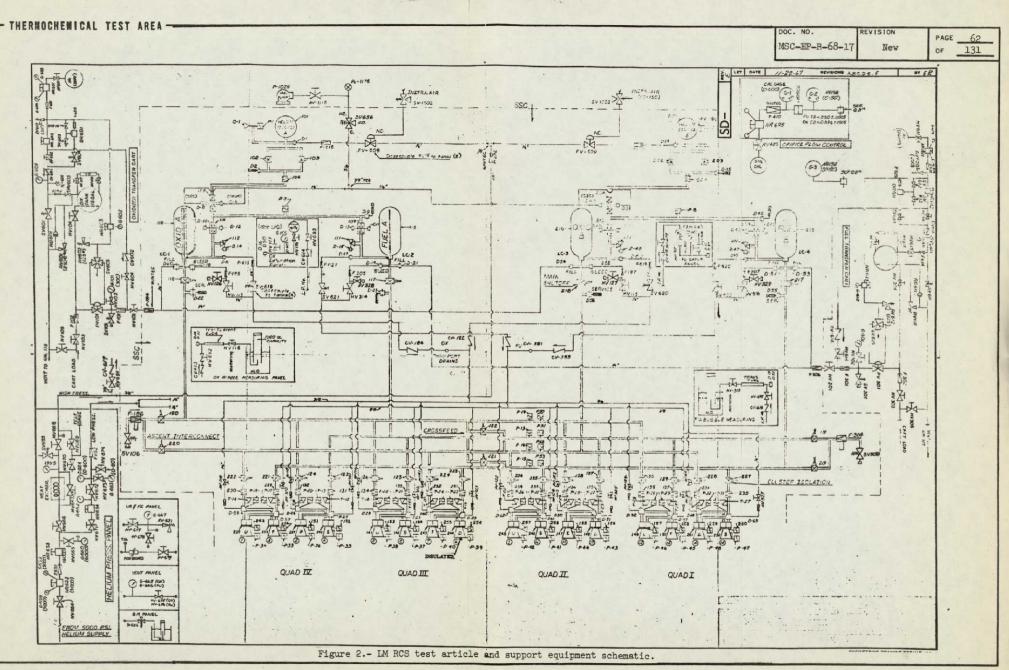
PAGE OF

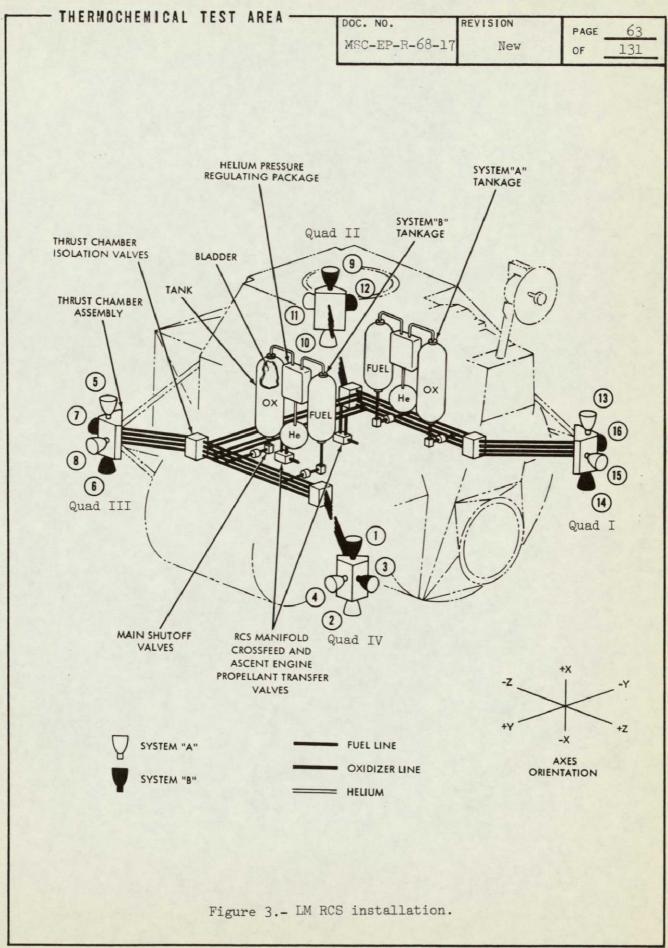
131 У О

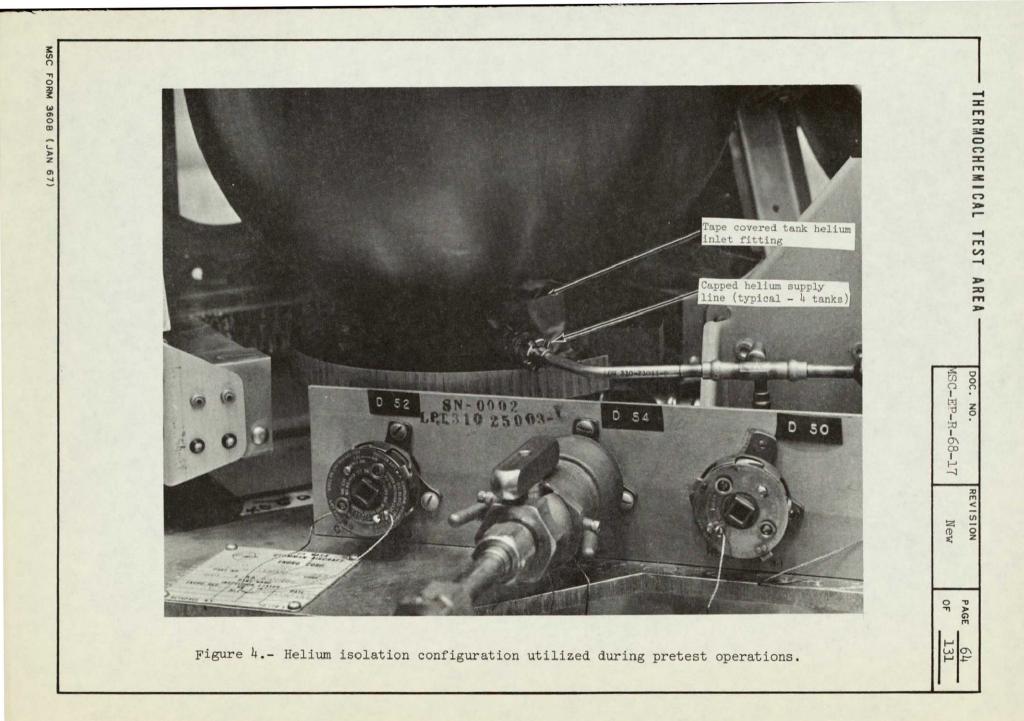


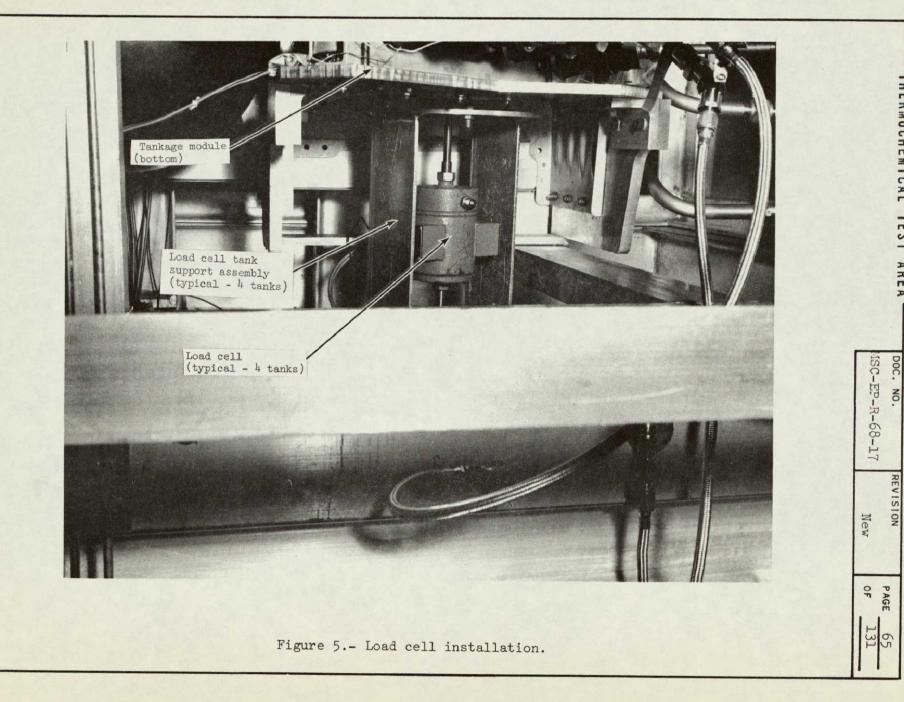


## THERNOCHENICAL TEST AREA -


.


DOC. NO. REVISION PAGE 60 MBC-EP-R-68-17 New OF 131


TABLE XIII .- PROPELLANT CONSUMPTION AND ENGINE FIRING SUMMARY FOR MISSION DUTY CYCLES AND TOTAL TEST PROGRAM


|                                                                   |        | Engine number |        |                |         |             |             |             |            |                            |            |               |            |             |            |            |                      |                      |           |
|-------------------------------------------------------------------|--------|---------------|--------|----------------|---------|-------------|-------------|-------------|------------|----------------------------|------------|---------------|------------|-------------|------------|------------|----------------------|----------------------|-----------|
| Measurement                                                       | 1      | 2             | 3      | 4              | 5       | 6           | 7           | 8           | 9          | 10                         | 11         | 12            | 13         | 14          | 15         | 16         | System<br>A          | System<br>B          | Total     |
|                                                                   |        |               | 1000   | 1.1.1          |         |             | LH 1        | mission du  | ity cycle  |                            | 1.000      |               |            |             |            |            |                      |                      |           |
| Total on time, sec                                                | 19.432 | 25.067        | 1.013  | 2.397          | 15.684  | 27.982      | 0.724       | 3.211       | 18.149     | 32.603                     | 2.038      | 4.629         | 6.041      | (           |            | 1          |                      |                      |           |
| Total pulses                                                      | 197    | 187           | 34     | 30             | 119     | 289         | 28          | 35          | 172        | 175                        | 33         | 29            | 34         | 61.343      | 0.611      | 3.409      | 87.652               | 136.681              | 224.33    |
| Avg. pulse width, sec                                             | .099   | .134          | .030   | .080           | .132    | .096        | .025        | .092        | .106       | .186                       | .062       | .160          | .178       | 273         | 25         | 35         | 638                  | 1 057                | 1 695     |
| Fuel consumption, 1b                                              |        |               | 1      |                |         |             |             |             |            | 10000                      |            | .100          | .110       | .225        | .024       | .097       | .137                 | .129                 | .13       |
| Dxid consumption, 1b                                              |        |               | 1.10   |                |         |             | A. C. Mar   | and a       |            | 1 18 1                     | 1.20 8 8   | 1             |            | Sec. S .    |            |            | 9.9                  | 16.9                 | 26.8      |
| Total propellant, 1b                                              |        |               |        | 1              |         | 1           |             |             |            |                            |            | 100           |            |             |            |            | 18.6                 | 30.4                 | 49.0      |
| Overall O/P                                                       |        |               | 1.000  |                | 1. 2    |             |             |             |            |                            |            |               | 12.00      |             |            |            | 28.5                 | 47.3                 | 75.8      |
| Puel flowrate, 1b/sec                                             |        |               |        | 1. A. I.       |         |             |             |             | 12015      |                            | 1.1        |               |            |             |            | -          | 1.88                 | 1.80                 | 1.8       |
| mid flowrate, 1b/sec                                              |        |               |        |                |         | 1.38        |             |             |            |                            | 1.000      |               |            |             | 1.1.1.1    |            | .113                 | .124                 | .1        |
| Total flowrate, 1b/sec                                            |        | 879.4         |        | 1              |         |             |             |             |            |                            |            | 1.5           |            |             |            | C. S. B. H | .212                 | .222                 | .2        |
|                                                                   |        |               | 1. 250 |                |         | 11123       |             |             |            |                            | 1.4.95     |               | 12.23      |             | 1          | 1          | .325                 | .346                 | 3         |
|                                                                   |        |               |        |                | Lun     | ar mission  | abort from  | n hover mis | ssion duty | cycle                      |            |               | 1.         |             | 5          |            | Averag               | e voltage = 2        | 3-24 V de |
| Total on time, sec                                                | 3.904  | 19.990        | 5.643  | 5.422          | 2.039   | 54.431      | 5.765       | 5.412       | 4.112      | 46.060                     | 5.190      | 5.514         | 6,135      | 28.150      |            |            |                      |                      |           |
| Total pulses                                                      | 55     | 230           | 129    | 127            | 54      | 416         | 119         | 119         | 91         | 501                        | 111        | 113           | 85         | 235         | 5.240      | 5.557      | 95.488               | 113.081              | 208.5     |
| Avg. pulse width, sec                                             | .071   | .087          | .044   | .043           | .038    | .131        | .048        | .045        | .045       | .092                       | .047       | .049          | .072       | .120        | .045       | 112        | 1 343                | 1 270                | 2 613     |
| Fuel consumption, 1b                                              |        |               |        |                |         |             |             |             |            |                            |            | .049          | .012       | 120         | .045       | .050       | .071                 | .089                 | .0        |
| Oxid consumption, 1b                                              |        |               | 1.32   |                | 1000    | North I     |             |             | 12.4       |                            |            |               |            |             |            |            | 11.90                | 14.90                | 26.8      |
| Total propellant, 1b                                              |        |               | 122 20 |                |         |             |             |             | Col and    |                            |            |               |            |             |            |            | 20.90                | 26,90                | 47.8      |
| Overall O/F                                                       |        |               |        |                |         |             |             |             |            | 2 199                      |            |               | 12.53      |             |            |            | 32.80                | 41.80                | 74.6      |
| Fuel flowrate, 1b/sec                                             |        |               |        |                |         |             |             |             |            |                            | 1.1.1.1.1  |               |            |             |            |            | 1.76                 | 1.81                 | 1.7       |
| Oxid flowrate, 1b/sec                                             |        |               |        | 1.00           | 121.12  |             |             |             | 1.16       |                            |            | -             |            |             |            |            | .125                 | .132                 | .1        |
| Total flowrate, 1b/sec                                            |        |               | 1.25   | 1              |         | 1000        |             |             | 1.85       |                            | 1 1 1 1    | 12.00         |            | No.         |            |            | .219                 | .238                 | .2        |
|                                                                   |        |               |        |                |         |             |             |             |            |                            |            | 11000         | 1.86       |             |            | X and a    | .344                 | .370                 | .35       |
|                                                                   |        |               |        |                | Total p | ropellant o | consumption | and firir   | IR Summary | for test pr                | ogram      |               |            |             |            |            | Average              | voltage = 23         | -24 V dc  |
| Total on time, sec                                                | 47.761 | 273.707       | 14.756 | 46.731         | 45.763  | 355.061     | 22.747      | 33.056      | 51.070     | 108.413                    | 22.204     |               | 10         |             |            |            |                      |                      |           |
| Total pulses                                                      | 518    | 6065          | 329    | 928            | 370     | 6345        | 437         | 653         | 593        | 100.413                    | 612        | 30.254        | 46.931     | 172.437     | 18.185     | . 18,921   | 664.867 <sup>8</sup> | 643.130 <sup>ª</sup> | 1 307.99  |
| Avg. pulse width, sec                                             | .092   | .045          | .045   | .051           | .124    | .056        | .052        | .051        | .086       | .105                       | .036       | 1 Contraction | 629        | 1202        | 397        |            | 11 343 <sup>8</sup>  | 9 569 <sup>8</sup>   | 20 912    |
| Fuel consumption, 1b                                              | .074   | .047          | .045   | .071           | .124    | .090        | .052        | .051        | .000       | .105                       | .036       | .059          | .075       | .143        | .046       | .061       | .059                 | .067                 | .06       |
| Oxid consumption, 10                                              |        |               | 1749.0 | 10.14          |         |             |             |             |            | in the                     |            |               | •          |             |            | -107       | 85                   | 85                   | 170       |
| Total propellant, 1b                                              |        |               | 101.00 |                |         |             |             |             |            |                            |            |               |            |             |            | N ST       | 154                  | 164                  | 318       |
| Overall 0/P                                                       | A PARA |               |        |                |         |             |             |             | 1. 214     |                            |            | 2             |            |             |            |            | 239                  | 249                  | 488       |
| Fuel flowrate, 1b/sec                                             |        |               |        |                |         |             |             |             |            | 2 2                        |            |               |            |             |            |            | 1.81                 | 1.93                 | 1.87      |
| Oxid flowrate, 1b/sec                                             |        |               |        |                |         |             |             |             |            |                            |            |               |            |             |            |            | 0.128                | 0.132                | :13       |
| Total flowrate, 1b/sec                                            |        |               |        |                |         | 11 1200     |             |             |            |                            |            |               |            |             |            |            | 0.232                | 0.255                | .24       |
| town inter to see                                                 |        |               |        |                |         |             |             |             | am         | ese totals                 | are based  | on the to     | tal on tin | e and total | l pulses   |            | .360                 | 0.387                | .37       |
| 1 - 1 - 1 - 1 T 1 - 4 - 7 - 1 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 |        |               |        |                |         |             |             |             | 110        | m each tank<br>refore, the | age module | includin      | T Procefoe | d made ener |            |            |                      |                      |           |
| Added the second second                                           |        |               |        | 17 - 1 - 1 - 1 | 1000    |             |             |             | fir        | ing summari                | es. ,      | e not sum     | actions of | the indivi  | idual engi | ne         | Average              | voltage = 23-        | -24 V de  |

FOLDOUT FRAME 2









THERMOCHEMICAL TEST AREA

THERMOCHEMICAL TEST AREA -

|                | REVISION | PAGE | 66  |  |
|----------------|----------|------|-----|--|
| 1SC-EP-R-68-17 | New      | OF   | 131 |  |
|                |          |      |     |  |

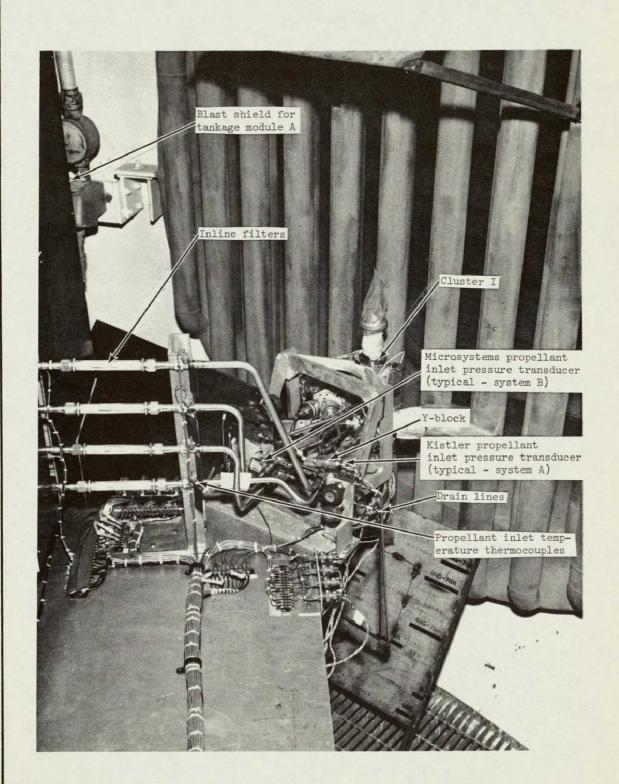



Figure 6.- Typical cluster assembly.

- THERMOCHEMICAL TEST AREA ----

|                | REVISION | PAGE | 67  |
|----------------|----------|------|-----|
| MSC-EP-R-68-17 | New      | OF   | 131 |
|                |          |      |     |

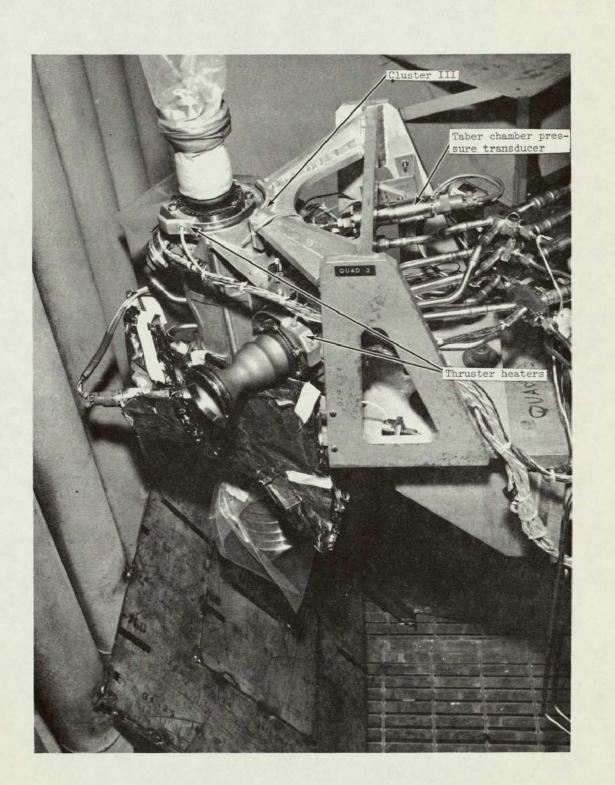
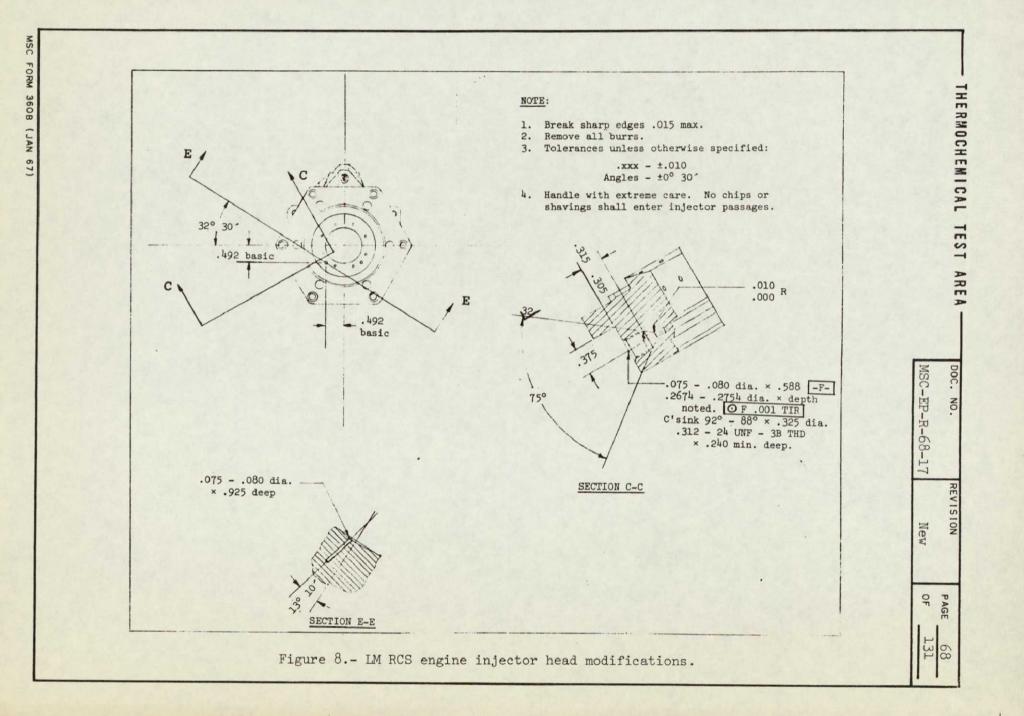
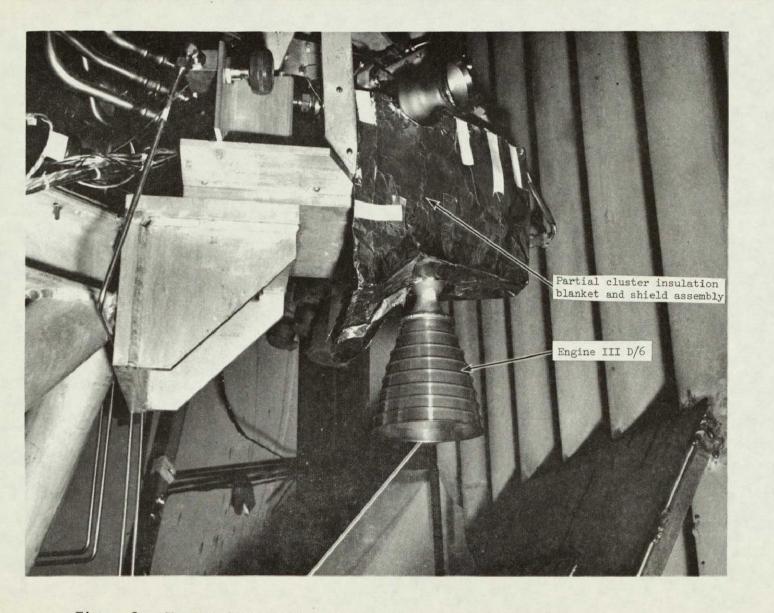





Figure 7.- Typical heater installation.





THERMOCHEMICAL

TEST

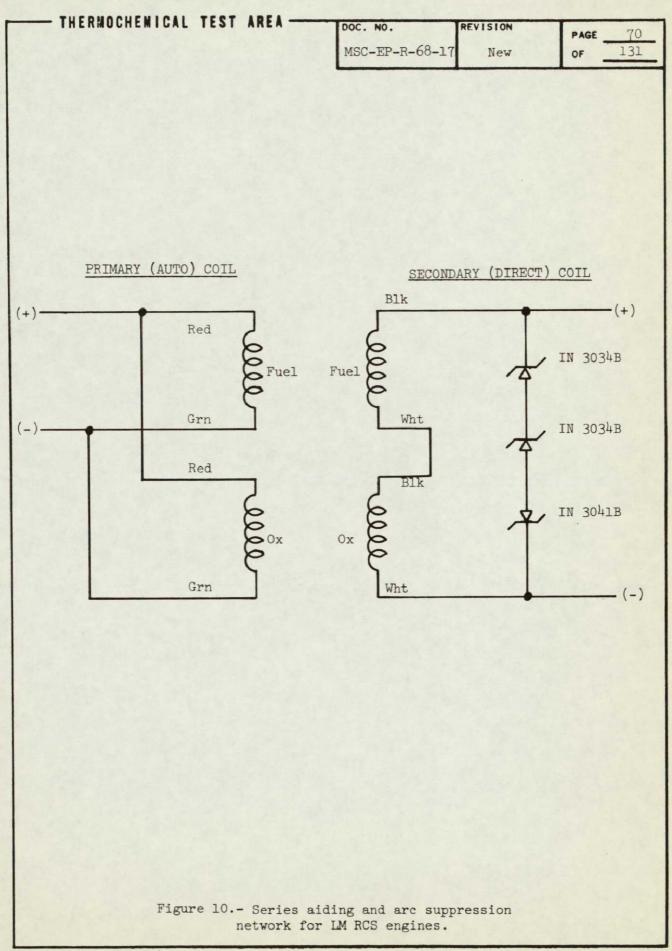
AREA

DOC.

NO.

REVISION

MSC-EP-R-68-17


New

PAGE

131

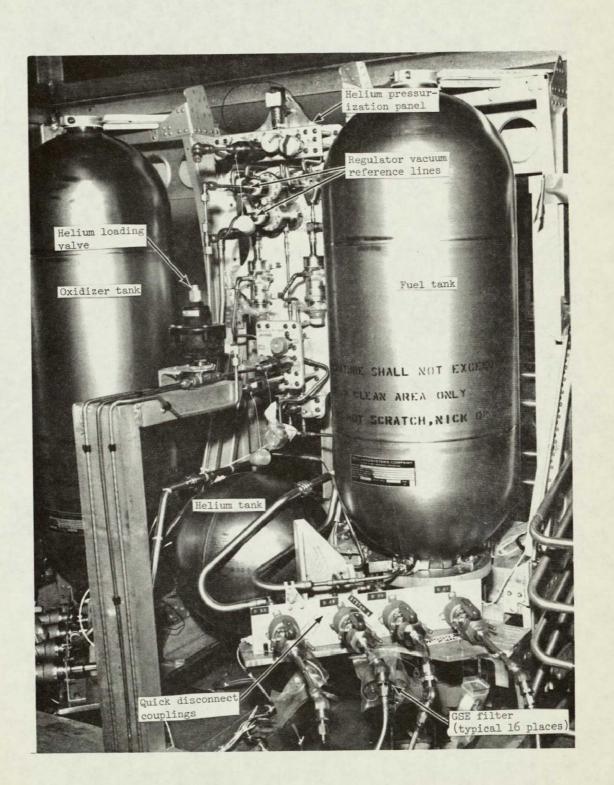
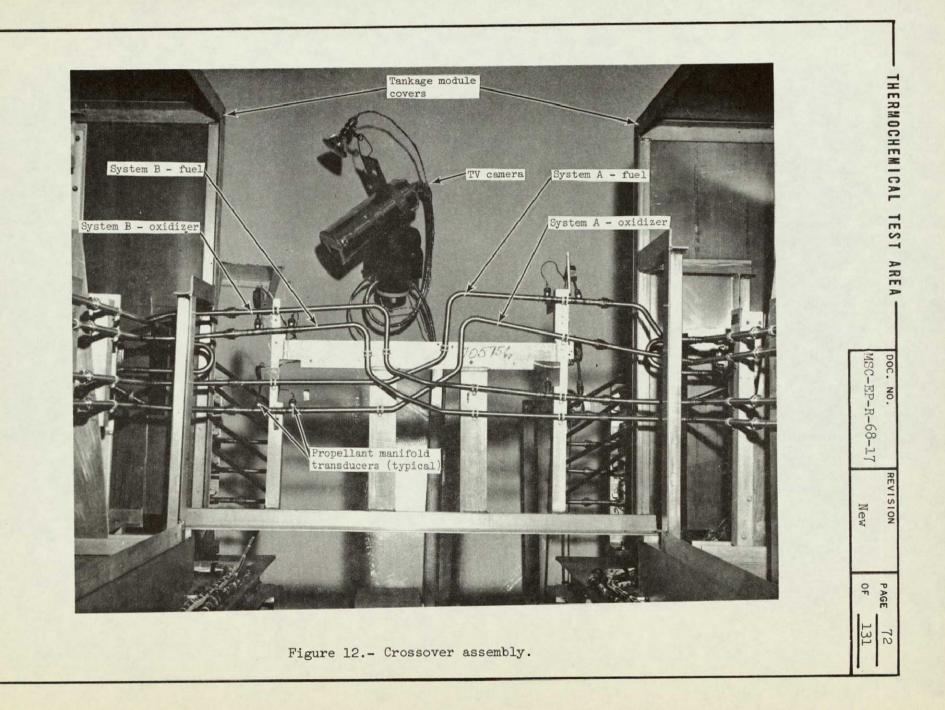
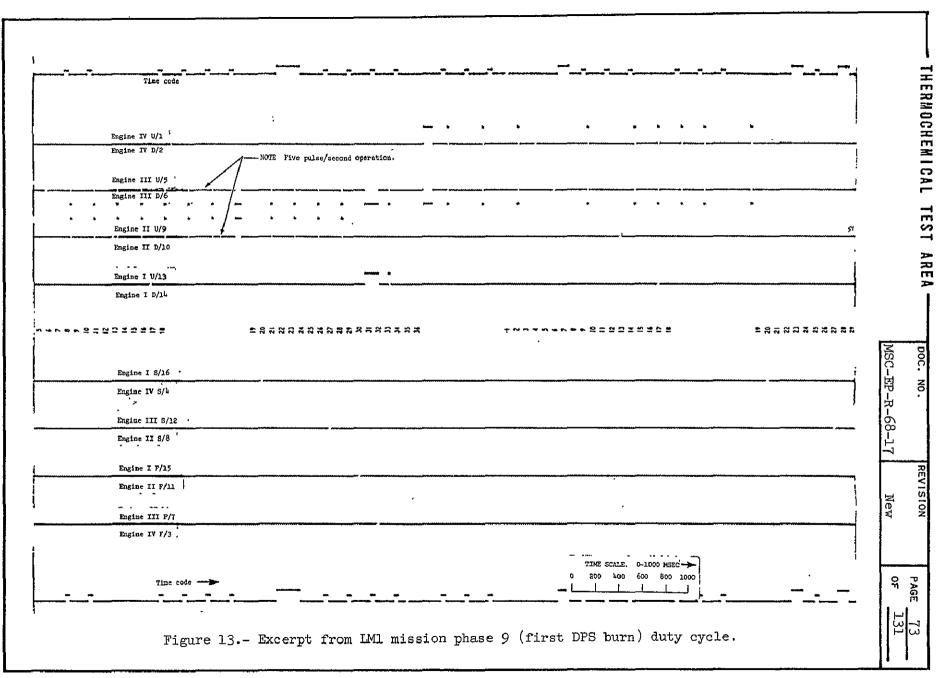
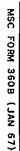
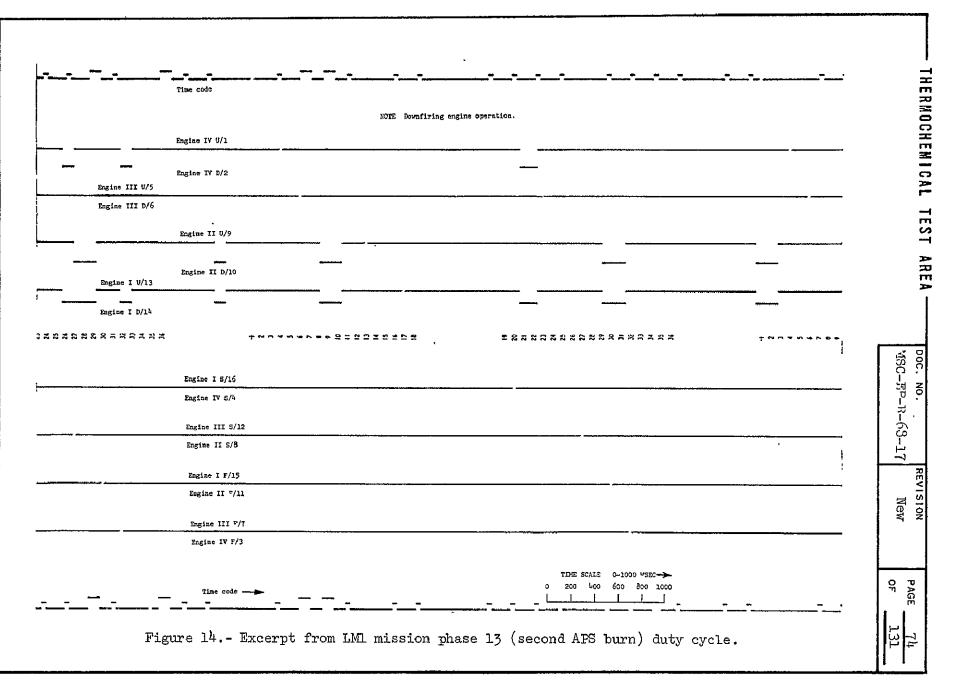
69

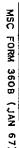
Figure 9.- Cluster installation showing thermal blanket and shield assembly.

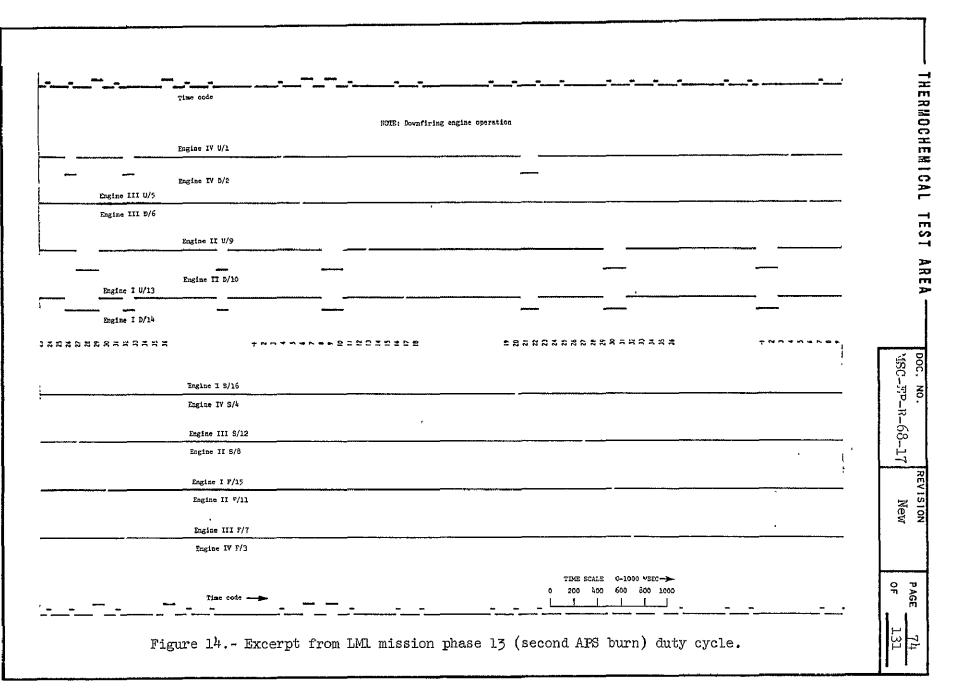


- THERMOCHEMICAL TEST AREA -

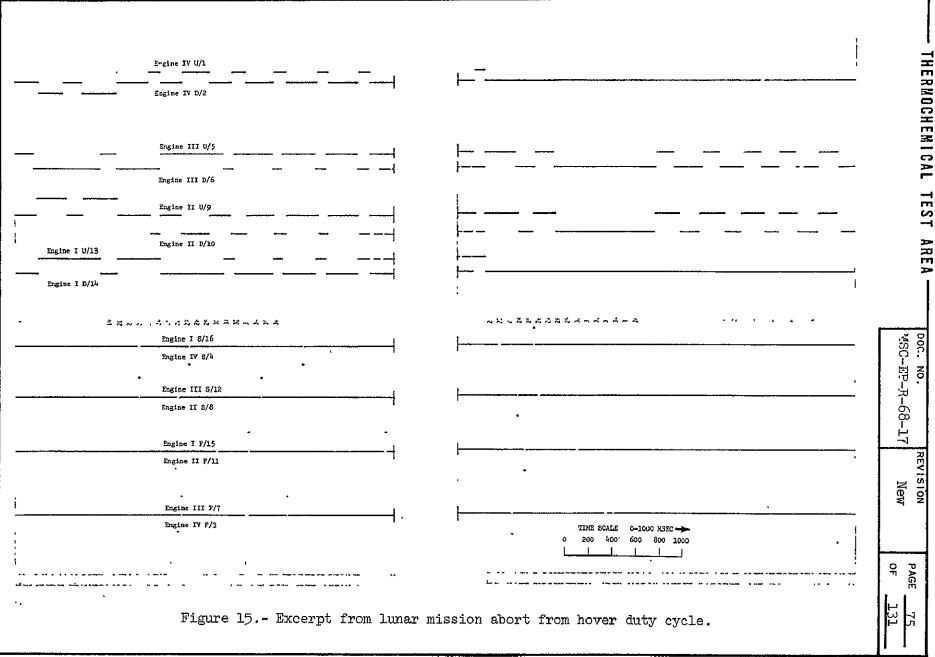
|                | REVISION | PAGE | 71  |
|----------------|----------|------|-----|
| MSC-EP-R-68-17 | New      | OF   | 131 |
|                |          |      |     |



Figure 11.- Test setup - system B tankage module.

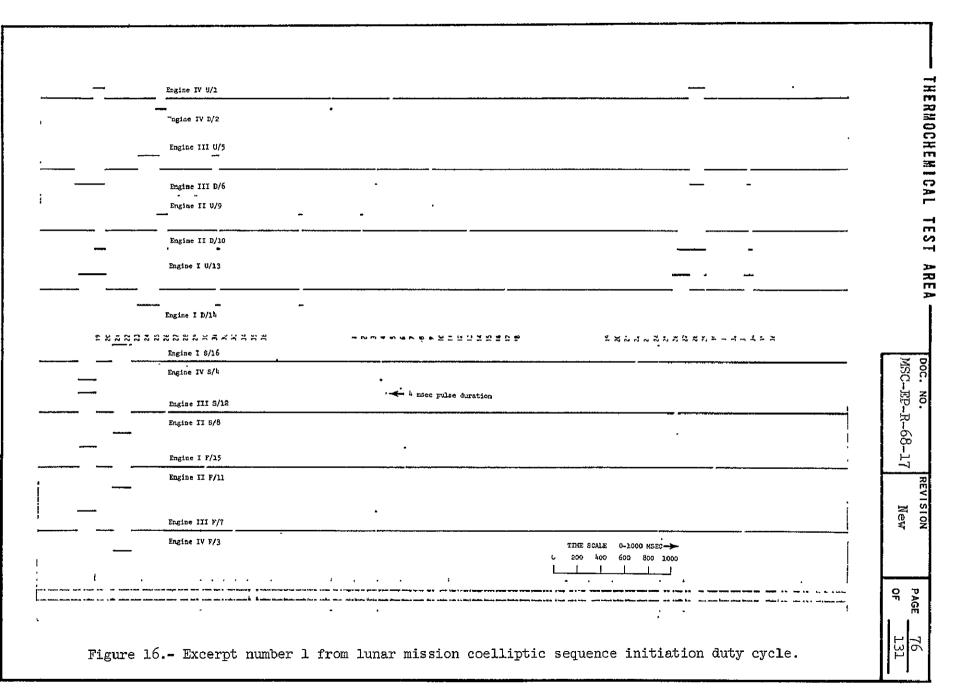






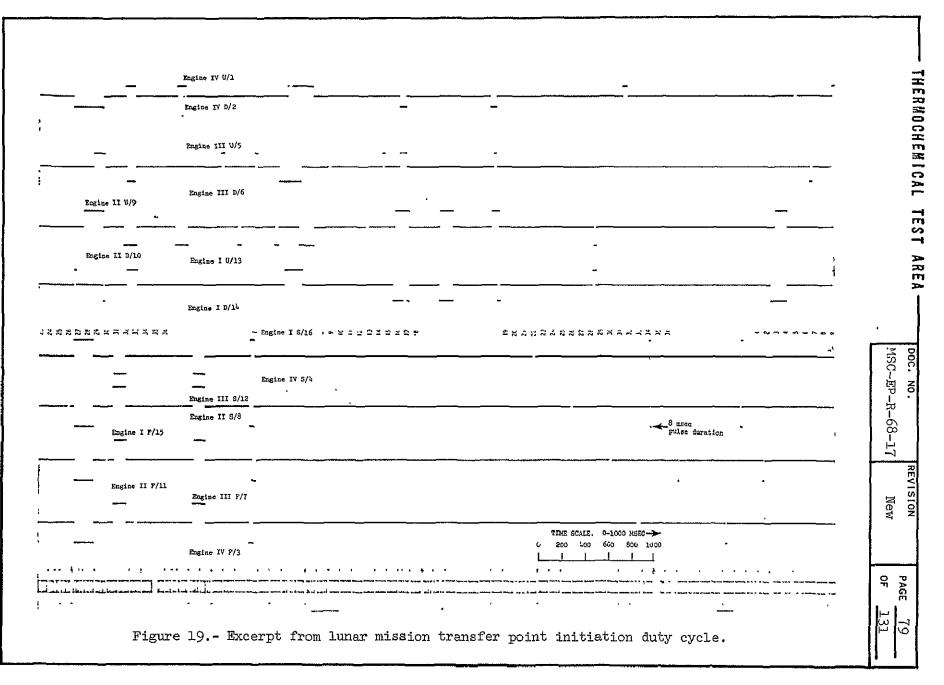


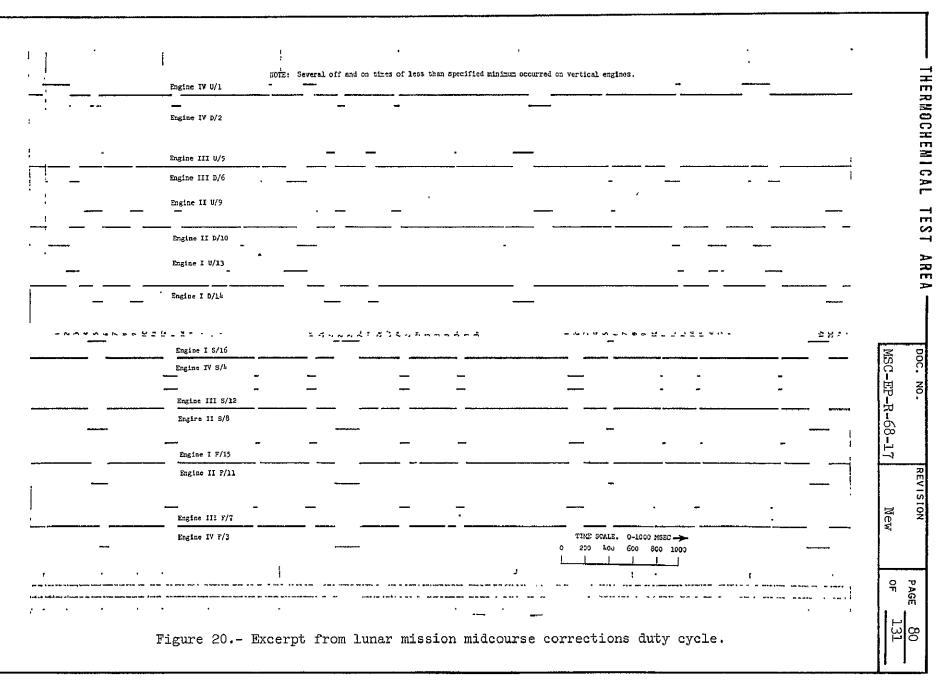








···· -


.....




|       | Engine IV U/1                                                                        | Short off and on times                              |
|-------|--------------------------------------------------------------------------------------|-----------------------------------------------------|
|       | Engipe IV D/2                                                                        |                                                     |
|       | Engine III 0/5                                                                       |                                                     |
|       | Engine III D/6                                                                       |                                                     |
| -     | Engine II U/9                                                                        |                                                     |
|       | Engine II D/10                                                                       |                                                     |
|       | Engine I U/13                                                                        | است مدیده مست. <u>مست محمد محمد می</u> د میرد م     |
| •     | Engine I D/14                                                                        |                                                     |
| 12209 | りふひそうかだみひかのあましみです。                                                                   | するりょうるとるまたににつけたいかい いぶとなったたったが、キャ                    |
|       | Engine I S/16                                                                        |                                                     |
|       | Engine I S/16<br>Engine IV S/4                                                       |                                                     |
|       |                                                                                      |                                                     |
|       | Engine IV 5/4                                                                        |                                                     |
|       | Engine IV 5/4<br>Engine III 5/12                                                     |                                                     |
|       | Engine IV 5/4<br>Engine III 5/12<br>Engine II 5/8                                    | ·                                                   |
|       | Engine IV 5/4<br>Engine III 5/12<br>Engine II 5/8<br>Engine I F/15                   |                                                     |
|       | Engine IV 5/4<br>Engine III 5/12<br>Engine II 5/8<br>Engine I F/15<br>Engine II 7/11 | THE SCALE. 0-1000 MSEC->-<br>0 200 400 600 860 2000 |
|       | Engine IV 5/4<br>Engine III 5/12<br>Engine II 5/8<br>Engine I F/15<br>Engine II 7/11 | TIME SCALE · 0-1000 MSEC->                          |

.

|                                     | Engine IV U/1                                                                                                           |        | S.                                          | hort on time                             | i        |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------|------------------------------------------|----------|
|                                     | Engine IV D/2                                                                                                           | ······ |                                             |                                          |          |
|                                     |                                                                                                                         |        |                                             |                                          |          |
|                                     | Engine III U/5                                                                                                          | ,<br>  |                                             |                                          |          |
|                                     |                                                                                                                         |        | ······································      | ······ ·······························   |          |
| Engine II U/9                       | Engine III D/6                                                                                                          |        |                                             |                                          |          |
| Engine II 0/9                       |                                                                                                                         |        |                                             |                                          |          |
| Engine II D/10                      |                                                                                                                         | ·      |                                             | ·                                        |          |
|                                     |                                                                                                                         |        |                                             |                                          |          |
|                                     | Engine I U/13                                                                                                           |        | <u> </u>                                    |                                          |          |
|                                     |                                                                                                                         |        |                                             |                                          |          |
|                                     | Engine I D/14                                                                                                           |        |                                             |                                          |          |
| 45 0 <b>5</b> 0 <b>5</b> 0 <b>1</b> |                                                                                                                         |        |                                             |                                          | j        |
| *****                               | \$X\$\$ ~~~                                                                                                             |        | **************************************      |                                          | )<br>} Г |
| *****                               |                                                                                                                         |        | ● 第 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2     | - IV ~ V ~ V ~ V ~ T ~                   |          |
| * * * * * * * *                     | 음 또 알 올 - ~ ~                                                                                                           | ,<br>  | **************************************      |                                          |          |
| ****                                | 유조 유 조 - ~ ~                                                                                                            |        | ****                                        | - 12 - 22 - 20 - 20 - 20 - 20 - 20 - 20  | -        |
| ****                                | 음 또 알 올 - ~ ~                                                                                                           |        | **************************************      |                                          |          |
| ****                                | 유조 유 조 - ~ ~                                                                                                            |        | ****                                        | - IV O V V V V V V V V V V V V V V V V V |          |
| ****                                | Engine I S/16<br>Engine IV S/4<br>Engine III S/12<br>Engine II S/8                                                      |        |                                             | -                                        |          |
| ****                                | Engine I 5/16<br>Engine IV 5/4<br>Engine III 5/12<br>Engine II 5/8<br>Engine I F/15                                     |        | £ ∺ ⊼ % ⊼ % % % % % % й й й й й й й й й й й | -                                        |          |
| * * * * * * * * * *                 | Engine I 5/16<br>Engine IV 5/4<br>Engine III 5/12<br>Engine II 5/8<br>Engine I F/15                                     |        |                                             | -                                        |          |
| * * * * * * * * * *                 | Engine I S/16<br>Engine IV S/4<br>Engine III S/12<br>Engine II S/8<br>Engine I F/15<br>Engine II F/11                   |        | ←1 mscc pulne<br>THE SCALE, 0-1000 MSE0→    | -                                        |          |
| * * * * * * * * *                   | Engine I S/16<br>Engine IV S/4<br>Engine III S/12<br>Engine II S/8<br>Engine I P/15<br>Engine II F/11<br>Engine III F/7 |        |                                             | -                                        |          |
| ****                                | Engine I S/16<br>Engine IV S/4<br>Engine III S/12<br>Engine II S/8<br>Engine I P/15<br>Engine II F/11<br>Engine III F/7 |        | ←1 mscc pulne<br>THE SCALE, 0-1000 MSE0→    | -                                        |          |
| * * * * * * * * * * *               | Engine I S/16<br>Engine IV S/4<br>Engine III S/12<br>Engine II S/8<br>Engine I P/15<br>Engine II F/11<br>Engine III F/7 |        | ←1 mscc pulne<br>THE SCALE, 0-1000 MSE0→    | -                                        |          |





7)

- THERMOCHEMICAL TEST AREA ----

| DOC. NO.       | REVISION | PAGE | 81  |
|----------------|----------|------|-----|
| MSC-EP-R-68-17 | New      | OF   | 131 |

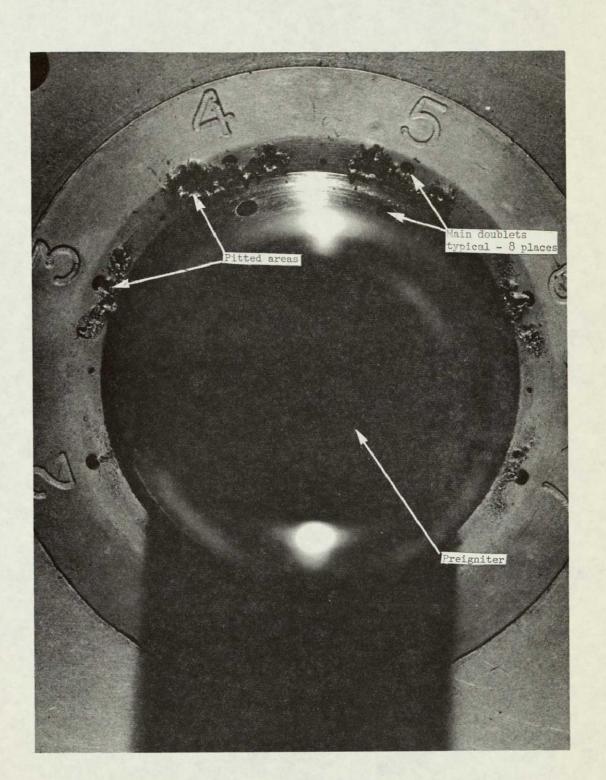
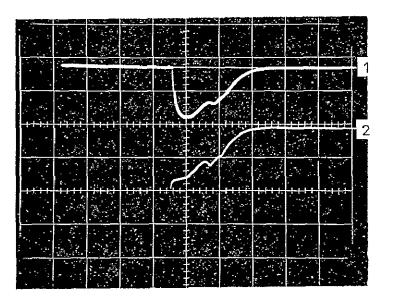
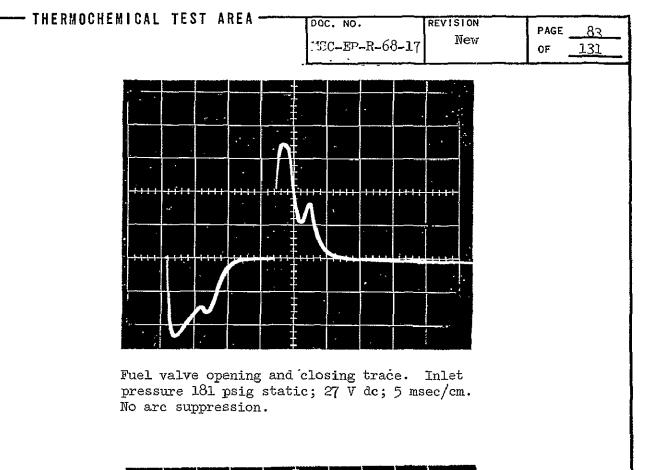




Figure 21.- Face of injector S/N 1003 as received at MSC.

THERMOCHEMICAL TEST AREA

| DOC. NO.           | page <u>82</u> |
|--------------------|----------------|
| MSC-EP-R-68-17 New | of <u>131</u>  |




Combined fuel and oxidizer valve opening traces. Inlet pressure 181 psig static; 27 V dc; 5 msec/cm.

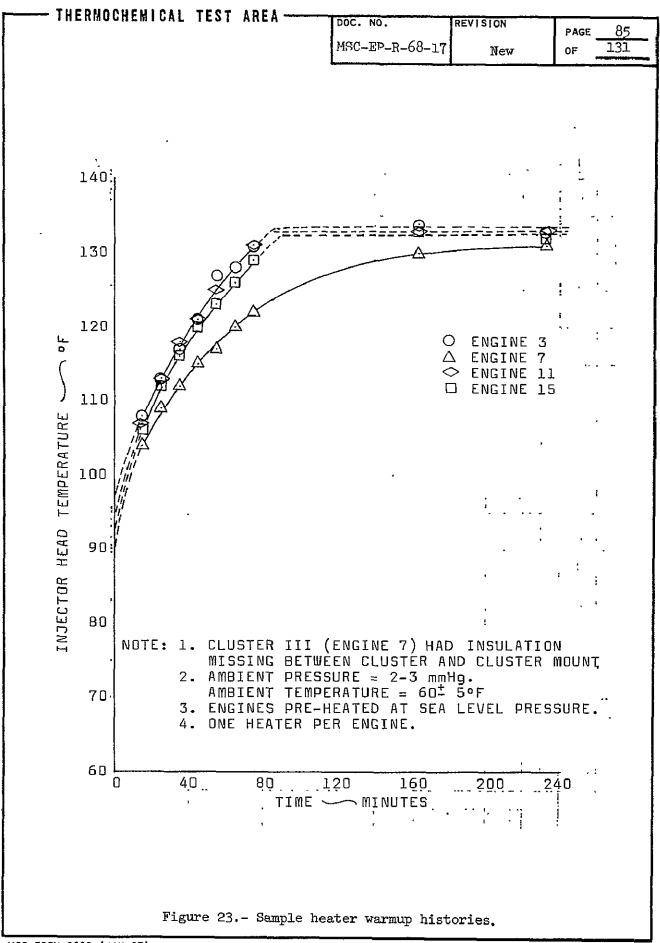
| 5 3 1 × # | S. 51. 14. 1. 1. 1. | 1 · · · · · · · · · · · · · · · · · · · | S  | a second s |
|-----------|---------------------|-----------------------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                     |                                         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|           |                     |                                         | è. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|           |                     |                                         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|           |                     |                                         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|           |                     |                                         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|           |                     |                                         |    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                     |                                         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|           |                     |                                         |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Combined fuel and oxidizer valve closing traces. Inlet pressure 72 psig dynamic; 27 V dc; 5 msec/cm.

(Trace 1 is induced voltage on direct coils. Trace 2 is current through automatic coils. Arc suppression installed.)

Figure 22.- Effects of arc suppression network on automatic coil response.




|          |                                       |    | ·    | ī         |          |           |      | · ·    |     |
|----------|---------------------------------------|----|------|-----------|----------|-----------|------|--------|-----|
|          |                                       |    |      | -         |          |           |      | *      |     |
|          | •                                     |    | -    |           |          |           |      |        | 1   |
| <br>     |                                       |    |      | · · · · · |          | ^         |      | ·`     |     |
|          |                                       |    |      |           |          |           |      |        |     |
|          |                                       |    |      | Ŀ.        |          |           |      |        |     |
|          |                                       |    |      | -         |          |           |      |        |     |
|          |                                       | •  | -    | -         | $\sim$   |           |      |        |     |
| <br>++++ |                                       |    | ++++ |           |          | 1111      | ++++ | -1     |     |
|          |                                       |    | -    | -         |          |           | 1    |        |     |
|          |                                       |    | -    | -         |          |           |      |        |     |
|          |                                       |    |      | - · ~     | <u> </u> |           | ÷    |        | 1.  |
|          |                                       |    |      | <u>-</u>  |          | <b>\$</b> |      |        | l . |
|          | х<br>- т. т. т. т.                    | HH |      |           |          |           | 111  |        |     |
|          |                                       |    |      | -         |          |           |      |        |     |
|          |                                       |    |      | t-        | 4        |           |      |        |     |
| <br>     |                                       | ¥  |      |           | <u> </u> |           |      |        | 1   |
| •        | -                                     |    |      | Ē         |          |           |      |        | -   |
|          |                                       |    |      | C I       |          |           |      |        |     |
|          | i i i i i i i i i i i i i i i i i i i |    |      | -         |          |           |      | ······ |     |
|          |                                       | •  |      | -         |          |           |      |        |     |
|          |                                       |    |      |           |          |           |      |        |     |

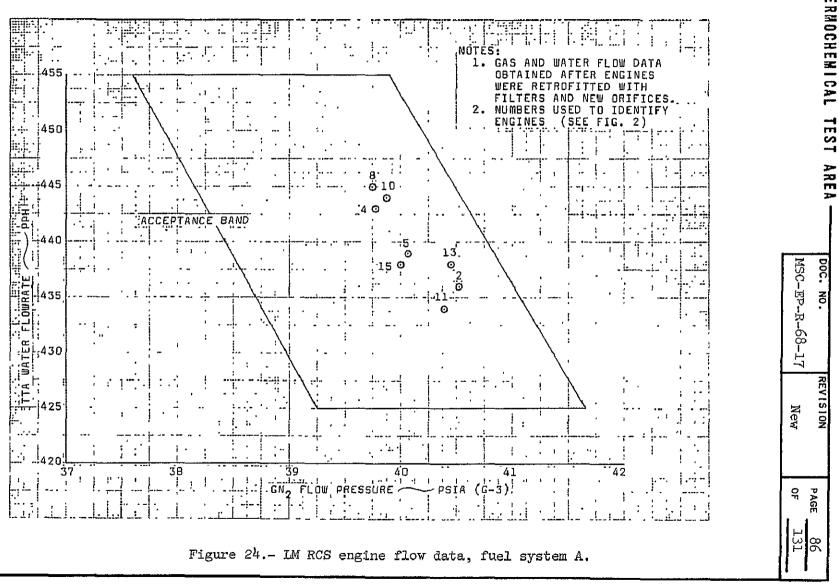
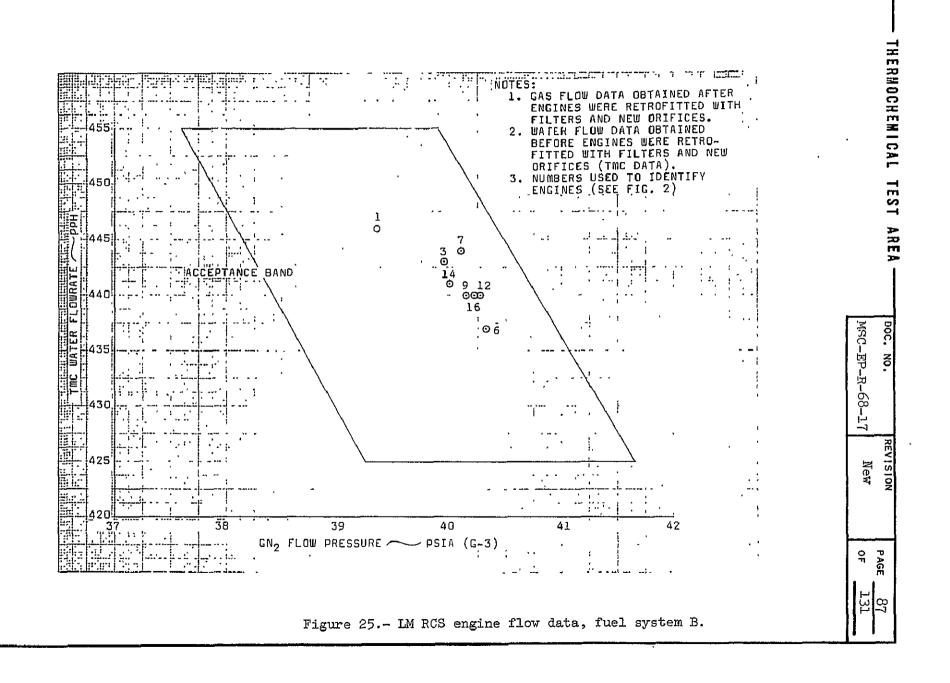
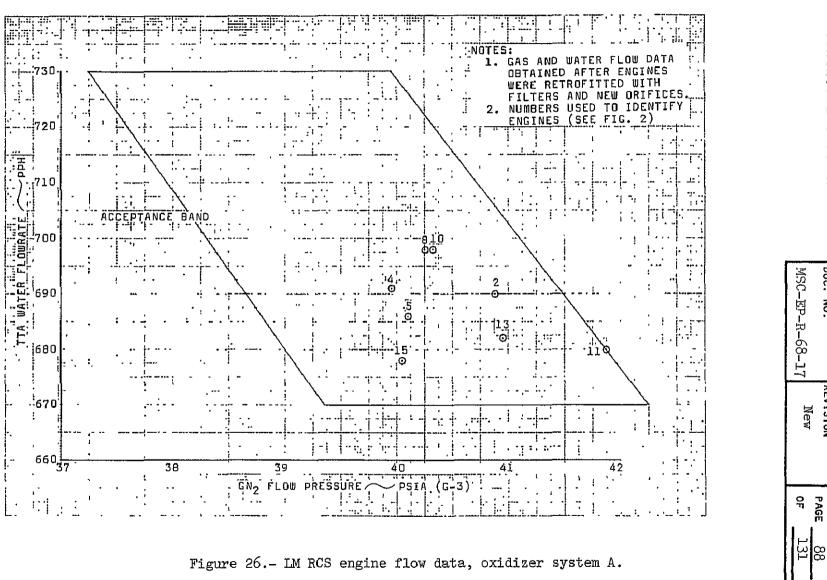

Oxidizer value opening and closing trace. Inlet pressure 181 psig static; 27 V dc; 5 msec/cm. No arc suppression.

Figure 22.- Effects of arc suppression network on automatic coil response - continued.


| HERMOCHEMICAL TEST AREA                                           | DOC. NO.       | REVISION                                     | PAGE 84 |
|-------------------------------------------------------------------|----------------|----------------------------------------------|---------|
|                                                                   | MSC-EP-R-68-17 | New                                          | OF 131  |
|                                                                   |                | 1                                            |         |
|                                                                   |                | estingen<br>Angelsen Stand<br>Angelsen Stand |         |
|                                                                   |                |                                              |         |
|                                                                   |                |                                              |         |
|                                                                   |                |                                              |         |
|                                                                   |                |                                              |         |
|                                                                   |                |                                              |         |
|                                                                   |                |                                              |         |
|                                                                   |                |                                              |         |
|                                                                   |                | ander<br>El Seco                             |         |
|                                                                   |                |                                              |         |
|                                                                   |                |                                              |         |
|                                                                   |                |                                              |         |
|                                                                   |                |                                              |         |
|                                                                   |                |                                              |         |
|                                                                   |                |                                              |         |
|                                                                   |                | and a star<br>and a star                     |         |
|                                                                   |                |                                              |         |
|                                                                   |                |                                              |         |
|                                                                   |                |                                              |         |
| · 法计划 · · · · · · · · · · · · · · · · · · ·                       |                |                                              |         |
|                                                                   |                |                                              |         |
| Oxidizer valve closing                                            | trace. Thiet m | ressure                                      |         |
| Oxidizer valve closing<br>72 psig dynamic; 27 V d<br>suppression. |                |                                              |         |


Figure 22.- Effects of arc suppression network on automatic coil response - concluded.

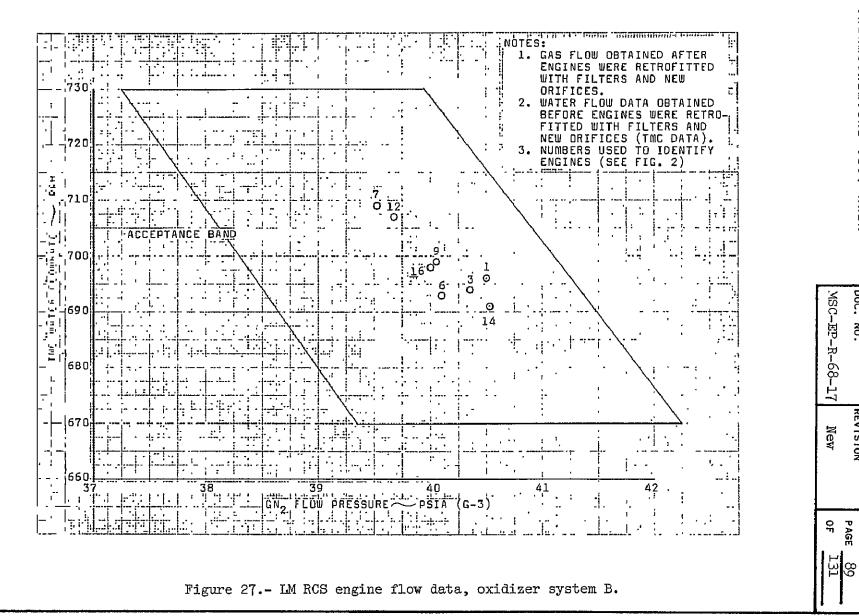




**THERMOCHEMICAL** TEST






**THERMOCHENICAL** TEST ARE

200

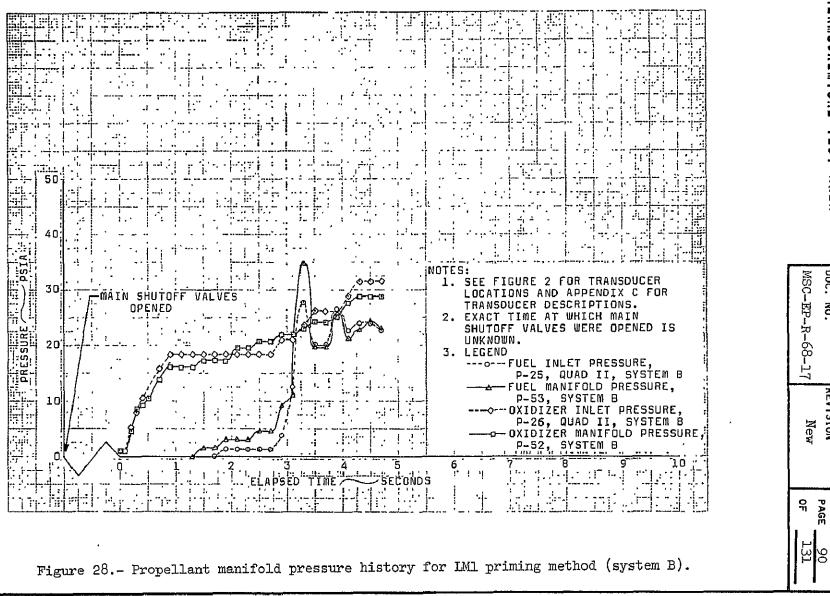
DOC.

NO

REVISION



**THERMOCHEMICAL** TE  $\sim$ 


>>>

RE

-

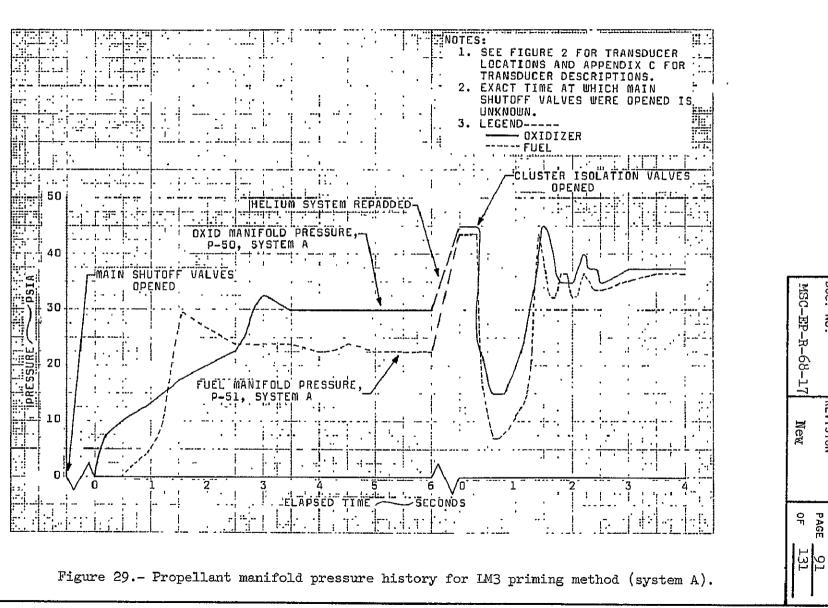
DOC. ð

REVISION



**THERNOCHENICAL** H S -----≫ RE

DOC.


-

S

REV

NO I S I

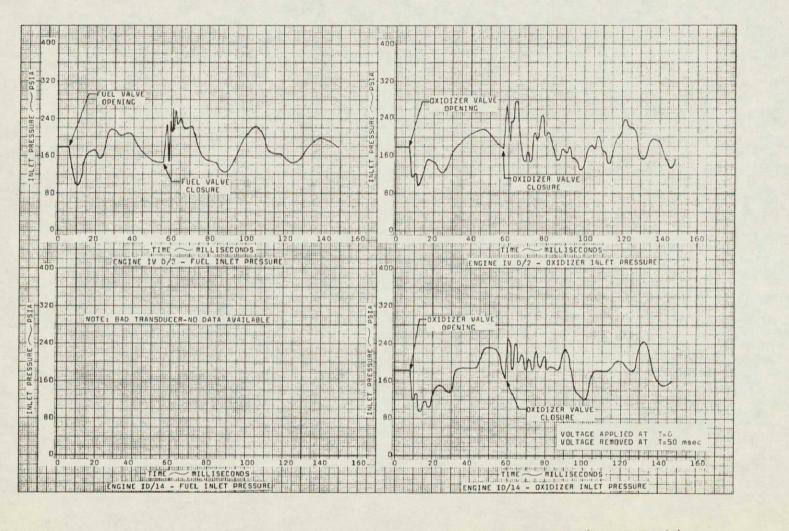
PAGE



DOC. No.

REVISION

**THERMOCHEMICAL** 


-----

ст.  $\sim$ 

AR

m

>



THERMOCHEMICAL

TES

-

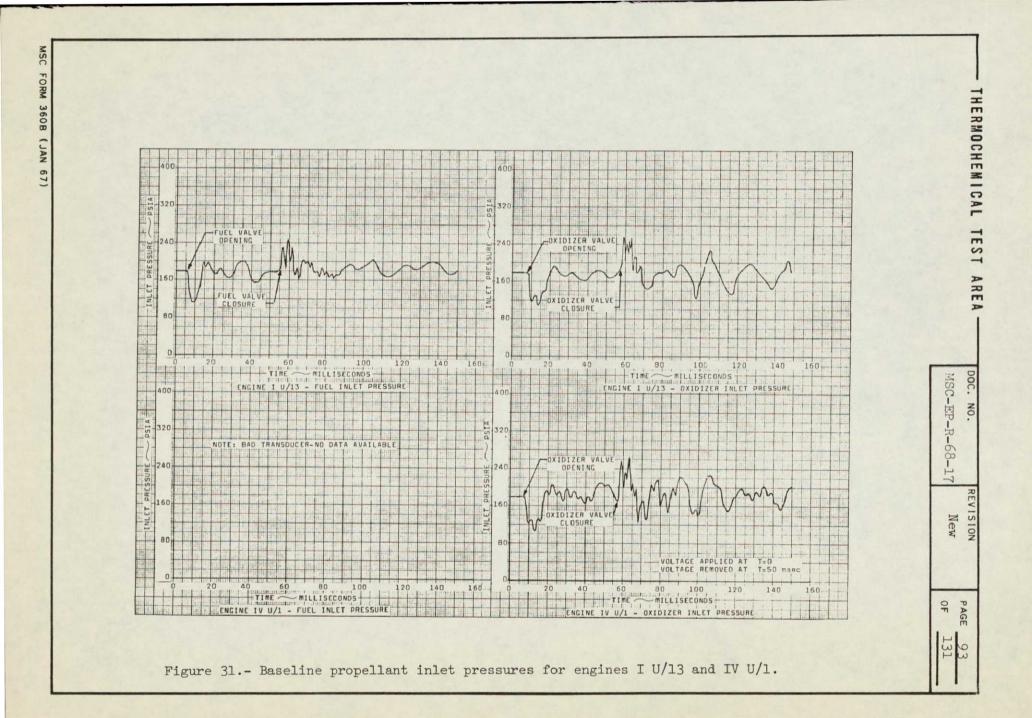
ARE

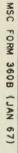
P

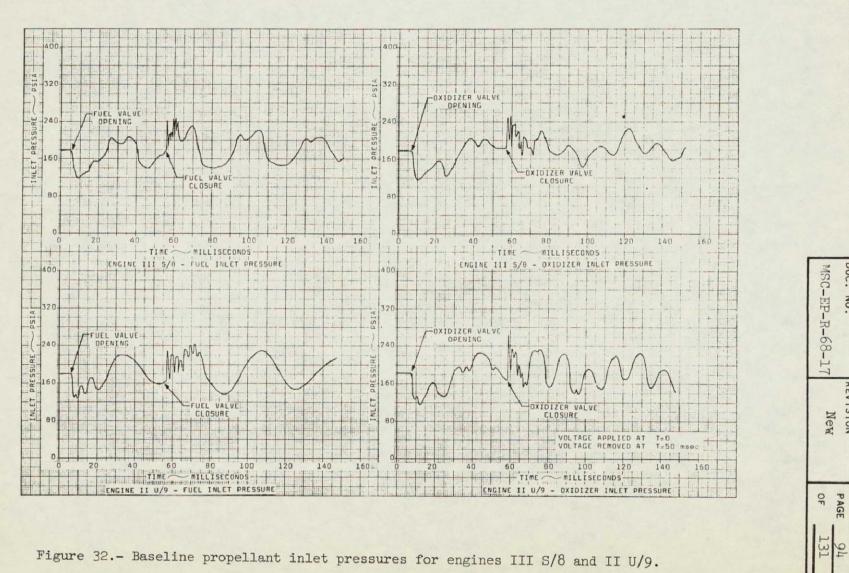
DOC

NO

REV


New


PAGE


92

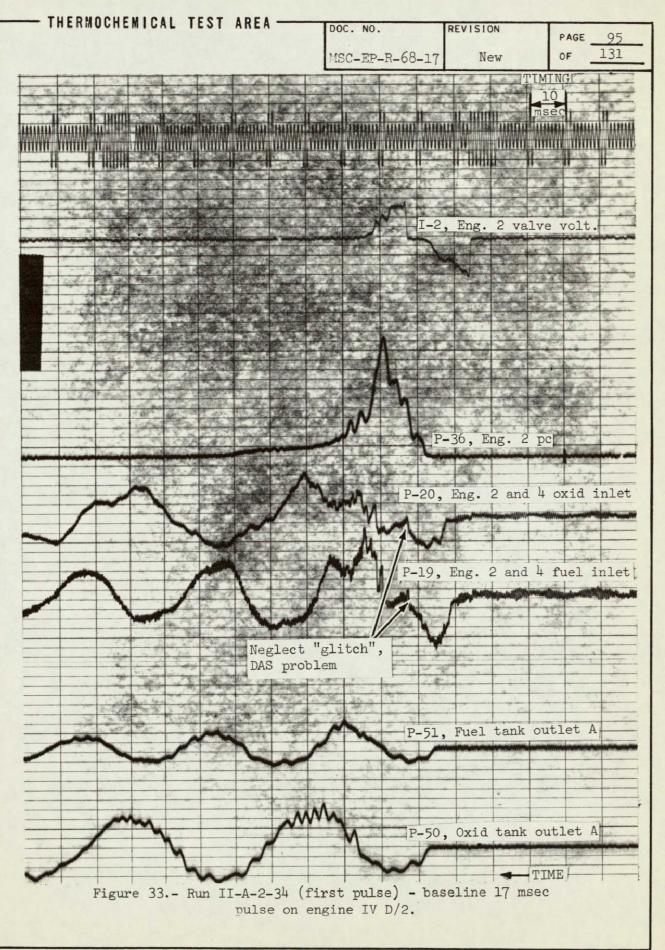
MSC-EP-R-68-17

Figure 30.- Baseline propellant inlet pressures for engines IV D/2 and I D/14.

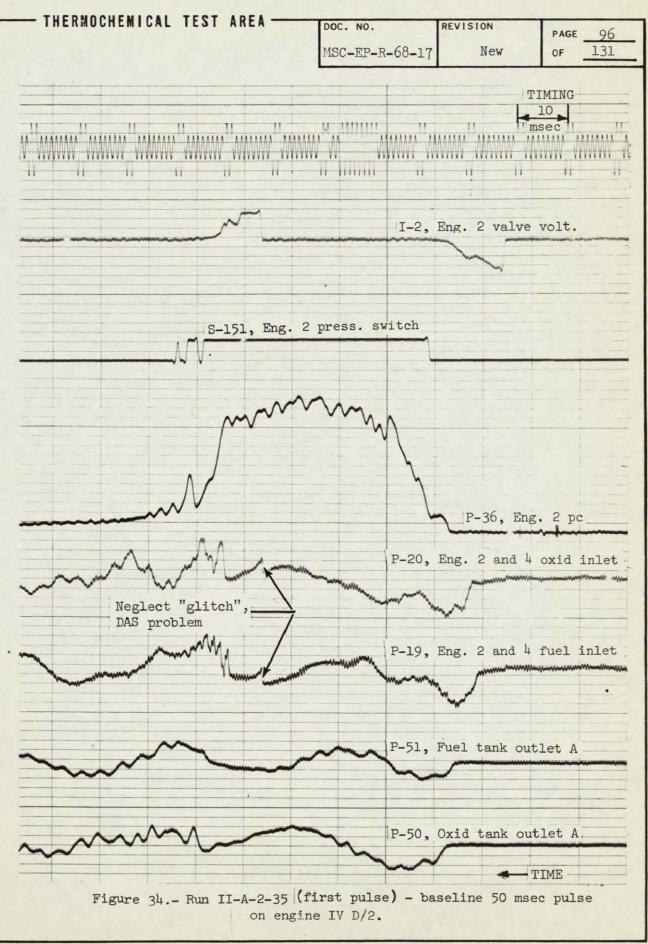




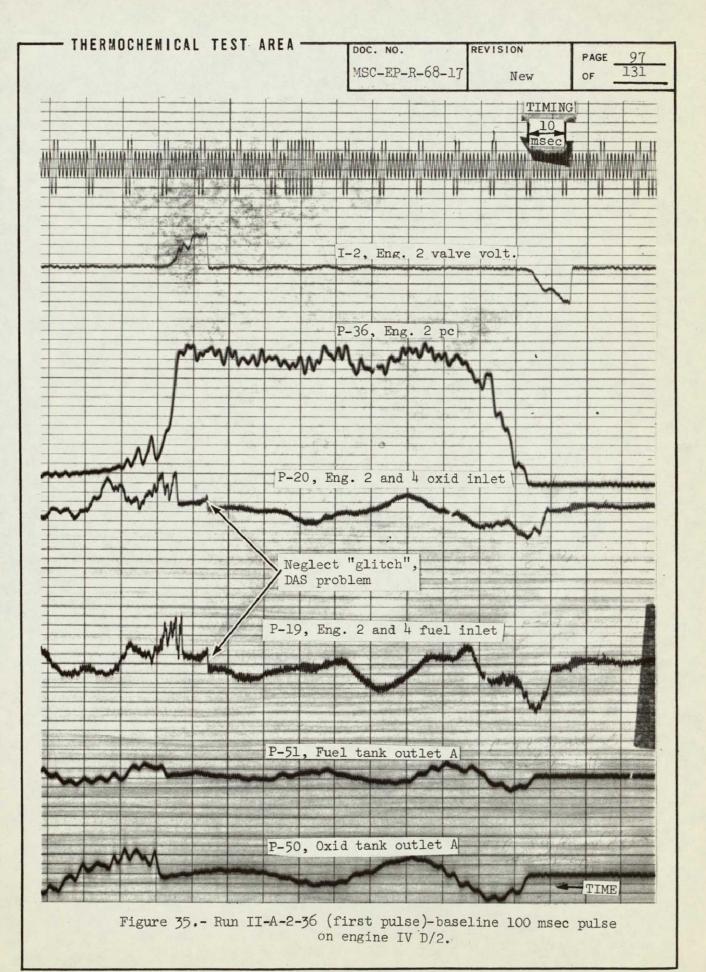


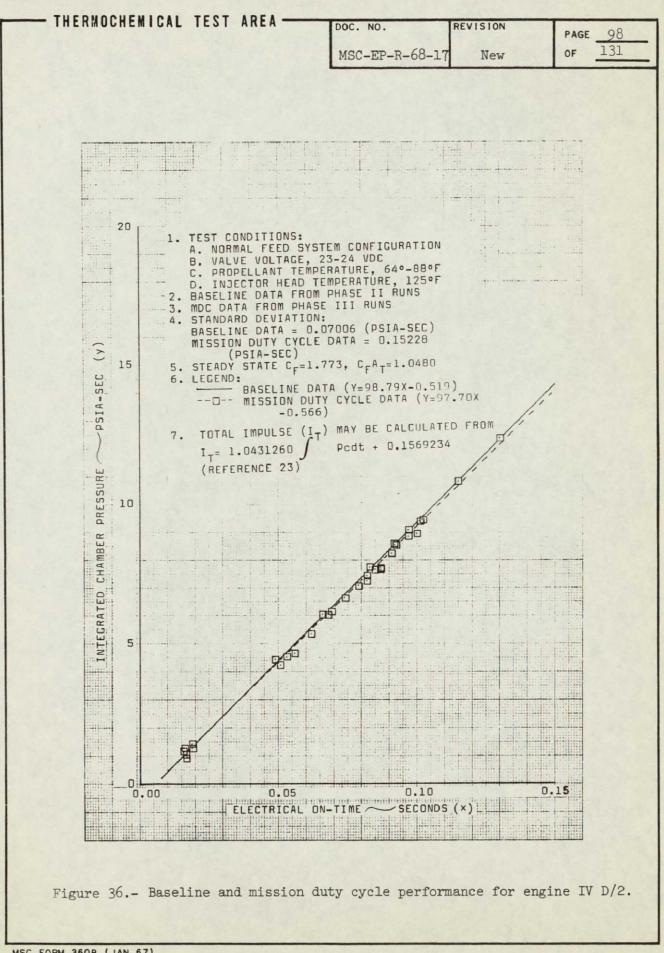

THERMOCHEMICAL TE 5 -ARE

P


DOC. NO

REV


NOISI




MSC FORM 360B (JAN 67)



MSC FORM 360B (JAN 67)





| DOC. NO.       | REVISION | PAGE | 99  |
|----------------|----------|------|-----|
| MSC-EP-R-68-17 | New      | OF   | 131 |

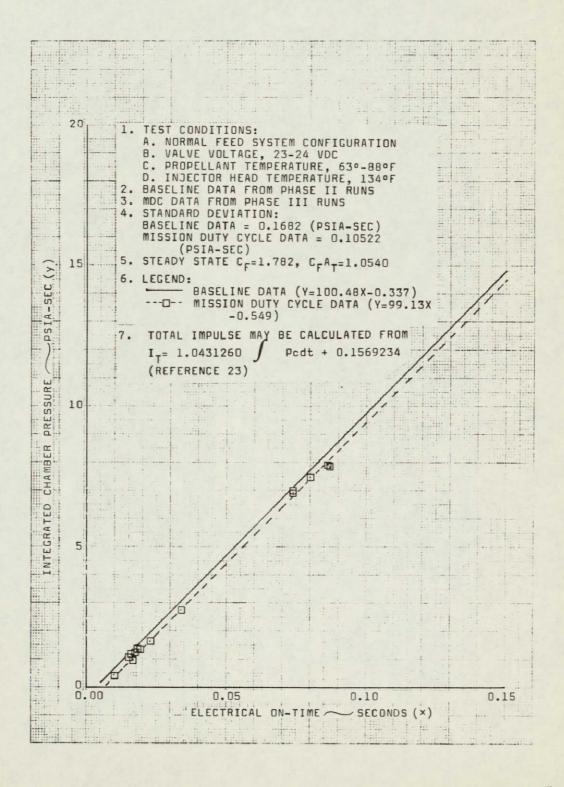
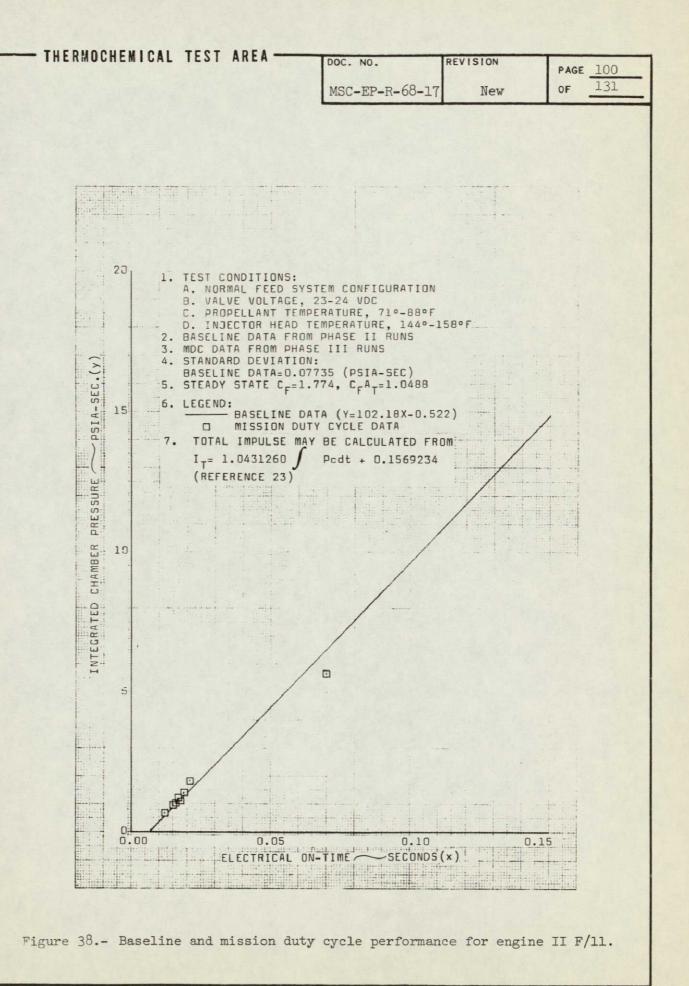




Figure 37.- Baseline and mission duty cycle performance for engine IV S/4.



| DOC. NO.       | REVISION | PAGE | 101 |
|----------------|----------|------|-----|
| MSC-EP-R-68-17 | New      | OF   | 131 |

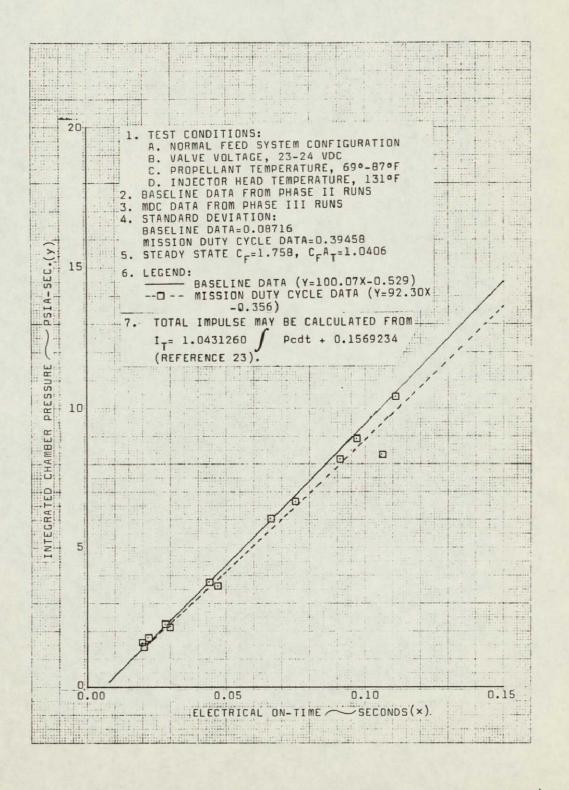
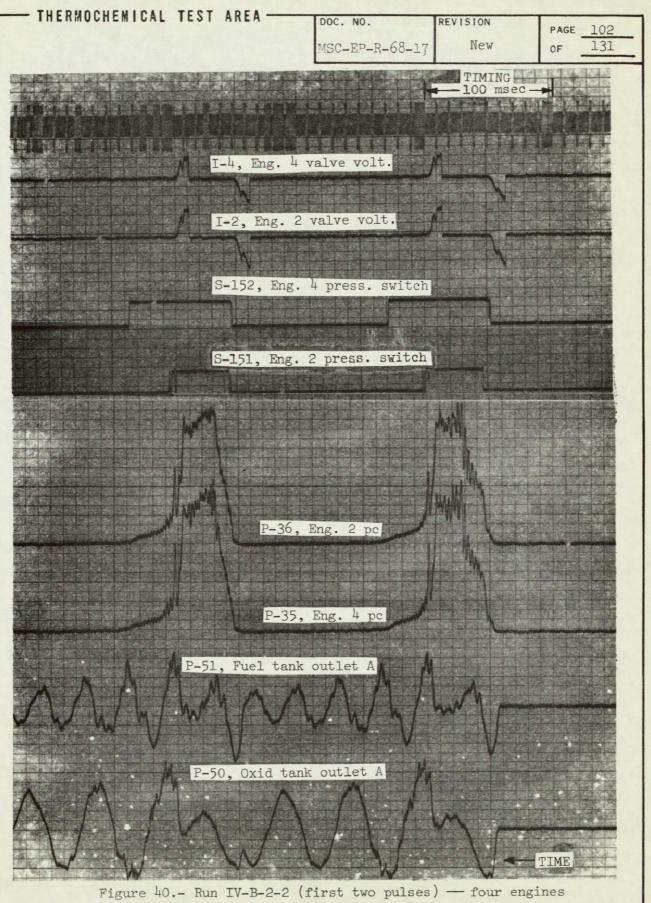
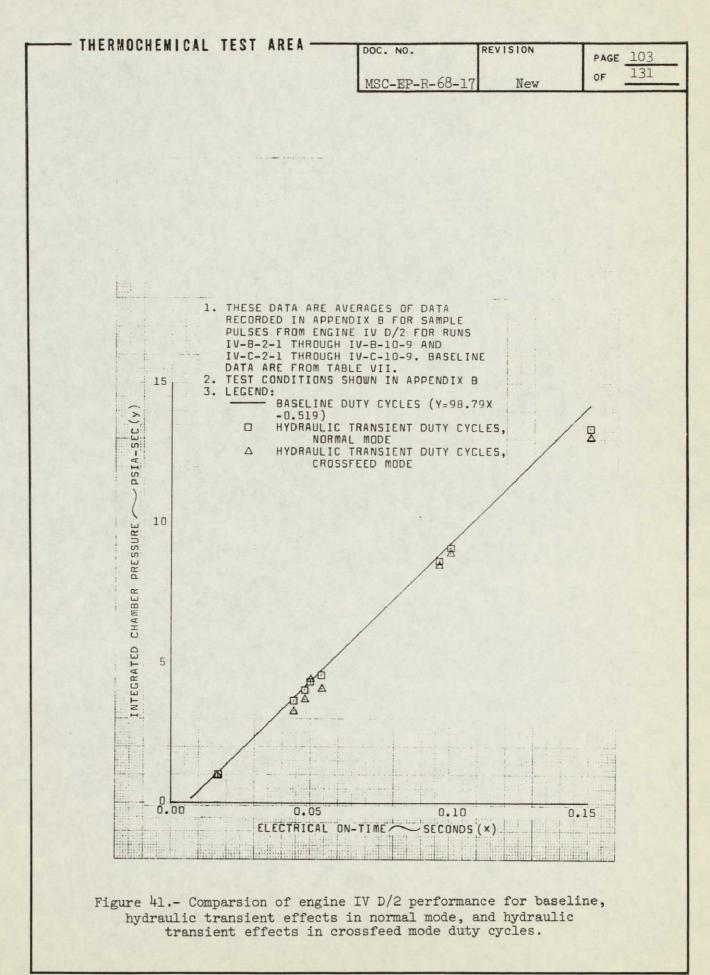





Figure 39.- Baseline and mission duty cycle performance for engine I U/13.





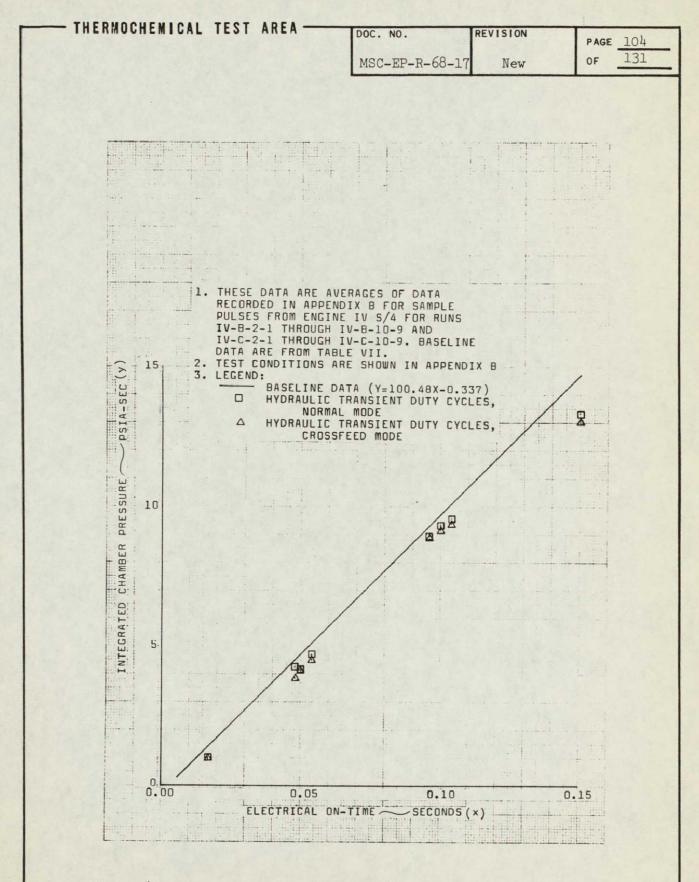
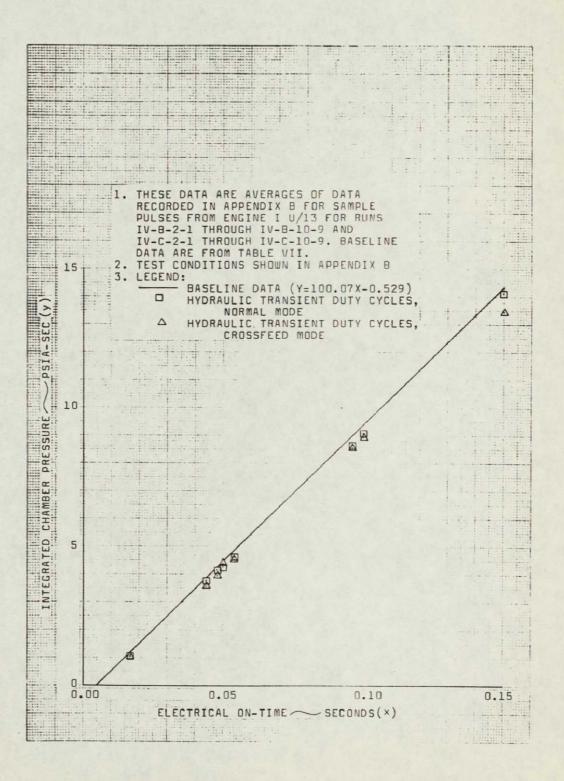
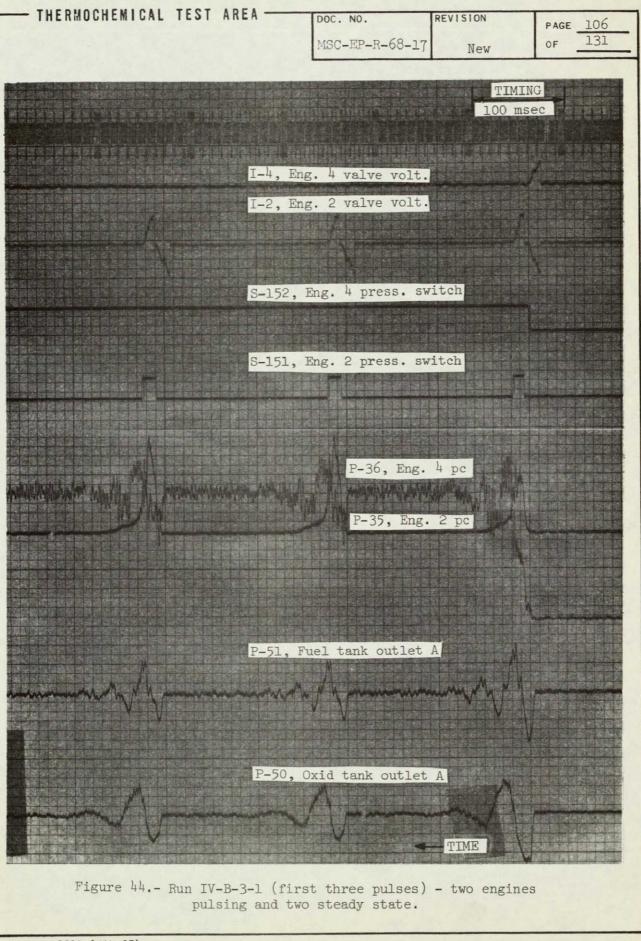
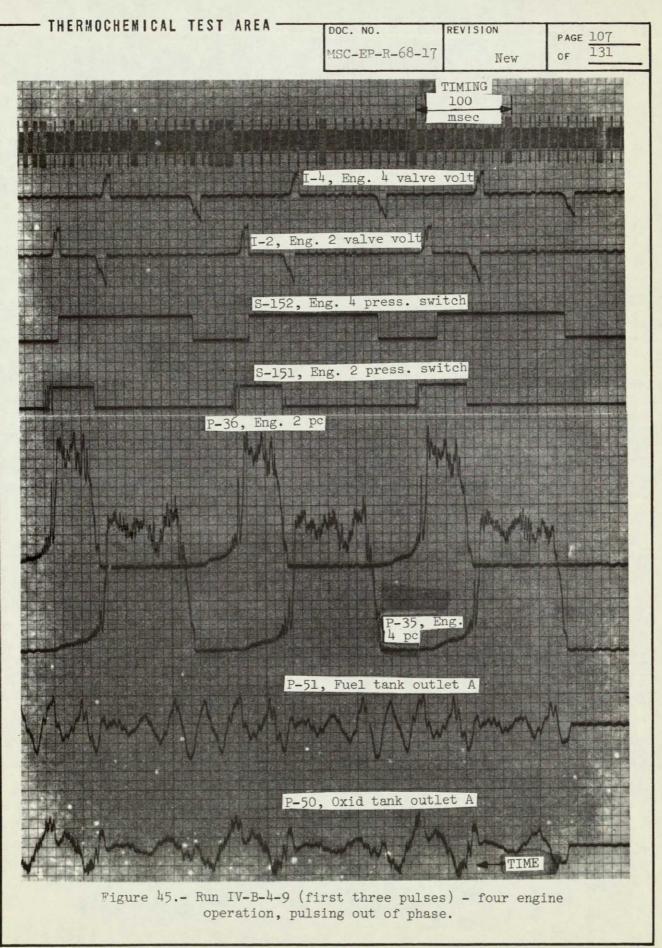
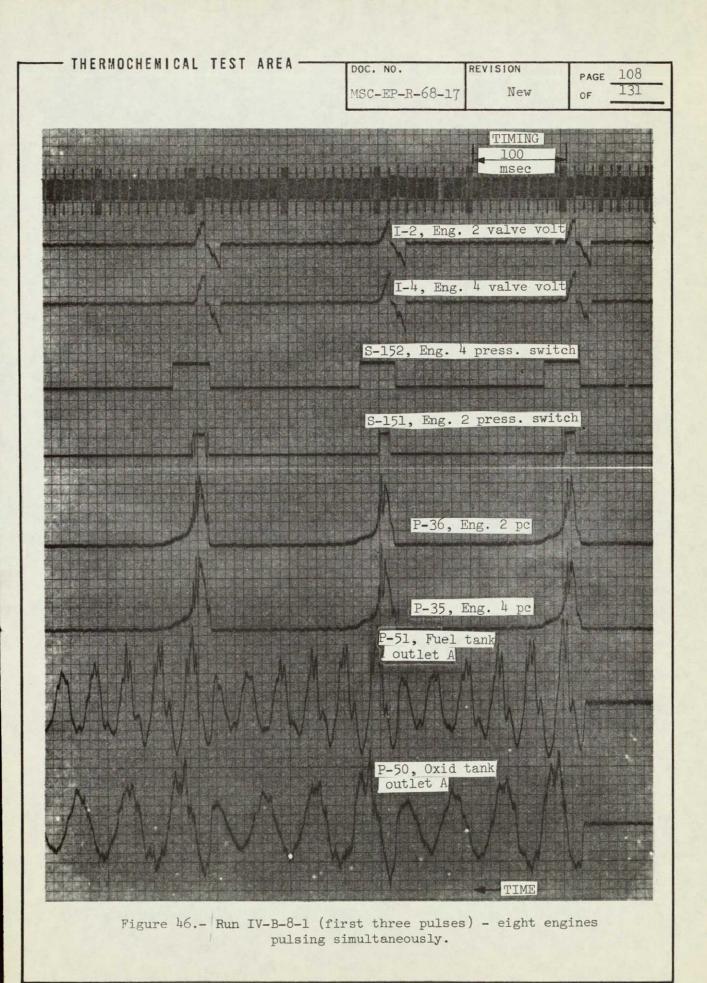
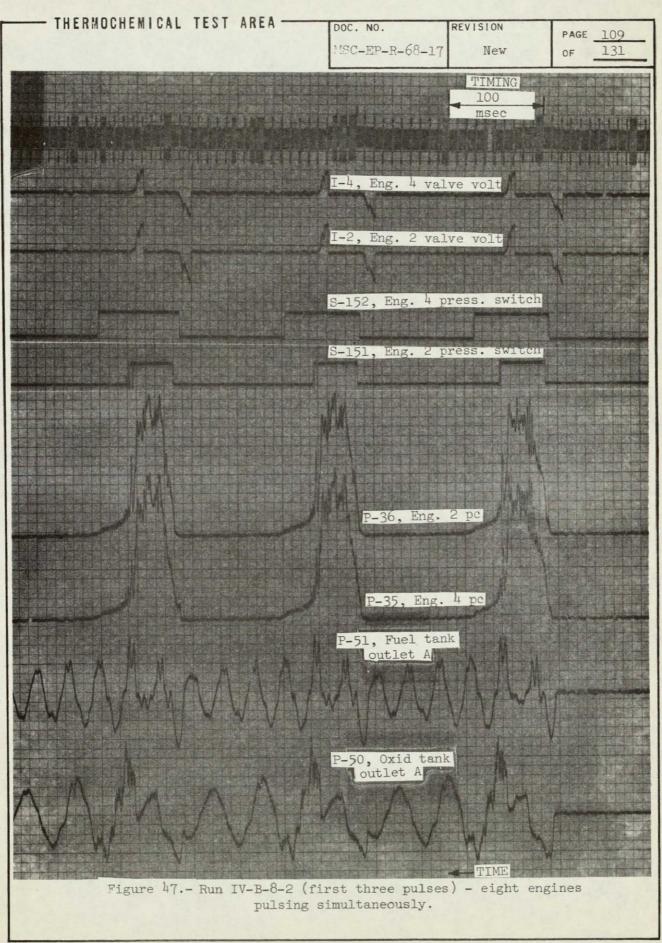



Figure 42.- Comparsion of engine IV S/4 performance for baseline, hydraulic transient effects in normal mode, and hydraulic transient effects in crossfeed mode duty cycles.

| DOC. NO.       | REVISION | PAGE 105 |
|----------------|----------|----------|
| MSC-EP-R-68-17 | New      | OF 131   |



Figure 43.- Comparsion of engine I U/13 performance for baseline, hydraulic transient effects in normal mode, and hydraulic transient effects in crossfeed mode duty cycles.



[1]







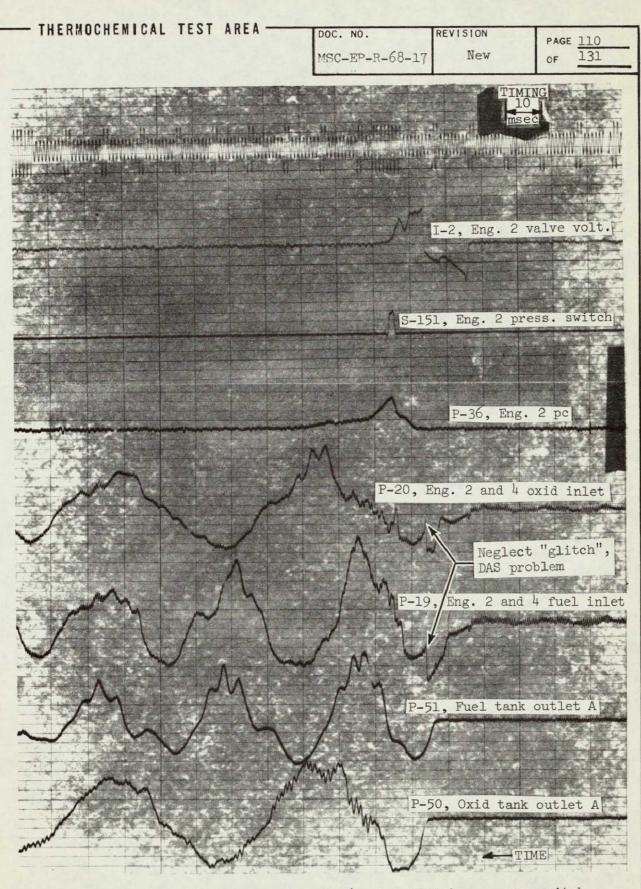
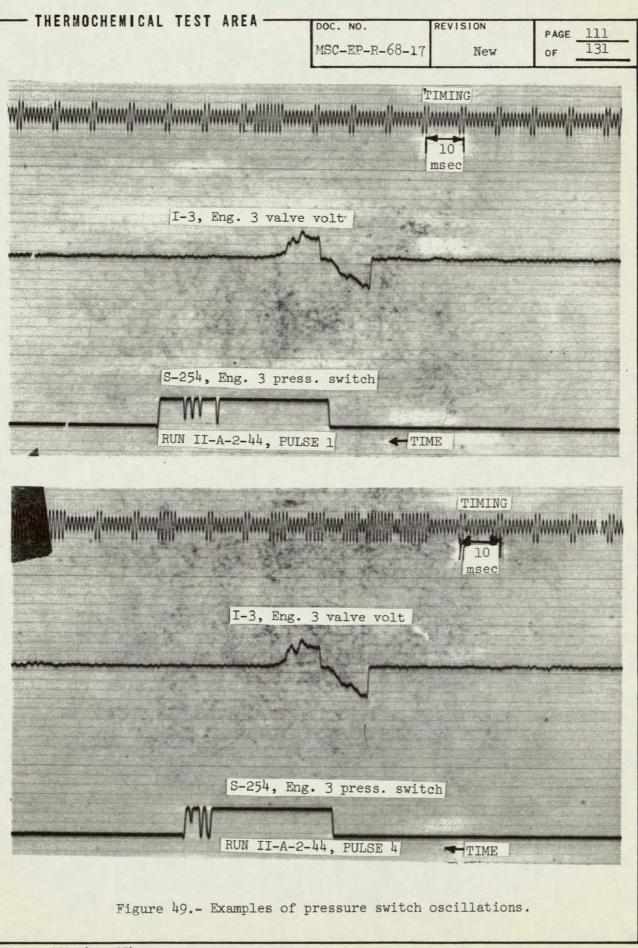
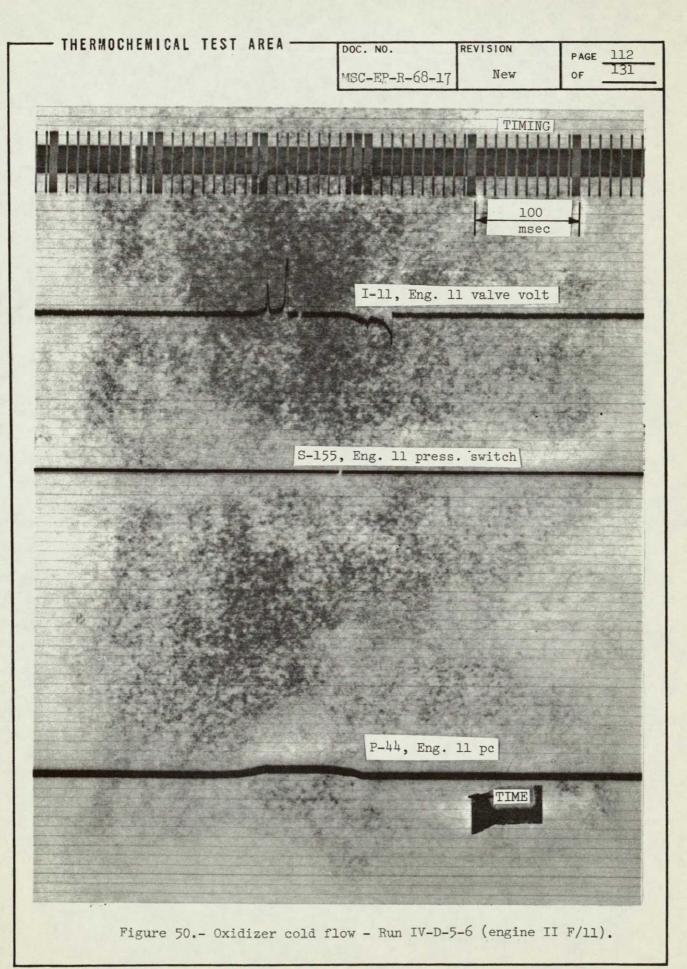





Figure 48.- Run IV-D-3-1 (first pulse) — engine IV D/2 pressure switch performance at minimum pulse width (12 msec).





| DOC. NO.                 | REVISION | PAGE | 113 |
|--------------------------|----------|------|-----|
| MSC-EP-R-68-17           | New      | OF   | 131 |
| the second second second |          |      |     |

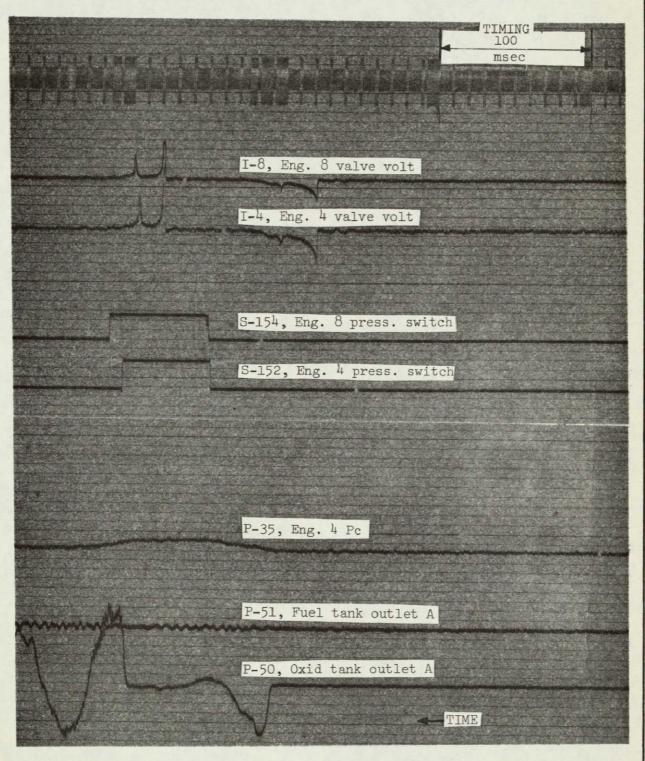



Figure 51.- Oxidizer cold flow - Run IV-D-5-6 (engines IV S/4 and III S/8). (NOTE: Engine 8 Pc transducer was inoperative).

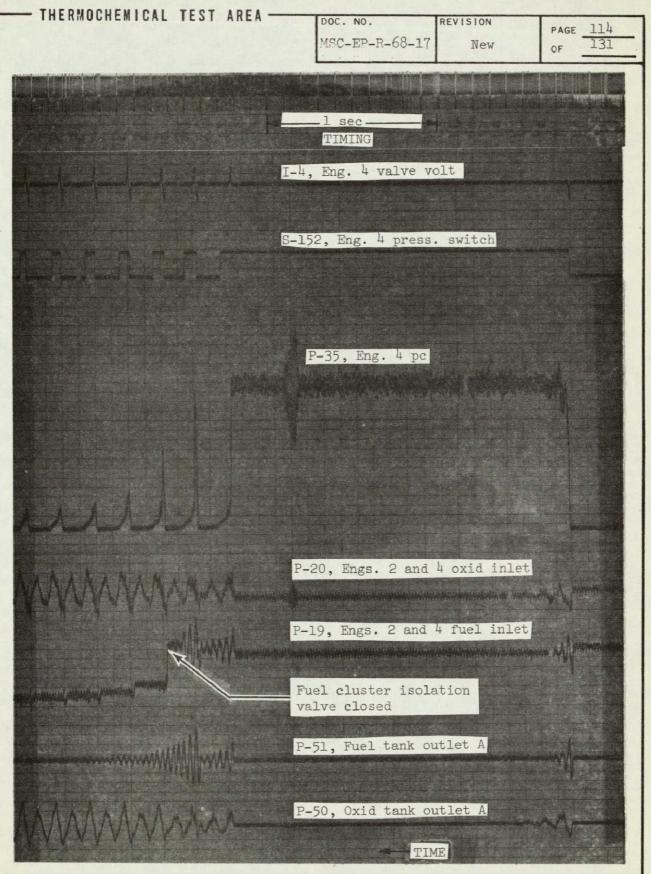
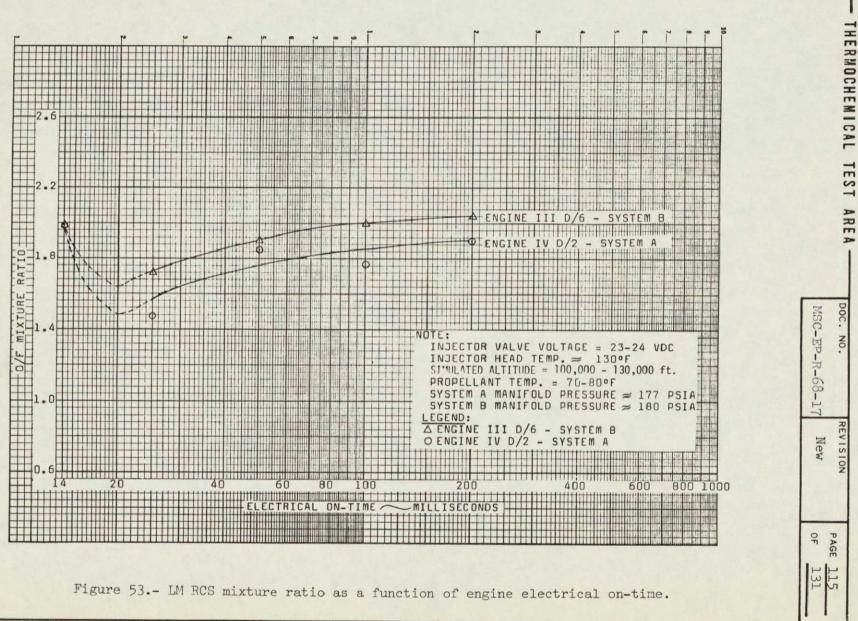
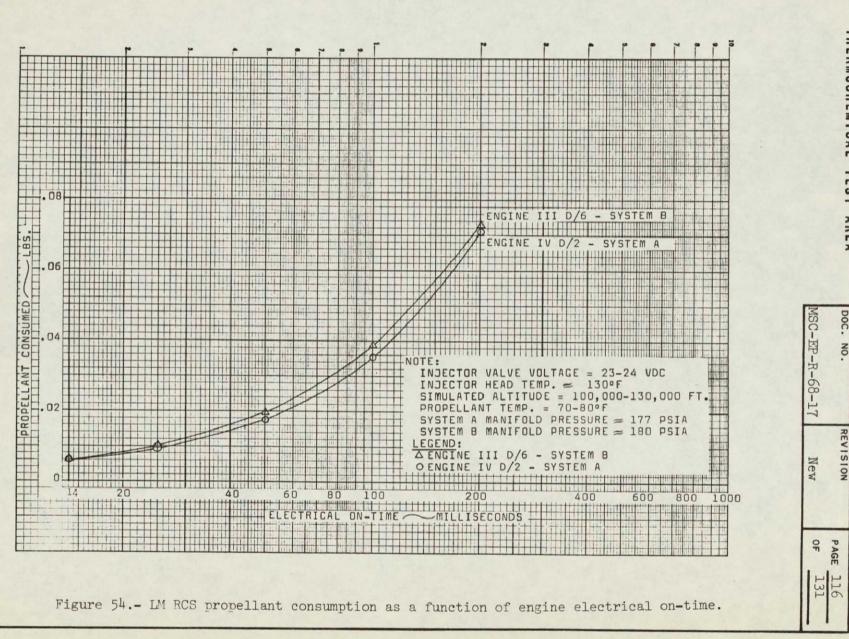




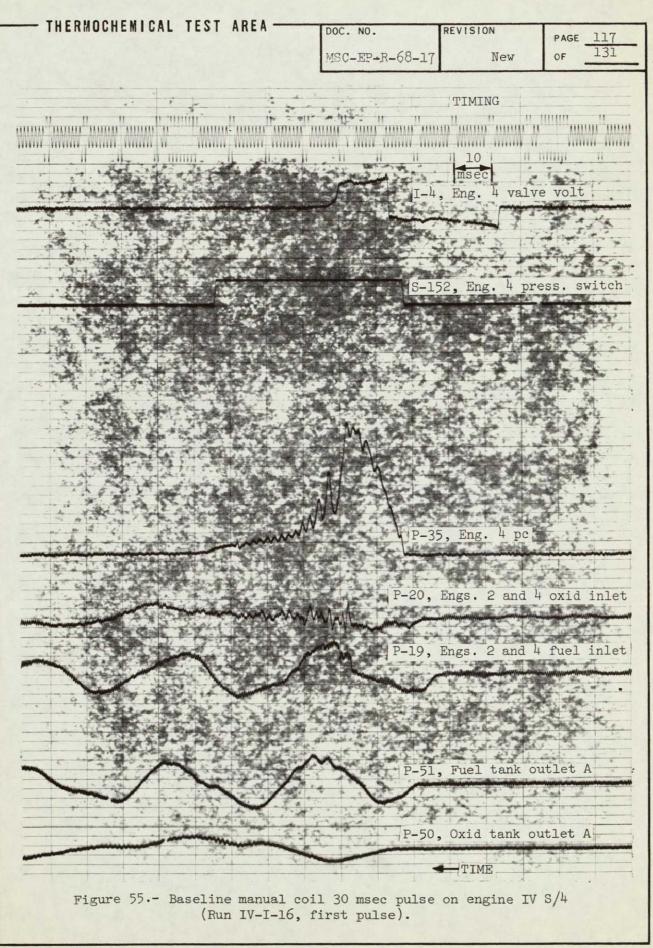

Figure 52.- Simulation of inadvertent fuel cluster isolation valve closure. (NOTE: System A fuel cluster isolation valve closed on cluster IV 2 seconds after start of Run IV-G-6-6). MSC FORM 360B (JAN a



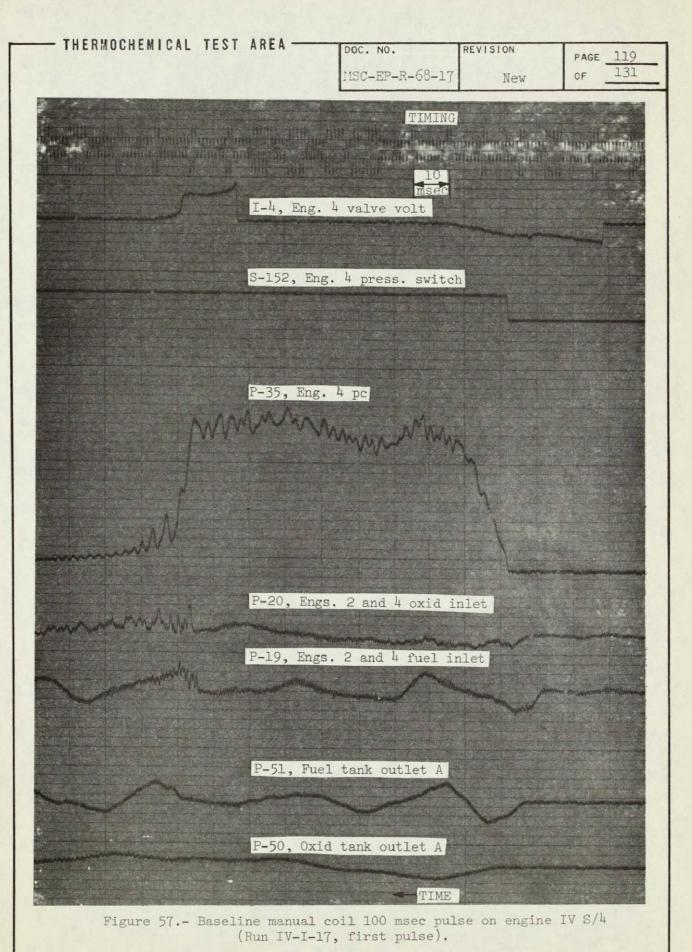
P

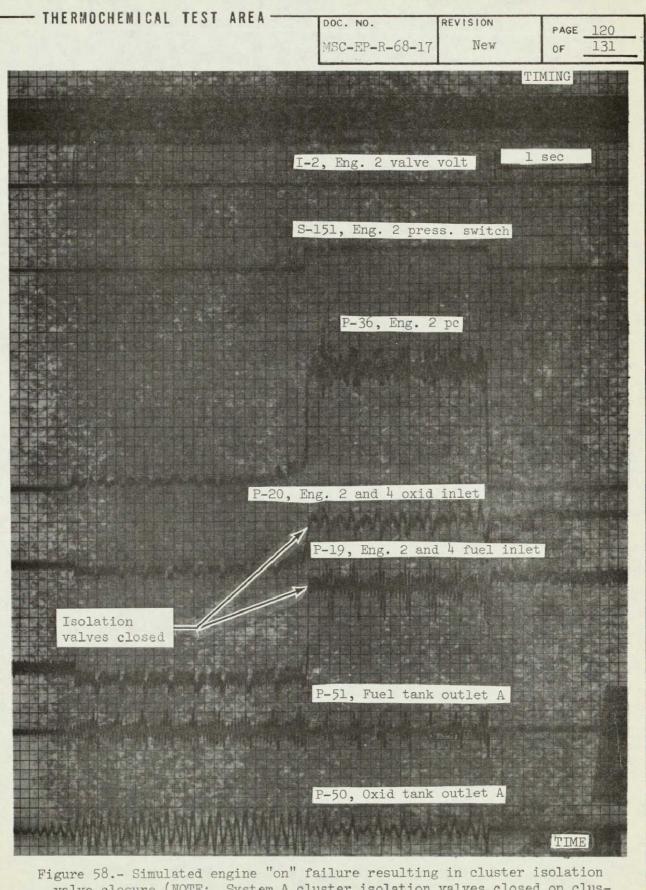
Tes



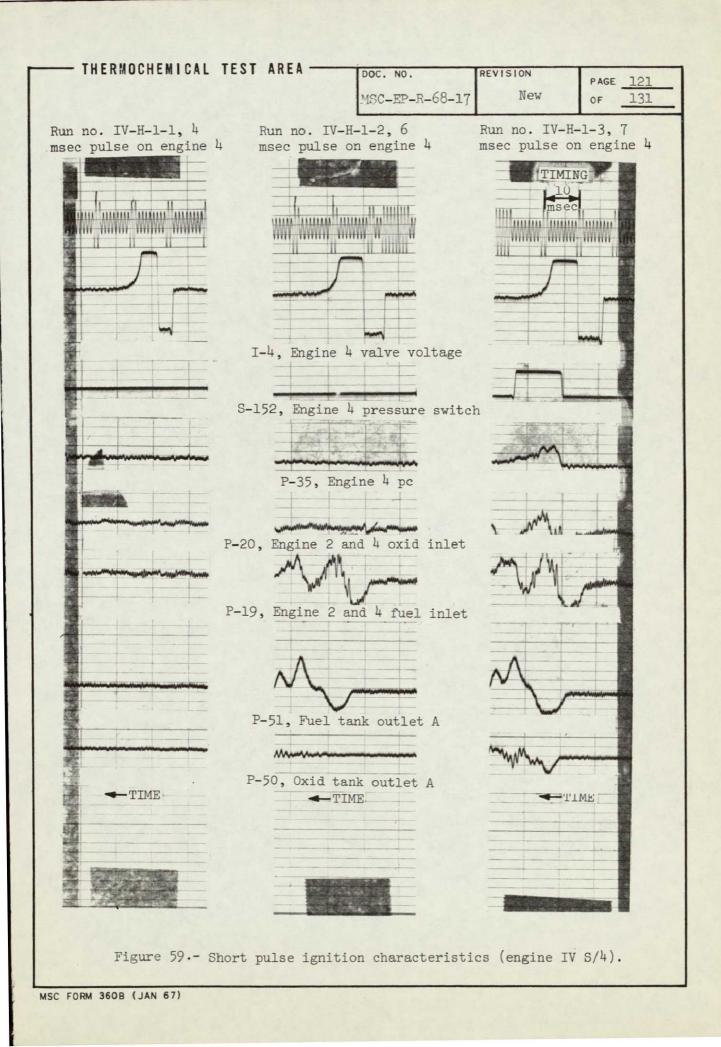

THERMOCHEMICAL

TE 5 -


ARE


DOC

REV




THERMOCHEMICAL TEST AREA -----DOC. NO. REVISION PAGE 118 131 New OF MSC-EP-R-68-17 TIMING ALLEN IN innin huming line Ye. Free 10 11 11 the loss they EL STATIS 11 - Note msec I-4, Eng. 4 valve the stand S-152, Eng. 4 press. switch ALL SUMANN P-35, Eng. 4 pc P-20, Engs. 2 and 4 oxid inlet P-19, Engs. 2 and 4 fuel inlet P-51, Fuel tank outlet A £.8 P-50, Oxid tank outlet A - TIME Figure 56.- Baseline manual coil 50 msec pulse on engine IV S/4 (Run IV-I-16, first pulse).





valve closure (NOTE: System A cluster isolation valves closed on cluster IV 2 seconds after start of 4 second firing on engine IV D/2, Run IV-G-4-4).



| DOC. NO.       | REVISION | PAGE | 122 |
|----------------|----------|------|-----|
| MSC-EP-R-68-17 | New      | OF   | 131 |

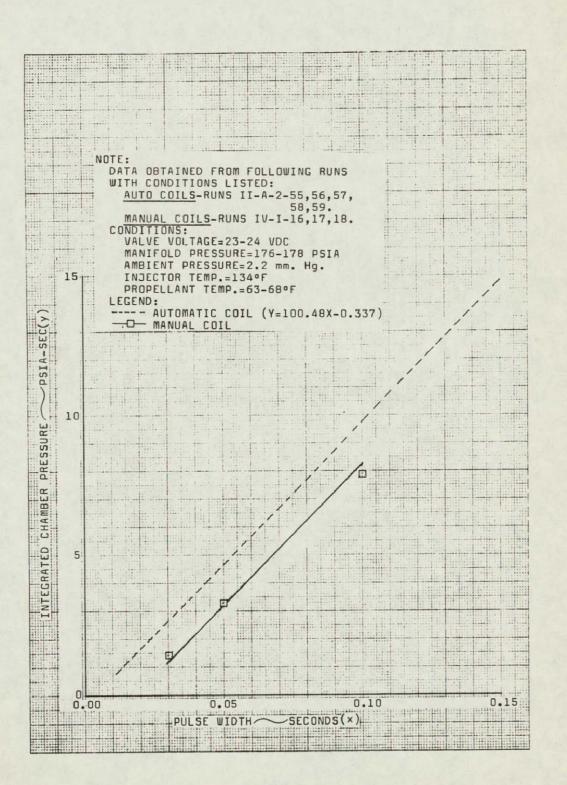
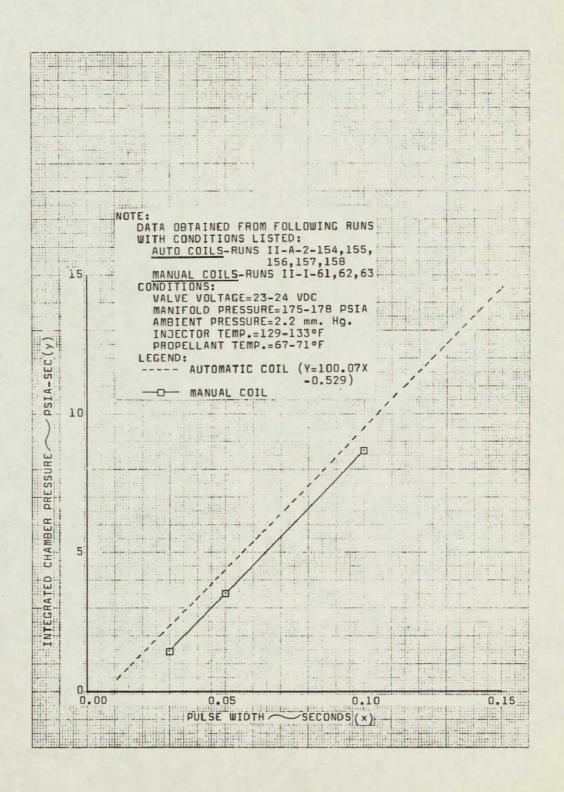
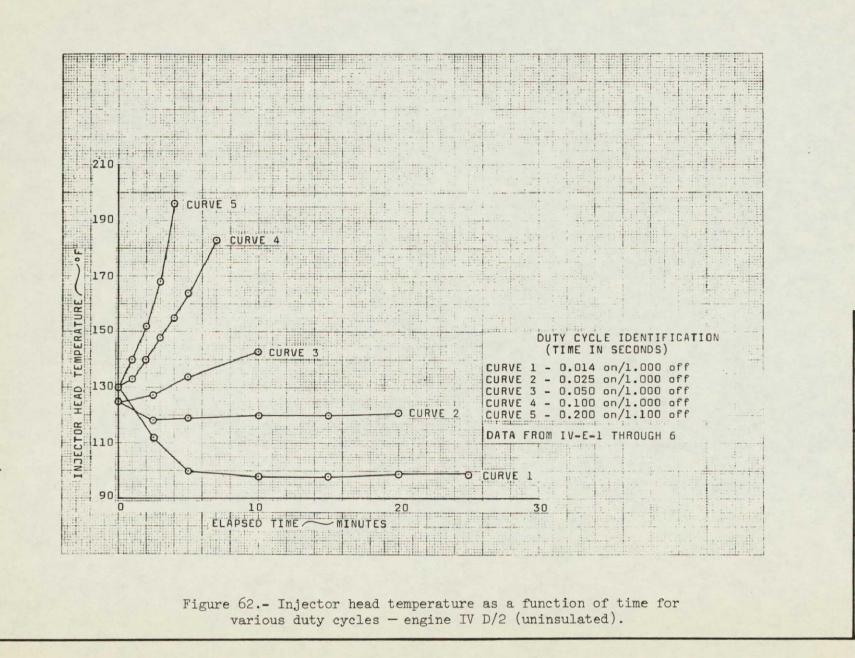
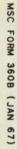
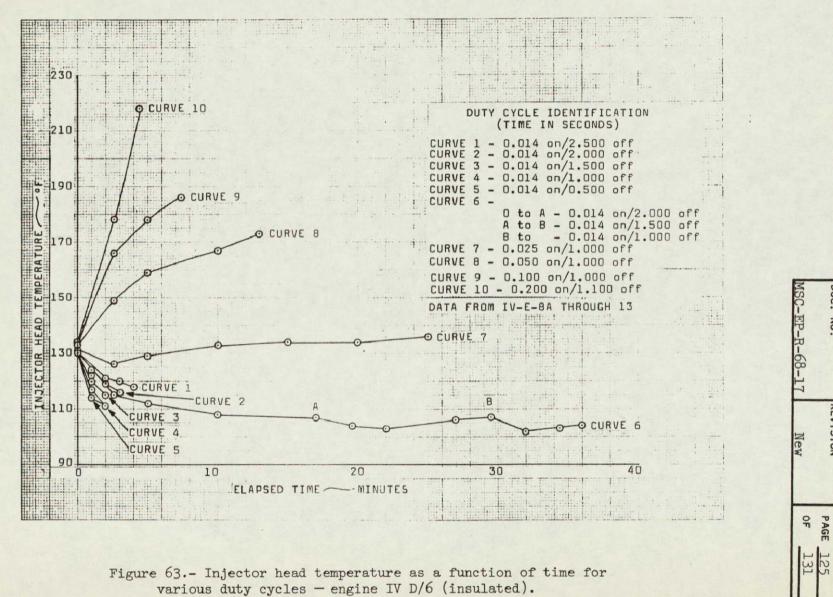



Figure 60.- Comparison of automatic and manual coil performance for baseline firings (engine IV S/4).

|                | REVISION | PAGE | 123 |
|----------------|----------|------|-----|
| MSC-EP-R-68-17 | New      | OF   | 131 |



Figure 61.- Comparison of automatic and manual coil performance for baseline firings (engine I U/13).




THERMOCHEMICAL TEST ARE

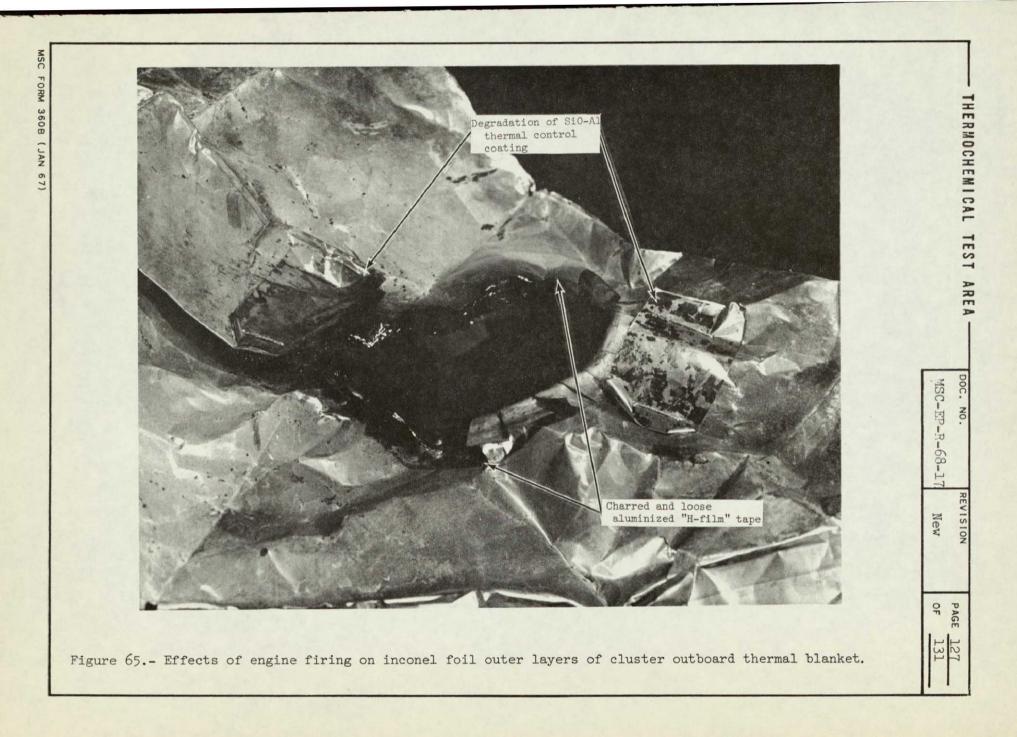
MSC-EP-R-68-17 New OF

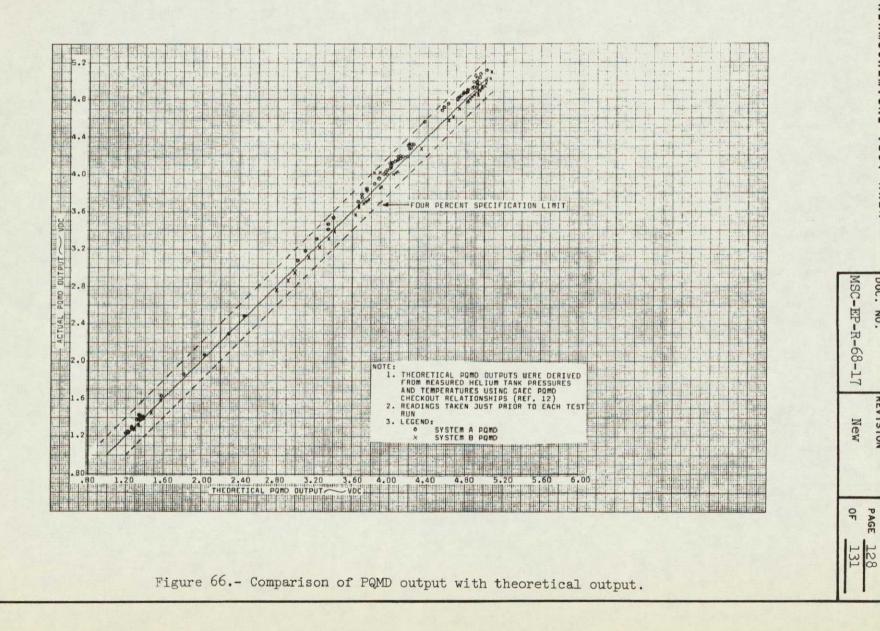
124





THERMOCHEMICAL TEST ARE


P

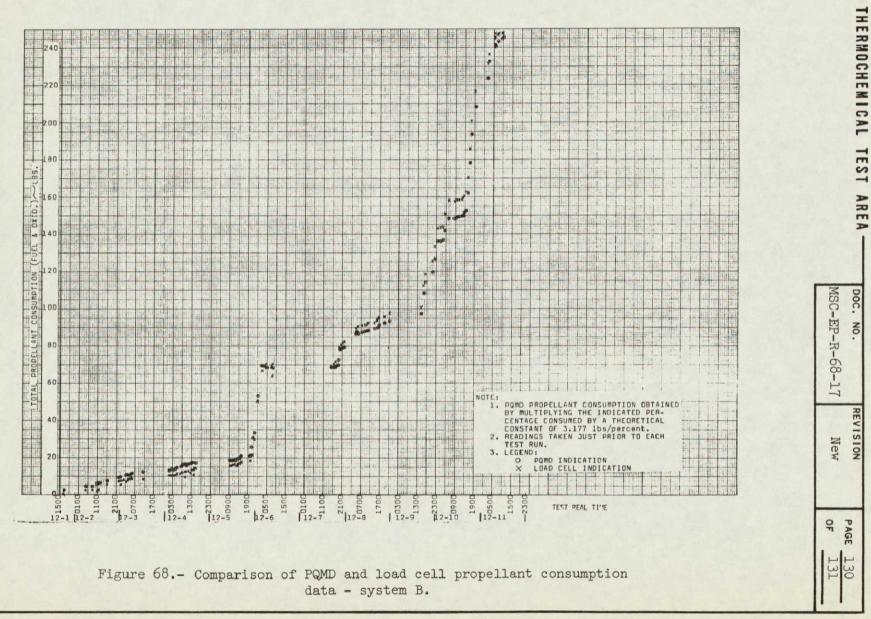

DOC. NO

REVISION

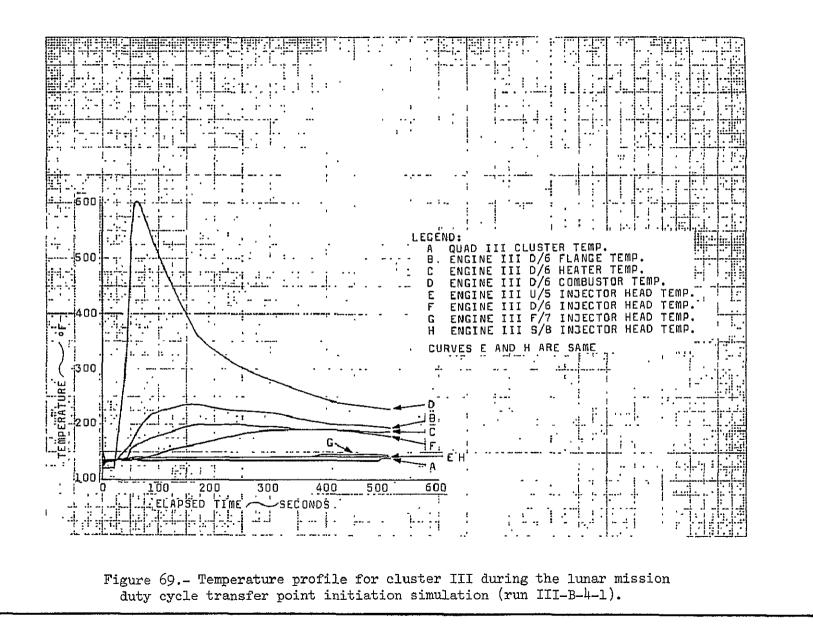
PAGE






DOC.


NO.

REVISION





TE ST ARE



THERMOCHEMICAL TEST A

RE

-

оос. NO. MSC-EP-R-68-17

REVISION

PAGE OF

μ

| —— THERNOCHEN | IGAL IESI | AKEA —   | DOC. NO.<br>MSC-EP-R | -68-17 New    | PAGE <u>A-1</u><br>of <u>A-49</u> |
|---------------|-----------|----------|----------------------|---------------|-----------------------------------|
|               |           |          |                      | ~~~~~ TI TIEM | <u> </u>                          |
|               |           |          |                      |               |                                   |
|               |           |          |                      |               |                                   |
|               |           |          |                      |               |                                   |
|               |           |          |                      |               |                                   |
|               |           |          |                      |               |                                   |
|               |           |          |                      |               |                                   |
|               |           |          |                      |               |                                   |
|               |           |          |                      |               |                                   |
|               |           |          |                      |               |                                   |
|               |           |          |                      |               |                                   |
|               |           |          |                      |               |                                   |
|               |           |          | PPENDIX A            |               |                                   |
|               | ENGINE    | FIRING R | ECORD AND RUN        | CHRONOLOGY    |                                   |
|               |           |          |                      |               |                                   |
|               |           |          |                      |               |                                   |
|               |           |          |                      |               |                                   |
|               |           |          |                      |               |                                   |
|               |           |          |                      |               |                                   |
|               |           |          | `                    |               |                                   |
|               |           |          |                      |               |                                   |
|               |           |          |                      |               |                                   |
|               |           |          |                      |               |                                   |
|               |           |          |                      |               |                                   |
|               |           |          |                      |               |                                   |

•

|         |         | r           | [                             |                 | <b></b>                   |                    | [                                            | [                    |                             |                           | Latch valve position |                    |        |               | ition |      |     |             |                        |
|---------|---------|-------------|-------------------------------|-----------------|---------------------------|--------------------|----------------------------------------------|----------------------|-----------------------------|---------------------------|----------------------|--------------------|--------|---------------|-------|------|-----|-------------|------------------------|
| Run no. | Date    | Time,<br>br | Engine no.<br>aná<br>location | No of<br>pulses | Cumu-<br>lative<br>pulses | On time,<br>sec    | off time, acc                                | On time<br>this run, | Cumu-<br>lative<br>on time, | Valve<br>voltage,<br>V de | Ma:<br>shut          |                    |        | ster<br>ation | Int   |      |     | oso<br>odo  | Remarks                |
|         | 1       |             | 10040106                      | [               | parnéa                    |                    |                                              | 0.00                 | 560                         | 1 40                      | 0                    | c                  | 0      | c             | 0     | C    | 0   | С           |                        |
|         |         |             |                               |                 |                           |                    |                                              | Phase II             | — base                      | line per                  | forma                | nce di             | uty c  | ycles         |       |      |     |             |                        |
| ł       | [       | Į           | ļ                             | Į               | ļ                         | ĺ                  | Į                                            | 1                    | lock A-1                    | bleed                     | in f                 | iring              | 3      |               | Į .   |      | ļ   |             |                        |
|         |         |             | <b>T101 (1</b>                | Ι.              |                           | 1                  |                                              | 1.000                | 1.000                       | 23-24                     | l x                  | 1                  |        | ŀ             |       | x    |     | x           |                        |
| 1       | 12-1-67 | 1514        | IVU/1                         | 1               | 1                         | 1 000              |                                              |                      |                             |                           |                      |                    |        |               |       |      |     | x           | P-17 bad               |
| 3       | 12-1-67 | 1715        | IVF/3                         | 1               | 1                         | 1.000              |                                              | 1.000                | 1.000                       | 23-24                     | X                    |                    | X      |               |       | x    | ſ   | x I         |                        |
| 5       | 12-1-67 | 1951        | IVD/2                         | 1               | 1                         | 1.000              |                                              | 1 000                | 1 000                       | 23-24                     | X                    |                    | X      |               |       | X    |     | 1 1         |                        |
| 2       | 12-1-67 | 2035        | IVS/4                         | 1               | 1 1                       | 1 000              | ļ                                            | 1.000                | 1 000                       | 23-24                     | x                    |                    | x      |               |       | X    |     | X           | No digital             |
| 44      | 32-1-67 | 2140        | IVS/L                         | 1               | 2                         | 1.000              |                                              | 1,000                | 2.000                       | 23-24                     | x                    |                    | X      |               |       | x    |     | X           | No digital             |
| 48      | 12-2-67 | 0152        | IVS/4                         | 1 1             | 3                         | 1 000              |                                              | 1 000                | 3.000                       | 23-24                     | x                    |                    | x      |               |       | x    |     | х           |                        |
| >       | 12-2-67 | 0311        | 1110/5                        | 1 1             | 1 1                       | 1.000              | 1                                            | 3 000                | 7.000                       | 23-24                     | х                    | 1                  | X      | 1             | 1     | X    | 1   | Χ.          | Glitch on valve trace  |
| ŞA      | 12-2-67 | 0349        | 1110/5                        | 1               | 2                         | 1 000              |                                              | 1.000                | 2,000                       | 23-24                     | x                    |                    | x      |               |       | х    |     | X           |                        |
| 8       | 12-2-67 | 0413        | 1115/8                        | 1               | 1                         | 1.000              |                                              | 1.000                | 1 000                       | 23-24                     | x                    |                    | х      |               | •     | х    | 1   | 1           | Fe baa (P-37)          |
| 7       | 12-2-67 | 0510        | IIIF/7                        | 1               | l l                       | 1 000              |                                              | 1.000                | 1.000                       | 23-24                     | x                    |                    | х      |               | [     | x    |     | X           |                        |
| 6       | 12-2-67 | 0830        | 111D/6                        | 1               | 1                         | 1.000              |                                              | 1.000                | 1 000                       | 23-24                     | x                    | [                  | x      |               |       | х    |     | ×           | P-24 ond               |
|         |         |             |                               |                 |                           | Pow                | er failure                                   | caused hig           | h lochup                    | pressure                  | for a                | rema ir<br>'ema ir | ider ( | n<br>Dî ble   | ed-in | rn I | ngs |             |                        |
| 9       | 12-2-67 | 1111        | 110/9                         | 1               | 1                         | 1.000              | ĺ                                            | 1.000                | 1 000                       | 23-24                     |                      |                    | x      |               |       | x    |     | ,           |                        |
| 12      | 12-2-67 | 11155       | 118/12                        | 1               | 1 3                       | <sup>8</sup> 1.000 | ł                                            | 1.000                | 1,000                       | 23-24                     | x                    | 1                  | x      | {             | 1     | y .  | 1   | y           | Fired of T-10 verond i |
| 12A     | 12-2-67 | 1200        | 115/12                        | 1               | ~                         | <sup>a</sup> 1 000 |                                              | 3 000                | 2.000                       | 23-24                     | x                    |                    | x      | ſ             |       | λ    |     | $  \cdot  $ | Plusi e 3-10 second    |
| 12B     | 12-2-67 | 1225        | 718/12                        | 1               | 3                         | 1 000              |                                              | 1.000                | 3 000                       | 23-24                     | X                    | 1                  | κ.     |               | F     | x    |     | 1           |                        |
| 10      | 12-2-67 | 1337        | IID/10                        | 1               | 1                         | 1.000              |                                              | 1 000                | 1 000                       | 23-24                     | 3                    |                    | x      |               |       | x    |     | y           |                        |
| 11      | 12-2-67 | 1355        | 117/11                        | 1 1             | L                         | 1.000              |                                              | 1,000                | 1.000                       | 23-24                     | x                    |                    | x      |               |       | x    |     | <           |                        |
| 13      | 12-2-67 | 1413        | 18/13                         | 1               |                           | a1.000             | 1                                            | 1.000                | 1,000                       | 23-24                     | x                    | Į.                 | X      |               |       | ۲    |     | x           | Fired at T-10 seconds  |
| 13A     | 12-2-67 | 1426        | TU/13                         | 1               |                           | a1.000             |                                              | 1.000                | 2.000                       | 23-24                     | x                    |                    | x      |               |       | x    |     | x           | Fired at T-10 seconds  |
|         | 12-2-67 | 1528        | 10/13                         | lī              | 3                         | <sup>a</sup> 1.000 | Į                                            | 1.000                | 3 000                       | 23-24                     | x                    | l                  | x      | l             | ļ     | X    |     | x           | Fired at T-10 seconds  |
| 130     | 12-2-67 | 1608        | IU/13                         |                 | 4                         | 1 510              |                                              | 1.510                | 4,510                       | 23-24                     | x                    |                    | x      |               | 1     | x    |     | x           |                        |
| 14      | 12-2-67 | 1624        | ID/14                         | 1               | . 1                       | a1.000             |                                              | 1.000                | 1,000                       | 23-24                     | x                    | l l                | x      |               |       | x    | Į   | x           | Fired at T-10 seconds  |
|         | 1       | L           | - on time 1                   | <u> </u>        | <u></u>                   |                    | <u>.                                    </u> |                      |                             |                           |                      |                    |        | •             |       |      |     | ••          |                        |

Premature firings --- on time is estimate since data were not recorded.

•

DOC. NO.

REVISION

MSC-EP-R-68-17

New

PAGE A-2 of A-49

| MSC   |  |
|-------|--|
| FORM  |  |
| 360B  |  |
| ( JAN |  |
| 67)   |  |

| dun no. | Date    | Time, | Engine no. | No. of | Cumu-<br>lative  | On time, | Off time, | On time<br>this run, | Cumu-<br>lative<br>on time, | Valvo<br>voltage, | Ma         |            | Clu      | ster      | Int | er-      |     | CEE<br>CEE | Remarko                       |
|---------|---------|-------|------------|--------|------------------|----------|-----------|----------------------|-----------------------------|-------------------|------------|------------|----------|-----------|-----|----------|-----|------------|-------------------------------|
|         | Dave    | hr    | location   | pulnes | lative<br>pulses | aec      | Brc       | aec                  | see                         | V do              | 0          | c          | 0        | c         | 0   | c        | 0   | c          |                               |
| 14A     | 12-2-67 | 1650  | ID/14      | 1      | 2                | a1.000   |           | 1.000                | 2.000                       | 23-24             | x          |            | x        |           |     | x        |     | x          | Inadvertent firing            |
| 14A     | 12-2-67 | 1710  | ID/14      | 1      | 3                | 1 000    |           | 1.000                | 3.000                       | 23-21             | x          |            | x        |           |     | x        |     | x          |                               |
|         |         |       | ID/16      | 1 1    | 1                | 2 607    |           | 2 607                | 2 607                       | 23-2 <sup>L</sup> | х          |            | x        | ļ         |     | x        |     | x          | Engine 16 fired inadvertently |
| 15      | 12-2-67 | 1940  | IF/15      | 1      | ı                | 1.000    |           | 1 000                | 1 000                       | 23-24             | x          |            | x        |           |     | x        |     | x          |                               |
|         |         | 1     |            |        |                  | i        |           | Phase II             | — base                      | l<br>line perf    | orman<br>I | l<br>ce du | ty cy    | i<br>cles |     |          |     |            |                               |
|         |         |       |            |        |                  |          |           | Bloc)                | . A-2 —                     | base line         | sing       | le en      | ines     | 1         |     |          |     |            |                               |
| 17B     | 12-2-67 | 2202  | 1/1/1      | 5      | 6                | 0 014    | 0 186     | 0 070                | 1.070                       | 23-24             | x          |            | x        |           |     | x        |     | x          |                               |
|         | 12-2-67 | 2215  | IVU/1      | 5      | 11               | 0 017    | 0.183     | 0.085                | 1 155                       | 23-24             | x          | ļ          | X        | ļ         | Į   | X        |     | х          |                               |
|         | 12-2-67 | 5530  | 110/1      | 5      | 16               | 0 050    | 0,150     | 0 250                | 1 405                       | 23-24             | y          |            | х        | ]         | 1   | x        |     | x          | S 255 failed closed           |
| 20      | 12-2-67 | 2243  | 170/1      | 3      | 19               | 0 100    | 0 100     | 0.300                | 1.705                       | 23-24             | x          |            | x        | 1         | F   | x        |     | x          |                               |
| 21      | 12-2-67 | 2256  | IVU/1      | 5      | 51               | 0 150    | 0 0 50    | 0.300                | 2,005                       | 23-24             | x          | 1          | х        |           |     | x        |     | x          |                               |
| 22      | 12-2-67 | 2332  | IVU/1      | 5      | 26               | 0.014    | 0.500     | 0.070                | 2.075                       | 23-24             | x          |            | x        | F         |     | x        |     | x          |                               |
| 23      | 12-2-67 | 2351  | 170/1      | 5      | 31               | 0 017    | 0.500     | 0.085                | 2.160                       | 23-2L             | ۲          | ŀ          | x        |           |     | X        |     | x          |                               |
| 24      | 12-3-67 | 0005  | 1VU/1      | 5      | 36               | 0,050    | 0 500     | 0 250                | 2,410                       | 23-24             | X          |            | x        |           | 1   | ۲        |     | х          |                               |
| 25      | 12-3-67 | 0038  | 1/0/1      | 3      | 39               | 0.300    | 0.500     | O 300                | 2 710                       | 23-24             | X          | •          | x        |           |     | х        |     | ۲          |                               |
|         | 12-3-67 | 0101  | 1/1/1      | 2      | 41               | 0 150    | 0.500     | 0 300                | 3 010                       | 53-57             | X          |            | x        |           |     | λ        |     | y          |                               |
|         | 123-67  | 0122  | 170/1      | 1      | 42               | 1 000    | ļ         | 1.000                | 4.010                       | 23-24             | х          | Į.         | x        | Į         | ļ   |          |     | *          |                               |
|         | 12-3-67 | 0214  | IVF/3      | 5      | G                | ០តាង     | 0.186     | 0 070                | 1.070                       | 23-ph             | X          |            | х        |           |     | X        |     | X          |                               |
|         | 12-3-67 | 0234  | IVF/3      | 5      | 11               | 0.017    | F81 0     | 0 085                | 1,155                       | 23-24             | X          |            | X        | F         |     | <u> </u> | f i | \          |                               |
|         | 12-3-67 | 0326  | IVF/3      | 5      | 16               | 0 050    | 0.150     | 0 250                | 1 405                       | 23-21             | X          |            | ×        |           | 1   | Y        |     | 1          |                               |
|         | 12-3-67 | 0341  | IVF/3      | 3      | 19               | 0.100    | 0 100     | 0 300                | 1.705                       | 23-24             | x          |            | x<br>x   |           |     | ×<br>v   |     | ג<br>ע     |                               |
| 43      | 12-3-67 | 0357  | IVF/3      | 5      | 2)               | 0 150    | 0.050     | 0 300                | 2 005                       | 23-24             | L          | l          | <u>^</u> |           | I,  | Ľ        |     | ì          |                               |

ì

- THERMOCHEMICAL TEST AREA -

DOC. NO. REVISION New

PAGE A-3

MSC-EP-R-68-17

|        |         |             |                               |   |                           |          | 1         |                             | Cumu-   |                           |            |     | Latch | val           | e pos | ition       |   |            |                                                        |
|--------|---------|-------------|-------------------------------|---|---------------------------|----------|-----------|-----------------------------|---------|---------------------------|------------|-----|-------|---------------|-------|-------------|---|------------|--------------------------------------------------------|
| un no. | Date    | Time,<br>hr | Engine no.<br>and<br>location |   | Cumu-<br>lative<br>pulses | On time, | Off time, | On time<br>this run,<br>sec | 3 - 4 2 | Valve<br>voltage,<br>V ic | "1<br>51_1 |     |       | ster<br>atiss |       | er-<br>ects |   | oss<br>eds | Renarks                                                |
|        |         |             |                               |   |                           |          | i         |                             |         |                           | 0          | с   | 0     | c             | 0     | с           | 0 | C          |                                                        |
| 44     | 12-3-67 | 0409        | IVF/3                         | 5 | 26                        | 0.014    | 0.500     | 0.070                       | 2.075   | 22-24                     | x          |     | x     |               |       | x           |   | x          |                                                        |
| 45     | 12-3-67 | 0425        | IVF/3                         | 5 | 31                        | 0.017    | 0.500     | 0 085                       | 2.160   | 23-24                     | Υ          |     | 7     |               |       | x           |   | x          |                                                        |
| 46     | 12-3-67 | 0437        | IVF/3                         | 5 | 36                        | 0 050    | 0.500     | 0.250                       | 2 410   | 23-24                     | 7          |     | ٨     |               |       | X           | ; | X          |                                                        |
| 47     | 12-3-67 | 0448        | IVF/3                         | 3 | 39                        | 0.100    | 0 500     | 0 300                       | 2.710   | 23-24                     | 1          | i i | ۶     |               |       | x           |   | X          |                                                        |
| 48     | 12-3-67 | 0502        | IVF/3                         | 2 | 41                        | 0.150    | 0 500     | 0.300                       | 3.010   | 23-24                     | x          | 9   | x     |               |       | x           |   | х          |                                                        |
| 49     | 12-3-67 | 0515        | IVF/3                         | 1 | 42                        | 1 000    |           | 1.000                       | 4.010   | 23-24                     | X          | 1   | X     | ŀ             |       | x           |   | x          |                                                        |
| 28     | 12-3-67 | 0551        | IVD/2                         | 5 | ] 6                       | 0.014    | 0.186     | 0 070                       | 1.070   | 23-24                     | x          | J   | x     |               |       | x           |   | x          |                                                        |
| 29     | 12-3-67 | 0716        | IAD\5                         | 5 | 111                       | 0 017    | 0.133     | 0.085                       | 1.155   | 23-24                     | x          |     | х     | Į             |       | ×           |   | x          | Firing program not patched correctly                   |
| 30     | 12-3-67 | 0728        | IVD/2                         | 5 | 16                        | 0.050    | 0.150     | 0.250                       | 1 405   | 23-24                     | 1          |     | ¢     |               |       | x           |   | X          |                                                        |
| 31     | 12-3-67 | 0739        | IVD/2                         | 3 | 19                        | 0.100    | 0.100     | 0 300                       | 1.705   | 23-24                     | х          | i i | x     |               |       | х           |   | x          |                                                        |
| 32     | 12-3-67 | 0750        | IVD/2                         | 2 | 21                        | 0.150    | 0.050     | 0 300                       | 2.005   | 23-24                     | 1          |     | ٨     |               |       | x           |   | х          |                                                        |
| 33     | 12-3-67 | 0801        | IVD/2 *                       | 5 | 26                        | 0 014    | 0.500     | 0.070                       | 2.075   | 23-24                     | 1          |     | 7     |               |       | x           |   | х          |                                                        |
| 34     | 12-3-67 | 0852        | IVD/2                         | 5 | 31                        | 0.017    | 0.500     | 0 085                       | 2 160   | 23-24                     | <          | ļ   | Χ.    |               |       | x           |   | x          |                                                        |
| 35     | 12-3-67 | 0903        | IVD/2                         | 5 | 36                        | 0.050    | 0.500     | 0 250                       | 2.410   | 23-24                     | λ          | 1   | ۲.    |               |       | X           |   | X          |                                                        |
| 36     | 12-3-67 | 0915        | IVD/2                         | 3 | 39                        | 0 100    | 0.500     | 0.300                       | 2.710   | 23-24                     | >          | -   | 1     |               |       | x           |   | х          |                                                        |
| 37     | 12-3-67 | 0925        | IVD/2                         | 2 | <u>4</u> 1                | 0.150    | 0.500     | Ø.300                       | 3 010   | 23-22                     | γ          |     | 1     |               |       | ۲           |   | x          |                                                        |
| 38     | 12-3-67 | 0935        | 100/2                         | 1 | 42                        | 1.000    | [         | 1 000                       | 4.010   | 23-24                     | l'x        | Í   | x     | Í             | ÍÌ    | X           |   | x          |                                                        |
| 50     | 12-3-67 | 1104        | IVS/4                         | 5 | 8                         | 0 014    | 0.186     | 0.070                       | 3.070   | 23-24                     | >          |     | 1     |               |       | x           |   | x          |                                                        |
| IP-1   | 12-3-67 | 1148        | IVF/3                         | 1 | 43                        | 0.012    | 1         | 0 012                       | 4,022   | 53-57                     | A          | 3   |       |               |       | x           |   | x          | Special run to check prop transfer, p<br>mature firing |
| 51     | 12-3-67 | 1158        | IVS/4                         | 5 | 13                        | 0.017    | 0.183     | 0.085                       | 3 155   | 23-04                     | 4          | 1 1 | 1     |               |       | У           |   | x          | -                                                      |
| 514    | 12-3-67 | 1203        | IVS/4                         | 5 | 18                        | 0.017    | 0.183     | 0.085                       | 3.240   | 23-2-                     | ~          | -   |       |               |       | •           | i | x          |                                                        |
| 52     | 12-3-67 | 1240        | IVS/4                         | 5 | 23                        | 0.050    | 0 150     | 0.250                       | 3.490   | 23-21                     | 1          |     |       |               |       | ۲           |   | y          |                                                        |
| 53     | 12-3-67 | 1255        | IVS/4                         | 3 | 26                        | 0.100    | 0.100     | 0.300                       | 3.790   | 23-2L                     | x          | ]   | •     |               |       | x           |   | х          |                                                        |
| 54     | 12-3-67 | 1308        | IVS/4                         | 2 | 28 .                      | 0.150    | 0.050     | 0.300                       | 4 090   | 23-21                     | ۲          |     | 5     |               |       | N           |   | х          |                                                        |

•

|         |         |             |                               |                  |     |                 |                  |                             | Cumu-              |                           |            |            | Latch    | Val/          | e pos       | itica |   |              |                            |
|---------|---------|-------------|-------------------------------|------------------|-----|-----------------|------------------|-----------------------------|--------------------|---------------------------|------------|------------|----------|---------------|-------------|-------|---|--------------|----------------------------|
| Run no. | Date    | Time,<br>br | Engine no.<br>end<br>location | no. of<br>pulses |     | On time,<br>sec | Off time,<br>acc | On time<br>this run,<br>sec | lative<br>on time, | Valve<br>voltage,<br>V de | Ma<br>shut | in<br>offa |          | ster<br>stion | Int<br>Conr |       |   | :055<br>:045 | Remarks                    |
|         |         |             |                               |                  | Î   |                 |                  |                             | sec                |                           | 0          | C          | 0        | C             | 0           | С     | 0 | С            |                            |
| 55      | 12-3-67 | 1320        | IVS/4                         | 5                | 33  | 0.014           | 0 500            | 0 070                       | 4 160              | 23-24                     | x          |            | <        |               |             | Y     |   |              |                            |
| 56      | 12-3-67 | 1335        | IVS/4                         | 5                | 38  | 0.017           | 0.500            | 0.085                       | 4 225              | 23-24                     | у          |            | 1        |               |             | 1     | ļ | 1            |                            |
| 57      | 12-3-67 | 1349        | IVS/4                         | 5                | 43  | 0.050           | 0.500            | 0.250                       | հ հ 95             | 23-24                     | X          |            | 1        |               | •           | 1     |   | r i          | •                          |
| 5B      | 12-3-67 | 1427        | IVS/4                         | 3                | 46  | 0,100           | 0,500            | 0.300                       | 4.795              | 23-24                     | 8          |            | y        |               | l           | 1     |   | 1            |                            |
| 59      | 12-3-67 | 1440        | IVS/4                         | 2                | 48  | 0.150           | 0 500            | 0.300                       | 5.095              | 23-24                     | x          |            | 4        |               |             | 1     |   | Y            |                            |
| 60      | 12367   | 1455        | IVS/4                         | 1                | 49  | 1.000           |                  | 1.000                       | 6.095              | 23-24                     | x          |            | 1        |               |             | x     |   | y            |                            |
| 61      | 12-3-67 | 1535        | 1110/5                        | 5                | 7   | 0.014           | 0.186            | 0 070                       | 2 070              | 23-24                     | x          |            | y        |               | ļ.          | 1     |   | 7            |                            |
| 62      | 123-67  | 1547        | IIIU/5                        | 5                | 12  | 0 017           | 0.183            | 0.085                       | 2 155              | 23-24                     | x          |            | 1        |               | •           | 1     |   | y y          |                            |
| 63      | 12-3-67 | 1559        | IIIU/S                        | 5                | 17  | 0.017           | 0.183            | 0 085                       | 2.240              | 23-24                     | х          |            | <b>y</b> |               | ŀ           | 1     |   | 1            | Firing program not updated |
| 63A     | 12-3-67 | 1612        | IIIU/5                        | 5                | 22  | 0 050           | 0.150            | 0 250                       | 2 490              | 23-24                     | x          |            | 1        |               | ł           | 7     |   | Y            |                            |
| 64      | 12-3-67 | 1625        | IIIU/5                        | 3                | 25  | 0 100           | 0.100            | 0 300                       | 2 790              | 23-24                     | X          |            | x        |               | ŀ           | 1     |   | >            |                            |
| 65      | 12-3-67 | 1639        | IIIU/S                        | 2                | 27  | 0 150           | 0.050            | 0.300                       | 3 090              | 23-24                     | x          |            | y        |               | ŀ           | 1     |   | 1            |                            |
| 66      | 12-3-67 | 1702        | IIIU/5                        | 5                | 32  | 0.014           | 0.500            | 0 070                       | 3 160              | 23-24                     | Υ          |            | y        |               | ł           | 1     |   | 1            |                            |
| 67      | 12-3-67 | 1716        | IIIU/S                        | 5                | 37  | 0 017           | 0.500            | 0.085                       | 3 245              | 23-24                     | 7          |            | 7        |               |             | 1     |   | 1            |                            |
| 68      | 12-3-67 | 1730        | IIIU/5                        | 5                | 42  | 0.050           | 0 500            | 0.250                       | 3 495              | 23-24                     | 1          |            | x        |               |             | 1     |   | Y            |                            |
| 69      | 123-67  | 1743        | IIIU/S                        | 3                | 45  | 0.100           | 0 500            | 0 300                       | 3.795              | 23-24                     | 1          |            | X        |               |             | 1     |   | ,            |                            |
| 70      | 123-67  | 1852        | IIIV/5                        | 2                | 47  | 0.150           | 0.500            | 0.300                       | 4 095              | 23-24                     | 1          |            | x        |               |             | Y     |   | 1            |                            |
| 71      | 12-3-67 | 1904        | IIIU/5                        | 1                | 48  | 1 000           |                  | 1.000                       | 5 095              | 23-24                     | 1          |            | ٧        |               |             | 1     |   | *            |                            |
| 94      | 12-3-67 | 2045        | IIIS/8                        | 5                | 6   | 0.014           | 0.286            | 0 070                       | 1 070              | 23-24                     | 1          |            | X        |               |             | 1     |   | 1            |                            |
| 95      | 12-3-67 | 2108        | IIIS/8                        | 5                | 11  | 0 017           | 0.183            | 0.085                       | 1 155              | 23-24                     | 1          |            | 1        |               |             | 1     |   | × 1          |                            |
| 96      | 12=3-67 | 2119        | IIIS/8                        | 5                | 16  | 0.050           | 0 150            | 0.250                       | 1 405              | 23-24                     | 1          |            | x        |               |             | 1     |   | 1            |                            |
| 97      | 12-3-67 | 2130        | IIIS/8                        | 3                | 19  | 0,100           | 0 200            | 0.300                       | 1.705              | 23-24                     | •          | l          | 8        |               |             | •     | . | 1            |                            |
| 98      | 12-3-67 | 2141        | IIIS/8                        | 2                | 21, | 0.150           | 0.050            | 0 300                       | 2.005              | 23-24                     | . 1        |            | 11       |               |             | 1     |   | ·            |                            |
| •.      | 12-3-67 | 2204        | IIIS/8                        | 5                | 26  | 0.014           | 0.500            | 0 070                       | 2.075              | 23-24                     | Y          |            | ، ا      |               |             |       |   | 1            |                            |
| 100     | 123-67  | 2215        | IIIS/8                        | 5                | 31  | 0.017           | 0.500            | 0 085                       | 2 160              | 23-24                     | •          |            | X        |               |             |       |   | 1            |                            |

PAGE A-5 OF A-49

| MSC  |  |
|------|--|
| FORM |  |
| 360B |  |
| (JAN |  |
| 67)  |  |

~

|            |         |       |                               | <u> </u>         | <u> </u>                  | ·        | 1         |                      | Cumu-              | [                         |            |     | Latch         | valv | e pos       | ition |     |            |                             |
|------------|---------|-------|-------------------------------|------------------|---------------------------|----------|-----------|----------------------|--------------------|---------------------------|------------|-----|---------------|------|-------------|-------|-----|------------|-----------------------------|
| dun no.    | Date    | Time, | Engine no.<br>and<br>location | No. of<br>pulses | Cumu-<br>lative<br>pulses | On time, | Off time, | On time<br>this run, | lative<br>on time, | Valve<br>voltage,<br>V dc | Ma<br>ohut |     | Clu:<br>isola |      | Int<br>conn |       |     | oss<br>eds | Remarks                     |
|            |         |       | Tocación                      | -                | havee                     |          |           |                      | 8ec                |                           | 0          | C   | ٥             | C    | 0           | ¢     | 0   | ¢          |                             |
| 101        | 12-3-67 | 2226  | 1118/8                        | 5                | 36                        | 0 050    | 0.500     | 0.250                | 2 410              | 23-24                     | x          |     | x             |      |             | x     |     | x          |                             |
| 102        | 12-3-67 | 2238  | IIIS/8                        | 3                | 39                        | 0.100    | 0 500     | 0.300                | 2.710              | 23-24                     | x          |     | x             |      | 1           | x     |     | x          |                             |
| 103        | 12-3-67 | 2307  | IIIS/8                        | 2                | 41                        | 0.150    | 0.500     | 0 300                | 3 010              | 23-24                     | X          | l I | x             | ļ    | [ I         | x     | l   | x          |                             |
| 104        | 12-3-67 | 2318  | IIIS/8                        | ) 1              | 42                        | 1.000    |           | 1.000                | 4 010              | 23-24                     | x          |     | x             | i i  |             | x     |     | x          |                             |
| 72         | 12+4-67 | 0126  | 1110/6                        | 5                | 6                         | 0 014    | 0.186     | 0 070                | 1.070              | 23-24                     | У          |     | x             |      |             | x     |     | х          |                             |
| 73         | 12-4-67 | 0144  | IIID/6                        | 5                | 11                        | 0.017    | 0.183     | 0.085                | 1.155              | 23-24                     | x          |     | x             |      |             | x     |     | х          |                             |
|            | 12-4-67 | 0154  | 111D/6                        | 5                | 15                        | 0.050    | 0 150     | 0.250                | 1 405              | 23-24                     | ) ×        | 1   | x             | ì    | 1           | x     | )   | X          |                             |
| 75         | 12-4-67 | 0206  | IIID/6                        | 3                | 19                        | 0.100    | 0 100     | 0,300                | 1.705              | 23-24                     | x          | 1   | x             | l    | 1           | x     |     | х          |                             |
| 76         | 12-4-67 | 0224  | 111D/6                        | 2                | 21                        | 0 150    | 0.050     | 0 300                | 2.005              | 2324                      | х          |     | x             | 1    |             | x     |     | х          | ,                           |
| 77         | 12-4-67 | 0236  | IIID/6                        | 5                | 26                        | 0.014    | 0 500     | 0.070                | 2 075              | 23-24                     | X          | {   | x             | ł    | {           | X     |     | X          |                             |
|            | 12-4-67 | 0246  | IIID/6                        | 5                | 31                        | 0.017    | 0 500     | 0.085                | 2.160              | 23-24                     | x          |     | х             |      | 1           | x     |     | х          | •                           |
| 79         | 12-4-67 | 0303  | IIID/6                        | 5                | 36                        | 0.050    | 0.500     | 0.250                | 2.410              | 23-24                     | x          |     | x             | 1    |             | x     |     | x          |                             |
| 80         | 12→4-67 | 0328  | IIID/6                        | 3                | 39                        | 0.100    | 0.500     | 0.300                | 2 710              | 23-24                     | X          |     | х             | l    | [           | x     | Į   | x          |                             |
| 81         | 12-4-67 | 0336  | IIID/6                        | 2                | 42                        | 0.150    | 0.500     | 0.300                | 3.010              | 23-24                     | х          | 1   | х             |      |             | x     | İ I | х          |                             |
| 82         | 12-4-67 | 0344  | IIID/6                        | 1                | 42                        | 1.000    |           | 1.000                | 4 010              | 23-24                     | x          |     | х             |      |             | x     |     | х          |                             |
| <b>6</b> 3 | 12-4-67 | 0439  | IIIF/7                        | 5                | 6                         | 0.014    | 0 186     | 0.070                | 1.070              | 23-24                     | X          |     | x             |      |             | х     |     | x          |                             |
| 84         | 12-4-67 | 0450  | ILIF/7                        | 5                | 11                        | 7 20 0   | 0 183     | 0.085                | 1.155              | 23-24                     | X          | 1   | X             | 1    | ſ           | x     | 1   | x          |                             |
| 85         | 12-4-67 | 0458  | IIIF/7                        | 5                | 16                        | 0.050    | 0.150     | 0.250                | 1.405              | 23-24                     | x          |     | х             |      |             | x     |     | х          |                             |
|            | 12-4-67 | 0508  | IIIF/7                        | 3                | 19                        | 0 100    | 0.100     | 0.300                | 1 705              | 23-24                     | x          |     | х             |      |             | X     |     | Х          | Analog tape B did not start |
| 86A        | 12-4-67 | 0517  | IIIF/7                        | 3                | 22                        | 0.100    | 0.100     | 0.300                | 2+005              | 23-24                     | X          | ļ   | х             |      | l           | x     | l   | х          |                             |
| 67         | 12-4-67 | 0530  | IIIF/7                        | 2                | 24                        | 0.150    | 0 050     | 0.300                | 2.305              | 23-24                     | x          |     | x             |      |             | x     |     | λ          |                             |
| 88         | 12-4-67 | 0538  | IIIF/7                        | 5                | 29                        | 0.014    | 0.500     | 0 070                | 2.375              | 23-24                     | x          | 1   | х             | [    |             | x     |     | х          |                             |
| 89         | 12-4-67 | 0547  | IIIF/7                        | 5                | 34                        | 0.017    | 0.500     | 0.085                | 2.460              | 23-24                     | х          |     | x             |      | 1           | x     | 1   | X          |                             |
| 90         | 12-4-67 | 0715  | IIIP/7                        | 5                | 39                        | 0.050    | 0.500     | 0.250                | 2.710              | 23-24                     | X          | 1   | x             |      | 1           | x     |     | x          |                             |
| 91         | 12-4-67 | 0723  | IIIF/7                        | 3                | 42                        | 0.100    | 0.500     | 0.300                | 3.010              | 23-24                     | X          |     | х             |      |             | x     | 1   | X          |                             |

.

THERMOCHEMICAL TEST AREA

.

MSC-EP-R-68-17 New

PAGE OF

<u>A-6</u> A-49

|         |         |             | [                             |                  |                           |                 |                  |                             |        |                           |     |   | Latch | valv          | e pos       | ition |   |              | , i                 |
|---------|---------|-------------|-------------------------------|------------------|---------------------------|-----------------|------------------|-----------------------------|--------|---------------------------|-----|---|-------|---------------|-------------|-------|---|--------------|---------------------|
| Run no. | Date    | Time,<br>br | Engine no.<br>and<br>location | No. of<br>pulses | Cumu-<br>lative<br>pulses | On time,<br>sec | Off time,<br>sec | On time<br>this run,<br>sec | A www. | Valve<br>voltage,<br>V dc | Mai |   |       | ster<br>sticn | Int<br>conn |       |   | os s<br>ed s | Remarka             |
|         |         |             |                               |                  | pulles                    | l               |                  |                             | acc    |                           | 0   | c | 0     | c             | 0           | C     | 0 | C            |                     |
| 92      | 12-4-67 | 0733        | IIIF/7                        | 2                | 44                        | 0.150           | 0 500            | 0 300                       | 3.310  | 23-24                     | x   |   | x     |               |             | x     |   | x            |                     |
| 93      | 12-4-67 | 0741        | 111F/7                        | 1                | 45                        | 1.000           |                  | 1 000                       | A 310  | 23-24                     | x   |   | X     | 1             |             | x     |   | x            |                     |
| 105     | 12-4-67 | 0837        | 110/9                         | 5                | 6                         | 0.014           | 0.186            | 0.070                       | 1.070  | 23-24                     | x   |   | X     |               |             | х     |   | x            |                     |
| 106     | 12-4-67 | 0902        | 110/9                         | 5                | 11                        | 0 017           | 0.183            | 0.085                       | 1.155  | 23-24                     | x   |   | x     |               |             | x     |   | x            |                     |
| 107     | 12-4-67 | 0920        | 111/9                         | 5                | 16                        | 0 050           | 0.150            | 0 250                       | 1.405  | 23-24                     | x   |   | x     | l             |             | x     | l | x            | Į                   |
| 108     | 12-4-67 | 0929        | 110/9                         | 3                | 19                        | 0.100           | 0 100            | 0.300                       | 2 705  | 23-24                     | x   |   | x     | 1             |             | x     |   | X            | ,                   |
| 109     | 12-4-67 | 0938        | 111/9                         | 2                | 21                        | 0.150           | 0.050            | 0.300                       | 2.005  | 23-24                     | x   |   | x     |               |             | x     |   | X            |                     |
| 110     | 12-4-67 | 0948        | IIU/9                         | 5                | 26                        | 0.014           | 0.500            | 0.070                       | 2.075  | 23-24                     | x   |   | x     |               |             | x     |   | х            |                     |
| 111,    | 12-4-67 | 0958        | 11U/9                         | 5                | 31                        | 0.017           | 0.500            | 0.085                       | 2.160  | 23-24                     | x   |   | x     |               |             | х     |   | λ            |                     |
| 112     | 12-4-67 | 1020        | 110/9                         | 5                | 36                        | 0 050           | 0.500            | 0.250                       | 2.410  | 23-24                     | X   | 1 | X     |               |             | x     |   | x            | S-257 failed closed |
| 113     | 12-4-67 | 1112        | 110/9                         | 3                | 39                        | 0.100           | 0 500            | 0 300                       | 2.710  | 23-24                     | X   |   | X     |               | 1           | x     |   | x            |                     |
| 114     | 12-4-67 | 1124        | 110/9                         | 2                | 41                        | 0.150           | 0 500            | 0 300                       | 3.010  | 23-24                     | X   | 1 | ) x   | 1             |             | х     | 1 | x            |                     |
| 115     | 12-4-67 | 1136        | 110/9                         | 1                | 42                        | 1 000           |                  | 1 000                       | 4.010  | 23-24                     | X   |   | x     |               | [           | x     |   | x            |                     |
| 138     | 12-4-67 | 1238        | 115/12                        | 5                | 8                         | 0.014           | 0.186            | 0.070                       | 3.070  | 23-24                     | x   |   | x     |               |             | х     |   | x            |                     |
| 139     | 12-4-67 | 1304        | 118/12                        | 5                | 13                        | 0.017           | 0.183            | 0.085                       | 3.155  | 23-24                     | X   |   | x     |               |             | х     |   | x            |                     |
| 140     | 12-4-67 | 1326        | IIS/12                        | 5                | 18                        | 0.050           | 0.150            | ¢ 250                       | 3.405  | 23-24                     | x   | 1 | x     |               |             | x     | - | X            |                     |
| 141     | 12-4-67 | 1339        | 115/12                        | ٤                | 57                        | 0.100           | 0.100            | 0.300                       | 3.705  | 23-24 .                   | X   |   | X     |               |             | x     |   | x            |                     |
| 142     | 12-4-67 | 1351        | 115/12                        | 2                | 23                        | 0 150           | 0,050            | 0.300                       | 4.005  | 23-24                     | x   | 1 | ) x   | 1             | 1 1         | X     | 1 | X            |                     |
| 143     | 12-4-67 | 1402        | IIS/12                        | 5                | 28                        | 0.034           | 0.500            | 0.070                       | 4.075  | 23-24                     | X   |   | x     | ł             |             | х     |   | X            |                     |
| լիկ     | 12-4-67 | 1420        | IIS/12                        | 5                | 33                        | 0.017           | 0.500            | 0.085                       | 4.160  | 23-24                     | X   |   | X     |               |             | х     | 1 | x            |                     |
| 145     | 12-4-67 | 1433        | 115/12                        | 5                | 38                        | 0.050           | 0.500            | 0.250                       | 4.410  | 23-24                     | ×   |   | x     | 1             |             | x     |   | x            |                     |
| 146     | 12-4-67 | 1446        | 115/12                        | 3                | 41                        | 0.100.          | 0.500            | 0.300                       | 4.710  | 23-24                     | X   | ľ | x     |               |             | х     |   | x            |                     |
| 147     | 12-4-67 | 1457        | 118/12                        | 2                | 43                        | 0.150           | 0.500            | 0,300                       | 5.010  | 23-24                     | x   |   | X     |               |             | х     |   | X            |                     |
| 148     | 12-4-67 | 1508        | 112/15                        | 7                | 44                        | 71000           |                  | 1.000                       | 5.010  | 23-24                     | X   |   | X     | 1             | 1           | х     | 1 | X            |                     |
| 116     | 12-4-67 | 1556        | , IID/10                      | 5                | 6                         | 0.014           | 0 186            | 0 070                       | 1.070  | 23-24                     | X   |   | X     |               |             | X     |   | x            | P-43 erratic        |
| 117     | 12-4-67 | 1616        | IID/10                        | 5                | 11                        | 0.017           | 0.183            | 0.085                       | 1.155  | 23-24                     | X   |   | X     | 1             |             | X     | 1 | x            | l                   |

A-49

|         |         |             |                               |                  |                           |                 |                  |                             | •                           |                           | <u> </u>   |   | Latch         | valve | e' pos     | ition |     |            |                                                     |
|---------|---------|-------------|-------------------------------|------------------|---------------------------|-----------------|------------------|-----------------------------|-----------------------------|---------------------------|------------|---|---------------|-------|------------|-------|-----|------------|-----------------------------------------------------|
| tun no. | Data    | Time,<br>hr | Engine no.<br>and<br>location | No. of<br>pulses | Cumu-<br>lative<br>pulses | On time,<br>sec | Off time,<br>sec | On time<br>this run,<br>sec | Cumu-<br>lative<br>on time, | Valve<br>voltage,<br>V de | Ma<br>shut |   | Clui<br>15oli |       | Int<br>con |       |     | oss<br>eds | Remarks                                             |
|         | ]       |             |                               |                  |                           |                 |                  |                             | sec                         |                           | 0          | C | 0             | C     | 0          | С     | 0   | ¢          |                                                     |
| 118     | 12-4-67 | 1628        | IID/10                        | 5                | 16                        | 0.050           | 0.150            | 0 250                       | 1.405                       | 23-24                     | x          |   | x             |       |            | x     |     | x          |                                                     |
| 119     | 12-4-67 | 1643        | 11D/10                        | 3                | 19                        | 0.100           | 0.100            | 0.300                       | 1.705                       | 23-24                     | x          |   | x             |       |            | x     |     | x          |                                                     |
| 120     | 12-4-67 | 1655        | 11D/10                        | 3                | 21                        | 0 150           | 0.050            | 0.300                       | 2.005                       | 23-24                     | l x        | ļ | X             |       |            | х     | I I | x          |                                                     |
| 121     | 12-4-67 | 1709        | IID/10                        | 5                | 26                        | 0.014           | 0 500            | 0.070                       | 2.075                       | 23-24                     | x          |   | x             |       |            | x     |     | х          |                                                     |
| 122     | 12-4-67 | 1722        | IID/10                        | 3                | 31                        | 0.017           | 0.500            | 0.085                       | 2.160                       | 23-24                     | x          | 1 | х             | [     |            | х     | 1   | ~          |                                                     |
| 123     | 12-4-67 | 1734        | 11D/10                        | 5                | 36                        | 0 050           | 0.500            | 0.250                       | 2.410                       | 23-24                     | x          |   | х             |       |            | x     |     | х          |                                                     |
| 124     | 12-4-67 | 1747        | 110/10                        | 3                | 39                        | 0.100           | 0 500            | 0.300                       | 2 710                       | 23-24                     | ×          |   | x             |       |            | x     |     | х          |                                                     |
| 125     | 12-4-67 | 1900        | 110/10                        | 2                | 41                        | 0.150           | 0.500            | 0.300                       | 3.010                       | 53-52                     | x          | 1 | X             |       | 1          | λ     | \ ' | х          |                                                     |
| 126     | 12-4-67 | 1924        | IID/10                        | 1                | 42                        | 1 000           |                  | 1 000                       | 4.010                       | 23-24                     | x          | 1 | x             |       |            | x     |     | x          |                                                     |
| 1244    | 12-4-67 | 2032        | 110/10                        | 3                | 45                        | 0 100           | 0.500            | 0.300                       | 4.310                       | 23-24                     | ×          |   | x             |       |            | X     |     | x          | Repeated to check P-43. Found error in<br>P-52 cal. |
| 127     | 12-4-67 | 2110        | TJF/11                        | 5                | 6                         | 0.014           | 0.186            | 0.070                       | 1.070                       | 23-24                     | X          |   | x             |       |            | х     |     | x          |                                                     |
| 128     | 12-4-67 | 2333        | 11F/11                        | 5                | 11                        | 0.017           | 0.183            | 0.085                       | 1 155                       | 53-5p                     | X          |   | x             |       | 1          | r     | ۱ ' | X          |                                                     |
| 129     | 12-4-67 | 2344        | 117/11                        | 5                | 16                        | 0.050           | 0 150            | 0,250                       | 1.405                       | 23-24                     | X          |   | X             |       |            | x     |     | x          |                                                     |
| 130     | 12-4-67 | 2356        | IIF/11                        | 3                | 19                        | 0 100           | 0.100            | 0.300                       | 1.705                       | 23-24                     | x          | - | x             |       |            | х     |     | x          |                                                     |
| 131     | 12-5-67 | 0024        | 117/11                        | 2                | 57                        | 0.150           | 0.050            | 0.250                       | 2.005                       | 23-24                     | X          |   | x             |       |            | x     |     | x          |                                                     |
| 132     | 12-5-67 | 0038        | 117/11                        | 5                | 26                        | 0 014           | 0.500            | 0 070                       | 2.075                       | 23-24                     | *x         |   | x             |       |            | х     | Į   | x          |                                                     |
| 133     | 12-5-67 | 0049        | 11F/11                        | 5                | 31                        | 0 017           | 0.500            | 0.085                       | 2.160                       | 23-24                     | x          |   | x             |       |            | x     | 1   | x          |                                                     |
| 134     | 12-5-67 | 0113        | IIF/11                        | 5                | 36                        | 0.050           | 0 500            | 0.250                       | 2.410                       | 83-57                     | x          |   | x             |       |            | х     |     | х          |                                                     |
| 135     | 12-5-67 | 0123        | IIF/11                        | 3                | 39                        | 0.100           | 0.500            | 0.300                       | 2.710                       | 23-24                     | X X        |   | X             |       |            | λ     |     | х          | · ·                                                 |
| 136     | 12-5-67 | Q134        | IIF/11                        | 2                | 41                        | 0.150           | 0 500            | 0.300                       | 3.010                       | 23-24                     | ×          |   | x             |       |            | х     |     | x          |                                                     |
| 137     | 12-5-67 | 0213        | 117/11                        | 1                | 42                        | 1,000           | l I              | 1.000                       | 3.960                       | 23-24                     | X          | } | x             |       |            | x     | 1   | x          |                                                     |
| 149     | 12-5-67 | 0314        | IV/13                         | 5                | 9                         | 0.014           | 0.186            | 0 070                       | 4.580                       | 23-24                     | X,         |   | x             |       |            | х     |     | x          |                                                     |
| 150     | 12-5-67 | 0333        | IU/13                         | 5                | 14                        | 0.017           | 0.183            | 0.085                       | 4 665                       | 23-24                     | x          |   | X             |       |            | х     | l . | x          |                                                     |
| 151     | 12-5-67 | 0342        | IU/13                         | 5                | 19                        | 0.050           | 0.150            | 0.250                       | 4.915                       | 23-24                     | x          | [ | x             |       |            | x     |     | x          |                                                     |
| 152     | 12-5-67 | 0352        | IU/13                         | 3                | 55                        | 0.100           | 0.100            | 0.300                       | 5 215                       | 23-24                     | x          |   | X             |       |            | x     |     | X          |                                                     |

PAGE OF

A-49

| MSC   |
|-------|
| FORM  |
| 360B  |
| ( JAN |
| 67)   |

|             |         |       |                   |                  |                           |                 |               |                             |                             |                           |             |    | Latch | valve         | e pos | ition        |   |            |                          |
|-------------|---------|-------|-------------------|------------------|---------------------------|-----------------|---------------|-----------------------------|-----------------------------|---------------------------|-------------|----|-------|---------------|-------|--------------|---|------------|--------------------------|
| Run no.     | Date    | Time, | Engine no.<br>and | No. of<br>pulses | Cumu-<br>lative<br>pulses | On time,<br>sec | Off time, sec | On time<br>this run,<br>sec | Cumu-<br>lative<br>on time, | Valve<br>voltage,<br>V dc | Ha:<br>shut |    |       | ater<br>ation |       | er-<br>lecta |   | oss<br>eds | Renar's a                |
|             |         |       | location          | ſ                | barnee                    |                 |               | 300                         | 865                         |                           | 0           | с  | 0     | C             | 0     | C            | 0 | C          |                          |
| 153         | 12-5-67 | 0400  | IU/13             | 2                | 24                        | 0 150           | 0.050         | 0.300                       | 5 515                       | 23-24                     | x           |    | x     |               |       | X            |   | x          |                          |
| 154         | 12-5-67 | 0409  | 10/13             | 5                | 29                        | 0 014           | 0.500         | 0.070                       | 5 585                       | 23-24                     | X           | Į  | X     |               |       | x            |   | X          |                          |
| 155         | 12-5-67 | 0418  | 10/13             | 5                | 34                        | 0 017           | 0.500         | 0.085                       | 5 670                       | 23-24                     | X           |    | x     |               |       | x            |   | x          | No digital data recorded |
| 156         | 12-5-67 | 0440  | 10/13             | 5                | 39                        | 0.050           | 0.500         | 0 250                       | 5 920                       | 23-24                     | x           |    | X     |               |       | x            |   | x          |                          |
| 155A        | 12-5-67 | 0453  | 10/13             | 5                | 44                        | 0 017           | 0.500         | 0.085                       | 6 005                       | 23-24                     | x           | 1  | x     |               |       | x            |   | x          |                          |
| 157         | 12-5-67 | 0501  | IU/13             | 3                | 47                        | 0.100           | 0 500         | 0.300                       | 6.305                       | 23-24                     | x           |    | x     |               |       | x            |   | x          |                          |
| 158         | 12-5-67 | 0514  | 10/13             | 2                | μg                        | 0.150           | 0 500         | 0.300                       | 6 605                       | 23-24                     | X           | 1  | x     |               |       | X            |   | X          |                          |
| 159         | 12-5-67 | 0524  | IU/13             | 1                | 50                        | 1.000           |               | 1 000                       | 7.605                       | 23-24                     | x           | 1  | x     |               |       | x            |   | x          |                          |
| 171         | 12-5-67 | 0702  | IF/15             | 5                | 6                         | 0.014           | 0.186         | 0.070                       | 1.070                       | 23-24                     | X           |    | x     |               |       | X            |   | X          |                          |
| 172         | 12-5-67 | 0714  | IF/15             | 5                | 11                        | 0 017           | 0.183         | 0.085                       | 1.155                       | 23-24                     | x           |    | x     |               |       | x            |   | X          | P-45 questionable        |
| 173         | 12-5-67 | 0722  | IF/15             | 5                | 16                        | 0.050           | 0.150         | 0 250                       | 1.405                       | 23-24                     | X           | l  | X     |               |       | X            |   | x          |                          |
| 174         | 12-5-67 | 0729  | IF/15             | 3                | 19                        | 0.100           | 0.100         | 0 300                       | 1.705                       | 23-24                     | x           |    | x     |               |       | x            |   | x          |                          |
| 175         | 12-5-67 | 0738  | IF/15             | ź                | 21                        | 0.150           | 0.050         | 0.300                       | 2.005                       | 23-24                     | x           |    | x     |               |       | x            |   | x          |                          |
| 176         | 12-5-67 | 0748  | 17/15             | 5                | 26                        | 0.014           | 0.500         | 0 070                       | 2.075                       | 23-24                     | x           | ŀ  | x     |               |       | X            |   | x          |                          |
| 177         | 12-5-67 | 0756  | 17/15             | 5                | 28                        | 0.017           | 0.500         | 0.034                       | 2.109                       | 23-24                     | x           |    | X     |               |       | x            |   | x          |                          |
| 1778        | 12-5-67 | 0802  | IF/15             | 5                | 33                        | 0.017           | 0.500         | 0.085                       | 2 194                       | 23-24 *                   | X           | ļ  | x     |               |       | х            |   | x          |                          |
| 178         | 12-5-67 | 0818  | IF/15             | 5                | 38                        | 0.050           | 0.500         | 0.250                       | 2.444                       | 23-24                     | x           |    | x     |               |       | x            |   | х          | [                        |
| 179         | 12-5-67 | 0826  | 17/15             | 3                | 41                        | 0.100           | 0.500         | 0.300                       | 2.744                       | 23-24                     | X           | l  | x     |               |       | x            |   | x          |                          |
| 180         | 12-5-67 | 0834  | IF/15             | 2                | 43                        | 0 150           | 0.500         | 0 300                       | 3.044                       | 23-24                     | x           |    | x     |               |       | x            |   | x          |                          |
| 181         | 12-5-67 | 0842  | IF/15             | 1                | եկ                        | 1 000           |               | 1.000                       | .077                        | 23-24                     | x           |    | x     |               |       | x            |   | x          |                          |
| 260         | 12-5-67 | 0923  | 10/14             | 5                | 8                         | 0.014           | 0 186         | 0.070                       | 3.070                       | 23-24                     | ) x         | 1  | X     |               |       | x            |   | X          | P-31 bad                 |
| 16 <u>1</u> | 12-5-67 | 0945  | 10/14             | 5                | 13                        | 0.017           | 0.183         | 0.085                       | 3.155                       | 23-24                     | x           | ļ. | x     |               |       | x            |   | x          |                          |
| 162         | 12-5-67 | 1014  | ID/14             | 5                | 18                        | 0.050           | 0.150         | 0.250                       | 3.405                       | 23-24                     | x           | ł  | x     |               |       | x            |   | x          |                          |
| 163         | 12-5-67 | 1024  | ID/14 ,           | 3                | 21                        | 0.100           | 0.100         | 0.300                       | 3 705                       | 23-24                     | x           |    | x     |               |       | x            |   | x          |                          |
| 164         | 12-5-67 | 1044  | ID/14             | 2                | 55                        | 0.150           | 0.050         | 0.300                       | 4.005                       | 23-24                     | [× ,        | {  | X     |               |       | x            |   | x          |                          |
| 165         | 12-5-67 | 1054  | 10/14             | 5                | 27                        | 0.014           | 0.500         | 0.070                       | 4-075                       | 23-24                     | x           |    | X     |               |       | x            |   | x          |                          |

THERNOCHEMICAL TEST AREA ----

оос. NO. MSC-EP-R-68-17

REVISION PAGE

A-49

.

I.

| Run no. | Date             | Time, | Engine no.<br>and | 0.000  | TRATIC | On time,<br>sec | Off time, nec | On time<br>this run, | Cumu-<br>lative<br>on time, | Valve<br>voltage, | Ma.<br>obut |        | Clu<br>isol | ster<br>ation |          | er-<br>leçts |     | ogs<br>eds | Remarks                               |
|---------|------------------|-------|-------------------|--------|--------|-----------------|---------------|----------------------|-----------------------------|-------------------|-------------|--------|-------------|---------------|----------|--------------|-----|------------|---------------------------------------|
|         |                  |       | location          | poince | pulses |                 |               | 860                  | aec                         | V de              | 0           | c      | 0           | с             | 0        | c            | 0   | c          | · · · · · · · · · · · · · · · · · · · |
| 166     | 12-5-67          | 1104  | ID/14             | 5      | 32     | 0.017           | 0.500         | 0,085                | 4 160                       | 23-24             | x           | ·      | x           |               |          | x            | 1   | x          | ,                                     |
|         | 12-5-67          | 1115  | ID/14             | 5      | 37     | 0.050           | 0.500         | 0.250                | 4.410                       | 23-24             | x           |        | x           |               |          | x            |     | x          |                                       |
|         | 12-5-67          | 1143  | ID/14             | 3      | 41     | 0.100           | 0.500         | 0.300                | 4.710                       | 23-24             | x           |        | x           |               | i        | x            |     | x          |                                       |
|         | 12-5-67          | 1153  | 10/14             | 2      | 43     | 0 150           | 0.500         | 0.300                | 5 010                       | 23-24             | x           |        | x           |               | Į.       | X            | Į – | x          |                                       |
| 170     | 12-5-67          | 1203  | 1D/14             | 1 1    | 42     | 1 000           | 1             | 1 000                | 6.010                       | 23-24             | x           |        | x           |               |          | x            |     | х          |                                       |
| 182     | 12-5-67          | 1315  | 15/16             | 5      | 6      | 0 014           | 0.186         | 0.070                | 2.677                       | 23-24             | x           |        | х           |               |          | x            |     | x          |                                       |
| 183     | 12-5-67          | 1326  | IS/16             | 5      | 11     | 0.017           | 0.183         | 0.085                | 2.762                       | 23-24             | x           |        | x           |               |          | x            |     | х          |                                       |
| 184     | 12-5-67          | 1337  | IS/16             | 5      | 16     | 0.050           | 0.150         | 0 250                | 3.012                       | 23-24             | х           |        | x           | l             | ( :      | х            | l   | х          |                                       |
| 185     | 12-5-67          | 2347  | IS/16             | 3      | 19     | 0.100           | 0.100         | 0.300                | 3.312                       | 23-24             | х           |        | x           |               |          | x            | I   | x          |                                       |
| 186     | 12-5-67          | 1357  | 15/16             | 2      | 57     | 0.150           | 0 050         | 0.300                | 3.612                       | 23-24             | x           |        | x           |               |          | x            |     | х          |                                       |
| 187     | 12-5 <b>-6</b> 7 | 1408  | IS/16             | 5      | 26     | 0.014           | 0.500         | 0.070                | 3,682                       | 23-24             | x           |        | x           |               |          | x            | 1   | X          |                                       |
| 168     | 12-5-67          | 1419  | 15/16             | 5      | 31     | 0 017           | 0.500         | 0.085                | 3.767                       | 23-24             | x           |        | x           | [             | ļ        | x            | 1   | x          |                                       |
| 189     | 12-5-67          | 1429  | IS/16             | ] 5    | 36     | 0 050           | 0.500         | 0.250                | 4.017                       | 23-24             | x           |        | x           |               |          | x            |     | x          |                                       |
| -       | 12-5-67          | 1440  | 16/16             | 3      | 39     | 0 100           | 0.500         | 0.300                | 4.317                       | 23-24             | x           |        | х           |               |          | X            |     | x          |                                       |
| 191     | 12-5-67          | 1515  | 15/16             | 2      | 41     | 0 150           | 0.500         | 0.300                | 4 617                       | 23-24             | x           |        | х           |               | Ι.       | x            |     | x          |                                       |
|         | 12-5-67          | 1530  | 16/16             | 1      | 42     | 1.000           |               | 1.000                | 5 617                       | 23-24             | x           |        | x           | [             | [        | x            | l   | x          |                                       |
| 29A     | 12-5-67          | 1619  | IVD/2             | 5      | 47     | 0 017           | 0.133         | 0.085                | 4 095                       | 23-24             | x           | [      | x           |               |          | x            | i i | x          | Firing program mispatched             |
|         |                  | 1     |                   |        |        |                 |               | i 1                  | hase III                    | — Missie          | on Dui      | y Cyd  | cleß        |               |          |              |     |            |                                       |
|         |                  |       |                   |        |        |                 |               | Block                | 4-1 LH-                     | 1 Minutor         | 1 Pha       | ie 7 ( | (Sepai      | atio          | ,)       |              |     |            |                                       |
| 1       | 12-5-67          | 2042  | IVU/1             | 36     | 78     | 3.179           | [             | 3.779                | 7.789                       | 23-24             | x           |        | x           | ł             | ļ.       | x            | 1   | x          |                                       |
| -       |                  | 1     | IVD/2             | 11     | 58     | 5 009           |               | 2.008                | 6.103                       |                   |             |        | l           | Ì             |          | 1            |     |            | 1                                     |
|         |                  |       | IVZ/3             | 2      | 45     | 0 033           |               | 0.033                | 4.055                       |                   |             | ĺ      |             |               |          | [            | ŀ   |            |                                       |
|         |                  |       | IV8/4             | 6.     | 55     | 1.757           |               | 1.757                | 7.892                       |                   |             |        |             |               |          |              |     |            |                                       |
|         |                  | l     | 1110/5            | 15     | 63     | 1.132           | ļ             | 1.132                | 6.227                       | Į                 | 1           |        | 1           | {             | ļ :      |              | 1   |            |                                       |
|         |                  |       | IIID/6            | 24     | 66     | 2.125           |               | 2.125                | 6.135                       | L                 | l           |        |             | L             | <u> </u> |              |     | I          | <u></u>                               |
| ,       | ·                |       |                   |        |        |                 | J             |                      |                             | ·······           |             | ·      |             |               |          |              |     |            |                                       |

THERMOCHEMICAL TEST AREA

•

•

| un no. | Date    | Time,<br>hr | Engine no.<br>and<br>location |     | Cumu-<br>lative<br>pulses | On time,<br>Bec | Off time, | On time<br>this run,<br>sec | Cumu-<br>lative<br>on time, | Valve<br>voltage,<br>V dc |       | in<br>offe |      | ster<br>Lation |          | ter-<br>necto |        | OG B<br>COD | Remarks |
|--------|---------|-------------|-------------------------------|-----|---------------------------|-----------------|-----------|-----------------------------|-----------------------------|---------------------------|-------|------------|------|----------------|----------|---------------|--------|-------------|---------|
|        |         |             |                               |     |                           |                 | !         |                             | Bec                         |                           | 0     | с          | 0    | c              | 0        | c             | 0      | c           |         |
|        |         |             | IIIF/7                        | 2   | 47                        | 0.032           | <u> </u>  | 0.032                       | 4.342                       |                           |       |            |      |                | 1-       |               | [      | 1           |         |
| 1      |         |             | IIIs/8                        | 5   | 47                        | 1.743           | ļ         | 1.743                       | 5 753                       |                           | 1     |            | Ļ    | l I            | Į –      | Į.            | l I    | Į –         |         |
|        |         |             | IIV/9                         | 57  | 63                        | 2.144           |           | 2.144                       | 6.154                       |                           |       |            | !    | 1              |          |               |        |             |         |
|        |         |             | IID/10                        | 7   | 52                        | 1.063           | -         | 1.063                       | 5 373                       |                           |       |            | l I  |                |          | 1             |        |             |         |
|        |         | ļ           | 117/11                        | 2   | 44                        | 0.030           | ,         | 0.030                       | 3 990                       |                           |       |            | Į    |                | ļ        | 1             | Į.     | Į           |         |
|        | I       |             | 118/12                        | 6   | 50                        | 1.759           | 1         | 1.759                       | 7.769                       |                           |       |            | 1    | 1              | 1        | 1             | 1      | )           |         |
|        |         |             | 10/13                         | 0   | 50                        | 0,000           | [         | 0.000                       | 7.605                       |                           |       |            |      |                |          |               |        |             |         |
| 1      |         |             | ID/14                         | 26  | 70                        | 1.422           |           | 1.422                       | 7.432                       |                           |       |            | -    | Į              |          | 1             | 1      | F           |         |
| 1      |         |             | IF/15                         | 2   | 46                        | 0.036           | ļ         | 0.036                       | 4.080                       |                           | ļļ    |            | ļ    | ļ              | Į –      | {             | Į –    | ļ           |         |
|        |         |             | 18/16                         | 5   | 47                        | 1.802           | 1         | 1.802                       | 7.419                       |                           |       |            | 1    |                |          |               |        |             |         |
| [      |         |             | [                             | ( i | [ [                       |                 | ĺ         | 1                           | hase III                    | — Mioaid                  | on du | ty cyc     | :les |                | Í        | 1             | Í      | [           |         |
| ļ      |         |             |                               |     |                           |                 | ļ         | Block A-2                   | LM-1 =                      | ission p                  | ase ! | 9 (fii     | st D | PS bu          | m)       | Į             |        | ļ           |         |
| 1      | 12-5-67 | 2127        | 1/1/1                         | 29  | 107                       | 1.969           |           | 1.969                       | 9 758                       |                           | x     |            | x    | ſ              |          | x             | i      | x           |         |
|        |         |             | IVD/2                         | 31  | 69                        | 1.092           |           | 1 092                       | 7-195                       |                           |       |            |      |                |          |               |        |             |         |
| 1      |         |             | IVF/3                         | 2   | 47                        | 0.032           |           | 0.032                       | 4.087                       |                           | 1 1   |            | í I  | l I            | 1        |               |        | ľ           |         |
| 1      |         |             | IVS/4                         | 2   | 57                        | 0 0 32          |           | 0.032                       | 7 894                       |                           | 1 1   |            |      | )              |          | 1             |        |             |         |
|        |         |             | IIIU/5                        | 10  | 73                        | 3.491           |           | 3.491                       | 9.718                       | •                         |       |            |      |                |          |               |        |             |         |
|        |         |             | IIID/6                        | 62  | 158                       | 5.262           |           | 5.262                       | 11.397                      |                           |       |            |      |                |          |               |        |             |         |
| 1      |         |             | IIIF/7                        | 2   | 49                        | 0.033           |           | 0.033                       | 4 375                       |                           | , ,   |            | 1    |                | (        |               |        |             |         |
|        |         |             | IIIS/8                        | 5   | 49                        | 0 033           |           | 0.033                       | 5 786                       |                           |       |            |      |                |          | Ī.            |        |             |         |
|        |         |             | 110/9                         | 37  | 100                       | 1 478           |           | 1.478                       | 7 632                       |                           |       |            |      |                |          |               |        |             |         |
|        |         |             | IID/10                        | 0   | 52                        | 0.000           |           | 0.000                       | 5.373                       |                           |       |            |      |                |          |               |        |             |         |
| 1      |         |             | 11F/11                        | 5   | 46                        | 0.032           |           | 0.032                       | 4.022                       |                           |       |            |      |                |          | 1 1           |        |             |         |
|        |         |             | IIS/12                        | 2   | 52                        | 0.033           |           | 0.033                       | 7.802                       |                           |       |            |      |                |          | 1             |        |             | ,       |
|        |         |             | IV/13                         | 9   | 59                        | 2.291           |           | 2,291                       | 9.896                       |                           |       |            |      |                |          |               |        |             |         |
|        |         |             |                               |     | <u> </u>                  |                 | ·         |                             | ·                           |                           |       |            |      | ;              | <u> </u> | · · · ·       | لمستعي |             |         |
|        |         |             |                               |     |                           |                 |           |                             |                             |                           |       |            |      |                |          |               | _      |             |         |

THERMOCHEMICAL TEST AREA

DOC. NO. REVISION PAGE A-11 MSC-EP-R-68-17 New OF A-49

~

| 1       |         |             |                               |                  | ļļ     | 1               |           |                             |                | }                         | ii         |        | Latch       | valve         | e 1906     | ition |          |            |         |
|---------|---------|-------------|-------------------------------|------------------|--------|-----------------|-----------|-----------------------------|----------------|---------------------------|------------|--------|-------------|---------------|------------|-------|----------|------------|---------|
| ասութօ. | Date    | Time,<br>br | Engine no.<br>and<br>location | No. of<br>pulses |        | On time,<br>sec | Off time, | On time<br>this run,<br>sec | ion croc?      | Valve<br>voltage,<br>V dc | Ma<br>shut |        |             | ster<br>ation | Int        |       |          | oss<br>eðs | Remarks |
| į       |         |             | 18cation                      | ľ                | parace |                 | l         | 0.0                         | Bec            |                           | 0          | C      | 0           | c             | 0          | C     | 0        | <u> </u>   |         |
|         |         |             | 10/14                         | 8                | 78     | 2.844           |           | 2 644                       | 10.276         |                           |            |        |             | }             |            |       |          |            |         |
|         |         |             | 1F/15                         | 2                | 48     | 0.036           |           | 0.036                       | 4.116          |                           |            | İ.     |             |               | i i        |       |          |            |         |
| [       |         |             | IS/16                         | 2                | ل وبا  | 0 035           | ļ.        | 0.035                       | 7.454          | }                         | 1          |        |             |               | 1          |       |          |            |         |
| м       | 12-5-67 | 2152        | 190/2                         | 33               | 140    | 2,106           |           | 2.106                       | 11.864         | 23-24                     | х          |        | X           |               | 1          | x     |          | x          |         |
|         |         |             | IVD/2                         | 8                | 77     | 1 491           | 1         | 1.491                       | 8 686          |                           |            |        |             |               | [          |       |          |            |         |
|         |         | l           | 177/3                         | 1                | 48     | 0 017           | ł         | 720 0                       | 4.104          | ł                         | ł          |        | 1           | l l           | 1          | 1     | 1        |            |         |
|         |         |             | 178/4                         | 0                | 57     | 0 000           |           | 0.000                       | 7 884          | 1                         |            | 1      |             | ſ             | 1          |       |          |            |         |
|         |         |             | 1110/5                        | 2                | 82     | 2.263           |           | 2.263                       | 11.981         |                           |            |        |             |               |            |       |          |            |         |
|         |         |             | 1110/6                        | եր               | 172    | 2 534           | Ę         | 2.534                       | 13.931         | ł                         | 1          | }      | 1           | 1             | 1          | 1     | 1        |            |         |
|         | ]       |             | 11IF/7                        | 0                | 49     | 0.000           |           | 0 000                       | 4.375          | 1                         |            |        |             | 1             | !          |       |          |            |         |
| 1       |         |             | IIIS/8                        | 1                | 50     | 0 085           | 1         | 0.085                       | 5.871          | 1                         | [          | [      | Ι.          |               |            |       |          |            |         |
|         | 1       |             | IIV/9                         | 19               | 119    | 1.668           | 1         | 1 669                       | 9.300          | }                         | }          | }      | } `         | 1             | 1          | 1     | 1        |            |         |
|         | )       | )           | 110/10                        | 2                | 54     | 0 263           |           | 0.263                       | 5.636          |                           |            |        | 1           |               |            |       |          |            |         |
|         |         |             | 11F/11                        | 1                | 47     | 0.016           |           | 0 016                       | 4.038          |                           |            |        |             | 1             |            |       |          |            |         |
|         | ĺ       |             | 1IS/12                        | 0                | 52     | 0 000           | ļ         | 0 000                       | 7.802          | ļ                         | ł          | ł      | 1           | 1             | ł          | }     | 1        |            |         |
|         | 1       | 1           | 10/13                         | 5                | 61     | 0.143           |           | 0.143                       | 10.039         | 1                         | 1          |        | 1           |               |            |       |          |            |         |
|         |         |             | 10/14                         | 9                | 87     | 1 894           |           | 1 894                       | 12.170         |                           | ]          |        |             |               |            |       |          |            |         |
|         |         |             | 18/15                         | 0                | 48     | 0 000           | l I       | 0.000                       | 4.116          | ļ                         | 1          | ļ      | (           | Į –           | ł          | {     | <b>\</b> | 1          |         |
|         | 1       | Ì           | 15/16                         | 1                | 50     | 0 087           |           | 0 087                       | 7,541          | 1                         |            | 1      | ſ           |               |            |       | Í.       | i          |         |
|         |         |             |                               |                  |        |                 |           | 1                           | Phnae III      | — Misoi                   | on du      | tv cy: | lea         |               |            |       |          |            |         |
|         | ł       | l           |                               | 1                | ł      | ļ               | Block A-3 | ן<br>124-1, m:              | l<br>isaion ph | l<br>680 II (s            | l<br>econà | DPS 1  | l<br>ourn-: | 4<br>FITH-1   | ı<br>first | APS   | burn)    |            |         |
| 1       | 12-5-67 | 2236        | 1VU/1                         | 67               | 207    | 10 746          | 1         | 10.746                      | 22.610         | 1                         | x          |        | x           |               |            | x     |          | x          |         |
| -       | [ ~ ~ · |             | TVD/2                         | 55               | 132    | 7.168           |           | 7.168                       | 15.854         |                           |            | 1      |             |               |            |       |          |            | •       |
|         | l       | ļ           | 177/3                         | 17               | 65     | 0.627           | 1         | 0 627                       | 4,731          | 1                         | 1          | 1      |             | 1             | 1          | 1     |          |            |         |
|         |         | 1           | 148/4                         | 14               | 71     | 0.423           | 1         | 0.423                       | 8.307          | L                         |            | L      |             |               | L          |       |          | <u> </u>   |         |

,

,

THERMOCHEMICAL TEST AREA

I

DOC. NO. REVISION PAGE A-12 MSC-EP-R-68-17 New OF A-49

l

•

|        | ļ       | ļ           | ļ                             | } _             | }                         | }               | ļ —       | }                           | }        | }                        | ]      |            | Lotc):    | i valv        | re pos | ition | ι   |              | j       |
|--------|---------|-------------|-------------------------------|-----------------|---------------------------|-----------------|-----------|-----------------------------|----------|--------------------------|--------|------------|-----------|---------------|--------|-------|-----|--------------|---------|
| un no. | Date    | Time,<br>hr | Engine no.<br>and<br>location | No of<br>Pulses | Cumu-<br>lative<br>pulses | On time,<br>Bec | Off time, | On time<br>this run,<br>sec |          | Valve<br>voltage<br>V dc |        | in<br>offs |           | ster<br>ation |        |       |     | os s<br>ed.s | Remarks |
|        |         |             |                               |                 | · · · · ·                 |                 |           |                             | BeC      |                          | 0      | C          | 0         | C             | Ó      | C     | ò   | c            |         |
|        |         |             | 1110/5                        | 68              | 150                       | 7 649           |           | 7 649                       | 19.630   |                          |        |            |           |               |        |       | 1   |              |         |
|        | 1       | }           | 1110/6                        | 115             | 287                       | 15 714          | l         | 15 71%                      | 29 645   | 1                        | 1      | 1          | 1         | ł             |        | ł     | ł   | 1            |         |
|        | ]       |             | IIIF/7                        | 15              | 64                        | 0.391           |           | 0.391                       | 4 T66    | ļ                        |        | ] .        |           |               |        | ļ     | ļ   |              |         |
|        |         |             | III5/8                        | 17              | 67                        | 1.138           |           | 1.138                       | 7 0 0 9  |                          | 1      |            | 1         |               |        |       |     |              |         |
|        |         |             | IIU/9                         | 78              | 197                       | 12 246          |           | 12 246                      | 21 546   |                          |        |            | i i       |               | [      | ł     |     |              |         |
|        |         |             | IID/10                        | 8               | 62                        | 1.768           |           | 1.768                       | 7404     |                          |        |            |           |               |        |       |     |              |         |
|        | ξ       |             | III/11                        | 17              | 64                        | 0.626           |           | 0 626                       | 4 6 6 k  | [                        | ł      |            | Į –       | 1             | {      | ł     | Į – | {            |         |
|        |         |             | IIS/12                        | 24              | 66                        | 0 429           |           | 0.429                       | 8 2 3 1  |                          |        |            |           |               |        |       |     |              |         |
|        | ,       |             | IU/13                         | 57              | - 82                      | 3.719           |           | 3.219                       | 13 / 58  |                          |        |            |           | 1             | Į      |       |     | 1            |         |
|        |         |             | ID/14                         | 61              | 148                       | 10.119          |           | 10.119                      | 27 289   |                          | İ .    |            | ſ         |               |        |       |     |              |         |
|        |         |             | IF/15                         | 15              | 63                        | 0 423           |           | 0 423                       | ¥ 539    |                          |        |            |           | i             |        |       | ]   | 1            |         |
|        |         |             | 15/16                         | ſ               | 67                        | J 166           |           | 1 166                       | 8.707    |                          | ļ      |            | l l       | ļ             | l l    | ļ     | ļ . |              |         |
|        |         |             |                               |                 |                           |                 |           | I                           | hase III | — Missi                  | n dut  | א נעל      | 4<br>5168 |               | 1      |       |     |              |         |
|        |         |             |                               |                 | [ ]                       |                 | B         | lock A-4 -                  | - เห-ว ต | ssion ph                 | se 13  | (sec       | ond .     | лря от        | urn)   |       | Í   | Í            |         |
| 1      | 12-6-67 | 0013        | IVU/1                         | 32              | 239                       | 0.832           |           | 0 832                       | 23.442   | 23-24                    | x      |            | x         |               | 1      | x     |     | x            |         |
|        |         |             | IAD\5                         | 102             | 234                       | 13.308          |           | 13.308                      | 29 162   | ,                        |        |            |           |               |        |       |     |              |         |
|        |         |             | IVF/3                         | 15              | דד                        | 0 304           |           | 0.304                       | 5 0 3 5  |                          | \<br>\ |            | Ì         |               | 1      |       | 1   | 1            |         |
|        |         |             | IVS/4                         | 8               | 79                        | 0.185           |           | 0.185                       | 8 492    |                          |        |            |           |               |        |       |     |              |         |
|        |         |             | 1110/5                        | 27              | 267                       | 1.149           |           | 1.149                       | 20,779   |                          |        |            |           |               |        |       |     | 1            |         |
|        |         |             | 1110/6                        | հե              | 331                       | 2.347           |           | 2.347                       | 31 992   |                          |        |            | [         |               |        |       |     |              |         |
|        |         |             | IIIF/7                        | 9               | 73                        | 0.268           |           | 0.268                       | 5 034    |                          |        |            |           |               |        |       |     |              |         |
|        |         |             | 1115/8                        | 10              | 77                        | 0.215           |           | 0.212                       | 7.221    |                          |        |            |           |               |        |       |     |              |         |
|        |         | ,           | 110/9                         | 17              | 214                       | 0.613           |           | 0.613                       | 22 159   |                          |        |            |           |               |        |       |     |              |         |
| i      |         |             | IID/10                        | 158             | 220                       | 29.509          |           | 29.509                      | 36 913   |                          |        |            |           |               |        |       |     |              |         |
|        |         |             | IIF/11                        | 11              | 75                        | 0.271           |           | 0.271                       | 4 935    |                          |        |            |           |               |        |       |     |              |         |

.

THERMOCHEMICAL TEST AREA

PAGE <u>A-13</u> OF <u>A-49</u>

•

| I      | }       |          | 1                             | {                | ł                         | }      | 1         |                             | Cumu-                     |                          | 1           |            | Latch     | Valu            | e pos | ition         |          |              |     |
|--------|---------|----------|-------------------------------|------------------|---------------------------|--------|-----------|-----------------------------|---------------------------|--------------------------|-------------|------------|-----------|-----------------|-------|---------------|----------|--------------|-----|
| an no. | Date    | Time,    | Engine no.<br>and<br>location | No. of<br>pulses | Cumu-<br>lative<br>pulses | 1      | Off time, | On time<br>this run,<br>sec | lative<br>on time,<br>see | Valve<br>voltage<br>V de |             | in<br>offs |           | uster<br>Lation |       | ter-<br>nects |          | Croz<br>feed |     |
|        |         | <u> </u> | <u> </u>                      |                  |                           |        |           |                             |                           |                          | 0           | С          | 0         | с               | 0     | c             | 0        |              | c   |
|        |         |          | 115/12                        | 7                | 73                        | 0.187  |           | 0.187                       | 8.418                     |                          |             |            | Γ         |                 |       | 1             | <u> </u> | 1            |     |
|        | [       |          | IV/13                         | 2                | 84                        | 0 388  |           | 0.388                       | 13.646                    | i                        |             |            |           |                 |       |               |          |              |     |
|        |         | 1        | 10/14                         | 169              | 317                       | 45 064 | 1         | 45.064                      | 67.353                    | ļ                        |             | ļ          | ļ         | 1               | [     | ļ             | 1        |              | )   |
|        |         |          | 17/15                         | 6                | 69                        | 0 116  |           | 0.116                       | 4.655                     |                          |             |            |           |                 |       |               |          |              |     |
|        | 1       | {        | 18/16                         | 10               | דד                        | 0.232  |           | 0.232                       | 8939                      |                          | ł           | ļ          |           | 1               | {     | ł             | ł        | -            |     |
|        |         |          |                               |                  |                           |        |           |                             | Phase IV                  | - speci                  | i<br>al dui | i<br>ty cy | i<br>cleu |                 | 1     |               |          |              |     |
|        |         | ļ        |                               |                  |                           |        |           |                             | Block B-1                 |                          |             |            |           |                 | ltane | e auto        | ulsi     | lng          | s ) |
| 1      | 12-6-67 | 0346     | IVS/4                         | 10               | 89                        | 0 017  | 0.183     | 0.170                       | 8.662                     | 23-24                    | x           |            | x         | 1               | Í Í   | 1             | 1        | Ī.           | x   |
|        |         |          | IIS/12                        | 10               | 83                        | 0.017  | 0.183     | 0 170                       | 8 588                     |                          | l î         |            | ^         |                 | l I   |               | Į        |              | ^   |
| 2      | 12-6-67 | 0449     | IVS/4                         | 10               | 99                        | 0.050  | 0.150     | 0.500                       | 9.162                     | 23-24                    | x           |            | x         | i i             |       | x             |          |              | x   |
|        |         |          | IIS/12                        | 10               | 93                        | 0.050  | 0.150     | 0.500                       | 9-088                     |                          |             |            |           |                 |       |               | l        |              |     |
| 3      | 12-6-67 | 0509     | IVS/4                         | 10               | 109                       | 0 150  | 0.050     | 1.500                       | 10 662                    | 23-24                    | x           |            | x         | ł               |       | x             |          |              | x   |
| {      |         | {        | 115/12                        | 10               | 103                       | 0 250  | 0.050     | 1.500                       | 10.588                    |                          | (           | (          |           | {               | [     | {             | (        | E            |     |
| 4      | 12-6-67 | 0522     | IVS/4                         | 1                | 110                       | 0.200  |           | 0.200                       | 10.862                    | 23-24                    | x           |            | x         |                 |       | x             |          | 1            | x   |
|        |         |          | 118/12                        | 1                | 104                       | 0.200  |           | 0 200                       | 10.788                    |                          |             |            |           |                 |       |               |          |              |     |
| 5      | 12-6-67 | 0820     | 111S/8                        | 10               | 87                        | 0 017  | 0 183     | 0.170                       | 7.391                     | 23-24                    | x           |            | х         |                 |       | х             |          | 1:           | x   |
| .      |         |          | IS/16                         | 10               | 87                        | 0.017  | 0.183     | 0 170                       | 9 109                     |                          |             |            |           |                 | -     |               |          |              |     |
| 6      | 12-6-67 | 0844     | _IIIS/8                       | 10               | 97                        | 0 050  | 0.150     | 0.500                       | 7.891                     | 23-24                    | X           |            | х         | )               | ļ     | x             | 1        | 1:           | x   |
| .      |         |          | IS/16                         | 10               | 97                        | 0.050  | 0.150     | 0.500                       | 9.609                     |                          |             |            |           |                 |       |               |          |              |     |
| 7      | 12-6-67 | 0854     | IIIS/8                        | 10               | 207                       | 0.150  | 0.050     | 1 500                       | 9.391,                    | 23-24                    | X           |            | X         |                 |       | x             |          | 1            | x   |
| в      | 12-6-67 | 00007    | 18/16<br>1115/8               | 10               | 107                       | 0.150  | 0.050     | 1.500                       | 11 109                    |                          |             |            |           | ļ               |       |               |          | Ł            |     |
| ° 1    | 75-0-01 | 1 0901   |                               | 1                | 108                       | 0.200  |           | 0.200                       | 9.591                     | 23-24                    | X           |            | X         |                 |       | x             |          | 1 3          | y j |
|        |         |          | IB/16                         | 1                | 108                       | 0.200  |           | 0.200                       | 11.309                    |                          |             |            |           |                 |       |               |          |              |     |

.

THERMOCHEMICAL TEST AREA

DOC. NO. MSC-EP-R-68-17 REVISION New . PAGE OF A-14 P

64

.

| Cluster Inter-<br>solation connects foredn<br>b c o c o c c<br>sa l ancous pulsing |
|------------------------------------------------------------------------------------|
|                                                                                    |
|                                                                                    |
| ancous pulbing                                                                     |
|                                                                                    |
| x x x                                                                              |
|                                                                                    |
|                                                                                    |
|                                                                                    |
| x X X                                                                              |
|                                                                                    |
|                                                                                    |
|                                                                                    |
| x X X                                                                              |
|                                                                                    |
|                                                                                    |
|                                                                                    |
|                                                                                    |
|                                                                                    |
|                                                                                    |
|                                                                                    |
| ea                                                                                 |
| sing, two steady state                                                             |
| x     x   x                                                                        |
|                                                                                    |
|                                                                                    |
|                                                                                    |
|                                                                                    |
|                                                                                    |
|                                                                                    |
|                                                                                    |

THERMOCHEMICAL TEST AREA

DOC. NO. REVISION PAGE A-15 MSC-EP-R-68-17 New OF A-49

ł

| MSC   | ſ |
|-------|---|
| FORM  |   |
| 360B  |   |
| ( JAN | ļ |
| 67)   |   |

|         |         |             |                               |                  | i                         |                 |                  |                             | Cumu-              |                           |       | 1          | Latch  | valve       | ; pos | ition       |     |                   |         |
|---------|---------|-------------|-------------------------------|------------------|---------------------------|-----------------|------------------|-----------------------------|--------------------|---------------------------|-------|------------|--------|-------------|-------|-------------|-----|-------------------|---------|
| tun no. | Date    | Time,<br>hr | Engine no.<br>and<br>location | No. of<br>pulses | Cumu-<br>lative<br>pulscs | On time,<br>sec | Off time,<br>sec | On time<br>this run,<br>sec | lative<br>on time, | Valve<br>voltage,<br>V dc |       | in<br>offs |        | ter<br>tion |       | er-<br>ects |     | <i>пво</i><br>еба | Remarks |
|         |         |             |                               |                  | P                         |                 |                  |                             | aec                |                           | 0     | C          | 0      | C           | 0     | C           | ٥   | C                 |         |
|         |         |             | <u> </u>                      | 1                |                           |                 |                  |                             | Phase I            | / apec:                   | ial d | uty ci     | veles  | 1           |       |             | Γ   |                   |         |
|         |         |             |                               |                  |                           | ĺ               | B                | lock D-1 -                  | - pressure         | e switch o                | valu  | ation      | , star | t on-       | -time | 5           |     |                   |         |
| ı       | 12-6-67 | 2123        | IVD/2                         | 50               | 315                       | 0.014           | 0 186            | 0 700                       | 31 567             | 23-24                     | x     | 1          | x      |             |       | X           | 1   | X                 |         |
|         |         |             | IIIS/8                        | 50               | 185                       | 0.014           | 0.186            | 0.700                       | 12.728             |                           |       |            |        |             |       |             |     |                   |         |
|         |         |             | IVS/4                         | 50               | 167                       | 0.014           | 0.186            | 0.700                       | 13.999             |                           | Į –   | {          |        |             |       | 1           | 1   |                   |         |
|         |         |             | 117/11                        | 50               | 125                       | 0.014           | 0 186            | 0 700                       | 5.635              |                           |       |            |        |             |       |             |     |                   |         |
| 2       | 12-6-67 | 8236        | IVD/2                         | 50               | 365                       | 0.014           | 0.186            | 0.700                       | 32.267             | 20-21                     | х     |            | [ X    |             | Į     | X           | l   | ( × )             |         |
|         |         |             | 111S/8                        | 50               | 235                       | 0.014           | 0.186            | 0.700                       | 13.428             |                           |       | ]          |        |             |       |             | [   |                   |         |
|         |         |             | 178/4                         | 50               | 237                       | 0.014           | 0 186            | 0.700                       | 14.699             |                           |       | l I        |        |             |       |             |     | 1 1               |         |
|         |         |             | IIF/11                        | 50               | [ 175                     | 6.014           | 0.186            | 0.700                       | 6.335              |                           | ļ .   | 1          | 5      |             |       | 1           | •   | 1                 |         |
|         |         |             | [                             |                  |                           | ļ               |                  |                             | Phase I            | / — spec:                 | ial d | uty cj     | rcles  |             |       |             |     |                   |         |
|         |         |             |                               |                  | !                         |                 |                  | Block D-2                   | presst             | re avitel                 | i eva | luatio     | on, of | f-lin       | its   | l           | ł   | [ ]               |         |
| 2       | 12-6-67 | 2250        | IVD/2                         | 50               | 415                       | 0 014           | 0.036            | 0.700                       | 32.967             | 20-21                     | x     | f i        | x      |             |       | x           |     | x                 |         |
|         |         |             | T118/8                        | 50               | 285                       | 0.014           | 0.036            | 0.700                       | 14.128             |                           | 1     |            |        |             |       |             |     |                   |         |
|         |         |             | IVS/4                         | 50               | 287                       | 0.014           | 0.036            | 0.700                       | 15.399             |                           | 1     | ł          |        |             |       | 1           | ]   |                   |         |
|         |         |             | 117/11                        | 50               | 225                       | 0 014           | 0 036            | 0.700                       | 7.035              |                           |       |            | 1      |             |       |             |     |                   |         |
|         |         |             |                               |                  | Į.                        | Į               |                  |                             | Phase I            | — spec                    | in) à | uty et     | rcles  |             |       | }           | · ۱ |                   |         |
|         |         |             | ľ                             |                  |                           |                 | 1                | Block D-3 -                 | - pressu           | e switch                  | e\al  | untion     | 1, Sta | art or      | 1-tim | es          |     |                   |         |
| 1       | 12-6-67 | 2302        | IVD/2                         | 20               | 435                       | 0 012           | 2,500            | 0.240                       | 33,207             | 20-21                     | x     | l I        | lx I   |             | L I   | l x         | ļ   | X                 |         |
|         |         |             | IIIS/8                        | 20               | 305                       | 0.012           | 2.500            | 0.240                       | 14.368             | -                         |       | 1          |        |             |       |             |     |                   |         |
|         |         |             | IVS/4                         | 20               | 307                       | 0.012           | 2.500            | 0.240                       | 15.639             |                           |       |            |        |             |       |             |     |                   |         |
|         |         |             | TIF/11                        | 20               | 245                       | 0.012           | 2 500            | D 240                       | 7 275              |                           | 1     | 1          |        |             |       | ۱.          |     | 1                 |         |
|         |         |             |                               |                  |                           |                 | 1                | 10ck D-2 -                  |                    | led                       |       |            |        |             |       |             |     |                   |         |
| 1       | 12-6-67 | 2323        | IVD/2                         | 50               | 485                       | 0.014           | 0 036            | 0.700                       | 33.907             |                           | ا     |            |        |             |       | <u>ا</u>    |     |                   |         |

.

- THERMOCHEMICAL TEST AREA

,

<u>A-16</u> A-49

| Run no.            | Date      | Time,                   | Engine no.<br>and | No. of<br>pulses |            |       | Off time, | On time<br>this run, | Cumu-<br>lative<br>on time. | Valve<br>voltage, |             | dn                   | Clu | ster<br>ation                               | Int         | er-   | 0   | ror |          | Remarks . |
|--------------------|-----------|-------------------------|-------------------|------------------|------------|-------|-----------|----------------------|-----------------------------|-------------------|-------------|----------------------|-----|---------------------------------------------|-------------|-------|-----|-----|----------|-----------|
|                    |           | nr l                    | location          | purses           | pulses     | 800   | 040       | , șec                | aec                         | V đc              | 0           | c                    | 0   | c                                           | 0           | C c   | 0   |     | <u> </u> |           |
| ····               |           |                         | IVS/4             | 50               | 357        | 0.014 | 0.036     | 0.700                | 16.339                      |                   | Ļ           | ļ                    |     | <u>ــــــــــــــــــــــــــــــــــــ</u> | Ľ           | ļ     | -l- | ╇   | <u> </u> |           |
|                    |           |                         | 117/11            | 50               | 295        | 0,014 | 0.036     | 0.700                | 7.975                       |                   |             |                      |     |                                             |             |       |     |     |          |           |
|                    |           |                         | ( <u>-</u>        | í                |            |       |           | Block D-3            |                             |                   |             | Í                    |     | ĺ                                           | í           |       | 1   | ſ   |          |           |
| 2                  | 12-6-67   | 2346                    | IVD/2<br>IIIS/8   | 20<br>20         | 505<br>375 | 0.012 | 2.500     | 0.240                | 34.147<br>15.308            | 23-24             | x           |                      | x   |                                             |             | x     |     |     | x        |           |
|                    |           |                         | IIIS/0<br>IVS/4   | 20               | 315        | 0.012 | 2.500     | 0.240                | 15.300                      |                   |             | Į.                   | ļ   |                                             | l           |       |     | ļ   |          |           |
|                    |           |                         | IIF/11            | 20               | 315        | 0.012 | 2.500     | 0.240                | 8.215                       |                   |             |                      |     |                                             |             |       |     |     |          |           |
|                    |           |                         |                   |                  | <u> </u>   |       |           | 01240                | 1                           |                   | 1           | 1                    |     |                                             |             |       | 1   |     |          | ,         |
|                    |           |                         |                   |                  |            |       | Blog      | '<br>FD-5 p          |                             | - speci           |             |                      |     |                                             | <br>        | -117  |     | 1   |          |           |
|                    |           |                         |                   |                  |            |       | bitte     |                      |                             |                   | 1           | 0 <i>n</i> , 0.<br>I | 1 0 | er co                                       | 10 11       | 1     |     |     |          |           |
| 6                  | 12-7-67   | 0101                    | IVD/2<br>IIIS/8   | 1                | 506<br>376 | 0.100 |           | 0.100                | 34.247<br>15.408            | -12               | x           |                      | x   |                                             | Į .         | x     |     |     | x        |           |
|                    | •         |                         | 1115/0            | 1                | 378        | 0.100 |           | 0 100<br>0.100       | 15.404                      |                   |             | ļ                    |     |                                             | ļ           |       | Į   | ļ   |          |           |
|                    |           |                         | 115/4<br>117/11   | 1                | 316        | 0.100 | 1         | 0.100                | 8 315                       |                   |             |                      |     |                                             |             |       |     |     |          |           |
| 2                  | 12-7-67   | 0245                    | 1118/8            | 10               | 386        | 0.075 | 0.125     | 0 750                | 16 158                      | ъ <sub>15</sub>   | х           | 1                    | x   |                                             | i I         | x     | 1   | ł   | x        |           |
| 3                  | 12-7-67   | 0301                    | 116/4             | 10               | 388        | 0.075 | 0.125     | 0 075                | 17 429                      | <sup>р</sup> 15   | x           |                      | x   |                                             |             | x     | !   |     | x        |           |
|                    |           |                         |                   |                  |            |       |           |                      | Phase IV                    | ane^1/            | l<br>Al diu | tu nu                | 1.0 |                                             |             |       |     |     |          |           |
|                    |           |                         |                   |                  | ' î        |       | Block H-1 | - mlae 1             |                             | •                 |             |                      |     | e. ena                                      | , ,<br>zine | TIT S | 5/8 | Ĺ   |          |           |
| 1                  | 12-7-67   | 0537                    | IV8/4             | 1 1              | 389        | 0,004 | 2,500     | 0.004                | 17.433                      |                   | x           | 1                    | x I |                                             | 1           | x     | 1   | Ļ   | x        |           |
| 1                  | 15-1-01   | 1620                    | 410/4             | · 1              | 390        | 0.004 | 2.500     | 0.004                | 17 433                      | 23-24             | ^           |                      | ^   |                                             |             | •     |     |     | x        |           |
|                    |           |                         |                   | 1                | 391        | 0.020 | 21,000    | 0.020                | 17.457                      |                   |             |                      |     |                                             |             |       |     |     |          | <i>,</i>  |
| 2                  | 12-7-67   | 0553                    | IVS/4             | 1                | 392        | 0.006 | 2.500     | 0.006                | 17 463                      | 23-24             | x           |                      | x   |                                             |             | х     |     |     | x        |           |
|                    | 1         |                         |                   | 2                | 393        | 0.006 | 2.500     | 0.006                | 17.469                      |                   |             |                      | ' ł |                                             |             |       | 1   |     |          |           |
|                    |           |                         |                   | 1                | 394        | 0.020 |           | 0.020                | 17.489                      |                   |             |                      |     |                                             |             |       |     |     |          |           |
| 3                  | 12-7-67   | 0711                    | IVS/4             | 1                | 395        | 0.007 | 2.500     | 0.007                | 17.496                      | 23-24             | X           |                      | X   |                                             |             | X     |     |     | x        |           |
| <sup>4 ک</sup> 0 م | direct co | <br>1 00 <sup>1</sup> * |                   |                  |            | _     |           |                      |                             |                   | -           |                      |     |                                             |             |       |     |     |          |           |
| 011                | antes Co  | TT OUT                  | •                 |                  |            |       |           |                      |                             |                   |             |                      |     |                                             |             |       |     |     |          |           |

- THERMOCHEMICAL TEST AREA

DOC. NO. MSC-ЕР-R-68-17

L7 REVISION

PAGE <u>A-17</u> of <u>A-19</u>

.

,

|         |         |             |                               | 1                |                  |                 |                  | On time   | Cumu-              | Valve  | ┝          |            | ·    | velv   | -           |      | 1   |            |                                       |
|---------|---------|-------------|-------------------------------|------------------|------------------|-----------------|------------------|-----------|--------------------|--------|------------|------------|------|--------|-------------|------|-----|------------|---------------------------------------|
| Run no. | Date    | Time,<br>hr | Engine no.<br>and<br>location | No. of<br>pulses | lative<br>pulses | On time,<br>sec | Off time,<br>sec | this run, | lative<br>on time, | 100300 | Ma<br>shut | in<br>offs |      | ation  | Int<br>conn |      |     | cos<br>cds | Remarks                               |
|         |         |             |                               | l                | [*               | ļ               |                  |           | Bec                |        | 0          | G          | 0    | c      | 0           | c    | 0   | c          |                                       |
|         |         |             |                               | l                | 396              | 0.007           | 2 500            | 0.007     | 17.503             |        | ]          |            |      |        |             |      |     |            |                                       |
|         |         |             |                               | 1                | 397              | 0 020           |                  | 0.020     | 17.523             |        |            |            | {    |        |             |      |     |            |                                       |
| L L     | 12-7-67 | 0733        | IVS/4                         | 1                | 398              | 800.0           | 2.500            | 0.008     | 17.531             | 23-24  | x '        | 1          | X    |        | 1           | x    | 1   | X          |                                       |
| i i i   |         |             | · ·                           | 1                | 399              | 0.008           | 2,500            | 0.008     | 17.539             | i      |            |            | 1    |        |             |      |     |            |                                       |
|         |         |             | [                             | 1                | 400              | 0.020           |                  | 0.020     | 17.559             |        |            |            |      |        |             |      |     |            |                                       |
| 5       | 12-7-67 | 0747        | IVS/4                         | 1                | 401              | 0.009           | 2.500            | 0 009     | 17.568             | 23-24  | X          | 1          | X    |        | 1           | x    | 1   | X          |                                       |
|         |         |             |                               | 1                | 402              | 0.009           | 2 500            | 0.009     | 17.577             |        |            | ſ          |      |        |             |      |     |            |                                       |
|         |         |             | ł                             | 1                | 403              | 0 020           |                  | 0 020     | 17.597             |        |            |            |      |        |             |      |     |            |                                       |
| 6       | 12-7-67 | 0806        | IVS/4                         | 1                | 404              | 0.010           | 2,500            | 0.010     | 17 607             | 23-24  | X          | 1          | ×    |        | Ì           | X    | 1   | X          |                                       |
|         |         |             |                               | 1                | 405              | 0.010           | 2.500            | 0.010     | 17 617<br>17.637   |        |            | 1          | 1    |        |             |      | 1   |            |                                       |
|         |         |             | Į                             | 1                | 406              | 0.020           | 0.020            |           | Phase IV           |        | n dui      | tv ev      | cles | I      | 1           |      | F   |            |                                       |
| i       |         |             | {                             |                  | •                |                 | Block H-2        | 2 pulse   |                    |        |            |            |      | ae, ei | ngine       | II F | /11 | 1          |                                       |
| 7       | 12-7-67 | 0845        | 117/11                        | 1 1              | 317              | 1 0.004         | 2.500            | 0 004     | 8,319              |        | l x        | l          | x    |        | 1           | x    | 1   | x          |                                       |
| '       | 12-1-01 |             |                               | i                | 318              | 0.004           | 2,500            | 0.004     | 8,323              |        |            |            |      |        | 1           |      | 1   | {          |                                       |
| • •     | •       |             | 1                             | 1                | 319              | 0.020           |                  | 0.020     | 8.343              | ]      | İ.         | Ľ          |      |        |             |      |     |            |                                       |
| 8       | 12-7-67 | 0940        | IIF/11                        | 1                | 320              | 0.006           | 2.500            | 0.006     | 8.349              | 23-24  | x          |            | X    |        |             | X    |     | x          |                                       |
|         |         |             |                               | 1                | 321              | 0.006           | 2.500            | 0.006     | 8.355              |        |            |            |      |        |             |      | L L | [          |                                       |
| l       |         |             | 1                             | 1 1              | 322              | 0.020           | 1                | 0.020     | 8.375              |        |            | ľ          |      |        |             |      |     |            |                                       |
| 9       | 12-7-67 | 0958        | 11F/11                        | 1                | 323              | 0 007           | 2,500            | 0,007     | 8.382              | 23-24  | X          | 1          | x    |        |             | x    |     | x          |                                       |
|         |         |             |                               | 1                | 324              | 0.007           | 2.500            | 0.007     | 8.389              |        |            |            | Į    |        | Į           | l    |     | 1          |                                       |
|         |         |             | 1                             | 1                | 325              | 0 050           | )                | 0.020     | 8.409              |        | ]          |            |      |        | [           |      | [   |            |                                       |
| 10      | 12-7-67 | 1013        | 115/11                        | 1                | 326              | 0.008           | 2.500            | 0.008     | 8.417              | 23-24  | ×          |            | x    |        |             | x    |     | X          |                                       |
|         |         |             |                               | 1                | 327              | 0.008           | 2.500            | 0.008     | 8.425              | -      |            | ľ          |      |        |             |      |     | Į          |                                       |
|         |         | }           | 1                             | 1                | 328              | 0.020           | 1                | 0.020     | 8 445              | ]      | }          |            |      | ſ      |             | ſ    | 1   | Í          |                                       |
|         |         |             |                               |                  |                  |                 | 1                |           |                    | 1      |            |            |      |        | [           |      | 1   |            |                                       |
|         | L       |             | L                             | L.,              | L                | L               | J                | L         | I                  | L      | L          | L          | ł    |        | 1           |      | .I  | I          |                                       |
|         |         |             |                               |                  |                  |                 |                  |           |                    |        |            |            |      |        |             |      |     |            | · · · · · · · · · · · · · · · · · · · |

.

- THERMOCHEMICAL TEST AREA

MSC-EP-R-68-17 New

PAGE

<u>A-18</u> A-49

- 6

.

| Run no. | Date    | Time, | Engine no.<br>and | No, of | Cumu-<br>Intive | On time, |           | On time<br>this run, | Cumu-<br>Intive | Valve<br>voltage, | MB          | .In       | Clu   | ster       | Int   | rtion                                  | Cr  | 075    | i<br>komnrkí |
|---------|---------|-------|-------------------|--------|-----------------|----------|-----------|----------------------|-----------------|-------------------|-------------|-----------|-------|------------|-------|----------------------------------------|-----|--------|--------------|
|         |         | ar    | location          | burges | pulses          | see      | suc       | gec                  | on time,<br>sec | V da              | Ó           | offs<br>C | 0     | ation<br>C | Ó     | c                                      | 0   | с<br>С |              |
| 11      | 12-7-67 | 1023  | 117/11            | 1      | 329             | 0.009    | 2 500     | 0.009                | 8,454           | 23-24             | x           | <u> </u>  | λ     |            |       | X                                      |     | Y      |              |
|         | Ì       | Ì     | 1                 | 1      | 330             | 0 009    | 2 500     | 0 009                | 8.463           | 1                 | 1           | í –       | 1     | í          | ĺ     | í                                      | 1   | [ ]    |              |
|         |         |       |                   | 1      | 331             | 0 020    |           | 0.020                | 8,483           |                   |             |           |       |            |       |                                        |     |        |              |
| 12      | 12-7-67 | 1033  | ITF/12            | 1 1    | 204             | 0.010    | 5-200     | 0,010                | 10 798          | 23-24             | X           | {         | x     |            | }     | ۲.                                     |     | X      |              |
|         |         |       |                   | 1      | 105             | 0.010    | 2 500     | 0.010                | 10,808          |                   |             |           |       |            |       |                                        |     |        |              |
|         |         |       |                   | 1      | 106             | 0.050    |           | 0.020                | 10 858          |                   |             |           |       |            |       | 1                                      |     |        |              |
| 1       |         | i     |                   |        |                 |          | ì         |                      | Phase IV        | speci             | al du       | ty cy     | cles  |            |       |                                        |     |        |              |
|         |         | [     |                   | [      |                 | 5        | Block     | L-1 sho              | rt pulse :      | vidth coo         | ling        | effec     | ts, i | nsula      | ted e | ngine                                  | ŀ   |        |              |
| 1       | 12-7-67 | 1255  | 1110/6            | 50     | 381             | 0.017    | 0.183     | 0.850                | 32.842          | 23-24             | x           | 1         | x     | 1          | 1     | x                                      |     | х      |              |
| 2       | 12-7-67 | 1656  | TIID/6            | 50     | 431             | 0.017    | 0.283     | 0.850                | 33.692          | 23-24             | X           |           | x     |            |       | X                                      |     | x      |              |
| 3       | 12-7-67 | 1713  | IIID/6            | 50     | 481             | 9.017    | 0.383     | 0.850                | 34.542          | 23-24             | x           |           | x     |            |       | x ]                                    | [   | x      |              |
| ι,      | 12-7-67 | 1727  | IIID/6            | 50     | 531             | 0.017    | 0.483     | 0.850                | 35,392          | 23-24             | x           |           | х     |            |       | X                                      |     | x      |              |
| 5       | 12-7-67 | 1742  | 1110/6            | 50     | 581             | 0.017    | 0.983     | 0.850                | 36.242          | 23-24             | X           | ĺ         | x     |            | í I   | X                                      |     | х      |              |
| 6       | 12-7-67 | 1853  | 111D/6            | 50     | 631             | 0.017    | 2 500     | 0,850                | 37.092          | 23-24             | x           | <b>\</b>  | x     | 1          |       | X                                      | [   | x      | B-256 failed |
|         |         |       |                   |        |                 |          |           |                      | Phase IV        | - speci           | al du       | ty cy     | cles  |            |       |                                        |     |        |              |
|         |         |       |                   |        |                 |          | Bloc      | к M-1 — е            | luster in:      | sulation          | evalu       | ation     | , ins | ulated     | d eng | inc                                    |     |        |              |
| 1       | 12-7-67 | 1911  | IIID/6            | 1      | 632             | 20.000   |           | 20.000               | 57.092          | 23-24             | x           | 1         | x     |            |       | X                                      |     | x      |              |
|         |         |       |                   | 10     | 642             | 0.017    | 0.183     | 0,170                | 57 262          |                   |             | ŀ         |       |            |       |                                        | !   |        |              |
|         | - (     |       |                   |        |                 |          |           |                      | Phase IV        | - sneci           | ւ<br>ա1. ժա | tv ov     | nies. |            |       | •                                      | 1   |        | •            |
|         |         |       |                   |        |                 |          | Block L-2 | 2 - short            |                 | -                 |             |           |       | sulat      | ed e  | ngine                                  |     |        |              |
| 1       | 12-7-67 | 1948  | 10/14             | 50     | 367             | 0.017    | 0.183     | 0.850                | 68.203          | 23-24             | x l         | ۰ I       | x     | . 1        |       | I X                                    | [ ] | x      | •            |
|         | 12-7-67 | 2013  | ID/14             | 50     | 417             | 0.017    | 0,283     | 0,850                | 69.053          | 23-24             | x           |           | x     |            |       | x                                      |     | x      |              |
|         | 12-7-67 | 2025  | ID/14             | 50     | 467             | 0.017    | 0 383     | 0,850                | 69.903          | 23-24             | x           |           | x     |            |       | x                                      |     | x      |              |
|         | 12-7-67 | 2037  | ID/14             | 50     | 517             | 0 027    | G.483     | 0.850                | 70.753          | 23-24             | x           |           | x     | 1          | 1     | x                                      | í 1 | x      |              |
|         |         |       |                   |        |                 |          |           | ليشتب                |                 |                   |             |           |       |            |       | نـــــــــــــــــــــــــــــــــــــ | L   |        |              |

THERMOCHEMICAL TEST AREA

.

I

DOC. NO. REVISION PAGE A-19 MSC-EP-R-68-17 New OF A-49

•

| tun no. | Date    | Time, | Engine no.<br>and | No. of | Cumu-<br>lative |        | Off time,      | On time<br>this run, | Cumu-<br>lative  | Valve<br>voltage, |              | in             | Clu   | h valv<br>uster<br>lation | Int        | er-  | Cr | cos<br>eds | • Remarks                              |
|---------|---------|-------|-------------------|--------|-----------------|--------|----------------|----------------------|------------------|-------------------|--------------|----------------|-------|---------------------------|------------|------|----|------------|----------------------------------------|
|         |         | hr    | location          | pulses | pulses          | 860    | BGC            | sec                  | on time,<br>sec  | V de              | 0            | c              | 180.  | C                         | CONIN<br>O | C    | 0  | с,         |                                        |
| 5       | 12-7-67 | 2112  | ID/14             | 50     | 567             | 0 017  | 0.983          | 0 850                | 71.603           | 23-24             | x            |                | x     |                           |            | x    |    | x          | · · · · · · · · · · · · · · · · · · ·  |
| 6       | 12-7-67 | 2124  | 10/14             | 50     | 617             | 0.017  | 2.500          | 0.850                | 72.453           | 23-24             | X            |                | X     | 1                         | 1          | X    | }  | x          |                                        |
|         |         |       |                   |        | .               |        |                | 1                    | Phane IV         | ' — speci         | l<br>nl du   | ty cy          | cles  |                           |            |      |    |            |                                        |
|         |         | [     | 1                 | Í      |                 |        | Block          | M-2 - cl             | ster ins         | ulation e         | valus        | tion,          | unin  | nsulat                    | ed en      | gine | [  | [ ]        |                                        |
| 2       | 12-7-67 | 2200  | 10/14             | 1      | 618             | 20 000 |                | 20.000               | 92.453           | 23-24             | 1 x          |                | x     |                           |            | x    |    | x          |                                        |
| -       |         |       |                   | 10     | 628             | 0.017  | 0.183          | 0 170                | 92.623           |                   | 1            |                |       |                           |            |      |    |            |                                        |
| ì       | . 1     |       |                   |        |                 |        | [              |                      | Phone TV         | [<br>— speci      | l<br>ni du   | 1 I<br>1 V A V | nal-  | 1                         | 1          |      |    |            |                                        |
|         |         |       |                   |        |                 |        | 910            | .k B-3 — 1           |                  |                   |              |                |       |                           | y ota      | te   |    |            |                                        |
| 2       | 12-8-67 | 0151  | 176/4             | 7      | 407             | 0 850  |                | 0.850                | 18,487           | 23-24             | 1 x          | 1              | x     | 1                         | I I        | x    |    | x          |                                        |
|         | 15-0-01 | 1,10  | 1118/8            | 1      | 387             | 0.850  |                | 0.850                | 17 008           | 2,5-2-            | <b> </b> ^ . |                | î     |                           |            |      |    |            |                                        |
|         |         |       | IVD/2             | 5      | 511             | 0.050  | 0.150          | 0,250                | 34.497           |                   |              |                |       |                           |            |      |    |            |                                        |
| 1       |         |       | 10/13             | 5      | 120             | 0.050  | 0,150          | 0.250                | 15 516           |                   | 1            |                |       |                           | 1          |      |    |            |                                        |
| 3       | 12-8-67 | 0245  | IVS/4             | 1      | 408             | 0.550  |                | 0.550                | 19 037           | 23-24             | x            |                | x     |                           |            | x    |    | x          |                                        |
|         |         |       | 1115/8            | 1      | 388             | 0.550  |                | 0 550                | 17 558           |                   | ļ            |                |       | ļ                         | {          |      |    |            |                                        |
|         |         |       | IVD/2             | Э      | 514             | 0 150  | 0.050          | 0.450                | 34,947           |                   | [            |                |       |                           |            |      |    |            |                                        |
| 1       |         |       | IU/13             | 3      | 123             | 0 150  | 0.050          | 0.450                | 15.966           |                   |              |                |       |                           |            |      |    |            |                                        |
| 5       | ļ       |       |                   | }      |                 |        | ) !            |                      | Phase IV         | — speci           | al du        | ty cy          | les   | 1                         | וון        |      |    | ]          |                                        |
|         |         |       |                   |        |                 |        | Blo            | ск в-4               | four eng         | ine opera         | tion,        | pula           | ing c | out of                    | phas       | e j  |    |            |                                        |
| 1       | 12-8-67 | 0410  | IVD/2             | 20     | 524             | 0 017  | 0.183          | 0,170                | 35,117           | 23-24             | x            | }              | X     | ļ                         |            | x    |    | X          | Engines 4 and 12 lead engines 2 and 13 |
|         |         |       | 10/13             | 10     | 133             | 0.017  | 0.183          | 0.170                | 16 136           |                   |              |                |       |                           |            |      |    |            | by 50 msec (1 through 5)               |
|         |         |       | IVS/L             | 10     | 418             | 0.054  | 0 146          | 0 540                | 19.577           |                   |              |                |       |                           |            |      |    |            |                                        |
|         |         |       | 116/12            | 10     | 116             | 0 054  | 0.146          | 0.540                | 11 368           |                   |              |                |       |                           |            | _    |    |            |                                        |
| s       | 12-8-67 | 0443  | IVD/2             | 10     | 534<br>143      | 0.017  | 0.183<br>0.183 | 0.170<br>0.170       | 35 287<br>16,306 | 23-24             | x            |                | x     |                           |            | x    |    | ×          |                                        |
| l       |         |       | IU/13             |        | 143             | 0.017  | 0,103          | 0.110                | 10,305           |                   |              |                |       |                           |            |      |    |            |                                        |

THERMOCHEMICAL TEST AREA

.

ł

MSC-EP-R-68-17 New OF A-19

| Run no. | Date    | Time, | Frigine no. | No. of<br>pulses | Cumu.<br>lative | On time, | Off time, | On time<br>this run, | Cumu-<br>lative<br>on time, | Valve<br>voltage, |   | uin<br>toffs | 01       | uster | Ir | nter- | 6   | rosu<br>ceda | Remarks                                                              |
|---------|---------|-------|-------------|------------------|-----------------|----------|-----------|----------------------|-----------------------------|-------------------|---|--------------|----------|-------|----|-------|-----|--------------|----------------------------------------------------------------------|
|         |         |       | location    | ľ                | pulses          | {        |           | sec                  | 500                         | V de              | 0 | c            | 0        | C     | 0  | c     | 0   | 0            |                                                                      |
|         |         | 1     | IVS/4       | 10               | 428             | 0.050    | 0 150     | 0.500                | 20.077                      |                   |   | <u> </u>     | <u> </u> |       | -[ | +     | ╎─  | 1            |                                                                      |
|         |         |       | IIS/12      | 10               | 126             | 0 050    | 0 150     | 0.500                | 11.868                      | i                 |   |              |          |       |    |       |     | 1            |                                                                      |
| 3       | 12-8-67 | 0456  | IVD/2       | 10               | 544             | 0 017    | 0 183     | 0.170                | 35 457                      | 23-24             | х | 1            | x        |       |    | x     |     | x            |                                                                      |
|         |         | 1     | IU/13       | 10               | 153             | 0.017    | 0 183     | 0.170                | 16.476                      |                   | - |              | 1        | 1     |    |       |     |              |                                                                      |
| I       |         | ſ     | 1VS/4       | 10               | 438             | 0.048    | 0.152     | 0.480                | 20.557                      | 1                 | ſ | {            | {        | {     | {  | {     | ſ   | {            |                                                                      |
|         |         |       | IIS/12      | 10               | 136             | 0.048    | 0,152     | 0.480                | 12.348                      |                   |   |              |          |       |    |       |     |              |                                                                      |
| 4       | 12-8-67 | 0506  | IVD/2       | 10               | 554             | 0.017    | 0.133     | 0.170                | 35 627                      | 23-24             | х |              | x        |       |    | x     |     | x            | Program mispatch                                                     |
|         |         |       | 10/13       | 10               | 163             | 0.017    | 0 133     | 0.170                | 16.646                      |                   |   | 1            |          |       | 1  | 1     |     |              |                                                                      |
|         |         | 4     | IVS/4       | 10               | 448             | 0.046    | 0 154     | 0.460                | 21.017                      |                   | ł | {            | {        | ł     | 1  | 1     | ļ.  | ł            |                                                                      |
|         |         | !     | 115/12      | :0               | 146             | 0 046    | 0 154     | 0.460                | 12 808                      |                   | ľ | í í          | í –      | í     | 1  | í –   | ł – | 1            |                                                                      |
| 5       | 12-8-67 | 0521  | IVD/2       | 10               | 564             | 0.017    | 0 133     | 0.170                | 35 797                      | 23-24             | x |              | x        |       |    | х     |     | x            | Program mispatch                                                     |
|         |         |       | IU/13       | 10               | 173             | 0.017    | 0.133     | 0.170                | 16.816                      |                   |   | !            |          |       | [  |       |     |              |                                                                      |
|         | i       | l     | IV8/4       | 10               | 458             | 0.044    | 0.156     | 0.440                | 21.457                      |                   |   | ļ            | ļ        |       |    | [     | Į   | 1            |                                                                      |
|         |         |       | 115/12      | 10               | 156             | 0 044    | 0.156     | 0.440                | 33.248                      |                   |   |              |          |       |    |       | ł   |              |                                                                      |
| 6       | 12-8-67 | 0538  | IVD/2       | 5                | 569             | 0.050    | 0 150     | 0.250                | 36 047                      | 23 <b>-</b> 21    | x |              | x        | ĺ     | 1  | x     |     | x            | Engines 4 and 12 load engines 2 and 13<br>by 100 mice (6 through 10) |
|         |         |       | 10/13       | 5                | 378             | 0.050    | 0 150     | 0.250                | 17 066                      |                   |   |              |          |       |    | f i   |     | 1            |                                                                      |
| 1       |         |       | IVS/4       | 5                | <b>հ63</b>      | 401.0    | 0 096     | 0.520                | 21 977                      |                   |   | 1            |          |       | 1  | 1     | 1   | <b>\</b> '   | · · ·                                                                |
|         |         |       | IIS/12      | 5                | 161             | 0.104    | 0 096     | 0.520                | 13 768                      |                   |   |              |          |       |    |       |     |              |                                                                      |
| 7 ]     | 12-8-67 | 0550  | IVD/2       | 5                | 574             | 0 050    | 0 150     | 0 250                | 36 297                      | 23-24             | x |              | x        |       |    | 1.    |     | ۲            |                                                                      |
|         |         |       | IU/13       | 5                | 183             | 0 050    | 0.150     | 0.250                | 17.316                      |                   |   |              |          |       |    | i     |     |              |                                                                      |
|         |         |       | IVS/4       | 5                | 468             | 0 100    | 0.100     | 0 500                | 55 PLL                      | l                 |   |              |          |       | {  | {     | 1 1 |              |                                                                      |
|         |         |       | 115/12      | 5                | 165             | 0 100    | 0,100     | 0 500                | 14 268                      |                   |   |              |          |       |    |       |     |              |                                                                      |
| 8       | 12-8-67 | 0709  | IVD/2       | 5                | 579             | 0.050    | 0 150     | 0.250                | 36.547                      | 23-24             | x |              | y        |       |    | X     |     | х            |                                                                      |
|         |         |       | IV/13       | 5                | 188             | 0 050    | 0,150     | 0 250                | 17.566                      |                   |   |              |          |       | ]  |       | 1   |              |                                                                      |
| ļ       | j       |       | 178/4       | 5                | 473             | 0.098    | 0.102     | 0.490                | 22.967                      |                   |   | ļ            | , ]      |       | ļ  | ļ     | ļ   |              |                                                                      |
| 1       |         |       | IIS/12      | 5                | 171             | 0 098    | 9.102     | 0 490                | 14.758                      |                   |   |              |          |       | Ι. |       |     |              |                                                                      |

- THERMOCHEMICAL TEST AREA

DOC. NO. REVISION PAGE A-21 MSC-EP-R-68-17 New OF A-49

...

- --

|         |         | [           | ļ                             |    |                           | [               |                  |                             | Cumu-              |                           |            |            | Latch | valy          | e pos      | ition |     |     | <b>1</b> |
|---------|---------|-------------|-------------------------------|----|---------------------------|-----------------|------------------|-----------------------------|--------------------|---------------------------|------------|------------|-------|---------------|------------|-------|-----|-----|----------|
| Run no. | Date    | Time,<br>br | Engine no.<br>and<br>location |    | Cumu-<br>lative<br>pulses | On time,<br>sec | Off time,<br>sec | On time<br>this run,<br>see | lative<br>on time, | Valve<br>voltage,<br>V de | Mo<br>obut | in<br>offs |       | ster<br>ation | Int<br>com |       |     | eds | Remarks  |
|         | L       |             |                               |    | -                         |                 |                  |                             | gee                |                           | 0          | C          | 0     | C             | 0          | C     | 0   | C   |          |
| 9       | 12-8-67 | 0720        | IVD/2                         | 5  | 584                       | 0.050           | 0.150            | 0.250                       | 36.797             | 23-24                     | x          | i          | x     |               | 1          | x     | 1   | x   |          |
|         |         |             | 10/13                         | 5  | 193                       | 0 050           | 0 150            | 0.250                       | 17.816             |                           |            |            |       |               |            |       |     | i   |          |
| 4       |         |             | 178/4                         | 5  | 478                       | 0.096           | 0.104            | 0.480                       | 23.447             |                           | 1          |            | 1 '   |               |            |       | 1   |     |          |
|         |         |             | IIS/12                        | 5  | 176                       | 0.096           | C.104            | 0.480                       | 15.238             |                           |            |            |       |               |            |       |     |     |          |
| 10      | 12-8-67 | 0729        | IVD/2                         | 5  | 589                       | 0 050           | 0 150            | 0.250                       | 37.047             | 23-24                     | x          |            | x     |               |            | x     |     | x   |          |
| ļ       |         |             | 10/13                         | 5  | 198                       | 0.050           | 0,150            | 0.250                       | 18.066             |                           | }          |            | } !   | 5             | )          | }     | } ! |     |          |
| - 1     |         |             | IVS/4                         | 5  | 483                       | 0.094           | 0.106            | 0.470                       | 23.917             |                           |            |            |       |               |            |       |     |     |          |
|         |         |             | 118/12                        | 5  | 181                       | 0 094           | 0 106            | 0.470                       | 15.708             |                           |            |            |       |               |            | Į     |     |     |          |
| [       |         |             |                               |    |                           |                 |                  | <b>I</b>                    | Phase IV           | specia                    | ,<br>al du | Lv cyc     | lea   |               |            | {     |     |     |          |
|         |         |             |                               |    |                           |                 | Blo              | ck B-5                      |                    |                           | -          |            |       | us pul        | sing       |       |     |     |          |
| 1       | 12-8-67 | 09=3        | 176/11                        | 10 | 341                       | 0.017           | 0.183            | 0.170                       | 8.653              | 23-24                     | x          |            | x     |               |            | x     |     | x   |          |
| - I     |         |             | IIIF//                        | 10 | 83                        | 0.017           | 0.183            | 0.170                       | 5.20%              |                           |            |            |       |               |            |       | 1   | 1   |          |
|         |         |             | IID/10                        | 10 | 230                       | 0.017           | 0.183            | 0.170                       | 37.083             |                           |            |            |       |               |            |       |     | 1   |          |
|         |         |             | 10/13                         | 10 | 509                       | 0.017           | 0.183            | 0.170                       | 18.236             |                           |            |            |       |               |            |       |     |     |          |
| 1       |         |             | בעשיד                         | 30 | 249                       | 0.017           | 0.183            | 0.170                       | 23.612             | I                         |            | '          | 1     |               |            |       | 1   | 1   |          |
|         |         |             | 1110/6                        | 20 | 652                       | 0.017           | 0,183            | 0.170                       | 57.432             |                           | i i        | ' I        | (     | '             |            | l I   | 11  | Í   |          |
| 2       | 12-8-67 | 1002        | 117/11                        | 5  | 346                       | 0.050           | 0.150            | 0.250                       | 8.903              | 23-24                     | x          |            | x     |               |            | x     |     | x   |          |
| ł       | ļ       |             | 1115/7                        | 5  | 88                        | 0.050           | 0,150            | 0.250                       | 5.454              | -                         |            |            |       |               |            |       | { } | {1} |          |
|         |         |             | 110/10                        | 5  | 235                       | 0.050           | 0.150            | 0.250                       | 37.333             |                           |            |            |       |               |            |       |     |     |          |
| 1       |         |             | IV/13                         | 5  | 213                       | 0.050           | 0.150            | 0.250                       | 18.486             |                           |            |            |       |               |            |       |     |     |          |
| ļ       |         |             | IVU/1                         | 5  | 254                       | 0.050           | 0.150            | 0.250                       | 23.862             |                           |            | 1          |       |               |            |       |     |     |          |
| ļ       | •       |             | 1110/6                        | 5  | 657                       | 0.050           | 0,150            | 0.250                       | 57.682             |                           | ł          |            |       |               |            |       |     |     |          |
| 3       | 12-8-67 | 1024        | IIF/21                        | 3  | 349                       | 0.150           | 0.050            | 0.450                       | 9.353              | 23-24                     | x          |            | x     |               |            | x     |     | x   |          |
|         | ļ       |             | IIIF/7                        | 3  | 91                        | 0.150           | 0.050            | 0.450                       | 5.904              |                           |            | 1          |       | -             | · }        |       |     |     |          |
|         |         |             | IID/10                        | 3  | 238                       | 0.150           | 0.050            | 0.450                       | 37.783             |                           |            |            |       |               |            |       |     | 1   |          |

.

THERMOCHEMICAL TEST AREA

MSC-EP-R-68-17 New OF

A-22 A-49

.

|         |         |             |                               |                  |                           |                 |                 | On time     | Cumu-                     | Valve    |       |              |      |               | <u> </u> | ition | <u> </u> |            |         |
|---------|---------|-------------|-------------------------------|------------------|---------------------------|-----------------|-----------------|-------------|---------------------------|----------|-------|--------------|------|---------------|----------|-------|----------|------------|---------|
| hun no. | Date    | Timo,<br>br | Engine no.<br>and<br>location | No. of<br>pulses | Cumu-<br>lative<br>pulses | On time,<br>nec | Off time,       | this run,   | lative<br>on time,<br>sec | 20140.00 | shut  | ain<br>toffs | isol | ater<br>ation | conn     |       | fe       | 085<br>edd | Remarks |
|         |         |             |                               |                  |                           |                 |                 |             |                           |          | 0     | c            | 0    | C             | 0        | ¢     | 0        | C          |         |
|         |         | 1           | 10/13                         | 3                | 216                       | 0.150           | 0.050           | 0.450       | 18.936                    |          |       | 1            |      |               |          |       | 1        |            |         |
|         |         |             | IVU/1                         | 3                | 257                       | 0.150           | 0.050           | 0.450       | 24.312                    | )        |       | ]            | )    |               |          | }     |          | ]          |         |
|         |         |             | IIID/6                        | 3                | 660                       | 0.150           | 0,050           | 0.450       | 58.132                    |          |       |              |      |               |          |       |          |            |         |
| L       | 12-8-67 | 1035        | 117/11                        | 1                | 350                       | 0.200           |                 | 0.200       | 9 553                     | 23-24    | x     |              | X    |               |          | X     |          | X          |         |
|         |         |             | IIIF/7                        | 1                | 92                        | 0.200           |                 | 0.200       | 6.104                     |          |       |              |      |               |          |       |          |            |         |
|         |         |             | 110/10                        | 12               | 239                       | 0.200           | ļ               | 0.200       | 37.983                    | ļ        | }     | {            | ł    |               | 1        | ſ     | 1        | 1          |         |
|         |         | [           | 10/13                         | 1                | 217                       | 0.200           |                 | 0.200       | 19.136                    |          |       |              |      |               |          |       | 1        | i i        |         |
|         |         |             | 100/1                         | 1                | 258                       | 0 200           |                 | 0 200       | 24.512                    |          |       |              |      |               |          |       |          |            |         |
|         |         |             | IIID/6                        | 1                | 661                       | 0.200           |                 | 0.200       | 58,332                    |          |       |              |      |               | [        |       |          | İ          |         |
|         |         |             |                               |                  | İ                         |                 |                 |             | Phase IV                  | - specia | .1 du | ı<br>hty cy  | les  |               | Ι.       |       |          |            |         |
| i       |         |             | ł                             | l                | l                         | Ĺв              | 1<br>10ck B-6 - | - six engin |                           |          |       |              |      | B, ty         | to st    | eauv  | ntate    | ,          | ł       |
| 2       | 12-8-67 | 1056        | 117/11                        | 1                | 351                       | 0.570           | I               | 0.570       | 10.123                    | 23-24    | x     |              | x    |               | 1        | x     |          | x          |         |
| •       | *F=0=01 |             | IIIF/7                        | 1                | 93                        | 0.570           |                 | 0.570       | 6.674                     |          |       |              |      |               |          |       |          |            |         |
|         |         |             | IID/10                        | 3                | 242                       | 0.017           | 0,183           | 0 051       | 38.034                    |          |       |              |      |               |          |       |          |            |         |
|         |         |             | IV/13                         | 3                | 220                       | 0.017           | 0.183           | 0.051       | 19.187                    |          |       |              |      |               |          |       |          |            |         |
|         |         |             | 11/1                          | 3                | 261                       | 0.017           | 0 183           | 0.051       | 24.563                    | ļ        | ļ     | Į –          | ļ    |               | ļ        | {     | 1        | ļ          | 1       |
|         |         |             | 11ID/6                        | 3                | 664                       | 0 017           | 0.183           | 0.051       | 58.383                    |          |       | [            |      |               | 1        |       |          |            |         |
| 2       | 12+8-67 | 1116        | IIF/11                        | 1                | 352                       | 0 450           |                 | 0 450       | 10.573                    | 23-24    | x     |              | x    |               |          | x     |          | x          |         |
|         |         | ]           | IIIF/T                        | 1 1              | 94                        | 0.450           | 1               | 0.450       | 7.124                     | }        |       | ]            |      |               | ]        |       | 1        | ]          |         |
|         |         |             | 110/10                        | 3                | 245                       | 0.050           | 0.150           | 0.150       | 38.184                    |          |       |              |      |               |          |       |          |            |         |
|         |         |             | 10/13                         | 3                | 223                       | 0 050           | 0,150           | 0 150       | 19.337                    | ł        | l     | Į            | l    |               | Į        | (     | Į į      | [          |         |
|         |         |             | TV0/1                         | 3                | 264                       | 0.050           | 0.150           | 0.150       | 24.713                    |          |       |              | 1    | ·             |          |       |          |            |         |
|         |         |             | IIID/6                        | 3                | 667                       | 0.050           | 0,150           | 0 150       | 58.533                    |          |       |              | 1    |               |          |       |          |            |         |

THERMOCHEMICAL TEST AREA

,

I

MSC-EP-R-68-17 New

PAGE OF

A-23 A-49

|         |         | Time, | Engine no.      | No. of | Cumu-            | On time.       | Off time, | On time          | Cumu-<br>lative  | Valve            | Ma    | ia    |        | ster  | Int     |     |   | 086 | Remarks                                                                                                                         |
|---------|---------|-------|-----------------|--------|------------------|----------------|-----------|------------------|------------------|------------------|-------|-------|--------|-------|---------|-----|---|-----|---------------------------------------------------------------------------------------------------------------------------------|
| tun no, | Date    | hr    | end<br>location |        | lative<br>pulses | BCC            | 160       | this run,<br>sec | on time,<br>sec  | voltage,<br>V de | shut  | offs  | isola  | ation | <b></b> |     |   | eds |                                                                                                                                 |
|         |         |       |                 |        |                  |                |           |                  |                  |                  | 0     | ¢     | 0      | ¢     | 0       | c   | 0 | ¢   |                                                                                                                                 |
|         |         |       |                 |        |                  |                | '         |                  | Phase IV         | speci            | nl du | ty cy | eles   |       |         |     |   |     |                                                                                                                                 |
| ļ       |         |       | [ I             |        |                  |                | Blo       | ock B-7          | eight en         | gine oper        | ation | , rul | sing ( | out o | i yhai  | 1e  |   | 1   |                                                                                                                                 |
| 1       | 12-8-67 | 1422  | TID/10          | 5      | 250              | 0.05%          | 0.146     | 0.270            | 38.454           | 23-24            | x     |       | x      |       |         | x   |   | x   | NOTE. Engines 10, 13, 1, and 6 lead<br>engines 11, 15, 3, and 8 by 50 msec<br>in runs 1 to 5 and by 100 msec in<br>runs 6 to 10 |
|         |         |       | IU/13           | 5      | 228              | 0.054          | 0 246     | 0.270            | 19.607           |                  | 1     | 1     | 1      | 1 '   | 1       |     |   | 1   |                                                                                                                                 |
|         |         | ĺ     | 1/1/1           | 5      | 269              | 0.054          | 0.146     | 0.270            | 24.983           |                  |       |       |        |       |         |     |   |     |                                                                                                                                 |
|         |         |       | 111D/6          | 5      | 672              | 0.054          | 0.146     | 0.270            | 58 803<br>10 658 |                  |       |       |        |       |         |     |   |     |                                                                                                                                 |
|         |         |       | IIF/11<br>IS/16 | 5      | 357<br>82        | 0.017          | 0.183     | 0.085            | 9.024            |                  | 1     |       |        |       |         |     |   | 1   |                                                                                                                                 |
|         |         |       | IVE/3           | 5      | 82               | 0.017          | 0.183     | 0.085            | 5.120            |                  |       |       | Í      |       |         |     |   |     |                                                                                                                                 |
|         | i       |       | IIIS/B          | 5      | 393              | 0,017          | 0,183     | 0 085            | 17.643           |                  |       |       |        | [     |         |     |   |     |                                                                                                                                 |
| 2       | 12-8-67 | 1524  | IID/10          | 5      | 255              | 0.050          | 0.150     | 0.250            | 38 704           | 23-24            | x     |       | x      |       |         | x   |   | x   |                                                                                                                                 |
|         |         |       | IU/13           | 5      | 233              | 0.050          | 0.150     | 0 250            | 19 857           |                  | ļ     | [     |        |       |         |     |   | - I |                                                                                                                                 |
|         |         |       | IVU/1           | 5      | 274              | 0.050          | 0 150     | 0.250            | 25 233           |                  | 1     |       |        | ſ     |         |     |   | 1   |                                                                                                                                 |
|         |         |       | IIID/6          | 5      | 677              | 0.050          | 0.150     | 0.250            | 59 053           |                  |       |       |        |       |         |     |   |     | Program mispatch                                                                                                                |
|         |         |       | INF/11          | 5      | 362              | 0.017          | 0 133     | 0.085            | 10 743           |                  |       |       |        |       |         |     |   |     | Program Mispicen                                                                                                                |
|         |         | ļ     | 15/16<br>IVF/3  | 5      | 87<br>87         | 0.017<br>0 017 | 0 133     | 0 005            | 9.109<br>5 205   |                  | }     | 1     |        |       |         | - 1 |   | 1   |                                                                                                                                 |
|         |         |       | IIIS/8          | 5      | 398              | 0.017          | 0.133     | 0.085            | 17.728           |                  |       |       |        |       |         |     |   |     |                                                                                                                                 |
| з       | 12-8-67 | 1541  | 11D/10          | 5      | 260              | 0.048          | 0.152     | 0.240            | 38.944           | 23-24            | x     |       | x      |       |         | 1   |   |     |                                                                                                                                 |
| -       |         |       | IU/13           | 5      | 238              | 0.048          | 0.152     | 0.240            | 20 097           |                  |       |       |        |       |         |     |   |     |                                                                                                                                 |
|         |         | 1     | 170/1           | 5      | 219              | 0,048          | 0 152     | 0.240            | 25.773           |                  |       | 1     | 1      | ]     | 1       | Ì   |   | 1   |                                                                                                                                 |
|         |         |       | 1110/6          | 5      | 682              | 0.648          | 0.152     | 0.240            | 59.293           |                  |       |       |        | [     |         |     |   |     |                                                                                                                                 |
|         |         |       | IIF/11          | 5      | 367              | 0.017          | 0.183     | 0.085            | 10.828           |                  |       |       |        |       |         |     |   |     |                                                                                                                                 |
|         |         |       | IS/16           | 5      | 92               | 0.017          | P.183     | 0.085            | 9.194            | l                | [     | L     |        |       | Ļ       |     |   |     |                                                                                                                                 |

,

•

THERMOCHEMICAL TEST AREA

MSC-EP-R-68-17 New

PAGE

A-24 A-49

.

| Run no. | Date       | Time, | i oaro                                 | No. of<br>pulses | TI24714 | On time, | Off Line, | On time<br>this run, | Cumu-<br>lative<br>on time, | Valve<br>voltnge,<br>V dc |   | in<br>offs |                | ster<br>ation | Int.<br>conn |   |     | oos<br>eds | kemar's |
|---------|------------|-------|----------------------------------------|------------------|---------|----------|-----------|----------------------|-----------------------------|---------------------------|---|------------|----------------|---------------|--------------|---|-----|------------|---------|
|         |            |       | location                               | <u>۲</u>         | pulses  | 1        |           | sec                  | 860                         | , ac                      | 0 | С          | 0              | C             | 0            | С | 0   | C          |         |
|         |            |       | IVF/3                                  | 5                | 92      | 0,017    | 0.183     | 0.085                | 5.240                       |                           |   |            |                |               |              | : |     |            |         |
|         | Į          | ļ     | IIIs/8                                 | 5                | 403     | 0.017    | 0.183     | 0 085                | 17.813                      | 1                         | } |            | \ '            | \<br>\        |              |   | 1 ' | ) '        |         |
| 4       | 12-8-67    | 1554  | IID/10                                 | 5                | 265     | 0.046    | 0.154     | 0.230                | 39.174                      | 23-24                     | x |            | X              |               |              | х |     | x          |         |
| j       | 1          |       | 10/13                                  | 5                | 243     | 0.046    | 0.154     | 0.230                | 20-327                      |                           |   |            |                | l             | ļ            |   | ĮΙ  |            |         |
|         | ļ          | {     | 170/1                                  | 5                | 284     | 0.046    | 0.154     | 0.230                | 25.703                      |                           | 1 |            |                | ł             |              |   |     |            |         |
|         |            | 1     | 111D/6                                 | 5                | 687     | 0.046    | 0.154     | 0.230                | 59.523                      |                           | ľ |            |                |               |              |   |     |            |         |
|         |            | l     | IIF/11                                 | 5                | 372     | 0.017    | 0.183     | 0.085                | 10.913                      | 1                         | ł |            | ₿ <sup>;</sup> | 1             | }            |   | '   |            |         |
|         |            |       | IS/16                                  | 5                | 97      | 0 017    | 0.183     | 0.085                | 9 279                       |                           |   |            |                | ſ             |              |   |     |            |         |
|         |            | 1     | IV7/3                                  | 5                | 97      | 0.017    | 0 183     | 0.085                | 5.375                       | 1                         |   |            |                |               | [            |   | l.  | l          |         |
|         |            | Į –   | IIIS/8                                 | 5                | 408     | 0,017    | 0.183     | 0 085                | 17.898                      | )                         |   | )          |                | ]             |              |   | ]   |            |         |
| 5       | 12-8-67    | 1605  | IID/10                                 | 5                | 270     | 0.044    | 0.156     | 0.220                | 39 394                      | 23-24                     | x | f          | X              |               | !            | x | 1   | X          |         |
|         | [ ,        |       | 10/13                                  | 5                | 248     | 0.044    | 0.156     | 0 550                | 20.547                      | ļ                         | ļ |            | ļ :            |               | ſ            |   | {   |            |         |
|         | )          | ]     | IVU/1                                  | 5                | 289     | 0.044    | 0.156     | 0 220                | 25 923                      |                           | 1 |            |                | 1             |              |   |     |            |         |
|         |            | Į     | IIID/6                                 | 5                | 692     | 0.044    | 0.156     | 0.220                | 59-743                      | 1                         | ľ |            | 1              |               |              |   | Ι.  |            |         |
|         | ł          | ſ     | 117/11                                 | 5                | 377     | 0.017    | 0.183     | 0.085                | 10.998                      |                           | 1 |            | j '            | )             | 1            |   | 1   | ]          |         |
|         |            |       | IS/16                                  | 5                | 102     | 0.017    | 0.183     | 0.085                | 9.364                       |                           | ľ |            |                |               | 1            |   | 1   |            |         |
|         |            | 1     | IVF/3                                  | 5                | 102     | 0.017    | 0.183     | 0.085                | 5.460                       | ļ                         | ļ | l          | [ i            | l I           | ļ            |   | [   |            |         |
|         | }          | 1     | IIIS/8                                 | 5                | 413     | 0.017    | 0.183     | 0.085                | 17.983                      |                           | 1 |            |                | i i           |              |   |     |            |         |
| 6       | 12-8-67    | 1618  | IID/10                                 | 3                | 273     | 0.104    | 0.096     | 0.312                | 39.706                      | 23-24                     | x |            | x              |               |              | x |     | x          | x       |
| i       | l          | ļ     | 30/13                                  | 3                | 251     | o 104    | 0.096     | 0.312                | 20.859                      | 1                         |   |            | יו             | 1             | )            |   | 1   |            |         |
|         |            | ]     | IVU/1                                  | 3                | 292     | 0.104    | 0 096     | 0.312                | 26.235                      |                           |   |            |                |               |              |   |     |            |         |
|         |            | 1     | 111D/6                                 | 3                | 695     | 0.104    | 0.096     | 0.315                | 60.055                      | [                         | Į | l          | [ i            | l             | ļ            |   | ļi  | 1          |         |
|         | 1          | ł     | 11F/11                                 | 3                | 380     | 0.050    | 0.150     | 0.150                | 11.148                      |                           | 1 |            |                |               |              |   |     |            |         |
|         |            |       | 15/16                                  | 3                | 105     | 0.050    | 0,150     | 0.150                | 9.514                       |                           |   |            |                |               |              |   |     |            |         |
|         | [          | l     | IVF/3                                  | 3                | 105     | 0.050    | 0.150     | 0.150                | 5.610                       | 1                         | 1 |            | \ '            | 1             | 1            |   | 1 ' |            |         |
|         | i          |       | III5/8                                 | 3                | 416     | 0.050    | 0.150     | 0.150                | 18.133                      |                           | I |            |                |               |              |   |     |            |         |
|         | . <u> </u> |       | ······································ |                  |         |          | _         |                      |                             |                           |   |            |                |               |              |   |     |            |         |
|         |            |       |                                        |                  | ·       |          |           |                      |                             | ·····                     |   |            |                |               |              |   |     |            |         |

.

•

.

THERMOCHEMICAL TEST AREA

рос. NO. MSC-EP-R-68-17

-17 New

PAGE OF

A-25 A-49

Т

•

.

|         |         | ļ           |                               | l          |                           |                 |                  |                             | Cumu-              |                           |      |              | Latch       | valy          | e po | sition        |     |            |         |
|---------|---------|-------------|-------------------------------|------------|---------------------------|-----------------|------------------|-----------------------------|--------------------|---------------------------|------|--------------|-------------|---------------|------|---------------|-----|------------|---------|
| Run no. | Date    | Time,<br>hr | Engine no.<br>and<br>location | in the new | Cumu-<br>lative<br>pulses | On time,<br>sec | Off time,<br>sec | On time<br>this run,<br>sec | lative<br>on time, | Valve<br>voltage,<br>V de | ahu: | sin<br>toffa | Clu<br>isol | ster<br>ation | In   | ter-<br>nects |     | oaa<br>eda | Remarks |
|         |         | [           | [                             |            | -<br>                     |                 |                  |                             | sec                | ļi                        | 0    | ¢            | Q           | C             | 0    | C             | 0   | ¢          |         |
| 7       | 12-8-67 | 1630        | IID/10                        | 3          | 276                       | 0,100           | O 100            | 0.300                       | 40.206             | 23-24                     | x    |              | x           |               | Γ    | x             |     | x          |         |
|         |         |             | 10/13                         | 3          | 254                       | 0.100           | 0,100            | 0.300                       | 21.159             |                           |      |              |             |               |      |               |     |            |         |
|         |         | 1           | 170/1                         | 3          | 295                       | 0.100           | 0,100            | 0 300                       | 26 535             | ]                         | 1    | ]            | ]           |               | 1    | ]             |     |            |         |
|         |         |             | 1110/6                        | 3          | 698                       | 0 100           | 0.100            | 0,300                       | 60.355             |                           |      | Í            | 1           |               | 1    |               |     |            |         |
| J       |         | f           | 11F/11                        | 3          | 383                       | 0,050           | 0.150            | 0.150                       | 11 298             |                           |      | ł            | J           |               | J    | }             |     |            |         |
| 1       |         |             | 19/16                         | З          | 108                       | 0.050           | 0.150            | 0.150                       | 9 664              |                           |      | ]            |             |               |      | ]             |     |            |         |
|         |         |             | IVF/3                         | 3          | 108                       | 0.050           | 0.150            | 0,150                       | 5 760              |                           |      |              |             |               |      |               |     |            |         |
|         |         |             | IIIS/8                        | 3          | 419                       | 0.050           | 0,150            | 0,150                       | 18 283             |                           |      | f            | i i         |               |      | ł             |     |            |         |
| B       | 12-8-67 | 1640        | 11D/10                        | 3          | 279                       | 0.098           | 0,102            | 0.294                       | 40 300             | 23-24                     | x    | ]            | ) x         |               | 1    | Y             |     | X          |         |
| •       |         |             | IU/13                         | 3          | 257                       | 0.098           | 0,102            | 0,294                       | 21.453             |                           |      |              |             |               |      | j –           |     |            |         |
|         |         |             | 170/1                         | 3          | 298                       | 0.098           | 0 102            | 0.294                       | 26.829             |                           |      |              | ĺ           | l             |      |               | L I |            |         |
| Ì       |         |             | 1110/6                        | 3          | 701                       | 0.098           | 0.102            | 0.294                       | 60.649             |                           |      |              |             |               |      |               |     |            |         |
|         |         |             | IIF/11                        | 3          | 386                       | D.050           | 0 150            | 0.150                       | 11.448             |                           |      |              |             |               |      |               |     |            |         |
|         |         |             | 18/16                         | 3          | 111                       | 0.050           | 0 150            | 0.150                       | 9.814              |                           |      |              | l           | l             | l I  | [             | ļļ  |            |         |
| - 1     |         |             | 1VF/3                         | 3          | <b>111</b>                | 0.050           | 0.150            | 0.150                       | 5.910              |                           |      |              |             |               |      |               |     |            |         |
| 9       | 12~8-67 | 1/10        | IIIs/8                        | 3          | 422                       | 0.050           | 0.150            | 0.150                       | 18,433             |                           |      |              |             |               | 1    |               |     |            |         |
| ,       | 10-0-01 | 1049        | IID/10                        | 3          | 282                       | 0.096           | 0,104            | 0.288                       | 40.588             | 23-24                     | x    |              | x           | 1             | { }  | x             | { { | x          |         |
| ]       |         |             | 10/13<br>IVU/1                | 3          | 260                       | 0.096           | 0,104            | 0.288                       | 21 741             |                           |      |              |             |               |      |               |     |            |         |
|         |         |             | IIID/6                        | 3          | 301<br>704                | 0.096<br>0.096  | 0.104            | 0.288<br>0.288              | 27.117<br>60.937   |                           |      |              |             |               |      |               |     |            |         |
| ł       |         |             | 112/11                        | 3          | 389                       | 0.090           | 0.150            | 0.150                       | 11.598             |                           |      |              |             | ļ .           |      |               | I [ | ļ          |         |
|         | Ĩ       |             | 15/16                         | 3          | 114                       | 0.050           | 0,150            | 0,150                       | 9.964              |                           |      |              |             |               |      |               |     |            |         |
|         |         |             | IV7/3                         | 3          | 114                       | 0.050           | 0.150            | 0.150                       | 6.060              |                           |      |              |             |               |      |               |     |            |         |
| [       | (       |             | 1118/8                        | 3          | 425                       | 0.050           | 0,150            | 0.150                       | 18 583             |                           |      |              |             | {             |      |               |     |            |         |
| 10      | 12-8-67 |             | IID/10                        | 3          | 285                       | 0.094           | 0,106            | 0,282                       | 40 870             | 23-24                     | x    |              | x           |               |      | x             |     | x          |         |
|         |         |             | IU/13                         | 3          | 263                       | 0.094           | 0.106            | 0,282                       | 22.023             |                           | î    |              |             |               |      | ~             |     | î          |         |

.

THERMOCHEMICAL TEST AREA

MSC-EP-R-68-17 New OF A-49

---

|         |         |             | Engine no       |                  | Cumu-  |                 |                  | On time         | Cumu-              | Valve          | <u> </u>        |             | т              |               | <u> </u> | ition         | · · · · |            | 4       |
|---------|---------|-------------|-----------------|------------------|--------|-----------------|------------------|-----------------|--------------------|----------------|-----------------|-------------|----------------|---------------|----------|---------------|---------|------------|---------|
| Run no. | Date    | Time,<br>br | and<br>location | No. of<br>pulses | lative | On time,<br>sec | off time,<br>sec | this run,       | lative<br>on time, | A              |                 | lin<br>offa |                | ater<br>ation |          | ier-<br>necta |         | 000<br>100 | Remarks |
|         |         |             |                 |                  |        |                 |                  |                 | 100                |                | 0               | C           | 0              | C             | 0        | c             | 0       | C          |         |
| _       |         |             | 170/1           | 3                | 304    | 0.094           | 0.106            | 0.282           | 27.399             |                | ·               |             | 1              | ŀ             |          |               |         | 1          |         |
|         |         |             | 111D/6 .        | 3                | 707    | 0.094           | 0 106            | 0.282           | 61.219             |                |                 |             |                |               |          |               |         |            | 4       |
|         |         |             | IIF/11          | 3                | 392    | 0.050           | 0 150            | 0.150           | 11.748             |                |                 |             |                |               |          |               |         |            |         |
|         | 1       | )           | 15/16           | 3                | 117    | 0 050           | 0.150            | 0,150           | 10.114             | 1              | 1               | 1           | 1              | 1             | 1        | )             | ]       | )          |         |
|         | i       |             | IVF/3           | 3                | 117    | 0.050           | 0.150            | 0.150           | 6.210              |                |                 |             |                | 1             |          | 1             |         |            |         |
|         |         |             | 1115/8          | 3                | 428    | 0.050           | 0 150            | 0,150           | 18.733             |                |                 |             |                |               | 1        |               | 1       |            |         |
|         |         |             |                 |                  | Phase  | : IV - Blo      | ck H-8           | l<br>Cight engi | l<br>ne operat     | l<br>ion, simu | l<br>ltanr<br>1 | ious ;      | <br>misir<br>f | н<br>ЧБ       |          |               |         |            |         |
| 1       | 12-8-67 | 1952        | IVS/4           | 10               | 493    | 0.017           | 0.183            | 0.170           | 24 087             | 23-24          | X               |             | x              |               |          | x             |         | x          |         |
|         |         |             | IF/15           | 10               | 79     | 0.017           | 0.183            | 0.170           | b 825              |                | i               |             |                | i i           |          |               |         |            |         |
|         |         |             | 118/12          | 10               | 191    | 0.017           | 0.183            | 0.170           | 15.878             | Į              | ļ               | l           | l              | ļ             | l        | [             |         | Į          | ļ       |
|         |         |             | ±11F/7          | 10               | 104    | 0 017           | 0 183            | 0.170           | 7.294              | 1              |                 |             |                |               |          |               | 1       |            |         |
|         |         |             | IVD/2           | 10               | 599    | 0.017           | 0.183            | 0.170           | 37.217             |                |                 |             |                |               |          |               |         | 1          |         |
|         |         |             | IID/10          | 10               | 295    | 0.017           | 0.183            | 0.170           | 41.040             |                |                 |             |                |               |          |               |         | 1          |         |
|         |         |             | 111D/6          | 10               | 717    | 0.017           | 0.183            | 0.170           | 61 389             |                |                 |             |                |               | 1        |               |         |            |         |
|         |         |             | ID/14           | 10               | 638    | 0.017           | 0 383            | 0.170           | 92.793             | l              |                 |             |                |               |          | 1             |         |            |         |
| 2       | 12-8-67 | 2005        | 1VS/4           | 5                | 498    | 0 050           | 0.150            | 0 250           | 24.337             | 23-24          | X               |             | x              |               |          | x             |         |            | -       |
|         |         |             | IF/15           | 5                | 84     | 0 050           | 0 150            | 0.250           | 5 075              | ļ              |                 | ļ           |                | ]             |          | ]             |         | ļ          |         |
|         |         |             | 118/15          | 5                | 196    | 0 250           | 0 150            | 0 250           | 16.198             |                |                 |             | {              |               | ł        | 1             |         | l          |         |
|         |         |             | 111F/7          | 5                | 109    | 0,050           | 0,150            | 0 250           | 1.564              |                |                 |             |                |               |          |               |         |            |         |
|         |         |             | 2/סעד           | 5                | 604    | 0.050           | 0.150            | 0.250           | 37 467             |                |                 |             | [              |               |          |               |         |            |         |
|         |         |             | IID/10          | 5                | 300    | 0 050           | 0 150            | 0.250           | 41.290             |                |                 |             |                |               |          |               |         |            |         |
|         |         |             | IIID/6          | 5                | 729    | 0,050           | 0.170            | 0.250           | 61.639             |                |                 |             |                |               |          |               |         |            |         |
|         |         |             | ID/14           | 5                | 643    | 0 050           | 0 150            | 0.250           | 93.043             |                |                 |             |                |               |          | 1             |         |            |         |
| Э,      | 12-8-67 | 2111        | IVS/4           | 1                | 499    | 0.200           |                  | 0.200           | 24.537             | 23-24          | x               |             | x              |               |          | x             |         | x          |         |
| i       |         |             | 17/15           | 1                | 85     | 0.200           |                  | 0.200           | 5.275              |                |                 |             |                |               |          | ł             |         |            |         |

THERMOCHEMICAL TEST AREA

1

DOC. NO. REVISION MSC-EP-R-68-17 New

PAGE A-27 0F A-49

| Run no. | Date    | Time, | Engine no<br>and | No. of   | Cumu-<br>lative  | On time,   | Off time, | On time<br>this run, | Cumu-<br>lative<br>on time, | Valve<br>voltage, |       | in        | Clu         | ster | in con | ter-     | 6     | rofi |                                       |
|---------|---------|-------|------------------|----------|------------------|------------|-----------|----------------------|-----------------------------|-------------------|-------|-----------|-------------|------|--------|----------|-------|------|---------------------------------------|
|         |         | br    | location         | burses   | lative<br>pulses | Sec        |           | 80C                  | sec                         | ¥ de              | 0     | 1         | 0           | C    | 0      | <b>T</b> | 0     | T    |                                       |
|         |         |       | 118/12           | 1        | 197              | 0.200      |           | 0,200                | 16.328                      |                   |       | $\square$ | _           |      |        |          |       | Τ    |                                       |
|         |         |       | 1117/7           |          | 110              | 0.200      | <b>\</b>  | 0.200                | 7.744                       |                   | 1     | 1         |             | 1    | 1      | 1        | 1     |      |                                       |
|         |         | Į     | IVD/2            | 1        | 605              | 0.200      | Į         | 0.200                | 37.667                      |                   | l     | l         | ł           |      |        | L        |       |      |                                       |
|         |         |       | IID/10           | ı        | 301              | 0.200      | 1         | 0.200                | 41.490                      |                   |       |           |             |      | 1      |          |       |      |                                       |
|         |         |       | IIID/6           | 1        | 723              | 0.200      |           | 0.200                | 61.839                      |                   |       |           |             |      |        |          | 1     |      |                                       |
|         |         |       | ID/14            | 1        | 644              | 0.200      |           | 0.200                | 93.243                      |                   | 1     |           |             |      |        |          |       |      |                                       |
| İ       |         | 1     | ł                |          | Phase            | - IV - Blo | ock B-9 : | Eight engi           | ne operati                  | ion — fa          | ur ei | gine      | ,<br>pults; | ng,  | four   | stead    | y sta | te   |                                       |
| 1       | 12-8-67 | 2121  | IVS/4            | 3        | 502              | 0.017      | 0.183     | 0,051                | 24.588                      | 23-24             | x     |           | x           |      |        | X        |       |      | τ                                     |
| -       |         | \     | IF/15            | 3        | 88               | 0.017      | 0 183     | 0.051                | 5.326                       | <b>{</b>          | 1     | ł         | {           | 1    |        | 1        |       | 1    | 1                                     |
|         |         |       | 115/12           | 3        | 200              | 0.017      | 0.183     | 0.051                | 16.379                      |                   |       |           |             | l l  |        |          |       | ł    |                                       |
|         |         |       | LIIF/7           | 3        | 113              | 0.017      | 0 183     | 0.051                | 7.795                       |                   |       |           |             |      |        |          |       |      |                                       |
|         |         |       | IMD/S            | 1        | 606              | 0.417      |           | 0.417                | 38 084                      | 1                 | 1     | 1         | 1           | 1    | 1      | 1        | 1     | ì    |                                       |
|         |         |       | IID/10           | 1        | 302              | 0.417      |           | 0.417                | 41.907                      |                   |       | -         |             |      |        | 1        | ľ     |      |                                       |
|         |         | Į –   | 1110/6           | 1        | 724              | 0.417      |           | 0.417                | 62.256                      |                   |       |           |             |      |        |          |       |      |                                       |
|         |         |       | 10/14            | 1        | 645              | 0 417      |           | 0.417                | 93.660                      |                   |       |           |             |      | 1      |          |       |      |                                       |
| 2       | 12-8-67 | 2129  | IVS/4            | 3        | 505              | 0.050      | 0.150     | 0.150                | 24.738                      | 23-24             | x     |           | X           |      |        | X        |       | 1:   |                                       |
|         | l       | ŧ .   | IF/15            | 3        | 91               | 0.050      | 0.150     | 0.150                | 5.476                       | l                 | 1     | }         | {           |      | 1      |          |       | ł    |                                       |
|         | Į       | l I   | IIS/12           | 3        | 203              | 0.050      | 0.150     | 0.150                | 16.529                      | 1                 | Ļ     | ļ         | Į –         | l    | Į.     |          | ł     | Ţ    |                                       |
|         |         |       | XIIF/7           | 3        | 116              | 0.050      | 0.150     | 0,150                | 7.945                       |                   | 1     |           |             |      |        | 1        |       |      | · · · · · · · · · · · · · · · · · · · |
|         |         |       | IVD/2            | 1 1      | 607              | 0.450      |           | 0.450                | 38.534                      |                   |       |           |             |      |        |          |       |      |                                       |
|         |         |       | 11D/10           | 1        | 303              | 0.450      |           | 0.450                | . 42.357                    |                   |       | 1         |             |      | 1      |          |       |      |                                       |
|         |         |       | IIID/6           | 1        | 725              | 0.450      |           | 0.450                | 62.706                      | ļ                 | Į.    | Ļ         | 1           | ļ    |        |          |       | 1    |                                       |
|         | 1       | 1     | 10/14            | <u> </u> | 646              | 0.450      | L         | 0.450                | 94 110                      | <u> </u>          |       | <u> </u>  | <u> </u>    |      |        | _        | ┛     |      |                                       |

THERMOCHEMICAL TEST

AREA

ļ

DOC. NO. REVISION MSC-EP-R-68-17 New

PAGE OF

A-28 A-49

•

|         |         |       |                               |                  |                           | }               |               |                             | Cumu-              |                           | L    |             | Latch | valı            | /c pos      | ition |   |            |                                                                                                                                          |
|---------|---------|-------|-------------------------------|------------------|---------------------------|-----------------|---------------|-----------------------------|--------------------|---------------------------|------|-------------|-------|-----------------|-------------|-------|---|------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Run no. | Date    | Time, | Engine no.<br>and<br>location | No. of<br>pulses | Cumu-<br>lative<br>pulses | On time,<br>sec | Off time, sec | On time<br>this run,<br>sec | lative<br>on time, | Yalve<br>voltage,<br>V de |      | in<br>offe_ |       | ister<br>lation | Int<br>conn |       |   | ose<br>දේප | Remarks<br>NOTE Engines 2, 13, 6, and 9, lead<br>engines 4, 15, 7, and 12 by 50 mse<br>in runs 1 to 5 and by 100 msec in<br>runs 6 to 10 |
|         |         |       | 10cation,                     |                  |                           | 1               |               |                             | Bec                |                           | 0    | C           | 0     | ¢               | 0           | C     | 0 | C          |                                                                                                                                          |
|         |         |       |                               | 1                | Phas                      | e IV - Blo      | ck B-10       | Eight eng                   | ine opera          | tion, pu                  | aing | out o       | r phe | NDC             |             |       |   |            |                                                                                                                                          |
| 1       | 12-8-67 | 2214  | IVD/2                         | 5                | 612                       | 0.054           | 0 146         | 0 270                       | 38.804             | 23-24                     | x    |             | x     |                 |             | x     |   | x          | NOTE Engines 2, 13, 6, and 9, lead                                                                                                       |
|         |         |       | 10/13                         | 5                | 268                       | 0.054           | 0 146         | 0.270                       | 22.293             | l                         | ļ    | ļ           |       | Ļ               | ļ           | 1     | ļ |            | engines 4, 15, 7, and 12 by 50 msec<br>in runs 1 to 5 and by 100 msec in                                                                 |
|         |         |       | IIID/6                        | 5                | 730                       | 0.054           | 0 146         | 0.270                       | 62.976             |                           | 1    |             | ſ     |                 |             |       |   |            | runs 6 to 10                                                                                                                             |
|         |         |       | IIU/9                         | 5                | 219                       | 0.054           | 0.146         | 0.270                       | 22,429             |                           |      |             |       |                 | [           | ľ     | 1 |            |                                                                                                                                          |
|         |         |       | IVS/4                         | 5                | 510                       | 0.017           | 0.183         | 0.085                       | 24.823             | l                         | ļ    | l           | ļ.    | Ł               | ļ           | 1     | ł | t I        |                                                                                                                                          |
| 1       |         |       | IF/15                         | 5                | 96                        | 0.017           | 0.183         | 0.085                       | 5.561              |                           |      |             |       |                 | 1           |       |   |            |                                                                                                                                          |
|         |         |       | 1117/7                        | 5                | 121                       | 0.017           | 0.183         | 0.085                       | 8.030              |                           | 1    |             |       | 1               |             | i i   | 1 |            |                                                                                                                                          |
| 1       |         |       | I15/12                        | 5                | 208                       | 0.017           | 0.183         | 0.085                       | 16.614             |                           | Į    | ł           |       | E               | ļ           |       | [ |            |                                                                                                                                          |
| 5       | 12-8-67 | 2221  | IVD/2                         | 5                | 617                       | 0.050           | 0.150         | 0 250                       | 39.054             | 23-24                     | X    |             | X     |                 | 1           | x     |   | x          |                                                                                                                                          |
|         |         |       | 10/13                         | 5                | 273                       | 0.050           | 0.150         | 0 250                       | 22 543             | l I                       | 1    |             |       | 1               |             | 1     |   |            |                                                                                                                                          |
|         |         |       | IIID/6                        | 5                | 735                       | 0 050           | 0.150         | 0.250                       | 63.226             | Į                         | l    | l           | l     | !               | ļ           | ļ     | ļ |            |                                                                                                                                          |
| 1       |         | )     | 110/9<br>1vs/4                | 5                | 224                       | 0.050           | 0.150         | 0.250                       | 22.679<br>24 908   |                           |      |             |       |                 |             | 1     |   |            |                                                                                                                                          |
|         |         |       | IV5/4<br>IF/15                | 5                | 515<br>101                | 0.017           | 0.103         | 0.085                       | 5.646              | [                         | 1    | 1           |       |                 |             |       |   |            |                                                                                                                                          |
|         |         |       | 1117/7                        | 5                | 126                       | 0.017           | 0.183         | 0.085                       | 8.115              | ļ                         | [    |             | Į.    | Į.              | ļ           | Ļ     | l |            |                                                                                                                                          |
| 1       |         |       | 115/12                        | 5                | 213                       | 0.017           | 0.163         | 0.085                       | 16.699             |                           |      |             |       | İ.              |             |       |   |            |                                                                                                                                          |
| 3       | 12-8-67 | 2227  | IVD/2                         | Ś                | 622                       | 0,048           | 0 152         | 0.240                       | 39.294             |                           | x    |             | x     |                 |             | x     |   | x          |                                                                                                                                          |
| -       |         |       | 10/13                         | 5                | 278                       | 0.048           | 0.152         | 0.240                       | 22.783             | Į                         |      | ļ           | Į.    | Į               | ļ           | ļ     | l |            |                                                                                                                                          |
| 1       |         |       | 1110/6                        | 5                | 740                       | 0.048           | 0.152         | 0.240                       | 63.466             |                           |      |             |       | ł               |             |       |   |            |                                                                                                                                          |
|         |         |       | IIU/9                         | 5                | 229                       | 0.048           | 0.152         | 0.240                       | 22.919             |                           |      |             |       |                 |             |       |   |            |                                                                                                                                          |
|         |         |       | IVS/4                         | 5                | 520                       | 0.017           | 0.183         | 0.085                       | 24,993             | [                         | 1    | ļ           | ļ     | Į               | Į –         | ļ     | 1 |            |                                                                                                                                          |
|         |         |       | 17/15                         | 5                | 106                       | 0.017           | 0.183         | 0.085                       | 5.731              |                           |      | 1           |       |                 |             |       | 1 |            |                                                                                                                                          |
|         |         |       | 111F/7                        | 5                | 131                       | 0.017           | 0.183         | 0.085                       | ð.200              |                           |      |             | l.    |                 |             |       |   |            |                                                                                                                                          |
|         |         |       | 118/12                        | 5                | 218                       | 0 017           | 0.183         | 0.085                       | 16.784             |                           | I    | 1           |       |                 | 1.          |       |   |            |                                                                                                                                          |

.

- THERMOCHEMICAL TEST AREA

DOC. NO. MSC-EP-R-68-17

REVISION

New

PAGE A-29 OF A-49

|         | ł       |       | Pusing                        | }                | C                | }               | 1                | On time   | Cumu-                     | Valve            | } |              | ····· | Valy          | T   |     | 1   |              | }       |
|---------|---------|-------|-------------------------------|------------------|------------------|-----------------|------------------|-----------|---------------------------|------------------|---|--------------|-------|---------------|-----|-----|-----|--------------|---------|
| Run no. | Date    | Time, | Engine no.<br>and<br>location | No. of<br>Pulses | lative<br>pulses | On time,<br>Sec | Off time,<br>Bec | this run, | lative<br>on time,<br>sec | voltage,<br>V de |   | ain<br>Coffh |       | ster<br>ation | Int | er- |     | -028<br>:ed8 | Remarkø |
|         |         |       |                               |                  |                  |                 |                  |           |                           |                  | 0 | C            | 0     | c             | 0   | С   | 0   | C            |         |
| ų       | 12-8-67 | 2247  | IVD/2                         | 5                | 627              | 0 046           | 0.154            | 0.230     | 39 524                    | 23-24            | x | -            | x     |               |     | x   |     | x            |         |
|         |         | i i   | IU/13                         | 5                | 283              | 0.046           | 0.154            | 0.230     | 23 013                    |                  | f |              |       |               |     |     |     |              |         |
|         | ł       |       | IIID/6                        | 5                | 745              | 0.046           | 0.154            | 0.230     | 63 696                    |                  |   |              | -     | ł             |     |     |     |              |         |
|         | [ '     | 1     | IIU/9                         | 5                | 234              | 0.046           | 0.154            | 0.230     | 23.149                    |                  | 1 |              |       | ĺ             | 1   | 1   | 1   |              |         |
|         |         |       | IVS/4                         | 5                | 525              | 0.017           | 0.183            | 0 085     | 25.078                    |                  |   |              | 1     |               |     |     |     |              |         |
|         |         |       | IF/15                         | 5                | 223              | 0.017           | 0 183            | 0.085     | 5 816                     |                  |   |              |       |               |     |     |     |              |         |
|         |         |       | IIIF/7                        | 5                | 136              | 0.017           | 0.183            | 0.085     | 8.285                     |                  |   |              | 1     |               |     |     |     |              | ,       |
|         |         |       | 116/12                        | 5                | 223              | 0.017           | 0.183            | 0.085     | 16.869                    |                  |   |              |       |               | !   |     |     |              |         |
| 5       | 12-8-67 | 2252  | IVD/2                         | 5                | 632              | 0.044           | 0,156            | 0.220     | 39.744                    | 23-24            | x | ]            | x     | ļ             | 1   | x   | J I | x            |         |
|         | 1       |       | IU/13                         | 5                | 288              | 0.044           | 0.156            | 0.220     | 23 233                    |                  |   |              |       |               |     |     |     | ;            |         |
|         |         | 1     | IIID/6                        | 5                | 750              | 0.044           | 0.156            | 0.220     | 63 916                    |                  | ļ |              | , i   |               | ļI  |     |     | . 1          |         |
|         |         |       | 110/9                         | 5                | 239              | 0.044           | 0.156            | 0.220     | 23.369                    |                  |   |              |       |               |     |     |     |              |         |
|         |         |       | IVS/4                         | 5                | 530              | 0.017           | 0 183            | 0.085     | 25.163                    |                  |   | }            |       |               |     |     |     |              |         |
|         |         |       | IF/15                         | 5                | 116              | 0.017           | 0.183            | 0,085     | 5.901                     |                  |   |              |       |               |     |     |     |              |         |
|         |         |       | IIIF/7                        | 5                | 141              | 0.017           | 0.183            | 0.085     | 8.370                     |                  |   |              |       |               |     |     |     |              |         |
|         |         |       | 118/12                        | 5                | 228              | 0.017           | 0 183            | 0.085     | 16.954                    |                  |   |              |       |               |     |     | -   |              |         |
| 6       | 12-8-67 | \$305 | IVD/2                         | 3                | 635              | 0.104           | 0.096            | 0.312     | 40.056                    | 23-24            | x |              | X     |               |     | X   |     | х            |         |
|         |         |       | 10/13                         | 3                | 291              | 0.104           | 0,096            | 0.312     | 23 545                    |                  |   |              |       |               |     |     |     |              |         |
|         |         |       | 111D/6                        | 3                | 753              | 0.104           | 0.096            | 0.312     | 64.228                    |                  |   |              |       |               |     |     |     |              |         |
|         |         |       | IIU/9                         | 3                | 242              | 0.104           | 0.096            | 0.312     | 23.681                    |                  |   |              |       |               |     |     |     |              |         |
|         |         |       | IV8/4                         | 3                | 533              | 0.050           | 0.150            | 0.150     | 25 313                    |                  |   |              |       |               |     | 1   |     |              |         |
|         |         |       | 17/15                         | 3                | 119              | 0.050           | 0.150            | 0.150     | 6 051                     |                  |   |              |       |               |     |     |     |              |         |
|         |         |       | IIIF/7                        | 3                | 144              | 0 050           | 0.150            | 0 150     | 8.520                     |                  |   |              |       |               |     |     |     |              |         |
| 7       | 12-8-67 | 2307  | IIS/12<br>IVD/2               | 3                | 231<br>638       | 0.050           | 0.150            | 0.150     | 17 104                    |                  |   |              |       |               |     |     |     |              |         |
| 1       | 12-0-01 | e301  | IVD/2<br>IV/13                | 3                | -                | 0.100           | 0.100            | 0.300     | 40 356                    | 23-24            | x |              | x     |               | [   | x   |     | x            |         |
|         |         |       | 14/13                         | 3                | 294              | 0.100           | 0.100            | 0.300     | 23.845                    |                  |   |              |       |               |     |     | لـا |              | L       |

•

.

THERMOCHEMICAL TEST AREA

DOC. NO. MSC-EP-R-68-17 New OF A-19

•

| Run no. | Date    | Time,<br>hr | Engine no,<br>and<br>location | No. of<br>pulses | Cumu-<br>lative<br>pulses | On time,<br>sec | Off time,<br>sec | On time<br>this run,<br>sec | Cumu-<br>intive<br>on time, | Valve<br>voltnge<br>V de |     | in<br>offn | Chu | ation | Int | er-<br>ects |     | oos<br>eds | Remarks |
|---------|---------|-------------|-------------------------------|------------------|---------------------------|-----------------|------------------|-----------------------------|-----------------------------|--------------------------|-----|------------|-----|-------|-----|-------------|-----|------------|---------|
| . 1     |         | 1           | 1                             | (                | ſ.                        |                 | 1                |                             | 640                         | 1                        | 0   | c          | 0   | c     | 0   | c           | 0   | C          | *       |
|         |         |             | IIID/6                        | 3                | 756                       | 0.100           | 0.100            | 0.300                       | 64 528                      | [                        |     | 1          | [   |       |     | [           |     |            |         |
| ]       |         |             | 110/9                         | 3                | 245                       | 0.100           | 0.100            | 0.300                       | 23.981                      |                          |     |            |     |       |     |             |     |            |         |
|         |         |             | IVS/4                         | 3                | 536                       | 0.050           | 0.150            | 0.150                       | 25.463                      |                          |     |            | 1   |       |     | ľ           |     |            |         |
| 1       |         |             | IF/15                         | 3                | 122                       | 0.050           | 0.150            | 0.150                       | 6 201                       | ſ                        |     |            | F . |       | · · |             |     |            |         |
|         | 1       |             | 1117/7                        | з                | 147                       | 0 050           | 0.150            | 0.150                       | 8.67                        | {                        | í   | {          | {   | {     | 1   | 1           |     |            |         |
|         |         |             | 112/15                        | 3                | 234                       | 0.050           | 0.150            | 0.150                       | 17 254                      |                          |     |            |     |       |     |             |     |            |         |
| 8       | 12-8-67 | 2314        | IAD\5                         | 3                | 641                       | 0.028           | 0.102            | 0,294                       | 40 650                      | 23-24                    | x   |            | x   |       |     | x           |     | x          |         |
| 1       | İ       |             | 10/13                         | 3                | 297                       | 0.098           | 0.102            | 0.294                       | 24.139                      | ļ                        | Ļ   | l          | [   | ļ     | [ ] | ļ           |     |            |         |
| ]       |         |             | IIID/6                        | 3                | 759                       | 0.098           | 0.102            | 0,294                       | 64 822                      |                          | 1   |            |     |       |     |             |     |            |         |
| 1       |         |             | IIU/9                         | 3                | 248                       | 0,098           | 0 102            | 0.294                       | 24.275                      | ĺ                        | ſ   | 1 1        | í   | ( i   | 1   |             |     |            |         |
|         |         |             | IVS/4                         | 3                | 539                       | 0.050           | 0 150            | 0.150                       | 25 613                      |                          |     |            |     |       |     |             |     |            |         |
|         |         |             | IF/15                         | 3                | 125                       | 0,050           | 0 150            | 0.150                       | 6 351                       | 1                        | 1   | 1 '        |     | ' ۱   | r i |             |     |            |         |
|         |         |             | ר/זנגנ                        | 3                | 150                       | 0.050           | 0 150            | 0.150                       | 8 82                        | i i                      | i i |            |     |       |     |             |     |            |         |
|         |         |             | IIS/12                        | 3                | 237                       | 0.050           | 0 150            | 0.150                       | 17 404                      |                          |     |            |     |       |     | İ .         |     |            |         |
| 9 [     | 12-8-67 | 2321        | IVD/2                         | 3                | 644                       | 0.096           | 0.104            | 0.288                       | 40.938                      | 23-24                    | 1 x | ļ          | x   | ļ     |     | γ           |     | X          |         |
| Í       |         |             | IU/13                         | 3                | 300                       | 0.096           | 0 104            | 0.288                       | 24.427                      | (                        | í – | í 1        | [   | í 1   | 1   | [           |     |            |         |
|         |         |             | 111D/6                        | 3                | 762                       | 0.096           | 0.104            | 0.288                       | 65 110                      |                          |     | i i        |     |       |     |             |     |            |         |
|         |         |             | IIV/9                         | 3                | 251                       | 0.096           | 0,104            | 0.288                       | 24.563                      |                          |     |            |     |       |     |             |     |            |         |
| ł       |         |             | 195/4                         | Э                | 542                       | 0.050           | 0.150            | 0.150                       | 25 763                      |                          | } ' |            |     |       |     |             | . 1 |            |         |
| Í       | ĺ       | Í           | IF/15                         | 3                | 128                       | 0.050           | 0.150            | 0 150                       | 6 501                       | [                        | Í   |            |     |       | 1   |             |     | - 1        |         |
| 1       |         |             | 1117/7                        | 3                | 153                       | 0.050           | 0.150            | 0.150                       | 8 97                        |                          |     |            |     |       |     | ' i         | 1   |            |         |
|         |         | Į           | 116/12                        | 3                | 240                       | 0.050           | 0.150            | 0.150                       | 17.554                      |                          | ( I |            |     |       |     |             |     | ļ          |         |
| to 1    | 2~8-67  | 2328        | 170/2                         | 3                | 647                       | 0.094           | 0.106            | 0.282                       | 41 220                      | 23-24                    | x   |            | x   |       |     | x           |     | x          |         |
|         |         |             | 10/13                         | 3                | 303                       | 0.094           | 0.106            | 0.282                       | 24.709                      |                          |     |            |     |       |     |             |     |            |         |
|         |         |             | IIID/6                        | 3                | 765                       | 0.094           | 0.106            | 0.282                       | 65.392                      |                          |     |            |     |       |     |             | i   |            |         |
|         | í       | [           | IIV/9                         | 3 [              | 254                       | 0.094           | 0,106            | 0.282                       | 24.845                      |                          | 1 1 | i í        | 1   | 1     | 1   | 1           | 1   | 1          |         |

THERMOCHEMICAL TEST AREA MSC-EP-R-68-17 DOC. NO. REVISION

PAGE A-31 OF A-39

| MSC  | Ī |
|------|---|
| FORM |   |
| 3608 |   |
| (JAN |   |
| 67)  | ļ |

| an no. | Date    | Time, | Engine no. | No. of | Cumu-<br>lative | On time,  | Off time, | On time<br>this run, | Cumu-<br>lative<br>on time, | Valve<br>voltage<br>V de | M                                            |          | τ          | valv<br>ster<br>ation | Int  |          | Cr  | oss<br>eda | Remarks                              |
|--------|---------|-------|------------|--------|-----------------|-----------|-----------|----------------------|-----------------------------|--------------------------|----------------------------------------------|----------|------------|-----------------------|------|----------|-----|------------|--------------------------------------|
|        |         |       | location   | pulses | pulses          |           |           | sec.                 | Bec                         | V de                     | 0                                            | c        | 0          |                       | 0    | c        | 0   | c          |                                      |
|        |         |       | IVS/4      | 3      | 545             | 0.050     | 0.150     | 0.150                | 25 913                      |                          | <u>†                                    </u> | <u> </u> | [          |                       |      | <u> </u> | -   |            | ·                                    |
| 1      |         |       | 17/15      | 3      | 131             | 0 050     | 0.150     | 0.150                | 6.651                       | l                        | Į –                                          | l        | Į –        | ļ                     |      | ł        | ļ   | ļ          |                                      |
| ĺ      |         |       | 111F/7     | 3      | 156             | 0.050     | 0.150     | 0.150                | 9.12                        | 1                        | [                                            |          |            |                       |      |          | ]   |            |                                      |
| 1      | j       |       | 116/15     | 3      | 243             | 0.050     | 0 150     | 0.150                | 17.704                      | ļ                        | 1                                            | 1        | J          |                       |      | ]        |     |            |                                      |
|        |         |       |            |        | Phnac           | IV - Blo  | ck C-2 1  | Four engine          | o operatio                  | on, simul                | .tanec                                       | งนอ ๆ บ  | s<br>leing |                       |      | 1        |     |            |                                      |
| 1      | 12-9-67 | 0151  | IVS/4      | 10     | 555             | 0.017     | 0.183     | 0.170                | 26,083                      | 23-24                    |                                              | в        | x          |                       |      | [ x ]    | x   |            | Hydrawlic translent effects          |
| ļ      |         |       | III8/8     | 10     | 438             | 0.017     | 0.163     | 0,170                | 18,903                      |                          | 1                                            | Ĩ        | 1          |                       |      |          |     |            | with cross feeds open and            |
|        |         |       | IVD/2      | 10     | 657             | 0.017     | 0.183     | 0.170                | 41.390                      |                          |                                              |          |            |                       |      |          |     |            | system R main shutoff valves closed. |
|        |         |       | 10/13      | 70     | 323             | 0.017     | 0 283     | 0,170                | 24.879                      | 1                        | 1                                            | 1        | <b>۱</b>   | 1                     |      | 1        |     |            |                                      |
| 2      | 12-9-67 | 0209  | IVS/4      | 10     | 565             | 0.050     | 0.150     | 0.500                | 26.583                      | 23-24                    | A                                            | в        | x          |                       |      | X        | X I |            |                                      |
|        |         |       | IIIS/8     | 10     | հեն             | 0.050     | 0.150     | 0.500                | 19.403                      |                          | {                                            | (        |            |                       |      |          |     |            |                                      |
| 1      |         |       | IVD/2      | 10     | 667             | 0.050     | 0.150     | 0 500                | 41 890                      |                          |                                              |          |            |                       |      |          |     |            |                                      |
| 1      |         |       | IU/13      | 10     | 323             | 0.050     | 0,150     | 0.500                | 25.379                      |                          |                                              | l        |            | [                     |      | ļ        |     |            |                                      |
| 3      | 12-9-67 | 0217  | 1V5/4      | 5      | 570             | 0.150     | 0.050     | 0.750                | 27.333                      | 23-24                    | A                                            | B        | x          |                       | Í    | X        | х   |            |                                      |
|        |         |       | IIIS/8     | 5      | 453             | 0.150     | 0.050     | 0.750                | 20.153                      |                          |                                              |          | 1          |                       |      |          |     |            |                                      |
| ļ      |         |       | IVD/2      | 5      | 672             | a.150     | 0 050     | 0.750                | 42.640                      |                          | 1                                            | ĺ        | 1          |                       |      |          |     |            |                                      |
| .      |         |       | IU/13      | 5      | 328             | 0.150     | 0.050     | 0.750                | 26,129                      |                          | 1                                            |          |            |                       |      |          |     |            |                                      |
| 4      | 12-9-67 | 0222  | IVS/4      | 1      | 571             | 0.200     |           | 0.200                | 27.533                      | 23-24                    | [ A                                          | в        | X          |                       |      | X        | X   | · 1        |                                      |
|        |         |       | IIIS/8     | 1      | 454             | 0,200     |           | 0.200                | 20.353                      |                          |                                              |          |            |                       |      |          |     | ' I        |                                      |
|        |         |       | IVD/2      | 1      | 673             | 0,200     |           | 0.200                | 42.840                      |                          |                                              | l        |            |                       | . (  |          |     | . [        |                                      |
| Í      |         | i     | 10/13      | ,      | 329             | 0,200     |           | 0,200                | 26.329                      |                          | ļ                                            | ſ        |            |                       |      | i i      |     |            |                                      |
|        |         |       |            |        | Phnae           | IV - Bloc | k C-3 - F | our engine           | operatio                    | m — two                  | engi                                         | лез р    | 181ng      | , two                 | stes | idy st   | nte | · [        |                                      |
| 1      | 12-9-67 | 0232  | 108/4      | ١.     | 572             | 0.817     |           | 0.817                | 28.350                      | 23-24                    | <b> </b> •                                   | в        | x          |                       |      | x        | x   |            |                                      |
|        |         |       | 1115/8 ·   | ı      | 455             | 0.817     |           | 0.817                | \$1,170                     |                          |                                              |          |            |                       |      |          |     |            |                                      |

THERMOCHEMICAL TEST AREA DOC. NO. MSC-EP-R-68-17 REVISION New

PAGE A A 4<u>9</u>22

| MSC  |  |
|------|--|
| FORM |  |
| 360B |  |
| (JAN |  |
| 67)  |  |

| un no. | Date    | Time,<br>br | Engine no.      | No, of<br>Dulaci | Cumu-<br>lative<br>pulses | On time, | off time     | On time<br>this run, | Cumu-<br>lative<br>on time, | Valve<br>voltage,<br>V de | Ma         |      | Clu   | valve<br>ster | Int | er-  | Cr    | eds | Remarko                                                                |
|--------|---------|-------------|-----------------|------------------|---------------------------|----------|--------------|----------------------|-----------------------------|---------------------------|------------|------|-------|---------------|-----|------|-------|-----|------------------------------------------------------------------------|
|        |         |             | location        | •                | puices                    |          |              | sec                  | 866                         | V de                      | 0          | c    | 0     | c             | 0   | c    | 0     | c   |                                                                        |
|        |         |             | IMD/5           | 5                | 678                       | 0.017    | 0.183        | 0.085                | 42.925                      |                           | 1-         |      |       |               |     |      |       |     |                                                                        |
|        |         |             | 10/13           |                  | 334                       | 0 017    | 0.183        | 0,085                | 26.414                      |                           | {          | ļ    | [     |               |     | 1    | l     | ł   |                                                                        |
|        |         |             | IVS/4           | 5                | 573                       | 0.550    | 0.102        | 0,550                | 28.900                      | 23-24                     | Δ.         | в    | x     |               | [   | x    | x     |     |                                                                        |
| 3      | 12-9-67 | 0239        | 145/4<br>III5/8 | 1                | 456                       | 0.550    |              | 0.550                | 20.900                      | 43-44                     | 1^         | ຶ    | l^    |               |     | ۱° ا | 1 ^ I |     |                                                                        |
|        |         |             | III5/8<br>IVD/2 | 1                | 490<br>681                | 0.150    | 0.050        | 0.450                | 43.375                      |                           |            |      |       |               |     |      |       |     |                                                                        |
|        |         |             |                 | 3                |                           | 0.150    | 0.050        | 0,450                | 26.864                      |                           | 1          | 1    | 1     |               |     | 1    | 1     | 1   |                                                                        |
|        |         |             | IV/13           | 3                | 337                       |          |              |                      |                             |                           |            | 1    |       |               | 1   | 1    |       |     |                                                                        |
|        |         |             | •               |                  | , Phage                   | IV - Blo | ck:C4i∶<br>I | Four engin           | e operati                   | on, pulai                 | ng ou<br>I | t of | phase |               |     | [    |       |     |                                                                        |
| 1      | 12-9-67 | 0342        | IVD/2           | 10               | 691                       | 0 017    | 0 183        | 0.170                | 43.545                      | 23-24                     | A          | в    | x     |               |     | x    | x     |     | NOTS. Engines 4 and 12 lead engines                                    |
| :      |         |             | IU/13           | 10               | 347                       | 0.017    | 0 183        | 0.170                | 27.034                      |                           | )          |      | ]     |               |     |      | ]     | 1   | 2 and 13 by 50 msec in runs 1 to 5<br>and by 100 msec in runs 6 to 10. |
|        |         |             | IVS/4           | 10               | 583                       | 0.054    | 0.146        | 0.540                | 29.440                      |                           |            |      |       |               |     | I I  |       |     | Engine 12 was not patched in run                                       |
|        |         |             | IIS/12          | 0                | 243                       | 0        | 0            | Q                    | 17.704                      |                           |            |      |       |               |     | 1    | 1     |     | IV-C-4-1                                                               |
| м      | 12-9-67 | 0342        | IVD/2           | 10               | 701                       | 0.017    | 0.183        | 0.170                | 43.715                      | 23-24                     | A          | в    | x     |               |     | x    | X     |     |                                                                        |
|        |         |             | 10/13           | 10               | 357                       | 0.017    | 0 183        | 0.170                | 27.204                      |                           |            |      |       |               |     |      |       |     |                                                                        |
|        |         |             | IVS/4           | 10               | 593                       | 0.054    | 0 146        | 0.5k0                | 29,980                      |                           |            |      |       |               |     |      |       |     |                                                                        |
|        |         | •           | II\$/12         | 10               | 253                       | 0 054    | 0.146        | 0.540                | 18,244                      |                           |            |      |       |               |     |      | [     | 1   |                                                                        |
| 3      | 12-9-67 | 0404        | IVD/2           | 10               | 711                       | 0.017    | 0.183        | 0.170                | 43.885                      | 23-24                     | _ ۸        | в    | X     |               | {   | X    | X     | 1   |                                                                        |
| l      |         |             | 10/13           | 10               | 367                       | 0.017    | 0.183        | 0.170                | 27.374                      |                           |            | 9    |       |               |     |      |       |     |                                                                        |
|        |         |             | IVS/4           | 10               | 603                       | 0.048    | 0.152        | 0.480                | 30.460                      |                           |            |      |       |               |     |      |       |     |                                                                        |
|        |         |             | II5/12          | 10               | 263                       | 0.048    | 0.152        | 0.480                | 18,724                      |                           |            |      |       |               |     |      |       |     |                                                                        |
| 6      | 12-9-67 | 0414        | IAD\5           | 5                | 716                       | 0.050    | 0.150        | 0.250                | 44.135                      | 23-24                     | ۸.         | в    | x     |               |     | x    | ×     | 1   | <b>)</b> ,                                                             |
|        |         |             | IU/13           | 5                | 372                       | 0.050    | 0.150        | 0,250                | 27.624                      |                           |            |      |       |               | [   |      |       |     |                                                                        |
|        |         |             | IV8/4           | 5                | 608                       | 0.104    | 0.096        | 0.520                | 30.980                      |                           |            |      |       |               |     |      |       |     |                                                                        |
|        |         |             | <b>IIS/12</b>   | 5                | 268                       | 0.104    | 0.096        | 0.520                | 19.244                      |                           |            |      |       |               |     |      | ·     | I   | 1                                                                      |

٠

THERMOCHEMICAL TEST AREA

٠

•

~

,

| Run no. | Date    | Time, | Engine no.<br>and<br>location | No. of<br>puloes | Cumu-<br>lative | On time, | Off time,  | On time<br>this run,<br>gec | Cumu-<br>lative<br>on time, | Valve<br>voltnge,<br>v de |          | in<br>offs | Çlu  | ster | Int | er-<br>er- | Cr   | oss<br>ods | ' Remarks |
|---------|---------|-------|-------------------------------|------------------|-----------------|----------|------------|-----------------------------|-----------------------------|---------------------------|----------|------------|------|------|-----|------------|------|------------|-----------|
|         |         |       |                               | ¦ .              | Daroca          |          |            |                             | 592                         |                           | 0        | C          | 0    | C    | 0   | С          | 0    | С          |           |
| 7       | 12-9-67 | 0419  | IVD/2                         | 5                | 721             | 0.050    | 0 150      | 0.250                       | 44.385                      | 23-24                     | A        | в          | x    |      | Γ   | x          | x    |            |           |
| •       |         |       | 19/13                         | ,                | 317             | 0,059    | 0,150      | 0.250                       | 21.875                      | ļ                         | {        | ļ          | ļ    | {    |     | {          | ł    | 1          |           |
|         | ]       |       | IVS/4                         | 5                | 613             | 0.100    | 0,100      | 0 500                       | 31.480                      |                           |          |            | [    |      |     |            |      |            |           |
|         |         |       | 115/12                        | 5                | 273             | 0.100    | 0,100      | 0.500                       | 19.744                      | Į                         | 1        |            |      |      |     |            |      | 1          |           |
| 9       | 12-9-67 | 0424  | IVD/2                         | , j              | 126             | 0 053    | 0 150      | 0.250                       | 14.635                      | 23-2h                     | A        | ъ          | X    | {    |     | <u>ا</u>   | × ا  | 1          |           |
|         |         |       | 10/13                         | 5                | 98.             | 0,050    | 0,150      | 0.250                       | 28 12h                      |                           |          |            |      |      |     | ľ          |      |            |           |
|         | 1       | 1     | IVS/h                         | 5                | 618             | 0,076    | 0.104      | 0,480                       | 33 960                      | 1                         | 1        |            |      |      |     |            |      | 1          |           |
|         | ł       |       | 115/12                        | 5                | 278             | 0 090    | 0,104      | 0.480                       | 20.224                      | ł                         | {        | {          | ł    | {    | 1   | 1          | i i  | 1          |           |
|         |         |       |                               |                  | Phase           | TV - Blo | <br>c} c-3 | Six engine                  | operatio                    | h, simult                 | ancou    | a pul      | aing |      |     |            |      |            |           |
| 1       | 12-9-67 | 0537  | 11F/11                        | 10               | 402             | 0.017    | 0,183      | 0.170                       | 11 918                      | 23-74                     | A        | в          | x    |      | Į., | l.         | Lx - | l          |           |
| -       |         |       | IIIF/7                        | 10               | 166             | 0.017    | 0 183      | 0.170                       | 9 29                        | ]                         | ]        |            |      |      |     |            |      |            |           |
|         |         |       | IID/10                        | 10               | 313             | 0,017    | 0,183      | 0.170                       | 42.527                      |                           |          |            | [    |      | 1   | F .        |      |            |           |
|         |         |       | 10/13                         | 10               | 392             | 0.017    | 0,183      | 0,170                       | 28.294                      | -                         | 1        | 1          | Į    | 1    | Į   | ļ          | Į –  | Į          |           |
|         | ľ       | 1     | 170/1                         | 10               | 314             | 0,017    | 0.183      | 0.370                       | 21 569                      | ]                         |          |            |      |      |     |            |      |            |           |
|         | i       |       | 1130/6                        | 10               | 775             | 0.017    | 0.183      | 0.170                       | 65,562                      |                           | 1        |            |      | 1    |     |            |      |            |           |
| 3       | 12-9-67 | 0547  | 11F/11                        | 3                | 405             | 0.150    | 0.050      | 0,450                       | 12.368                      | 23-24                     | [ A      | в          | X    | [    |     | x          | [x   | Į          |           |
|         | ł       | }     | 1117/7                        | 3                | 169             | 0,150    | 0.050      | 0.450                       | 9.740                       | ]                         |          |            |      | 1    |     | ſ          | ·    |            |           |
|         | i       |       | 110/10                        | 3                | 316             | 0,150    | 0.050      | 0,450                       | 42.977                      | 1                         | 1        |            | ſ    | 1    | f   |            |      |            |           |
|         |         |       | 10/13                         | 3                | 395             | 0.150    | 0.050      | 0.450                       | 28.744                      | ł                         | Ł        | Į –        | Į    |      | Į I | Į –        | ţ.   | ţ .        |           |
|         | 1       | 1     | 170/1                         | 3                | 317             | 0,150    | 0,050      | 0,450                       | 28.019                      |                           |          |            |      |      | 1   |            |      |            |           |
|         | 1       |       | IIID/6                        | 3                | 778             | 0.150    | 0.050      | 0.450                       | 66.012                      | 1                         |          |            | i i  | 1    |     |            |      |            |           |
| 4       | 12-9-67 | 0557  | IIF/11                        | 1                | 406             | 0.200    | l          | 0,200                       | 12.568                      | 23-24                     | A        | ъ          | X    | Į –  | ۱ : | X          | X    | ļ          |           |
|         | 1       | 1     | 1112/7                        | ו ו              | 170             | 0,200    |            | 0.200                       | 9.940                       |                           |          |            |      |      |     |            |      |            |           |
|         |         |       | IID/10                        | 1 1              | 317             | 0.200    |            | 0.200                       | 43.177                      |                           | 1        |            |      | 1    |     |            |      |            |           |
|         |         | I     | 10/13                         | 1                | 396             | 0.200    |            | 0,200                       | 28.944                      |                           | <u> </u> |            | L    |      |     | L          | [    | <u> </u>   | ·         |

•

•

.

THERNOCHEMICAL TEST AREA

DOC. NO. REVISION MSC-EP-R-68-17 New

of <u>A-34</u>

•

.

|         |         |             | <b>P</b>                      |    | <b>A</b> 111111 |            |                  | On time                     | Cumu-     | Valve            |            |            | hiteh         |          | E            |    |     |            |                                            |
|---------|---------|-------------|-------------------------------|----|-----------------|------------|------------------|-----------------------------|-----------|------------------|------------|------------|---------------|----------|--------------|----|-----|------------|--------------------------------------------|
| Run no. | Date    | Time,<br>hr | Engine no.<br>and<br>location |    | lative          | On time,   | Off time,<br>sec | On time<br>this run,<br>sec | on time,  | voltage,<br>V de | Ha<br>shut | in<br>offo | Clur<br>Isola | ter      | fut<br>conze |    |     | usi<br>çdr | dentra                                     |
|         |         |             |                               |    |                 |            |                  |                             | B66       |                  | 0          | ī          | 0             | c        | 0            |    | 0   | 5          | · · · · · · · · · · · · · · · · · · ·      |
|         |         | [           | 11/11                         | l  | - 518           | 0.200      |                  | 0 200                       | 78.219    |                  |            | ļ          |               | <u>ا</u> |              |    | l I |            |                                            |
|         |         |             | 1110/6                        | 1  | 119             | 0.200      |                  | 0,200                       | 65.212    |                  |            |            |               |          |              |    |     |            |                                            |
|         | ĺ       |             |                               |    | 19 1.0          | • I¥ = 10o | -> C=6 :         | i<br>Gix engine             | operatio  | ı<br>n, pulsin   | g out      | 01 1<br>1  | hase          |          |              |    |     |            |                                            |
| 1       | 12-9-67 | 0709        | 111/21                        |    | 405             | 0.500      |                  |                             | 32,568    | 23-24            | A          | в          | x             |          |              | x  | х   |            | Par, Inco 6 and 10 fired                   |
| -       | / -1    |             | IIIF/7                        |    | 370             | 0.500      |                  |                             | 9.940     |                  | 1          | 1          |               |          |              |    | [   | 1          | prematurely at T-10<br>seconds. On time is |
|         |         |             | IID/10                        | 1  | 318             | 0.500      |                  | 0.500                       | 43.677    |                  | 1          |            |               |          |              |    |     |            | only an estimate                           |
|         |         |             | 10/13                         |    | 396             |            |                  |                             | 28.944    |                  | ļ          |            |               | ſ        | i i          | 1  |     |            |                                            |
|         |         |             | 170/1                         |    | 378             |            |                  |                             | 28.219    |                  |            |            |               |          |              |    |     |            |                                            |
|         |         |             | 1110/6                        | 1  | 780             | 0.500      |                  | 0.500                       | 66.712    |                  | \ '        | ۰ <b>ا</b> | · ۱           | ſ        | 1            | 1  |     | 1 1        | Ì                                          |
| 18      | 12-9-67 | 0713        | IIF/11                        | 1  | 407             | 0.570      |                  | 0.570                       | 13.138    | 23-24            | A          | В          | X             |          |              | X  | X   |            |                                            |
|         |         |             | IIIF/7                        | 1  | 171             | 0.570      |                  | 0.570                       | 10.510    |                  |            |            |               |          |              |    |     |            |                                            |
| :       |         |             | 11D/10                        | 3  | 321             | 0.017      | 0.183            | 0 051                       | 43.728    |                  |            |            |               |          | [            |    |     |            |                                            |
|         |         | į           | IU/13                         | 3  | 399             | 0.017      | 0.183            | 0.051                       | 28.995    |                  |            | ļ          | {             | ļ        | ļ            |    |     | 1 1        | 1                                          |
|         |         |             | IVU/1                         | 3  | 321             | 0.017      | 0,183            | 0.051                       | 28.270    |                  |            | i i        |               | 1        |              |    |     |            |                                            |
|         |         |             | IIID/6                        | 3  | 783             | 0.017      | 0.183            | 0.051                       | 66.763    |                  | 1          |            |               | i i      |              |    |     |            |                                            |
| 2       | 12-9-67 | 0721        | IIF/11                        | 1  | 408             | 0.450      |                  | 0.450                       | 13,588    | 23-24            | A          | В          | x             |          | ľ            | X  | X   |            |                                            |
|         |         |             | IIIP/7                        | 1  | 172             | 0.450      |                  | 0,450                       | 10.960    |                  | Į          | Į          | ļ             | Į        | ļ            | ļi |     | ļļ         |                                            |
|         |         |             | IID/10                        | 3  | 324             | 0.050      | 0.150            | 0,150                       | 43.878    |                  |            |            |               |          |              | 1  |     |            |                                            |
|         |         |             | IV/13                         | 3  | 402             | 0 050      | 0.150            | 0.150                       | 29.145    |                  |            |            |               |          |              |    |     |            |                                            |
|         |         |             | IVU/1                         | 3  | 324             | 0.050      | 0.150            | 0.150                       | 28.420    |                  |            |            |               |          |              |    |     |            |                                            |
|         |         |             | IIID/6                        | 3  | 786             | 0,050      | 0.150            | 0,150                       | 66.913    | l                |            | Į          | ļ             | l        |              | ļ  |     |            |                                            |
|         | ļ       |             |                               |    | ' Phase         | IV - Blo   | ek C-8 —         | Eight engi                  | ne operat | ion, simu        | Utano      | eous j     | ulsin         | 6        |              |    |     |            |                                            |
| 1       | 12-9-67 | 0850        | IVS/4                         | 10 | 628             | 0.017      | 0.183            | 0.170                       | 32.130    | 23-24            | A          | в          | x             |          | ſ            | x  | x   |            |                                            |
| _       |         |             | 17/15                         | 10 | 141             | 0.017      | 0.183            | 0.170                       | 6.821     |                  |            |            |               |          |              |    |     |            | ,                                          |
|         |         | ł           | <b>I1</b> 5/12                | 10 | 288             | 0.017      | 0.183            | 0.170                       | 20.394    |                  |            |            |               |          |              | {  |     |            | `•`                                        |
|         |         | L           | 115/12                        | 10 | 288             | 0.017      | 0.183            | 0.170                       | 20.394    | L,               |            | <u>ا</u>   | i             | <b>.</b> | l            |    |     | <u> </u>   |                                            |

,

.

.

THERMOCHEMICAL TEST AREA

.

PAGE A-35 . OF A-49

,

F

|         |         | ļ           |                               |                  | {                         |          | Į.               |                             | Cuau-        | 1.                        |            |        | Latch  | valv          | c pos | ition |             |      |         |
|---------|---------|-------------|-------------------------------|------------------|---------------------------|----------|------------------|-----------------------------|--------------|---------------------------|------------|--------|--------|---------------|-------|-------|-------------|------|---------|
| Rua zo. | Date    | Time,<br>hr | Engine no.<br>and<br>location | No. of<br>pulses | Cumu-<br>lative<br>pulses | On time, | off time,<br>see | On time<br>this run,<br>see | on time,     | Yalve<br>voltøge,<br>V de | Ha<br>chut |        |        | nter<br>ation | Int   |       |             | eda. | Remarka |
|         |         |             |                               | ļ                |                           |          |                  |                             | Bec          | [                         | 0          | c      | 0      | C             | 0     | C     | 0           | C    |         |
|         |         |             | 112F/7                        | 10               | 182                       | 0.017    | 0.183            | 0.170                       | 11.130       |                           | 1          | 1      | 1      | <u> </u>      | 1     | 1     | †—          | 1    |         |
|         |         |             | IVD/2                         | 10               | 736                       | 0.017    | 0.183            | 0.170                       | 44.805       | Į                         | l          |        |        | l             |       | Į     | l           |      | ·       |
|         |         |             | 110/10                        | 20               | 334                       | 0.017    | 0.183            | 0.170                       | 44.048       | ł                         | Į          | ļ      | 1      | !             |       | 1     | ł           |      |         |
| 1       |         |             | 111D/6                        | 10               | 796                       | 0.017    | 0 163            | 0.170                       | 67.083       | )                         | )          | 1      | 1      | )             | ]     |       | )           |      |         |
| l       |         |             | ID/14                         | 10               | 646                       | 0.017    | 0.183            | 0,170                       | 94.280       | Į                         | ľ          | l      | [      |               |       | Į     |             |      |         |
| · 3 (   | 12-9-67 | 0858        | IVS/4                         | 1                | 629                       | 0.200    |                  | 0.200                       | 32.330       | 23-24                     | A          | a ]    | X      | l             | l     | x     | l x         | ļ    |         |
| 1       |         |             | IF/15                         | 2                | 142                       | 0.200    |                  | 0.200                       | 7.021        |                           |            |        |        |               | 1     |       |             |      |         |
| ł       |         |             | IIS/12                        | 1                | 269                       | 0 200    |                  | 0.200                       | 20 594       | 1                         | ł          | ł      | 1      | ł             | 1     | ł     | ł           |      |         |
| j       |         |             | 111F/7                        | 1                | 183                       | 0.200    | l i              | 0.200                       | 11.330       | ł,                        | ļ          | 1      | 1 '    | 1             | ļ ·   |       | 1           | 1 1  |         |
| ]       |         | ļ           | IVD/2                         | 1 1              | 737                       | 0 200    |                  | 0.200                       | 45.005       |                           |            | ļ      |        | ļ             | !     |       | ]           |      |         |
| ĺ       | ,<br>,  |             | IID/10                        | 1                | 335                       | 0.200    |                  | 0.200                       | 44 248       |                           |            |        |        |               |       |       |             |      |         |
| l       |         |             | IIID/6                        | r                | 797                       | 0.200    | . 1              | 0.200                       | 67.283       | [                         | ļ          | ļ      |        | ł             | ļ     | i     | i i         |      |         |
|         |         |             | ID/14                         | 1                | 657                       | 0 200    |                  | 0.200                       | 94.480       | 1                         |            | 1      |        | í             | 1     |       | í I         | · ·  |         |
| 74      | 12-9-67 | 0906        | 118/4                         | 10               | 639                       | 0.017    | 0.183            | 0.170                       | 32 500       | 23-24                     | A          | B      | X      |               |       | x     | X           |      |         |
| 4       |         |             | IT/15                         | 10               | 152                       | D.017    | 0.183            | 0.170                       | 7 191        | }                         | ļ          | {      |        | {             | }     |       | ļ           |      |         |
|         | j.      |             | IIS/12                        | 10               | 299                       | 0.017    | 0.183 .          | 0.170                       | 20-764       |                           |            |        |        |               |       |       |             |      |         |
|         |         |             | IIIF/7                        | 10               | 193                       | 0.017    | 0 183            | 0.170                       | 11.500       |                           |            |        |        |               |       | i     |             |      |         |
| 1       |         | ĺ           | IVD/2                         | 10               | 747                       | 0.017    | a.183            | 0.170                       | 45.175       |                           |            |        |        |               |       |       | ł           |      |         |
|         |         |             | IID/10                        | 10               | 345                       | 0.017    | 0.183            | 0.170                       | 44.618       |                           |            | ۱.     |        |               |       |       |             |      |         |
| 1       |         | ' i         | 111D/6                        | 10               | 807                       | 0.027    | 0.183            | 0-170                       | 67.453       |                           |            |        |        |               | 1     |       |             |      |         |
|         |         |             | 10/14                         | 10               | 667                       | 0.017    | 0.183            | 0.730                       | 94.650       |                           | '          |        |        |               |       |       | } '         |      |         |
|         | ļ       |             |                               |                  | Phas                      | 1V - B10 | ck C-9 —         | Eight engi                  | Ing operat   | ion — to                  | ur en      | gines  | , pule | i<br>∍ing,    | four  | stend | ı<br>İy sta | ate  |         |
| 2       | 12-9-67 | 0915        | IVS/4                         | 3                | 642                       | 0.050    | 0 150            | 0.150                       | 32.650       | 21-24                     | ٨          | в      | x      |               | li    | x     | x           |      |         |
| 1       |         |             | 17/15                         | ۆ                | 155                       | 0.050    | 0.150            | 0.150                       | 7.341        |                           |            | _      |        |               | 1     |       |             |      |         |
|         | 1       |             | 115/12                        | 3                | 30z                       | 0.050    | 0 150            | 0.150                       | 20.914       |                           |            | i i    | 1      |               | í í   |       | i i         |      |         |
|         |         |             | 111F/7                        | د                | 196                       | 0 050    | 0.150            | 0.150                       | 11.650       |                           |            |        |        |               |       |       |             |      |         |
|         |         |             |                               |                  | الم خدمات                 | ·        |                  |                             | است المسالية | Law                       |            | فيحسما | L      |               |       |       | فسنسبط      | L    |         |

.

.

THERMOCHEMICAL TEST AREA \_\_\_\_\_\_

boc. No. MSC-E戸-R-68-17 New

0F A-36

| Run no. | Date    | Time, | Engine no.<br>and<br>location | No. of | Cumu-<br>lative | On time, | Off time,      | On time<br>this run, | Cumu-<br>lative<br>on time, | Volve<br>voltage, | Mai        | in    |     | ter        | r             | er-     | Cr       | OBB (      | Remarks                                                        |
|---------|---------|-------|-------------------------------|--------|-----------------|----------|----------------|----------------------|-----------------------------|-------------------|------------|-------|-----|------------|---------------|---------|----------|------------|----------------------------------------------------------------|
|         |         | hr    | location                      | puises | pulses          | 960      | 8466           | 800                  | sec                         | V đe              | 0          | l c   | 0   | c          | 0             | 0       | 0        |            |                                                                |
|         |         |       | 11/2                          | 1      | 748             | 0 450    |                | 0.450                | 45.625                      |                   | <u>-</u> - | [-ĭ-i |     | - <u>-</u> | [- <u>`</u> - | <u></u> | <u> </u> | ┟┈╌┼╌      |                                                                |
|         | •       |       | 110/10                        | 1      | 346             | 0.450    |                | 0.450                | 44.868                      |                   |            |       |     |            |               |         |          |            |                                                                |
|         |         |       | 1110/40                       |        | 808             | 0.450    |                | 0.450                | 67.903                      |                   |            |       |     |            |               |         | ļ        |            |                                                                |
|         |         |       | ID/14                         | Î      | 668             | 0 450    |                | 0 4 50               | 55.100                      |                   | ſ          |       |     |            | 1             | 1 '     |          | 1          |                                                                |
|         |         |       | 10/1-                         | -      |                 |          | <br>-> 0 30    | Eight eng            |                             |                   |            | <br>  | The |            | Į             | Į –     | Į        | Į          |                                                                |
|         |         |       |                               |        |                 |          | 1              | J                    |                             |                   | 1          | J     |     |            |               |         |          | ]          |                                                                |
| 1       | 12-9-67 | 1024  | IV0/2                         | 5      | 753             | 0.054    | 0 146          | G 270                | 45.895                      | 23-24             | <u>۸</u>   | в     | X   | i          |               | X :     | x        | ₿ <u>₹</u> | #OTE. Engines 2, 13, 6, and 9<br>lead engines 15, 7, 12, and 4 |
|         |         |       | 10/13                         | 5      | 407             | 0.054    | 0.146          | 0.270                | 7.611                       |                   |            |       |     |            |               |         |          |            | by 50 mace in runs 1 to 5 and                                  |
|         |         |       | 1110/6                        | 5      | 813             | 0.054    | 0.146          | 0.270                | 68.173                      |                   |            |       | 1   |            |               | ]       | ŗ        | ļ ļ        | by 100 mace in runs 6 to 10                                    |
| i       |         |       | 110/9                         | 5      | 259<br>647      | 0.054    | 0.146<br>0.183 | 0.270                | 25.115                      |                   | Í          | { i   |     |            | ۱ I           | ł       |          |            |                                                                |
|         |         |       | IV6/4<br>IF/15                | 5      | 160             | 0.017    | 0.183          | 0 085                | 32.735<br>7.696             |                   | 1          | ļ     |     |            |               | {       | ł        | <b>\</b>   |                                                                |
|         |         |       | 11/15                         | ŝ      | 201             | 0.017    | 0.183          | 0.085                | 1.030                       |                   | i i        |       |     |            |               |         | 1        |            |                                                                |
|         | 1       |       | 116/12                        | 5      | 307             | 0.017    | 0.183          | 0.085                | 20.999                      |                   | í          |       |     |            | 1             | [       | ĺ        |            |                                                                |
| з       | 12-9-67 | 1035  | IVD/2                         | 5      | 758             | 0 048    | 0.152          | 0.240                | 46.135                      | 23-24             | ۸ (        | 8     | x   |            | \<br>\        | x       | x        | 1          |                                                                |
|         |         |       | 10/13                         | i s    | 412             | 0.048    | 0.152          | 0.240                | 29.385                      |                   | 1          |       |     | 1          | 1             | 1       | 1        | 1          |                                                                |
|         |         | ł     | 1110/6                        | 5      | 818             | 0.048    | 0 152          | 0.240                | 68.413                      |                   | í          | í .   | 1   | Í          | í i           | 1       | í        |            |                                                                |
|         |         |       | 110/9                         | 5      | 264             | 0.048    | 0 152          | 0.240                | 25.355                      |                   |            |       |     |            |               |         |          |            |                                                                |
|         |         |       | IVS/4                         | 5      | 652             | 0.017    | 0.163          | 0.085                | 32.820                      |                   |            | ] .   |     |            | ן ו           | Ì       | ]        |            |                                                                |
|         |         |       | IF/15                         | 5      | 165             | 0 017    | 0.153          | 0.085                | 7.781                       |                   | ł          | i I   |     |            |               | ( :     | t        | 1          |                                                                |
|         |         |       | 1117/7                        | 5      | 506             | 0 017    | 0.183          | 0.085                | 11.820                      |                   | [          |       |     |            |               |         | <b>.</b> | 1          |                                                                |
|         |         |       | IIS/12                        | 5      | 315             | 0.017    | 0 183          | 0.085                | 21.084                      |                   |            |       |     |            |               | 1       |          |            |                                                                |
| 5       | 12-9-67 | 1041  | 170/2                         | 5      | 763             | 0+044    | 0.156          | 0.220                | 46.355                      | 23-24             | 1          | D     | X   |            | l I           | X       | x        |            |                                                                |
| i       |         |       | 10/13                         | 5      | 417             | 0.044    | 0.156          | 0.220                | 29.605                      |                   |            |       |     |            |               |         |          |            |                                                                |
|         | L I     |       | IIID/6                        | 5      | 823             | 0.044    | 0.156          | 0.850                | 68.633                      |                   | Į          |       |     |            | {             | { :     | l        | { {        |                                                                |
|         |         |       | 110/9                         | 5      | 269             | 0+044    | 0.156          | 0.220                | 25,575                      |                   |            |       |     |            |               | 1       | 1        | 11         |                                                                |
|         |         |       | IV6/4                         | 5      | 657             | 0.017    | 0 183          | 0.085                | 32,905                      | L                 |            | L     |     |            |               | L       | L        | Lunk       |                                                                |
|         |         |       |                               |        |                 |          | <u></u>        |                      |                             |                   | _          |       |     |            |               |         |          |            |                                                                |

THERMOCHEMICAL TEST AREA -----

.

MSC-EP-R-68-17 New

PAGE A-37 0F A-49

•

•

|          | Į       | l           | ( I                           |                  | l I                       | ļ               | ļ         |                             | Ըսոս-              |                           |              | 1     | inteli | alv           | e pon       | ftion |     |            |                                         |
|----------|---------|-------------|-------------------------------|------------------|---------------------------|-----------------|-----------|-----------------------------|--------------------|---------------------------|--------------|-------|--------|---------------|-------------|-------|-----|------------|-----------------------------------------|
| да по.   | Date    | Time,<br>br | Fugine no.<br>and<br>location | No. of<br>pulses | Comu-<br>Intive<br>pulses | On time,<br>rec | orr time, | On time<br>this run,<br>sec | Intive<br>on time, | Valve<br>voltage,<br>V de | Mn<br>Diruto |       |        | atrr<br>at(on | Inte        |       |     | ogn<br>ogn | <u> </u>                                |
| _        |         |             |                               |                  |                           |                 |           |                             | 598                |                           | 0            | c     | 0      | C             | C           | с     | 0   | C          |                                         |
|          | [       |             | IF/15                         | 5                | 170                       | 0.017           | 0,183     | Ø 085                       | 7,066              |                           |              |       | [      | [             |             |       |     | $\{ \ ]$   |                                         |
|          | 1       |             | 1111/7                        | 5                | 211                       | 0 017           | 0,183     | 0.085                       | 11.905             |                           |              |       |        |               | 1           |       |     | 1          |                                         |
|          |         |             | IIS/12                        | 5                | 317                       | 0.017           | 0 183     | 0.085                       | 21.169             |                           | J            |       |        |               |             |       | [   |            |                                         |
| 7        | 12-9-61 | 1046        | IMD/5                         | 3                | 766                       | 0 100           | 0 100 '   | 0.300                       | 46.655             | 23-2)1                    | A            | в     | x      | 1             | 1           | x     | ) x | 11         |                                         |
|          | 1       |             | ] IU/13                       | 3                | 1420                      | 0 100           | 0 100     | 0.300                       | 29 905             |                           | 1            |       |        | 1             | 1           | 1     | 1   | 1 1        | )                                       |
|          | 1       |             | IIID/6                        | 3                | 026                       | D 100           | 0.100     | 0.300                       | 68 033             |                           | ļ            | ļ     | !      | ł             | {           |       | }   |            |                                         |
|          |         | ]           | IIU/9                         | 3                | 272                       | 0.100           | 0.100     | 0.300                       | 25.875             |                           |              |       |        |               |             |       |     |            |                                         |
|          |         | 1           | IVS/4                         | 3                | 660                       | 0.050           | 0.150     | 0.150                       | 33.055             |                           |              |       | 1      | 1             |             |       | 1   |            |                                         |
|          | }       | }           | 17/13                         | 3                | 173                       | 0.050           | 0 150     | 0.150                       | 8,016              | 1                         | }            | }     | }      | }             | ]           |       | ]   | 1 1        |                                         |
|          |         | i i         | IIIF/7                        | 3                | 214                       | 0.050           | 0,150     | 0.150                       | 12.055             |                           | !            |       |        |               |             |       |     |            |                                         |
|          | Į       | l           | 115/12                        | 3                | 320                       | 0.050           | 0 250     | 0.150                       | 21.319             |                           | ſ            |       | {      | ļ             | {           |       | {   | 1 1        | 1                                       |
| 9        | 12-9-67 | 1053        | Ĭ <b>√</b> D/2                | 3                | 769                       | 0.096           | 0,104     | 0.288                       | 46.943             | 23-24                     | A            | B     | x      | ĺ             | 1           | x     | X   | í I        |                                         |
|          | ]       |             | <b>10/1</b> 3                 | 3                | 423                       | 0.096           | 0,104     | 0.288                       | 30.193             |                           |              |       |        |               |             |       | l   |            |                                         |
|          | }       | }           | 1110/6                        | 3                | 829                       | 0 096           | 0,104     | 0.288                       | 69.221             |                           | 1            |       | ļ      | Į             |             |       | ]   |            |                                         |
|          |         |             | 1IV/9                         | 3                | 275                       | 0.096           | 0,104     | 0.288                       | 26.163             |                           |              | 1     |        |               |             |       |     |            |                                         |
|          |         |             | 1VS/4                         | 3                | 663                       | 0.050           | 0 250     | 0.150                       | 33,205             |                           | {            |       |        | ſ             | 1           |       |     | 1          |                                         |
|          | }       | }           | 2 <b>F/</b> 15                | 3                | 176                       | 0.050           | 0,150     | Q.150                       | 8 166              |                           | 1            | ' i   | 1      | 1             |             |       | 1   | 1 1        |                                         |
|          |         |             | 1IIF/7                        | 3                | 217                       | 0.050           | 0.150     | 0.150                       | 12.205             |                           | [            |       |        | ł             |             |       | ļ   | ł l        |                                         |
|          | ) '     | '           | 118/12                        | 3                | 353                       | 0.050           | 0,150     | 0 150                       | 21 469             |                           |              |       |        |               |             |       |     |            |                                         |
|          |         |             | í í                           |                  |                           |                 |           |                             | Phase II           | Mine:                     | ion di       | ty es | cles   | Í             |             |       | ſ   | [ [        |                                         |
|          |         | ۱ I         | { }                           |                  |                           |                 | 810       |                             |                    |                           |              |       |        | ł             | 1<br>1700 m | hover | }   | } }        |                                         |
|          |         |             |                               |                  |                           |                 |           |                             |                    |                           | İ.           |       |        | Ĩ             | ĨĨ          |       |     |            |                                         |
| 1        | 12-9-67 | 1507        | 1116/8                        | 1                | 457                       | 2.650           |           | 2,650                       | 24.370             | 23-24                     | X            |       | X      |               | { {         | x     |     | X          | , i i i i i i i i i i i i i i i i i i i |
| 1X       | 12-9-67 | 1527        | 170/1                         | 25               | 349                       | 2.472           |           | 2.472                       | 30.892             | 23-24                     | x            |       | x      | 4             | 1           | x     | {   | X          | •                                       |
|          |         | · · ·       | 11/0/2                        | 6                | 775                       | 0.514           |           | 0.514                       | 47.457             |                           |              |       |        | (             |             |       | (   | ( (        |                                         |
| <u> </u> |         |             | IVP/3                         | 9                | 126                       | 0.115           |           | ~0.115                      | 6.325              |                           |              |       |        | [             |             |       |     |            |                                         |

.

THERMOCHEMICAL TEST AREA Mcc-ep-3-68-11 DOC. NO. REVISION New PAGE <u>A-38</u>

.

|         |         |             |                               | 1                |                             |                 | }                |                             | Cumu-               | 1                         | <u> </u>   |                 | Latch    | valv       | e 100<br>r | ition       |        |              |   |
|---------|---------|-------------|-------------------------------|------------------|-----------------------------|-----------------|------------------|-----------------------------|---------------------|---------------------------|------------|-----------------|----------|------------|------------|-------------|--------|--------------|---|
| Run no. | Date    | Time,<br>hr | Engine no.<br>and<br>location | No. of<br>pulses | l Cumu-<br>lative<br>pulses | On time,<br>sec | Off time,<br>sec | On time<br>this run,<br>gec | lative<br>on time,  | Yelve<br>Voltage,<br>V de | Ha<br>shut | in<br>offs      |          | ation      |            | er-<br>ects |        | rosi<br>ređi |   |
|         |         | <u> </u>    | ]                             | ]                | [                           | <u> </u>        | <u> </u>         |                             | net                 | <u> </u>                  | ٥          | C               | 0        | C          | 0          | c           | 0      |              | c |
|         |         |             | IVS/L                         | 13               | 676                         | 0.174           | ]                | 0.174                       | 33, 379             |                           |            |                 | [        |            |            |             |        | ľ            |   |
|         |         |             | 1110/5                        | 2                | 169                         | 0.030           |                  | 0 030                       | 20 809              | [                         |            |                 |          | 1          |            | ſ           |        |              |   |
|         |         | ł           | 1110/6                        | 164              | 993                         | 29.640          |                  | 29 640                      | 98-861              | }                         | ł          | }               | 1        | }          | }          | }           | }      | }            |   |
|         |         |             | 1117/7                        | 13               | 230                         | 0.160           | İ                | 0,160                       | 12.365              | · ·                       |            |                 |          |            |            |             |        |              |   |
|         |         |             | IIIS/8                        | a                | 465                         | 0.103           |                  | 0.103                       | 24.473              | •                         | i i        |                 |          |            |            |             |        |              |   |
|         |         | ļ           | 310/9                         | lş.              | 279                         | 0.559           | }                | 0.559                       | 26.722              | }                         | }          | ١               | }        | }          | }          | 1           | 1      | 1            |   |
|         |         |             | IID/10                        | 163              | 509                         | 24.314          |                  | 24,314                      | 69,182              |                           |            |                 |          |            |            | 1           |        | ŀ            |   |
| ]       | )       |             | 11F/11                        | 7                | 415                         | 0.099           | 1                | 0 099                       | 13 687              | }                         | )          | 1               | i i      | 1          | 1          | 1           | 1      | 1            |   |
| 1       |         | }           | 118/12                        | n                | 334                         | 0.152           | Ì                | 0.152                       | 21.621              | )                         | 1          | )               | 1        | )          | ]          | )           | }      | ]            |   |
|         |         |             | IU/13                         | 24               | 447                         | 3 157           |                  | 3.157                       | 33 350              | 1                         | {          |                 | [        |            | [          |             |        |              |   |
|         |         |             | ID/14                         | 3                | 671                         | 0 0k)           |                  | 0.041                       | 95 1 <sup>4</sup> 1 |                           |            |                 |          |            | l I        | Į           | Į į    | Į            |   |
| 5       |         |             | 17/15                         | 10               | 186                         | 0.168           |                  | o 168                       | 8.334               |                           | ]          |                 |          |            | [          |             | ł      |              |   |
|         |         |             | IS/16                         | 5                | 122                         | 0.090           |                  | 0 090                       | 10.204              |                           | 1          | í               | 1        | [          | 1          | Í           | í      | Ĺ            |   |
|         |         |             |                               |                  | Phase                       | III - Blo       | er B-2 1         | luner also                  | lon (AGS)           | Simulati                  | on, c      | 06131.<br>06131 | ptic     | i<br>poque | nce i      | '<br>nitia  | rion . | 1            |   |
| 1       | 12-9-67 | 1640        | ב/טעד                         | a                | 357                         | 0.273           |                  | 0.273                       | 31.165              | 23-24                     | x          | [               | x        | 1          |            | x           |        | ),           | x |
| 1       |         |             | IVD/2                         | 5ն               | 829                         | 5.350           |                  | 5.350                       | 52 807              |                           |            |                 |          |            |            |             | 1      |              |   |
| 1       |         |             | IVF/3                         | 5                | 131                         | 0.199           |                  | 0.199                       | 6 524               | )                         | 1          | )               | )        | ]          | )          | )           | )      | 1            |   |
|         |         |             | 198/4                         | 5                | 681                         | 0 215           |                  | 0.215                       | 33.594              | l l                       |            |                 |          |            |            |             |        |              |   |
| Í       |         |             | 111V/5                        | 10               | 179                         | 0.520           |                  | 0,520                       | 21.329              |                           | (          | (               | ĺ        | <b>(</b> ) | (          | [           | [      | [            |   |
|         |         | [           | 1110/6                        | 51               | 1044                        | 6.859           |                  | 6 859                       | 105 720             |                           |            |                 |          |            |            |             |        |              |   |
| ·       |         |             | 111F/7                        | 4                | 234                         | 0.204           |                  | 0,204                       | 12.569              |                           |            |                 |          |            |            |             |        | ľ            |   |
|         |         |             | IIIS/8                        | 4                | 469                         | 0,195           |                  | 0,195                       | z4.668              |                           | ł          | i i             | l        | ( )        | 1          | ( )         | ł      | Į.           |   |
|         |         |             | 11U/9                         | 10               | 289                         | 0.429           |                  | 0,429                       | 27 151              |                           |            |                 | 1        |            | 1          |             |        |              |   |
|         |         |             | 119/10                        | 59               | 568                         | 4,931           |                  | 4.931                       | 74.113              |                           |            |                 |          |            |            |             |        |              |   |
| {       |         | i           | 117/11                        | 4                | 429                         | 0.186           |                  | 0.186                       | 13.873              |                           | {          | ł               |          | { }        |            | <u>ا</u>    | ł      |              | - |
|         |         |             |                               | L                |                             |                 |                  |                             |                     | ·                         |            | ·               | <b>.</b> |            | L          | ·           |        | •            |   |
|         |         |             |                               |                  |                             |                 |                  |                             |                     |                           |            |                 | _        |            |            |             |        |              |   |
|         |         |             |                               |                  |                             |                 |                  |                             |                     |                           |            |                 |          |            |            |             |        |              |   |

.

THERMOCHEMICAL TEST AREA

MSC--EP-R-68-17 New OF A-49

.

|         |         | - ··        |                               |                  |                           |                 |                  |                             | C12012-            |                           |            |            | Latch       | val           | ve po     | citi         | ion |     |            |         |
|---------|---------|-------------|-------------------------------|------------------|---------------------------|-----------------|------------------|-----------------------------|--------------------|---------------------------|------------|------------|-------------|---------------|-----------|--------------|-----|-----|------------|---------|
| tun no. | Date    | Time.<br>hr | Engine no.<br>and<br>location | No. of<br>pulses | Cumu-<br>lative<br>pulses | On time,<br>Bec | Off time,<br>sec | On time<br>this run,<br>sec | lative<br>on time, | Valve<br>Voltage,<br>V dc | Ma<br>shut | in<br>offe | C11<br>1603 | ater<br>ation | In<br>con | ter-<br>nect | ts  |     | oso<br>sb9 | Remarks |
|         | }       |             |                               |                  | [                         | }               | <u>}</u>         | }                           | Bee                | }                         | 0          | 0          | 0           | C             | 0         | 10           | C   | 0   | C          | )       |
|         |         | [           | 116/12                        | L.               | 338                       | 0.178           |                  | 0.178                       | 21.799             |                           |            |            |             |               | Τ.        |              |     |     |            |         |
|         | { .     | Į           | 10/13                         | 10               | 457                       | 0.586           | ł                | 0.585                       | 33.936             | ł                         | ł          | ł          | ł           | {             | 1         | ł            | - { |     |            | }       |
|         |         |             | ID/14                         | 53               | 724                       | 7.373           |                  | 7.373                       | 102.514            |                           |            |            |             | 1             | F         |              |     |     |            |         |
|         |         |             | IP/15                         | 5                | 191                       | 0.205           | l                | 0.205                       | 8,539              | Į                         | l          | Į          | ļ           | Į             | ļ         |              | 1   |     |            |         |
|         | ĺ       | Ì           | IS/16                         | 5                | 127                       | 0 207           | í .              | 0.207                       | 10.411             | [                         | ſ          | Í          | [           | ĺ             | 1         |              | 1   |     |            |         |
|         |         |             | 1                             |                  |                           |                 |                  |                             |                    |                           |            |            |             | 1             |           |              |     |     |            |         |
|         | { ·     | 4           | ł                             | 4                | Phaze II                  | I - D1009       | : 3-3 Lu         | ner missic                  | in (AGS) e         | imulation                 | i coa      | 1110       | ie de       | lta i         | naigh     | st.          | 1   | i   |            |         |
| 1       | 12-9-67 | 1713        | 170/1                         | 6                | 363                       | 0.270           |                  | 0.270                       | 31.435             |                           | [          |            |             |               |           |              |     |     |            |         |
|         | ί,      | ļ           | IVD/2                         | 57               | 886                       | 5.734           |                  | 5.734                       | 58.541             | ļ                         | ł          | ł          | ł           | ł             | }         | -            |     |     |            | }       |
|         |         |             | IVF/3                         | 9                | 140                       | 0.293           |                  | 0.293                       | 6.817              |                           |            | 1          |             |               | 1         |              | 1   |     |            |         |
|         | ]       |             | 1V8/4                         | 74               | 695                       | 0.348           |                  | 0.348                       | 33.942             |                           | ]          | ו          | 1           | Į             | 1         | 1            | 1   |     |            |         |
|         | 1       |             | 1111/5                        | 75               | 191                       | 0.545           |                  | 0 545                       | 21.874             |                           | 1          | Ì          | 1           | Í             | 1         |              | 1   |     |            |         |
|         |         |             | IIID/6                        | 62               | 1106                      | 7.515           |                  | 7.515                       | 113.235            |                           | ٠ I        |            |             | 1             |           |              |     |     |            |         |
| ł       | (       |             | IIIF/7                        | 24               | 248                       | 0.380           |                  | 0.380                       | 12.949             |                           | 1          | l          | ł           | ł             |           | ł            | 1   |     |            |         |
|         |         |             | IIIS/8                        | 10               | 479                       | 0.327           |                  | 0.327                       | 24.995             |                           |            |            |             |               |           |              | -   |     |            |         |
|         |         |             | 110/9                         | 29               | 305                       | D.692           |                  | 0.692                       | 27.843             |                           |            | Į          | ļ           | Į             |           |              | ļ   |     |            |         |
|         |         |             | 110/10                        | 64               | 632                       | 5.439           |                  | 5.439                       | 79.552             |                           |            |            |             |               |           |              |     |     |            |         |
|         |         |             | 117/11                        | 9                | 428                       | 0.340           |                  | 0.340                       | 14.213             |                           |            |            |             |               |           | ſ            | 1   |     |            |         |
| ł       | ( (     | • •         | 118/12<br>TU/13               | 15<br>11         | 353,<br>468               | 0.368           |                  | 0.368<br>0.526              | 22.167<br>34.462   |                           | 1          |            | í –         | İ             | 1         | Ì            | ļ   | - 1 |            |         |
|         |         |             | ID/14                         | 21<br>56         | 780                       | 0.526<br>8.039  |                  | 8.039                       | 34.462             |                           |            |            |             |               |           |              |     |     |            |         |
|         |         | i           | 15/15                         | 15               | 206                       | 0.352           |                  | 0.352                       | 8,891              |                           |            |            | {           | {             | ł         | 1            | - { | 1   |            |         |
|         |         |             | 1\$/16                        | 8                | 135                       | 0.369           |                  | 0.369                       | 10.780             |                           |            |            |             |               |           | 1            |     |     |            |         |

THERNOCHEMICAL TEST AREA

-

DOC. NO. MSC-EP-R-68-17 New

REVISION

PAGE <u>A-40</u>

ŧ

| Run no. | Date    | Time, | Eugine no.<br>and<br>location | No. of | Gumu-<br>lative | On time,  | Off time, | On time<br>this run, | Cusu→<br>lative<br>on time, | Valve<br>voltage, |         | in<br>offa | Clu   | oter   | Int  |      | C | ross | Remarks                           |
|---------|---------|-------|-------------------------------|--------|-----------------|-----------|-----------|----------------------|-----------------------------|-------------------|---------|------------|-------|--------|------|------|---|------|-----------------------------------|
|         |         |       | location                      | }      | pulses          |           | }         | Bec                  | #CC                         | v đe ′            | <b></b> | C I        | 0     | c      | 0    | c    | 0 | Te   |                                   |
|         |         |       | <br>                          |        | Phase           | 111 - B10 | і         | Lunar miss           | ion (AGS)                   | simulati          | on, t   | ransfe     | er po | int in | itia | tion |   | 1    |                                   |
| 1       | 12-9-67 | 2103  | 170/1                         | 16     | 379             | 0.889     | }         | 0,889                | 32.324                      | 23-24             | 1       | 1          |       |        |      | 1    |   | }    | -                                 |
|         |         |       | IVD/2                         | 44     | 930             | 4.555     | 1         | 4.555                | 63.096                      |                   | 1       | ۱ '        |       |        |      | 1    | ł | 1    |                                   |
|         |         |       | IVF/3                         | 33     | 173             | 1.138     | ļ         | 1.138                |                             | ļ                 | ļ       | ]          |       |        |      | }    | } | }    |                                   |
|         |         |       | IVS/4                         | 35     | 730             | 1.056     |           | 1.056                | 31 998                      |                   | ſ       |            |       |        |      |      |   |      |                                   |
|         | ) )     |       | 1110/5                        | 30     | 221             | 0.944     | )         | 0.954                | 22,818                      |                   | 1       | )          |       |        |      |      | Ì | 1    |                                   |
|         |         |       | IIID/6                        | 63     | 1169            | 5.399     | 1         | 5.399                | 110 634                     | ł                 | }       | 1          |       |        |      | }    | ł | 1    |                                   |
|         |         |       | IIIF/7                        | 28     | 276             | 1.068     | Į         | 1.068                | 14,017                      |                   | l l     |            |       |        |      | ļi   |   | Į    |                                   |
|         |         |       | IIIS/8                        | 30     | 509             | 1.068     |           | 1.068                | 26,063                      |                   |         |            |       |        |      |      |   | ļ    |                                   |
|         | 1       |       | 11U/9                         | 58     | 366             | 2,432     | [         | 2.432                | 30.275                      | ĺ                 | Ì       |            | · ·   |        |      |      | ĺ |      |                                   |
|         | ן ו     |       | IID/10                        | 82     | 724             | 5.484     | Ì         | 5.484                | 85,036                      | ]                 | ]       | ]          |       |        |      |      |   | }    |                                   |
|         |         |       | IIF/11                        | 30     | 458             | 1 000     | 1         | 1.000                | 15.213                      | Į                 | ł       | 1          |       |        | ' i  | 1    | [ | ł    | {                                 |
| 1       |         |       | 118/12                        | 28     | 381             | 1.046     | 1         | 1.046                | 23 213                      |                   |         |            |       |        |      | 1    |   |      |                                   |
|         | l l     |       | IV/13                         | 40     | 508             | 1.866     | ļ         | 1.866                | 36.328                      | Į                 | ł       | ļ          |       |        | 1    |      | [ | Į    |                                   |
| - í     |         |       | ID/14                         | 69     | 849             | 6.735     | (         | 6.735                | 117.288                     | ĺ                 | {       | ( (        |       |        | 1    | { {  |   | {    | • •                               |
|         |         |       | <b>IF</b> /15                 | 30     | 236             | 1.053     |           | 1.053                | 9.944                       |                   |         | Ι.         |       |        |      |      |   |      |                                   |
| 5       |         |       | 18/16                         | 31     | 166             | 1.045     | 1         | 1.042                | 11.822                      | l                 | ļ       |            |       | ļļ     |      | [ ]  |   |      | •                                 |
|         |         |       |                               | {      | Pha             | se III -  | Block B-5 | — Lunar z            | iasion (A                   | անուլ (ՇՏ         | ation   | , mide     | oure  | e corr | ecti | ons  | t | 1    |                                   |
| I       | 12-9-67 | \$550 | 170/1                         | o      | 379             | 0.000     |           | 0.000                | 32.324                      | 23-24             | x       |            | x     |        |      | x    |   | x    |                                   |
| (       |         |       | IVD/2                         | 69     | 999             | 3.837     | i         | 3.837                | 66.933                      | ļ                 | l I     | t I        |       |        |      |      |   | ļ    |                                   |
| 1       | 1 1     |       | IVF/3                         | 73     | 246             | 3.898     | Į         | 3.898                | 21.853                      | Į                 | [       | Į          |       |        |      |      | l | l    |                                   |
|         |         |       | IV5/4                         | 60     | 790             | 3.629     |           | 3.629                | 38,627                      |                   |         | 1          |       |        |      |      |   | 1    | Upfiring engines inhibited due to |
|         |         |       | 1110/5                        | 0      | 557             | 0.000     | ļ         | 0.000                | 22,818                      |                   | ł       | ļ          |       |        | 1    | 1    |   | 1    | vacuum redline                    |
|         |         | •     | TIID/6                        | 76     | 1245            | 5.023     | [         | 5.023                | 123.657                     |                   | ł       | ļ          |       |        |      |      |   |      |                                   |
|         | (       |       | IIIF/7                        | 60     | 336             | 3.953     | L         | 3.953                | 17.970                      | L                 |         |            |       |        |      |      |   | L.   | <u> </u>                          |

.

,

THERMOCHEMICAL TEST AREA

.

.

•

DOC. NO. REVISION PAGE A-41 MSC-EP-R-68-17 New OF A-49

.

,

ς.

|          | ł       | ſ           | (                             | l                |                           |                 |                  |                             | Cumun              | Valve     |             |            | Latch | valv           | e pos | aiti         | a |            |     |         |
|----------|---------|-------------|-------------------------------|------------------|---------------------------|-----------------|------------------|-----------------------------|--------------------|-----------|-------------|------------|-------|----------------|-------|--------------|---|------------|-----|---------|
| Run no.  | Date    | Time,<br>hr | Engine ho.<br>and<br>location | No. of<br>pulses | Cumu-<br>lative<br>pulses | On time,<br>prc | Off time,<br>Bec | On time<br>this run,<br>sec | lative<br>on time, | 11014     | Ma<br>shut  | in<br>¢ff® |       | uster<br>stion |       | ter-<br>nect |   | Cro<br>fee |     | Remarks |
|          | í _     | Í           |                               | 1                | ľ                         |                 | Í                |                             | 8ec                |           | 0           | C          | 0     | С              | 0     | C            | 1 | ٥ [        | C   |         |
|          |         |             | 1115/8                        | 67               | 576                       | 3.719           |                  | 3.719                       | 29.782             |           |             |            |       |                | 1     | 1            | 1 |            |     |         |
|          | ļ       |             | 110/9                         | 0                | 366 .                     | 0 000           |                  | 0.000                       | 30.275             | ļ         | ļ           | ]          |       |                |       |              | J | ļ          |     |         |
|          | 1       | 1           | IID/10                        | 133              | 847                       | 5 892           | 1                | 5.892                       | 90.928             | 1         |             | 1          | 1     |                | 1     | 1            |   | ۱,         |     |         |
|          |         |             | 117/11                        | 61               | 519                       | 3,565           |                  | 3.565                       | 18.778             |           |             |            |       |                |       |              |   |            | i   | ,       |
|          | }       | 1           | IIS/12                        | 55               | 436                       | 3.770           | ]                | 3.770                       | 26.983             | 1         | 1           | ]          | 1     |                |       | Ĩ            |   |            |     |         |
|          | ĺ       | (           | 10/13                         | 0                | 508                       | 0,000           | 1                | 0.000                       | 36.328             | Í         | Í           | Í          |       | •              | Í.    | Í            | Í | f          |     |         |
|          |         |             | ID/14                         | 54               | 903                       | 5.962           |                  | 5.962                       | 123.250            |           | ļ           |            | [ ;   |                |       |              |   |            |     |         |
|          |         | l           | 17/15                         | 56               | 292                       | 3,462           |                  | 3.467                       | 13.406             |           | l           | l          |       |                |       |              |   | l          | 1   |         |
|          | }       | ł           | 18/16                         | 63 '             | 283                       | 3.849           | }                | 3.849                       | 15.671             | }         | }           | }          | 1     |                | 1     | ł            |   | 1          |     |         |
|          |         |             |                               |                  |                           |                 |                  | Phase I                     | V —– opea:         | al duty   | ı<br>cyçle: | ,          |       |                | [     |              |   | -          |     |         |
|          |         | Į           | Į                             |                  | Į                         |                 | Block 7 -        | - crossfe                   | ed operati         | ion, 1H-1 | mjaaj       | lon p      | hase  | II             |       | 1            |   | ļ          |     |         |
| 1        | 12-9-67 | 2350        | IVU/1                         | 10               | 389                       | 0 663           |                  | 0.663                       | 32,987             | 23-24     | A           | в          | x     |                | 1     | x            | × |            |     |         |
|          |         |             | IVD/2                         | 2                | 1001                      | 0,834           |                  | D.834                       | 67.767             |           |             |            | !     |                |       |              |   | T          |     |         |
|          |         | ļ           | IV <b>r</b> /3                | 0                | 246                       | 0.000           |                  | 0.000                       | 11.853             |           |             |            |       |                | ]     |              |   |            |     |         |
|          |         |             | IV5/4                         | c                | 790                       | 0.000           |                  | 0,000                       | 38.627             |           |             |            |       |                | 1     | ł            | 1 |            |     |         |
|          |         |             | 1110/5                        | 1 1              | 555                       | 11 908          |                  | 11,908                      | 34.726             |           |             | 1          |       |                |       |              |   |            |     |         |
|          |         | 1           | 1110/6                        | 8                | 1253                      | 1.794           | ļ                | 1,794                       | 125.451            |           | ļ           | ļ          |       |                | ļ     | }            |   |            |     |         |
|          |         |             | IIIF/7                        | 0                | 336                       | 0,000           | [                | 0,000                       | 17.970             |           |             |            |       |                |       |              |   |            |     |         |
|          |         |             | IIIS/8                        | 0                | 576                       | 0.000           |                  | a.000                       | 29.782             |           |             |            |       |                | Į     | l l          | Į | 1          | i i |         |
|          | l .     | l           | 110/9                         | 3                | 369                       | 1,435           |                  | 1.435                       | 31.710             |           | Į –         | ł          | Į     |                | ļ     | t i          |   |            |     |         |
|          |         | l           | 110/10                        | 0                | 847                       | 0.000           |                  | 0.000                       | 90.928             |           | í           | Í          | Î     |                | Í     | Í            | Í | Í          |     | ſ       |
|          |         |             | 111/11<br>115/12              | 0                | 519                       | 0,000           |                  | 0.000                       | 18,778             |           |             |            |       |                | 1     |              |   |            |     |         |
|          |         | 1           | 115/12                        | 0<br>1.          | 436                       | 0,000           |                  | 0.000<br>0.952              | 26.983             |           |             |            |       |                | Į     | Į.           | ļ | l          |     |         |
|          | 1       | 7           | 10/15                         | 6                | 512                       | 0.540           |                  |                             | 37.280<br>123.790  |           |             |            |       |                | 1     | ł            | ł |            |     |         |
| <u> </u> |         |             | 30/14                         | L                | 909                       | 0.940           |                  | 0, 540                      | 152-100            |           |             |            |       |                |       |              | ┶ |            |     |         |

4

THERMOCHEMICAL TEST AREA

MSC-EP-R-68-17 New

PAGE OF

A-42 A-49

,

-

-

.

|        |          |             | Engine no.      | l                | , Cueu-  |                 | [                | On time    | Cumu-     | Valve            | Ļ    |              |       |                | <u> </u> | sition        |       |              | 4       |
|--------|----------|-------------|-----------------|------------------|----------|-----------------|------------------|------------|-----------|------------------|------|--------------|-------|----------------|----------|---------------|-------|--------------|---------|
| un no. | Date     | Time,<br>br | and<br>location | No. of<br>pulses | 1        | On time,<br>gec | Off time,<br>avc | this run,  | ION FIDE  | voltage,<br>V dc |      | ain<br>Soffs |       | nster<br>Ation |          | ter-<br>necta |       | roaa<br>eeda | Remarks |
|        |          |             |                 | ł                | 1        |                 | 1                | -          | 500       | l                | 0    | C            | 0     | C              | 0        | C             | 0     | C            | ]       |
|        |          |             | IF/15           | 0                | 292      | 0.000           |                  | 0,000      | 13.406    | 1                |      |              |       | <u> </u>       | Γ        | T             | Γ     |              |         |
| 1      |          |             | 18/16           | ¢                | 299      | 0.000           |                  | 0.000      | 15.671    | }                | 1    | 1            |       | ſ              |          | 1             | 1     | 1            |         |
| 71     | 12-10-67 | 0102        | 170/1           | 67               | 456      | i0.746          |                  | 10.746     | 43 733    | 23-24            |      | в            | х     |                |          | x             | X     | 1            |         |
|        |          |             | IVD/2           | 55               | 1056     | 7.168           |                  | 7.168      | 74.935    | ļ                | ļ    | ļ            | ļ.    | ļ              | ļ        | ļ             | ţ     | ļ            | }       |
|        |          |             | IVF/3           | 17               | 263      | 0.627           |                  | 0.627      | 12.480    |                  |      |              |       |                |          |               |       | ł            | ,       |
|        |          |             | 118/4           | 14               | 804      | 0.423           |                  | 0,423      | 39.050    |                  |      | 1            | }     |                |          |               | 1     |              |         |
| 5      |          |             | 1110/5          | 68               | 290      | 7.649           |                  | 7.649      | 42.375    | )                | )    | )            | )     | ţ              | }        |               | ]     | ]            |         |
|        |          |             | 1110/6          | 115              | 1368     | 15.714          |                  | 15.714     | 141.165   |                  | 1    | 1            |       |                |          |               |       |              |         |
|        |          |             | IIIF/7          | 15               | 351      | 0.391           |                  | 0.391      | 18.361    |                  |      | {            | [     |                | •        | 1             | 1     | 1            |         |
|        |          |             | IIIS/8          | 17               | 593      | 2-238           |                  | 1,138      | 30,920    |                  | 1    | ł            |       |                | 1        | ł             | 1     | 1            |         |
| - 1    |          |             | IIU/9           | 78               | 447      | 12,246          |                  | 12.246     | 43.956    |                  | 1    | l            | 1     |                |          | 1             | ļ     | 1            |         |
|        |          |             | 110/10          | 8                | 855      | 1.768           |                  | 1.768      | 92 695    |                  |      |              |       |                |          |               |       |              |         |
|        |          |             | IIF/11          | 17               | 536      | 0.626           |                  | 0.626      | 19.404    |                  | 1    | 1            |       |                |          | 1             | 1     | 1            |         |
| -      |          |             | IIS/12          | 14               | 450      | 0.429           |                  | o 429      | 27.412    |                  | 1    | 1            | ) [   | i '            | 1        | Ì             | 1     | ]            |         |
|        |          |             | 10/13           | 21               | 533      | 3,219           |                  | 3.219      | 40.499    |                  |      | 1            |       |                |          |               |       |              | ]       |
| - (    | . {      | l l         | ID/14           | 61               | 970      | 20,229          |                  | 10,119     | 133 909   |                  | { }  | {            | { {   |                |          | ł             | { ·   | ł            | 1       |
| Ì      |          |             | 1F/15           | 35               | 307      | 0.423           |                  | 0.423      | 13.829    |                  |      | 1            |       |                |          | 1             |       |              |         |
|        |          |             | IS/16           | 17               | 246      | 1.166           |                  | 1.166      | 16.837    |                  |      | F            |       | 1 1            |          | ŧ             | Į –   | l            | l .     |
| Ì      |          | •           |                 | Phas             | e IV-Blo | ock K h:        | ign-low vol      | Ltage offe | cts (luna | r minsion        | (AGS | ;) —         | trans | fer p          | oint     | initi         | ation | <b>,</b> )   | í       |
| 1      | 12-10-67 | 0224        | IVU/1           | 16               | 472      | 0.889           | l                | 0,889      | 64.622    | 27-28            | x    | Į            | x     |                | l        | x             | 1     | x            |         |
|        | )        |             | IVD/2           | հե               | 1100     | 4.555           |                  | 4.555      | 79.490    |                  |      |              |       |                |          |               |       | ļ            |         |
|        |          |             | IVF/3           | 33               | 296      | 1.138           | •                | 1.138      | 13.618    |                  |      | Ì            |       |                |          |               | 1     |              |         |
|        |          |             | Ivs/4           | 35               | 839      | 1.056           |                  | 1.056      | \$0.106   |                  |      | 1            | 1     |                |          | }             |       | 1            |         |
| Į      |          |             | 1110/5          | 30               | 350      | 0.966           |                  | 0.944      | 43.319    | ĺ                |      |              |       |                |          | 1             |       |              |         |
|        |          |             | TIID/6          | 63               | 1431     | 5-399           |                  | 5.399      | 146.564   |                  |      |              |       |                |          | 1             |       |              |         |
|        |          |             | 1117/7          | 28               | 379      | 1.068           |                  | 1,068      | 19.429    | i                |      |              |       |                |          | F             |       |              |         |

•

THERMOCHEMICAL TEST AREA

MSC-EP-R-68-17 New OF A-43

.

.

| 1       |          | }           | }                             | }                |                  | )               | {             | }                           | Cumu⊶                     | }                         |      |            | Latch     | งอา | ve po   | oalt: | ion |    |             |         |
|---------|----------|-------------|-------------------------------|------------------|------------------|-----------------|---------------|-----------------------------|---------------------------|---------------------------|------|------------|-----------|-----|---------|-------|-----|----|-------------|---------|
| dun no. | Date     | Tipo,<br>hr | Engine no.<br>and<br>location | No. of<br>pulses | lative<br>pulses | On time,<br>sec | Off time, sec | On time<br>this run,<br>Ged | lative<br>on time,<br>pec | Valve<br>voltage,<br>V dc | shut | in<br>offe | 1301      | T   | n   cor |       | to  | fe | toas<br>eds | ncuarxs |
|         |          | ļ           |                               |                  | <b> </b>         |                 | ļ             |                             |                           | )<br>                     | 0    | C C        | <u> °</u> | c   | Ľ       |       |     | ٥  | ¢           |         |
| }       |          | ł           | IIIS/8                        | 30               | 623              | 1.068           |               | 1.068                       | 31,988                    | ļ                         | (    | (          | Ļ         | Į   |         | ļ     | ļ   |    | {           |         |
|         |          | )           | 110/9                         | 56               | 505              | 2.432           | ļ             | 2.432                       | 46.388                    |                           | [    | 1          |           |     | 1       | 1     | - [ |    |             |         |
|         |          |             | 11D/10                        | 82               | 937              | 5 484           |               | 5.464                       | 98,179                    |                           |      | 1          | 1         |     |         |       |     |    |             |         |
|         |          |             | 11F/11<br>115/12              | 30<br>28         | 566<br>478       | 1.000<br>1.046  |               | 1,000                       | 20,464                    |                           | 1    | 1          | 1         | 1   | 1       |       |     |    | Ì           |         |
|         |          | -           | IU/13                         | 40               | 573              | 1.866           | •             | 1.046                       | 28,458                    |                           |      | ł          | 1         |     | ł       |       | - { |    | ł           |         |
|         |          |             | 10/11                         | 60               | 1039             | 6.735           |               | 1.866<br>6.735              | 42,365<br>140,644         |                           | l    | Į          | l         | t   | ļ       | ļ     | 1   |    | l           |         |
| 1       |          |             | 17/15                         | 30               | 337              | 1.053           | ]             | 1.053                       | 14,882                    |                           |      |            | 1         |     |         |       |     |    | ĺ           |         |
| - 1     |          |             | 15/16                         | 31               | 217              | 1.042           | 1             | 1.042                       | 17.879                    |                           | Í    | 1          | í         | 1   | Í       | Í     | Í   |    | Í           | 1 I     |
| 2       | 12-10-67 | 0340        | 100/1                         | 15               | 488              | 0.889           | [             | 0.889                       | 45,511                    | 20-21                     | x    | {          | x         |     |         |       | ,   |    | x           |         |
|         |          |             | IVD/?                         | 41               | 1144             | 4.555           | j .           | 4.555                       | 84.045                    |                           | ) ^  | )          | ]^        | )   | 1       | 11    | `}  |    | ) ^         | )       |
|         |          |             | IVF/3                         | 33               | 3.0              | 1,130           |               | 1.138                       | 14.756                    |                           |      |            |           |     |         |       |     |    |             |         |
| - 1     |          |             | IVS/4                         | 35               | 874              | 1 056           |               | 1 056                       | 41,162                    |                           | 1    | )          |           | Ì   |         |       |     |    |             |         |
|         |          |             | 1110/5                        | 30               | 350              | 0 944           |               | 0.944                       | 44.263                    |                           | ļ    | 1          | {         |     | 1       |       |     |    |             |         |
| 1       |          |             | 1110/6                        | 63               | 12494            | 5.399           | Į – – –       | 5 399                       | 151.963                   |                           |      | ſ          | }         | 1   |         |       | 1   | 1  |             |         |
|         |          |             | IIIP/7                        | 28               | 107              | 1,068           |               | 1 068                       | 20,497                    |                           |      |            | 1         |     | •       |       | ļ   |    |             |         |
| ł       | i        |             | 1118/8                        | 30               | (13)             | 1 068           |               | 1 068                       | 33.056                    |                           | 1    | 1          | í –       | 1   | í i     | Í     | 1   |    |             |         |
|         |          |             | 11U/9                         | 58               | 563              | 2,432           |               | 2.432                       | 48.820                    | l.                        |      | 1          | 1         | 1   |         |       | 1   | Ì  |             |         |
|         |          |             | 110/10                        | 82               | 1019             | ց հղին          |               | 5.484                       | 103.663                   |                           |      |            | j         |     |         | j.    | ļ   |    |             | ]       |
|         |          |             | XIV/11                        | 36               | 596              | 1,000           |               | 1.000                       | 21,404                    |                           |      | }          | ļ         |     | ].      | }     |     |    |             |         |
|         |          |             | 116/12                        | 28               | 506              | 1 046           |               | 1.046                       | 29,504                    |                           |      |            | 1         |     | 1       |       |     |    |             |         |
|         |          |             | IU/13                         | 40               | 613              | 1 866           |               | 1.866                       | 44,231                    |                           |      | ļ          |           |     | 1       | -     | 1   |    |             | }       |
| -       |          |             | ID/14                         | 69               | 1108             | 6,735           |               | 6.735                       | 147.379                   |                           |      | i          |           | 1   |         |       |     | Ì  | 1           |         |
|         |          |             | 17/15                         | 30               | 367              | 1.053           |               | 1,053                       | 15,935                    | 1                         | ŀ    |            |           | ]   | 1       |       |     |    |             |         |
|         |          |             | 18/16                         | 34               | 308              | 1,042           | 1             | 1.042                       | 18,921                    |                           |      | ł          | ł         | (   | Į –     |       | 1   |    |             | (       |

THERMOCHEMICAL TEST AREA

•

DOC. NO. MSC-EP-R-68-17 New

PAGE A-44

.

| Run no.    | Date     | Time, | Engine no. | no of<br>Dulses | Cumu-<br>lative |            | Off time,    | On time<br>this run, | Cumu-<br>lative<br>on time. | Valve<br>voltage, |            | ain      | C10        | ster<br>stion | Int   | er-      | Cr            | oss<br>eda | Remarks |
|------------|----------|-------|------------|-----------------|-----------------|------------|--------------|----------------------|-----------------------------|-------------------|------------|----------|------------|---------------|-------|----------|---------------|------------|---------|
|            |          | hr    | location   | Гршкер          | pulses          | açc.       | BCC          | Bec                  | on time,                    | . ¥ àc            | 0          | l c      | 0          | C             | 0     | C        | 0             | c          |         |
|            |          |       |            | <b> </b> -      |                 |            | - <u></u>    | I                    |                             |                   | ┢╌╴        | <u> </u> |            |               | ~     | <u> </u> | <u> </u>      | <u> </u>   |         |
|            |          |       |            | 1               | /Phas           | 2 IV ~ B10 | ek E pr<br>I | opellant c           | onsumptio<br>L              | n and O/F<br>I    | ' rat<br>I | io dut:  | y cyc<br>1 | leD           |       | Į        | Į –           | [ ]        |         |
| 3          | 12-10-67 |       | IVD/2      | 2000            | 1               | 0.014      | 1 000        |                      | 215.072                     | 23-24             | X          | 1        | x          |               |       | x        |               | x          |         |
| 2          | 12-10-67 |       | IVD/2      | 1500            | 4644            | 0 025      | 1.000        | 37.500               | 149.545                     | 23-24             | X          |          | X          |               |       | x        |               | x          |         |
| 3          | 12-10-67 | 0909  | 1/0/2      | 750             | 5394            | 0.050      | 1.000        | 37 500               | 187.045                     | 23-24             | X          | 1        | x          |               |       | x        |               | x          |         |
| 5          | 12-10-67 | 1004  | 1VD/2      | 1 400           | 5794            | 0.100      | 1.000        | 40.000               | 227.045                     | 23-24             | ] x        | ]        | X          |               |       | X        |               | X          |         |
| 6          | 12-10-67 | 1119  | IVD/2      | 200             | 5994            | 0,200      | 1.100        | 40.000               | 267.045                     | 23-24             | x          |          | X          |               |       | x        |               | x          |         |
| 84         | 12-10-67 |       | IIID/6     | 100             | 1594            | 0.014      | 2.500        | 1.400                | 153.363                     | 23-24             | x          |          | X          |               |       | x        |               | x          |         |
| 8B         | 15-70-61 | 1248  | 1112/6     | 100             | 1694            | 0.014      | \$.000       | 1 400                | 154.763                     | 23-24             | ) × (      | 1        | ) × (      |               |       | x        | ) '           | ) x ]      |         |
| 16c        | 12-10-67 | 1309  | IIID/6     | 100             | 1794            | 0.014      | 1.500        | 1,400                | 156.163                     | 23-24             | ίx         | Í        | ÍX         |               |       | X        | i i           | x          |         |
| 8D         | 12-10-67 | 1331  | 111D/6     | 100             | 1894            | 0.014      | 1 000        | 1.400                | 157.563                     | 23-24             | x          |          | x          |               |       | х        |               | x          |         |
| 8E         | 12-10-67 | 1352  | IIID/6     | 200             | 2094            | 0 014      | 0.500        | 2.800                | 160.363                     | 53-5p             | X I        | {        | X          |               |       | х        |               | х          |         |
| 87         | 12-10-67 | 2447  | 1110/6     | 500             | 2594            | 0.014      | 2,000        | 7 00                 | 167.363                     | 23-24             | X          | 1        | X          |               |       | х        |               | x          |         |
|            |          |       |            | 500             | 3094            | 0.014      | 1.500        | 7.00                 | 174.363                     | 、                 |            |          |            |               |       |          |               |            |         |
| 1          | [        |       |            | 400             | 3494            | 0.014      | 1 000        | 5.698                | 180.061                     |                   | ļ          |          |            |               |       |          |               |            |         |
| 9          | 12-10-67 | 1555  | IIID/6     | 1500            | 4994            | 0 025      | 1.000        | 37.50                | 217 561                     | 23-24             | X          | ] .      | X          |               |       | x        |               | x          |         |
| 10         | 12-10-67 | 1651  | IIID/6     | 750             | 5744            | 0,050      | 1.000        | 37.50                | 255.061                     | 23-24             | x          |          | x          |               |       | x        |               | x          |         |
| 12         | 12-10-67 | 1738  | IIID/6     | 400             | 614և            | 0.100      | 1 000        | 40 00                | 295.061                     | 23-24             | X          |          | x          |               |       | x        | [             | x          |         |
| 13         | 12-10-67 | 1919  | IIID/6     | 200             | 6344            | 0.200      | 2 100        | 40.00                | 335.061                     | 23-24             | x          |          | x          |               |       | х        |               | x          |         |
| Í          |          |       | 'Phase I   | - 81o           | ck G-2 ~        | - failure  | mode, clus   | ter II "A            | 'isolatic                   | n valves          | clo        | sed 2 :  | Becon      | do aft        | ter 5 | tart d   | ( j<br>of tru | n Í        |         |
| 2          | 12-10-67 | 2336  | 11D/10     |                 | 1020            | 4.000      |              | I I                  | 207.663                     |                   |            | ۲ I      | l i        | ļ             | 1     | 1        | 1             | - 1        | •       |
| <b>د</b> ا | 75-70-01 | C114  | IVD/2      |                 | 6010            | 0.050      | 0.200        |                      | 267.845                     | 23-24             | x          |          | X ]        |               | i     | x        |               | x          |         |
| - 1        | Í        | 1     | 110/2      |                 |                 |            | I            |                      | · - 1                       | 1                 |            | 1 1      | [ [        | - (           | f     |          |               | 1          |         |
| 1          |          |       | C Phane I  |                 |                 | - failure  | mode, clus   |                      |                             |                   | c10        | sed 2    | secon      | ds aft        | er ø  | tart d   | or ru         | 2          |         |
| 4          | 12-20-67 | 2139  | 1YD/2      |                 | 6011            | 4.000      |              | 4.000                | 271.845                     | 23-24             | x          |          | X          | · ]           |       | x        |               | x          |         |
|            |          |       | XIF/11     | 26              | 612             | 0 050      | 0.200        | 0.800                | 22 204                      |                   |            |          |            | 1             | - 1   | ' I      | 1 1           |            |         |
|            |          |       |            |                 |                 |            |              |                      |                             |                   |            | ·        | •••••      |               |       |          |               |            |         |
|            |          |       |            |                 |                 |            |              | -                    |                             | _                 |            |          |            |               |       |          |               |            |         |
|            |          |       |            |                 |                 |            |              |                      |                             |                   |            |          |            |               |       |          |               |            |         |

.

.

•

•

THERMOCHEMICAL TEST AREA

MSC-EP-R-68-17 New OF A-45

-

|         |          |             | Engine bo.                    |                  | ()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>( |                   | 1          | On time         | Cumu-                    | Valve           | <b>—</b> | <u> </u> | Latel     | h valı          | 10 200    | sitic         | m        |     |     |
|---------|----------|-------------|-------------------------------|------------------|---------------------------------------------------------------------------------|-------------------|------------|-----------------|--------------------------|-----------------|----------|----------|-----------|-----------------|-----------|---------------|----------|-----|-----|
| Run no. | Date     | Time,<br>hr | Engine ho.<br>and<br>location | No. of<br>pulses | lntive<br>pulses                                                                | ) On time,<br>sce | Off time,  | this run<br>sec | Intive<br>on time<br>sec | Voltage<br>V dc |          | toffe    | C1<br>100 | uster<br>Lation | л<br>Соді | ter-<br>necte | 1        | ros |     |
|         |          |             |                               |                  |                                                                                 |                   |            |                 |                          | l               | 0        | C        | 0         | C               | [0]       | ¢             | 0        | Τ   | c   |
|         | Ph       | AGE IV      | Block G-6                     | — rail           | ure mod                                                                         | e, cluster        | IV system  | "A" fuel        | isolation                | valve c         | losed    | 2 ae     | oonde     | after           | sta)      | rt ol         | , sinu   |     |     |
| 6       | 12-10-67 | 2250        | IIF/4                         | 2                | 875                                                                             | 2.000             | 0.200      | 2.000           | 43.162                   | 23-24           | x        | 1        | 1 x       | 1               | 1         | x             |          |     | x   |
|         |          |             | 1                             | 7                | 882                                                                             | 0.017             | 0.183      | 0 119           |                          |                 | 1        | }        | 1         |                 | }         | 1             | }        |     |     |
| ` I     |          |             |                               | ' Phase          | IV - B3                                                                         | ock M-1 ~         | - Insulati | on evaluat      | ion repea                | t               |          | 1        | 1         |                 |           |               |          |     |     |
| ы       | 12-11-67 | 0200        | 1110/6                        | 1                |                                                                                 | 20 000            | ľ          | 20,000          | 355.061                  | 23-24           | x        |          | x         |                 |           | x             |          |     | x   |
|         |          | anch        |                               |                  | IV - B                                                                          | ock M-2 ~         | Insulati   | on evaluat      | ion repea                | it.             | 1        |          | Ì         | 1               | 1         | 1             | 1        | 1   |     |
| 24      | 22-21-67 | 0254        | ID/14                         | 1                |                                                                                 | 20,000            |            | 20.000          |                          |                 | ×        |          | X         |                 | 1         | X             |          |     | x   |
| 16      | 12-11-67 |             |                               |                  |                                                                                 |                   | lock H-2 - | -               |                          |                 | Į –      | [        | Į –       | t i             | [         |               | i.       | ĺ   |     |
|         | 12-11-67 |             | 1V8/4<br>IV5/4                | 5                | 857                                                                             | 0.030             | 0,500      | 0,150           | 43 431                   |                 | X        | 1        | X         | [               |           | x             |          |     | x   |
|         | 12-11-67 |             | IVS/4                         | 2                | 892<br>805                                                                      | 0.050             | 0,500      | 0,250           | 43.681                   | 23-24           | X        |          | X         |                 |           | X             |          |     | x   |
|         | 12-11-67 |             | IVS/4                         | 3                | 895<br>897                                                                      | 0.100             | 0.500      | 0.300<br>1.000  | 43.981                   | 23-24           | X        | ł        | X         | }               | ļ         | X             |          |     | X   |
|         | 12-11-67 |             | IV8/4                         | 1                | 898                                                                             | 1.000             | 0.500      | 1.000           | 44.981<br>45.981         | 23-24           | X        |          | X         |                 |           | X             |          | 1   | X   |
|         | 12-11-67 |             | 10/13                         | 5                | 618                                                                             | 0.030             | 0.500      | 0.150           | 45.901                   | 23-24<br>23-24  | X<br>X   |          | x         |                 |           | X<br>X        |          |     | X   |
| L       | 12-11-67 |             | IU/13                         | 5                | 623                                                                             | 0.050             | 0.500      | 0,250           | 44.301                   | 23-24           | x        | 1        | x         | ) '             |           | Ŷ             |          | ];  | K   |
| 63      | 12-11-67 | 0425        | IU/13                         | 3                | · 626                                                                           | 0,100             | 0,500      | 0.300           | 44,931                   | 23-24           | x        |          | x         |                 |           | x             |          |     | t l |
| 64      | 12-11-67 | 0430        | ננ/טו                         | 2                | 628                                                                             | 0.500             | 0.500      | 2,000           | 45.931                   | 23-24           | x        | Į        | x         |                 |           | x             | Ł        |     |     |
| 65      | 12-11-67 | 0438        | IU/13                         | 1                | 629                                                                             | 1.000             |            | 1.000           | 46,931                   | r -             | x        | 1        | x         |                 |           | X             | ſ        | X   |     |
|         |          |             |                               |                  | / Ph/                                                                           | Ise IV - B        | lock J     |                 |                          |                 |          |          |           |                 |           | <u> </u>      |          | 1   |     |
| 1       | 12-11-67 | 0533        | 1D/14                         | 10               | 1119                                                                            | 0.100             | 0.200      |                 | 168 379                  |                 | x        | {        | x         |                 | l I       | x             | 1        | x   |     |
| 1       | f        |             | 11U/9                         | 10               | 573                                                                             | 0.100             | 0.200      | 1,000           | 49.820                   | -3-24           | <u> </u> |          | î î       |                 |           | L ^           | 1        | 1   |     |
|         | 1        |             | After 1 at                    | cond             |                                                                                 |                   |            |                 | 491025                   |                 |          | I        |           |                 | 1         |               | 1        | ł   | 1   |
| 1       | 1        |             | ID/16                         | 20               | 1129                                                                            | 0.050             | 0,100      | 0.500           | 168,879                  |                 | ĺ        | 1        |           |                 |           |               | 1        | 1   |     |
|         |          |             | IIU/9                         | 10               | 583                                                                             | 0.050             | 0.100      | 0.500           | 50,320                   |                 |          |          |           |                 |           |               |          | 1   |     |
| 3       | 12-12-67 | 0543        | ID/14                         | 10               | 1139                                                                            | 0.100             | 0.200      | 1.000           | 169.879                  | 23-24           | x        |          | x         |                 | . 1       | x             |          | x   |     |
|         |          | _           |                               |                  | ·····                                                                           | ^                 |            |                 |                          |                 |          | <u> </u> |           |                 |           | L             | <u> </u> | ,   |     |
|         |          |             |                               |                  |                                                                                 |                   |            |                 | ·*····                   |                 |          |          |           |                 | <u> </u>  |               |          | -   |     |
|         |          |             |                               |                  |                                                                                 |                   |            |                 |                          |                 |          |          |           |                 |           |               |          |     |     |
|         |          |             |                               |                  |                                                                                 |                   |            |                 |                          |                 |          |          |           |                 |           |               |          |     |     |
|         |          |             |                               |                  |                                                                                 |                   |            |                 |                          |                 |          |          |           |                 |           |               |          |     |     |
|         |          |             |                               |                  |                                                                                 |                   |            |                 |                          |                 |          |          |           |                 |           |               |          |     |     |

、

THERMOCHEMICAL FEST AREA

MSC-EP-R-68-17 New OF A-46

.

| tun no. | Date     | Time, | Engine ng.       | Na. of    | Cumu-<br>lative<br>pulses |                | orr time,      | On time<br>this run. | Curu-<br>Lative   | Valve<br>voltage |                                                   | uin. | Clu  | a valv | Int       | er- | Cr  | 030      | Renarka                                 |
|---------|----------|-------|------------------|-----------|---------------------------|----------------|----------------|----------------------|-------------------|------------------|---------------------------------------------------|------|------|--------|-----------|-----|-----|----------|-----------------------------------------|
|         | ĺ        | br    | location         | 1 2012 38 | pulses                    | 8¢C            | ¢0€            | 860                  | on time,<br>scc   | V de             | 0                                                 | C C  | 1801 | C C    | conn<br>0 | C C | 0   | eds<br>C |                                         |
|         |          |       | 178/2            | 20        | 448                       | 0.100          | 0.200          | 1.000                | 46 511            |                  | <del>                                      </del> |      |      |        | †         |     |     | ┝──†     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|         |          |       | After 1 m        |           | 440                       |                | 0.200          |                      |                   |                  | 1                                                 |      |      |        | 1         |     |     |          |                                         |
|         |          |       | 10/14            | 10        | 1149                      | 0 050          | 0.200          | 0.500                | 170. 379          | ł                | 1                                                 | ) i  | 1    |        | 1 1       |     | 1   |          |                                         |
| `       |          |       | 170/1            | 10        | 508                       | 0.050          | 0,100          | 0.500                | 47.011            |                  |                                                   |      |      |        |           |     |     |          |                                         |
| 5       | 12-11-67 | 0557  | IF/15            | 10        | 377                       | • 0.103        | 0.200          | 1.000                | 16.935            | 23-24            | x                                                 | 1    | x    | 1      |           | x   | }   | x        |                                         |
|         |          |       | IIIF/7           | 10        | 417                       | 0 100          | 0.200          | 1.000                | 21,497            |                  |                                                   |      |      |        |           |     |     |          |                                         |
|         |          |       | After 1 b        | econd     | }                         |                |                |                      | 1                 |                  | 1 '                                               | i '  |      | 1      |           |     | 1   |          |                                         |
| ·J      |          |       | IF/15            | 10        | 387                       | 0,050          | 0.100          | D.500                | 7.435             |                  | [                                                 |      | Į    | [      | Į,        |     | [   | ļĮ       |                                         |
|         | 1        |       | 111F/7           | 10        | 427                       | 0.050          | 0,100          | 0,500                | 21.997            |                  | ( i                                               |      |      | 1      |           |     |     | {        | ·                                       |
| 7       | 12-11-67 | 0709  | 10/14            | 3         | 1154                      | 0.100          | 0.200          |                      | 170.879           | 23-24            | x                                                 |      | x    |        |           | x   |     | X        |                                         |
|         |          |       | IIV/9            | 5         | 588                       | 0.100          | 0 200          | D. 500               | 50.820            |                  |                                                   |      |      | 1      |           |     |     |          |                                         |
| - {     |          |       | IAD/5            | 5         | 6016                      | 0.100          | 0 200          |                      | 212.345           |                  |                                                   |      | }    | }      |           |     |     | } }      |                                         |
|         |          |       | 1110/5           | 5         | 355                       | 0.100          | 0.200          | 0,500                | 44.763            |                  |                                                   |      |      |        |           |     |     |          |                                         |
| ł       |          |       | After 1 se       |           |                           |                |                |                      |                   |                  |                                                   |      |      |        |           |     |     |          |                                         |
|         |          |       | ID/14            | 5         | 1159                      | 0.050          | 0,100          |                      | 171.129           |                  | . (                                               |      |      | [ ]    |           |     |     |          |                                         |
| - }     |          |       | 11U/9<br>IVD/2   | 5         | 59 <b>3</b><br>6021       | 0.050<br>0.050 | 0,100          | 0.250                | 51.070            |                  |                                                   |      |      |        |           |     |     |          |                                         |
| 1       |          |       | 170/2<br>IIIU/5  | 5         | 360.                      | 0.050          | 0.100<br>0.100 | 0,250<br>0,250       | 272.595<br>45.013 |                  |                                                   |      |      |        |           | 1   | 1   |          |                                         |
| 9 1     | 12-11-67 | 0710  | 1110/5<br>11D/10 | 5         | 1025                      | 0,000          | 0.100          | 0,500                | 108.163           | 42.06            | x                                                 |      | x    |        | }         | x   |     | x        |                                         |
| í {     |          | -,    | 1110/5           | 5         | 365.                      | 0.100          | 0.200          | 0.500                | 45.513            | 23-24            |                                                   |      |      | }      | }         | î   |     |          |                                         |
|         |          |       | ID/14            | 5         | 1164                      | 0.100          | 0,200          |                      | 171 629           | i                |                                                   |      |      |        |           | ļ   |     |          |                                         |
|         | 1        |       | IVU/1            | 5         | 513.                      | 0 100          | 0,200          | 0.500                | 47.511            |                  |                                                   |      |      |        |           |     |     |          |                                         |
|         | Į        |       | After 1 so       | cond      |                           |                |                | , · }                |                   |                  |                                                   |      |      | } }    | , j       |     |     | ⊢ }      |                                         |
| 1       |          |       | IID/10           | 5         | 1030                      | 0.050          | 0 100          | 0.250                | 108.413           |                  |                                                   |      |      |        |           | 1   | 1   |          |                                         |
|         | 4        |       | II10/5           | 5         | 370                       | 0.050          | 0.100          | 0,250 <sup>l</sup>   | 45.763            |                  | 1                                                 |      |      | 1      | 1         | 1   | - 1 | ]        |                                         |
| 1       |          |       | ID/14            | 5         | 1169                      | 0.050          | 0.100          | D.250                | 171.879           |                  |                                                   |      |      |        |           | 1   |     | 1        |                                         |

THERMOCHEMICAL TEST AREA MSC-EP-R-68-17 DOC. NO. REVISION

PAGE A-47

|         |          |               |                               |                  |                           |          |           |                             | Cumu-              |                           |            |            | Latch | vnly          | e pos       | ition | 1   |              |         |
|---------|----------|---------------|-------------------------------|------------------|---------------------------|----------|-----------|-----------------------------|--------------------|---------------------------|------------|------------|-------|---------------|-------------|-------|-----|--------------|---------|
| Run no. | Date     | Time,<br>hr   | Engine no.<br>and<br>location | No. of<br>pulses | Cumu-<br>lative<br>pulses | On time, | Off time, | On time<br>this run,<br>sec | lative<br>on tire, | Yalve<br>voltage,<br>V de | Ha<br>shut | in<br>offe |       | ster<br>ntion | Jnt<br>conn |       |     | ross<br>ceds | Reparks |
|         |          |               | Location                      |                  | paroca                    |          |           |                             | Bec                |                           | 0          | С          | 0     | ¢             | 0           | c_    | 0   | c            |         |
|         | [        |               | 170/1                         | 5                | 518                       | 0.050    | 0.100     | 0.250                       | 47 762             | 1                         |            |            |       |               |             |       |     | []           |         |
| 11      | 12-11-67 | 0734          | 1F/15                         | 5                | 392                       | 0 1 00   | 0.200     | 0.500                       | 17 935             | 23-24                     | X          |            | x     |               | 1           | X     | 1   | x            |         |
|         |          |               | 1117/7                        | 5                | 432                       | 0.100    | 0.200     | 0.500                       | 22 497             |                           |            |            |       |               |             |       |     |              |         |
|         | Į        |               | IVS/4                         | 5                | 903                       | 0.100    | 0.200     | 0.500                       | 46.481             |                           | ł          | ļ          | ļ     | ļ             | ł           | ţ.    | 1   | 4            |         |
|         |          |               | IIS/12                        | 5                | 511                       | 0.100    | 0 200     | 0.500                       | 30.004             |                           |            |            |       |               |             |       |     |              |         |
|         |          |               | After 1 s                     | econd            |                           |          |           |                             |                    | ľ                         |            |            |       |               |             |       |     |              |         |
|         |          | )             | 17/15                         | 5                | 397                       | 0.050    | 0.100     | 0.250                       | 18.185             | )                         | )          |            | )     | )             | )           | 1     | }   | )            |         |
|         | {        |               | 111F/7                        | 5                | 437                       | 0.050    | 0.100     | 0,250                       | 22.747             | 1                         | 1          |            | 1     | 1             | Ì           | 1     |     | Ì            | )       |
|         |          |               | IV5/4                         | 5                | 908                       | 0 050    | 0.100     | 0.250                       | 46.731             | -                         | i i        |            |       |               |             |       |     |              |         |
|         |          |               | 118/15                        | 5                | 516                       | 0 050    | 0,100     | 0.250                       | <b>i</b> 30,254    | ļ                         |            |            |       |               |             |       |     |              |         |
|         |          |               | ļ                             | i<br>r           | {                         | Phane IV | - Block - | - 8P-2                      | special c          | rossfeed                  | test       |            |       |               |             | 1     | 1   | 1 1          |         |
|         | 12-11-67 | 0.031         | 10/14                         | Э                | 1172                      | 0 016    | }         | 0.nkB                       | 1171 927           | 23-24                     | A          | в          | x.    |               |             | x     |     | x            |         |
|         | 12-11-01 | ~ <b>/</b> J1 | IVD/2                         | 30               | 6051                      | 0 017    | 0.183     |                             | 273.105            |                           |            |            |       |               |             |       |     |              |         |
| :       |          |               |                               |                  |                           | -        | - Block   |                             | I                  | <br>rossfeed              | l<br>test  |            |       |               | ļi          | ł     |     |              |         |
|         | 12-11-67 | 1000          | IVD/2                         | 1                | 6052                      | 0.016    |           | , <sup>-</sup>              | 273.121            |                           |            | в          | x     | ]             |             | x     |     | x            |         |
|         | 15-11-01 | 1023          | 1VD/2<br>1VD/2                | 2                | 6052                      | 0.016    |           |                             | 273.137            | 1 23-64                   | l î        | -          | 1     | 1             | 1           | l^    |     | <sup>•</sup> |         |
| A<br>B  | [ [      |               | IVD/2                         | 7                | 6054                      | 0.020    | ( (       |                             | 273.157            | l                         | 1.         |            | ( )   | (             |             | l     |     |              |         |
| C       |          | 1             | IVD/2                         | î                | 6055                      | 0.030    |           |                             | 273.187            |                           |            |            |       |               |             | [     |     |              |         |
| D       |          |               | IVD/2                         | ŷ                | 6064                      | 0.030    |           | -                           | 273.457            |                           |            |            |       |               |             |       |     |              |         |
|         |          |               | IVD/2                         | í                | 6065                      | 0.250    |           |                             | 273 707            |                           |            |            |       |               |             |       |     |              |         |
| £       |          |               | 10/15                         | 10               | 1182                      | 0,017    | 0,183     |                             | 172.097            | 1                         | 1          |            | } '   | 1             | } '         | )     | 1   |              |         |
| F       |          |               | XD/14                         | 10               | 1192                      | 0.017    | 0.183     |                             | 172.267            |                           | 1          |            |       |               |             | ł     | 1 1 |              |         |
| G       |          | İ             | 10/14                         | 10               | 1202                      | 0.017    | 0 183     |                             | 172.437            |                           |            |            |       |               |             |       |     |              |         |
| -       | 1        | '             |                               |                  | l                         | ,        | FIRING :  |                             |                    | ļ                         |            |            | 1 1   | 1             | <b> </b>    |       | }   |              |         |
|         |          | ĺ             | IVU/1<br>IVD/2                |                  | 518<br>6065               |          |           | 1                           | 47.761<br>273.707  | 1                         | 1          |            | ł     |               |             |       | F   |              | [       |

DOC. NO. REVISION PAGE A-48 MSC-EP-R-68-17 New OF A-49

.

.

,

.

| Image: line line line line line line line line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tun no. | Date   | Time,    | Engine no<br>and<br>location                                                                           | No. of   | Cumu-                                                                        | On time, | Off time, |          | Gumu-<br>lative<br>on time,                                                                                   | Valve<br>voltage,<br>V de | Mai      | ln. | Clus     | ter | Inte | r= | Gre | 005 | Remarks |               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|----------|--------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------|----------|-----------|----------|---------------------------------------------------------------------------------------------------------------|---------------------------|----------|-----|----------|-----|------|----|-----|-----|---------|---------------|
| IVS/4         908         b6,731         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I </th <th></th> <th></th> <th>ar</th> <th>location</th> <th>ршаеа</th> <th>pulses</th> <th>Hec</th> <th>Bee</th> <th>aec</th> <th></th> <th>V de</th> <th></th> <th></th> <th>—</th> <th></th> <th> T</th> <th> +</th> <th></th> <th></th> <th></th> <th></th> |         |        | ar       | location                                                                                               | ршаеа    | pulses                                                                       | Hec      | Bee       | aec      |                                                                                                               | V de                      |          |     | —        |     | T    | +  |     |     |         |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |        |          | IVS/4<br>IIIU/5<br>IIID/6<br>IIIF/7<br>IIIS/8<br>IIU/9<br>IID/10<br>IIF/11<br>IIS/12<br>IU/13<br>ID/14 |          | 908<br>370<br>6345<br>437<br>653<br>593<br>1030<br>612<br>516<br>629<br>1202 |          |           |          | 46.731<br>45.763<br>355.061<br>22.747<br>33.056<br>51.070<br>108.413<br>22.204<br>30.254<br>46.931<br>172.437 |                           |          |     |          |     |      |    |     |     |         | MSC-          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | !       | ** *,* | <u> </u> |                                                                                                        | <u>I</u> | <u></u>                                                                      | <u> </u> | <u></u>   | <u> </u> | ·                                                                                                             | 1                         | <u> </u> |     | <u> </u> | !   |      | 1  |     | 4   |         | P-R-68-17 New |

.

.

**THERMOCHEMICAL** TFST

| <u> </u> | THERMOCHEMICAL | TEST | AREA   | DOC. NO.       | REVISION |                                     |
|----------|----------------|------|--------|----------------|----------|-------------------------------------|
|          |                |      |        |                |          | PAGE <u>B-1</u> ,<br>of <u>B-14</u> |
|          |                |      |        | MSC-EP-R-68-17 | New      |                                     |
|          |                |      |        |                |          |                                     |
|          |                |      |        |                |          |                                     |
|          |                |      |        |                |          |                                     |
|          |                |      |        |                |          | ]                                   |
|          |                |      |        |                |          |                                     |
|          |                |      |        |                |          |                                     |
|          |                |      |        |                |          |                                     |
|          |                |      |        |                |          |                                     |
|          |                |      |        |                |          |                                     |
|          |                |      |        |                |          |                                     |
|          |                |      |        |                |          |                                     |
| •        |                |      |        |                |          |                                     |
|          |                |      | APPEN  | ם עדה          |          |                                     |
|          |                |      |        |                |          |                                     |
| -        |                |      | DATA S | UMMARY         |          |                                     |
|          |                |      |        |                |          |                                     |
|          |                |      |        |                |          |                                     |
|          |                |      |        |                |          |                                     |
|          |                |      |        |                |          |                                     |
|          |                |      |        |                |          |                                     |
|          |                |      |        |                |          | :                                   |
|          |                |      |        |                |          |                                     |
|          |                |      |        |                |          |                                     |
|          |                |      |        |                |          |                                     |
|          |                |      |        |                |          |                                     |
|          |                |      |        |                |          |                                     |
|          |                |      |        |                |          |                                     |
|          |                |      |        |                |          |                                     |
|          |                |      |        |                |          |                                     |
|          |                |      |        |                |          |                                     |
|          |                |      |        |                |          |                                     |
|          |                |      |        |                |          |                                     |
|          |                |      |        |                |          |                                     |

## - THERMOCHEMICAL TEST AREA ----

.

| — THERMOCHEMICAL                                                        | TEST AREA                                                           | DOC. NO.                                                                                                                             | REVISION                                                         | PAGE B-2                                   |
|-------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------|
|                                                                         |                                                                     | MSC-EP-R-68-17                                                                                                                       | New                                                              | OF <u>B-14</u>                             |
|                                                                         | DATA SUMMARY                                                        | TERMINOLOGY                                                                                                                          |                                                                  |                                            |
| Pulse width                                                             | Time from inje<br>age removal.                                      | ector valve volta                                                                                                                    | age applicatio                                                   | on to volt-                                |
| Valve opening<br>response                                               |                                                                     | ector valve voltandication on sign                                                                                                   |                                                                  |                                            |
| Valve closing<br>response                                               |                                                                     | ector valve volta<br>tion on signatur                                                                                                |                                                                  | o valve "full                              |
| Ignition delay                                                          |                                                                     | ector valve volta<br>chamber pressure                                                                                                |                                                                  | on to first                                |
| Pressure switch closing time                                            | Time from inje<br>continuity ind                                    | ector valve volta<br>lication.                                                                                                       | age applicatio                                                   | on to switch                               |
| Pressure switch<br>opening time                                         | Time from inje<br>continuity ind                                    | ector valve volta<br>lication.                                                                                                       | age removal to                                                   | switch no                                  |
| Pressure at<br>switch opening                                           | Engine chamber opening.                                             | pressure corres                                                                                                                      | sponding to th                                                   | ne switch                                  |
| Steady state or<br>maximum chamber<br>pressure                          | of 50 millised<br>state pressure<br>by averaging t<br>25 percent of | chamber pressure<br>conds or greater<br>had been attain<br>the chamber press<br>the electrical of<br>recorded for pu<br>ls duration. | duration if s<br>ned; this was<br>sure over the<br>on time. Maxi | steady<br>obtained<br>last<br>imum chamber |
| Time to 75 percent<br>of maximum or<br>steady state<br>chamber pressure | ber pressure e                                                      | age application<br>equivalent to 75<br>ce chamber pressu                                                                             | percent of th                                                    |                                            |
| Integrated<br>chamber pressure                                          | Integral of A existed.                                              | Podt over the t                                                                                                                      | ime period at                                                    | which Pc                                   |

| MOCH           | ENI      | CAL 1                     | rest           | AREA -                  |          |              |          |                     | <u></u>       |                 |                        |                                                |           | ,                      |                               |                                              |                 |                                                                                |                                                       |                     |                              |                                     | )<br>1           | DOC. N<br>MSC-R                           | 9.<br>P <u>-R-6</u> 8-    | . E             | New                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PAG<br>OF                                | _                             |
|----------------|----------|---------------------------|----------------|-------------------------|----------|--------------|----------|---------------------|---------------|-----------------|------------------------|------------------------------------------------|-----------|------------------------|-------------------------------|----------------------------------------------|-----------------|--------------------------------------------------------------------------------|-------------------------------------------------------|---------------------|------------------------------|-------------------------------------|------------------|-------------------------------------------|---------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------|
|                |          |                           | <u>.</u>       |                         |          |              |          |                     |               |                 |                        |                                                |           |                        |                               |                                              |                 |                                                                                |                                                       |                     |                              |                                     |                  |                                           |                           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                               |
|                |          |                           | •              |                         |          |              |          |                     | Lľ            | M R             | CS                     | SUB                                            | SYST      | EM                     | TES                           | ST I                                         | DATA            | A SU                                                                           | ΜΜΑ                                                   | RY                  |                              |                                     | 1                |                                           |                           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                        |                               |
| 412<br>412     | PULSE    | PULSE                     | ОВТЕ<br>(1967) | TIME OF<br>DAY<br>tHRS) | TEMP CFI | INJECT OR HI | EAD FUEL | INLET<br>ATURE ("FI | DXID INLE     | T INITIA        | AL INLET<br>IRE (PSIA) | VALVE<br>AESPON<br>FUEL<br>2010 21 21 21<br>74 |           |                        | LVE CLOSH<br>SPONSE (V<br>L 3 | NG<br>451 L<br>XID                           |                 | FUEL                                                                           | INLET WITH<br>VALVE OPEN<br>NG 4 ENG<br>7. MAX MIN 14 | (PSIA)<br>11 E4G 13 | ENG 2 ENG                    | ET WITH<br>LVE OPEN (<br>S 4 ENG II | PSIA )<br>ENG 13 | HANNER THE<br>PRESSURE AT<br>WAVE GLOSURE | ET REMEMBERS              | THEET AT OXID P | EL MARFOLD<br>AESSURE (PSIAL<br>ISTEM A SYSTEM 2<br>IIIL MAX MIN MAX<br>45 AVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ARM DHED<br>) JAUE25AA<br>272 A VET2V2 H | NIFELES<br>(PSIA)<br>STELL -6 |
| 22.11          | 1        | 1.114                     | - 14-1         | . 4531                  |          | 180          | 47       |                     | 14            | 1000            | 1121                   | 72                                             | 52        |                        | ┛╵╝╴┙<br>╼┼╾┠┈ <del>┝</del> ┙ |                                              | 4               | 72                                                                             |                                                       |                     | 14                           |                                     |                  | 245                                       | 194                       |                 | 45 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 151 249                                  |                               |
|                | 3        | 0.814<br>0.014<br>0 217   |                |                         |          |              |          |                     | 20            | ╞┼╧             | ╅╍┨╼┨                  | ╬╁╁                                            |           | 70<br>70<br>47         |                               | 1                                            |                 |                                                                                | +                                                     |                     |                              |                                     |                  | 151<br>147<br>,100                        | 270<br>255 / 1<br>715     | Ľ               | 10 1711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10331249                                 | 11                            |
|                | 4        | 2 417                     | 11:1           |                         | 0 13     | //*          | 6.5      |                     | 20            | 10.7            | 1111                   |                                                |           | 6.7                    | 1.1                           |                                              | 1 1             | 111<br>11<br>11                                                                |                                                       |                     | 419<br>185<br>92<br>91       | +                                   | 1 1              | 3/5                                       | 3/2                       |                 | 37 1454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 114 273<br>11 274<br>92 271              | 1                             |
|                |          | 1.050                     |                | 1231                    | 10 3.2   | 124          | 6        |                     | 70            | 1511            | (14.9                  |                                                |           | 72                     |                               |                                              | 3               | 111<br>70 117<br>11 119                                                        | ╧┼Ŧ                                                   |                     | 91<br>91 367                 | ┼╌┠╼╋━                              | 1 1              | Sto                                       | 361                       |                 | 135 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 189 217                                  | 1                             |
| _              | *        | 4.090                     |                |                         |          |              | ╘┰┽╴     | ┼┼╼┧                | -+            | <u></u>         | ╋╋                     | 10<br>79<br>25                                 |           | 70                     | 5.7                           |                                              |                 | 93 319<br>Jes 314                                                              |                                                       |                     | 91 2e7<br>95 729<br>101 229  |                                     |                  | 177<br>191<br>117                         | 117                       |                 | 133223<br>1471 1471<br>1472 1171<br>1472 1171<br>1472 1171<br>1472 1475<br>1472 1475<br>1472 1475<br>1472 1475<br>1472 1475<br>1472 1475<br>1472 1475<br>1472 1475<br>1472 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>1475 1475<br>147 | 1153 220                                 |                               |
| 9 - 8 - 51     |          | 2 113                     | 11-3           | 0759                    | 1.1.2    | 125          | - 4      |                     | £9            | 11= 1           | 110 8                  | Z3<br>Z3<br>79                                 |           | - 70<br>- 4.7<br>- 4.9 | - 12                          |                                              |                 | 101 114<br>91 114<br>124 114                                                   |                                                       |                     | 101 229<br>94 221<br>102-189 | ╀╦╏╌┝╌                              |                  | 117<br>117<br>113                         | 2114<br>(28)<br>(28)      | $\Box$          | HT 263 16.5 11.<br>HT ACT 165 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 127 325 13.                              | 11/1                          |
| -7-92          | 1        | 0.100                     | 11-5           | 0.7.50                  | 4-13     | 134          | - 107 -  |                     | 62            | 101             | 1.11                   | <u> </u>                                       |           | 4.5                    |                               | ļ                                            | <u> </u>        | 40 127                                                                         |                                                       |                     | 107 189                      |                                     |                  | 174)                                      | 234<br>A50<br>325         |                 | 147 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1124 203                                 | -                             |
| 1-35           |          | 1.314                     | 18-3           | 6.61                    | 2 13     | 125          | 07       | ###                 | 47            | 115-            | 174                    |                                                |           | 49                     | - 12                          |                                              | 3               | 93,213<br>97<br>103                                                            |                                                       |                     | 69 119<br>90                 |                                     |                  | 266                                       | 325                       |                 | 17 212 112 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7 121 251 141                            | 1 196                         |
|                |          | 8 014<br>8 414            |                |                         |          |              |          |                     |               |                 |                        |                                                | ┥╴┧╍┥     |                        |                               | - k                                          | el i le         |                                                                                |                                                       |                     | 98<br>95                     |                                     |                  | 746                                       |                           |                 | 120 242 17/ 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 11 255 151                             | 1 194                         |
| 3-31           | _1       | 0.017                     | 13-3           | 0162                    | - 1.1    |              |          |                     |               |                 |                        |                                                | 1.3       | <u></u>                | / <i></i> /                   | 1 10                                         | *               | 92<br>194<br>194<br>194<br>194<br>194<br>197<br>194<br>197                     |                                                       |                     | 140<br>17                    | ┦╌┟╼┢╴                              |                  | 342<br>367                                | 302.4                     |                 | 147 241 171 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 113 275 15                               | 5                             |
| 1.0            |          | 6.417<br>C.1.36           | 12.13          | 1913                    | 1 25     | 114          | 64       |                     | #7            | 155 4           | 1.414                  |                                                | F [ +· ]  | 70<br>70<br>74         |                               |                                              | <u>السام ال</u> | 104<br>92 227                                                                  |                                                       |                     | 84<br>93 220<br>89 220       |                                     |                  | 30/<br>265<br>265                         | 912<br>505<br>274<br>274  |                 | 145 245 1H 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 139 21                                   | - <u>173</u>                  |
|                |          | 1 0 54<br>2 0 54          |                | <b>—</b> [-             |          |              | ┢╍┟═┿═   | ┼╺╋╴╸╿              |               | ┝┅┝╼┞╸          | +                      | /                                              | 70        | 2.1                    | 17.30                         |                                              | £1              | 92 127                                                                         |                                                       |                     | 89 230                       |                                     |                  | 245<br>145                                | 345                       |                 | 100 283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 139 211<br>136 220<br>132 240            | +-                            |
| -1-9           | <u> </u> | 6.110                     | 18:3           | 1915                    | 1 10     | 123          |          |                     |               | 111.2           | m                      |                                                |           | 4.9<br>71<br>71        | 1 1                           |                                              |                 | 1912 117<br>1912 117<br>1175 117<br>1175 117<br>1175 117<br>1175 117<br>92 115 | 규구                                                    |                     | 110 110                      | ╟╌╢╌┼╌┼                             |                  | 151                                       | 345<br>155<br>394<br>Ari  | +++             | 143 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 127 225                                  | +                             |
| - 2 - 37       |          | 0,150                     | 17.5           | 2225                    | 4        | 135          | - 107-   |                     | £1            | 111             |                        | ez + +-                                        |           | -4-5                   | 一部                            | <b>-</b>                                     | <u></u>         | .17.174.                                                                       |                                                       |                     | 109 201<br>95 130            |                                     |                  | 159                                       | Ar†<br>712                |                 | 113 211 1132 15<br>117 111 111 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F 137 381 14                             | 1 14                          |
|                |          | 6.120<br>0. 614<br>2. 614 | 14-9           | 1114 3                  | v        | 155          |          | $\square$           |               | 1126            | 121                    |                                                |           | 6.5                    | 1-1-1-1-                      |                                              |                 |                                                                                |                                                       |                     | 84 244<br>124                |                                     |                  | 2(4 262                                   | A.17                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                               |
|                | 5        | 0.014                     |                |                         |          |              | ╞╴┟═┟╴   |                     |               |                 |                        | 博士                                             |           | 1                      |                               | ††=                                          | 10-1-           |                                                                                |                                                       |                     | 75                           |                                     |                  | 262<br>367<br>317                         | 477                       |                 | (42, 477, 776, 17,<br>(35, 432, 778, 17,<br>147, 478, 60, 7, 18,<br>147, 478, 60, 7, 18,<br>147, 478, 18,<br>147, 478, 18,<br>148, 478, 18,<br>148, 478, 188, 188, 188, 188, 188, 188, 188, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12 4.1 10                                | 7 202                         |
| . # - 128      |          | 0.017                     | 113            | 1158.                   | 11 2.2   |              |          | ++-                 |               |                 | 1111                   |                                                |           | 12                     | ╶╁═╞═┠╴                       | 111                                          |                 | <u>+-</u> +-                                                                   | er                                                    |                     |                              | T T. (                              | 上上               | 1/2<br>283<br>297                         | <u>Jtel</u><br>450<br>844 |                 | 61 211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13 19                                    | <b>+</b> -1                   |
| 17.56          | <u>+</u> | 0.017                     | 1.2            | 1263                    | 1 2.4    | 62.9         |          | +                   | 67            | ·<br>•#+        | 1111                   |                                                |           | 4.1                    |                               | 7-1                                          |                 | +++                                                                            | 49 735                                                |                     |                              | 2.9%                                |                  | 247<br>258<br>273                         | 5/4                       |                 | (26 23)<br>(79 219 114 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 135 24 10                              | 4 103                         |
|                | 4        | 0.0.20                    |                |                         |          |              |          |                     |               |                 |                        | 분위부                                            |           | - 71                   |                               |                                              | 11              |                                                                                | 19 265                                                |                     | 41                           | 112                                 | L+               | 255                                       |                           |                 | <u>51 212 174 11</u><br>64 20 175 10<br>91 24 176 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 135 21 15.                               | 3 113                         |
| -1-03          | 3        | 0.110                     | 12-3           | 12.55 9                 |          | (35          |          | 1                   |               | 111 5           |                        |                                                |           |                        | ╶┼╼╽╴┼                        | ÷-; -[-                                      |                 |                                                                                | 9/ 117<br>8/ <u>A13</u><br>53 517                     | le                  | 91<br>#                      | 117<br>314<br>314                   | - H-             | 362                                       | 259                       |                 | 91 21. 170 115<br>97 862 149 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9:191 2:5                                | 19 211                        |
| 3.54           | 1        | 6.150                     | 13-3           | 1915                    | 1 8.2    | 05           | LF fe    | <u>+</u>            | - 78          | 1000            | 100                    |                                                | +++       | 12                     |                               | ┈┝╾╿╼╍╋╸                                     | 107-1-          |                                                                                | 81 . 117<br>11 . M7                                   |                     |                              | 314                                 | ŦŦ               | 297<br>245<br>235                         | 219<br>452                |                 | 41 ACL 125 15<br>(42 ACL 171 II<br>(41 ALT 174 II<br>(51 ALT 176 II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 139 338 12.<br>3 135 276 15            | 4 179<br>51 175               |
| 2.35           | ,        | 0014                      | 13-3           | 1934 3                  | £ 14     |              |          | +                   | 62            | 111.2           | 479                    | -9-F                                           |           | - 22                   | ┼┽干                           | ++++                                         | 1.2             |                                                                                | 2                                                     |                     | 90                           |                                     | ++               | 2.85<br>769<br>2.78                       |                           |                 | 199 4 97 170 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 132 245 16<br>7 111 349 14             | 11 112                        |
| -1-24          | _*       | 0014                      | 10-3           | 1955                    | 1 22     | /13          |          |                     |               | 175.5           | 177.4                  | 74                                             |           | <b></b>                | 11                            | 111                                          | 140. 1          |                                                                                | 1                                                     |                     | 80                           |                                     | ╞┼               | 275                                       | 342                       | T_              | 149 234 141 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 11 2 13 15<br>5 JL 257 10              | 19 192                        |
|                | 4        | 0.017                     |                |                         |          |              | ╞╴╞╴╎╴╜  | ╪┼┽                 |               |                 | <u> </u>               |                                                | ┆╻┼┤      |                        | ╼╁╌╿╌┼╸                       | ┿┦╋                                          | 1               |                                                                                | <u></u>                                               | <u> </u>            | 81                           | 1                                   | <b>†</b> ‡       | 310                                       | 303                       |                 | 41 737 145 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1/5 212 15                             | 9 197                         |
| 1.2-57         |          | 0.017                     | 11.5           | 1949 3                  | 1 22     | 134          |          | ╞╌┼╌┤               |               | m 5             | 17.5                   |                                                |           | - 4                    | +++                           | #1#                                          | 11              |                                                                                | 94<br>51 212<br>97 212                                |                     | 16                           | 319                                 | 11-              | 105<br>115<br>215                         | 21.9                      |                 | 150 217 114 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 11 216 14                              | 2 115                         |
|                | 5        | 0,051<br>6451             | <b> </b>       |                         |          |              |          |                     |               |                 |                        | 廿廿十                                            |           |                        |                               | 111                                          | 114             |                                                                                | 91 216                                                |                     | 8                            | 211                                 | 11-              |                                           | . 363<br>                 |                 | 149 JK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 181 315                                  |                               |
|                |          | 0.110                     | 4-5            | 1422 2                  | 17 3.2   |              |          | ╁╍┼╼┤               | - 13          | 11/5            | 1111                   | 11                                             | ┼╅┼┥      |                        | ╉╂ ┫-                         | · -+                                         |                 |                                                                                | 95 215                                                |                     |                              | 5112<br>1311<br>1417                | ╈                | 257                                       | A18<br>863                | ╞╼╋╸╁           | 191         1.53         7.76         12           171         2.52         7.76         7.77         7.77           171         2.52         7.76         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77         7.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 13 210 1.<br>3 47 24 15                | 54 1.14                       |
| -2-19          |          | 8.151                     | 11-3           | 14/40                   | 7. 32    | /22          |          |                     |               | 111.4           | cere                   | 7.0                                            |           | - 65                   |                               |                                              | 115             | +                                                                              | 17 242                                                | ·                   | ¥ð<br>7/                     | 179                                 | +-+-             | 217                                       | Dc7<br>979                |                 | 149 210 131 13<br>149 319 139 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 1.2 1.2 1.2 1.2                        | 5 12                          |
| - <u>5-</u> #7 | <u>,</u> | 0.014<br>0.414<br>0.914   | 13-4           | #110                    | 8 22     | 111          |          | 72                  |               | 125 9           | (H -                   | 70                                             |           | ╶┼╾╀╴┦                 |                               | ┥╃┩                                          | 1114            | ╁╴╁╼╄                                                                          |                                                       |                     |                              | 1-1-1-                              |                  | 252                                       | $\frac{1}{1}$             | $\vdash$        | 142 220 11.1 19<br>144 219 171 15<br>149 219 178 15<br>199 226 178 1<br>199 225 111 15<br>199 225 111 15<br>199 225 112 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 189 224<br>2 131 228                   | -+                            |
| 1.11           |          | 6 014                     | 12-4           | 2993                    | 12 2.2   |              | +++      | 1.1                 | 11            | 1744            |                        | - 5-                                           | ╞╴┠╴╋╸    |                        | 63                            | +++                                          | - 97            |                                                                                | 125                                                   |                     |                              |                                     |                  | 252                                       |                           |                 | 140 328 238 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 147 234 11                             | 12 795                        |
|                | 5        | 0.017                     | F              |                         |          |              |          |                     |               | $\overline{++}$ |                        | 1 29<br>4<br>7                                 |           | HTT                    | 61                            |                                              | 1.4             |                                                                                |                                                       |                     |                              | 171                                 | 1-1-             | 242                                       |                           |                 | 192 124 14 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22 17 1 238 10                           | 115 189                       |
| 3-125          |          | 6.6.6                     | 12-4           | 1.544                   | 2 2.2    |              |          | 12                  | 71            | . 1715          |                        |                                                | 1-1-1-1   |                        |                               | -1-1-                                        | - 12            | 1-1-4                                                                          | - 07                                                  | 101                 |                              | 1-4-1-                              | 1-1-             |                                           |                           |                 | 121 4.6. 144 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A 143 14                                 |                               |
|                |          | 0.134                     |                |                         |          |              |          |                     |               |                 | 11                     |                                                | ╬╌╏╼╏╶╢   | 47                     |                               | 1-1                                          | 1 1 1           |                                                                                | 176                                                   | W                   |                              |                                     | <u>+</u> ‡       | 14                                        |                           |                 | 150 227 172 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19 1-19 207 1                            | 78 15                         |
|                | 3        | 0.110<br>6.110            | 11.4           | , ,                     | 2,1      |              | ┝╾╽╌┢╴   | 14                  | <u> </u>      |                 | <u>(20.9</u>           |                                                |           |                        | 69                            | ╈                                            | 171             |                                                                                |                                                       | s(t )               |                              | ╎┼┼╴┼╴                              | $\pm\pm$         |                                           |                           |                 | 149 414 114 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 155 9(7.1                              | 17 18                         |
|                |          | E. 190                    | 17.5           | - 002 J                 |          | 1/+5         | ╞╌╄━┾╴   | 11<br>72            | 71            | 1111            |                        |                                                | ╋╾╋╼╄╼╄╸┥ |                        | 6 5                           |                                              | 91              |                                                                                | 111<br>156<br>111                                     | 82                  |                              | <u>1</u>                            | ++               | 57.5<br>57.5<br>57.5                      |                           |                 | 195 210 171 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T 107 209                                |                               |
| 3472           | ÷        | 11.1                      | 11-5           | . ec.91 .1              | A. A.A.  | 150          |          | 12-                 |               | - /" *          | 1015                   |                                                |           |                        | 4                             | ++{                                          | 1/19            | ┶╍┝╍┤                                                                          | 111                                                   |                     | ╾┧╶╁╌                        | ┶╼╋╼╇╸                              | 1                | 1,153                                     |                           |                 | HI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI         MI <thmi< th="">         MI         MI         MI<!--</td--><td>7 144 295<br/>17 141 241</td><td>-+-</td></thmi<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 144 295<br>17 141 241                  | -+-                           |
|                | -        | 1.01                      |                | [_                      | <u></u>  |              |          |                     | <u>_t_t</u> _ | ╘═┟╼╁┈          | 1-1-1                  |                                                |           |                        |                               | <u>                                     </u> | 1.4             |                                                                                | 114                                                   |                     |                              | ╘╧╧                                 | Ξ                |                                           |                           |                 | 134 219 147 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17 /45 24                                | -LeJ                          |
|                |          | FOL                       | DOUT           | FRAM                    | e        |              |          |                     |               |                 |                        |                                                |           |                        |                               |                                              |                 |                                                                                |                                                       |                     | FC                           | DOU                                 | r fra            | ME d                                      | ٤                         |                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                               |
|                |          |                           |                |                         |          |              |          |                     |               |                 |                        |                                                |           |                        |                               |                                              |                 |                                                                                |                                                       |                     |                              |                                     |                  |                                           |                           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                               |

• THERMOCHENICAL TEST AREA 🗝

.

· · ;

DOC. NO. REVISION MSC-EP-R-68-17 New

.

| RUN<br>MADER | PRESSURE SWITC           |                    |                       |            |                   | 1            |                  | SWITCH<br>PSIA} | S TEADI<br>MAXIM<br>PRES | T STATE                               | E OR<br>MBER<br>SIA | INE TO<br>CR SS<br>PRESSU | ) 75%-0<br>Chamber<br>16 (Ms | IF NAX<br>R<br>I |                | RATED - A                       |       | REMARKS          |
|--------------|--------------------------|--------------------|-----------------------|------------|-------------------|--------------|------------------|-----------------|--------------------------|---------------------------------------|---------------------|---------------------------|------------------------------|------------------|----------------|---------------------------------|-------|------------------|
|              | ZNG. 2 ENG. 4 ENG. 11-EN | 4 13 EN 9. 2       | E1449. 44 E1463 1 016 | EN\$13 E N | 0.2 ENG 4 ENG 112 |              | ENO 4 EN         | . 519 13        |                          | 8 4 ENG 11                            | ELG 13 S            | NG 2 EN                   |                              | EN6.13           | ENG ZEN        | 3 <b>4</b> Ears Ia              | ENGIS | . <b>REMARAD</b> |
| -4-25        | 152                      | 184                |                       |            |                   |              | +                |                 | 79.7                     |                                       |                     | 11.5                      |                              |                  | 1.54           |                                 |       |                  |
| - 2 - 19     | 114                      | 11.1               |                       |            |                   | 181          |                  |                 | 45.3<br>41.5<br>11 5     |                                       |                     | 1.1                       |                              | + +              | 1.15           |                                 |       |                  |
|              | 105                      | 18.9               |                       |            |                   | 16.5         |                  |                 | 31.5                     |                                       |                     | 21 5                      |                              |                  | 1.32           |                                 |       |                  |
| -2- 90       | 11 S                     | 14.4               | + + +                 |            |                   | 16.4<br>14.1 | <u>í</u>         | -               | 577                      |                                       | +                   | 11 S<br>11 T              |                              | $\vdash$         | 1.35<br>1.41   |                                 |       |                  |
|              | 19.7                     | 1/3                |                       |            |                   | 17.4         | 2                |                 | 98 7                     | <u> </u>                              | 1                   | 1. 5                      |                              |                  | 1.10           |                                 |       |                  |
| -a - 4       | 16.2                     | 175<br>18.6<br>115 |                       |            |                   | 15 (         | <u></u>          | + +             | 98-5<br>1996<br>984      | _                                     |                     | 111<br>111                |                              | ┼──┤             | 967            |                                 |       |                  |
| 1-2-32       | 121                      | 115                |                       |            |                   | 39.5         | <u>1-</u>        |                 | 984                      |                                       | 1                   | 115                       |                              |                  | 967            | _                               |       |                  |
|              | 11.2                     | 123                |                       | 1          |                   | 12.5         |                  |                 | 111.5.                   |                                       |                     | 194                       |                              |                  | 14.11<br>14 57 |                                 |       |                  |
|              | 15.5                     | 11.2               |                       |            |                   | K.1          |                  |                 | 154                      |                                       | ├ -                 | 199<br>369<br>378         |                              | 1 1              | 08             |                                 |       |                  |
|              | 16.2                     | 15 5               |                       | -          |                   | 11.4         |                  |                 | 931                      | -                                     | 1                   | 211                       |                              |                  | A.95<br>1 09   |                                 |       |                  |
|              |                          | 11-3<br>171<br>178 |                       |            |                   |              |                  |                 | 951<br>975<br>971        |                                       |                     | 121<br>137<br>137         | - <del> </del> - ·           | 1 1              | 110            | +                               |       |                  |
|              | 14.9                     | 17.8               |                       | _          |                   | 151          | <u> </u>         |                 | 41 1<br>84 6             | -                                     |                     | 11 S<br>12 T              |                              |                  | 1.15           |                                 |       |                  |
|              | A46                      | 11.1               |                       |            |                   |              | 1                |                 | 98 3                     |                                       |                     | 11 X<br>11 X<br>11 F      |                              |                  | 4.41           |                                 |       |                  |
| 24           | 12 15.2<br>15.2<br>15.3  |                    |                       | ;†         |                   | 17.5         | ┟──┼─            | -+              | 93.6                     | _                                     | -                   | 24 + 1                    |                              | T I              | 443            | - <u>-</u>                      |       |                  |
|              |                          | (2.4               |                       | .          |                   | 10.9         |                  |                 | 96-J<br>95-1             |                                       |                     | 11 L<br>14 L              |                              |                  | 9. 75<br>7 92  |                                 |       |                  |
|              | 156                      | 11.1<br>18.5       |                       |            |                   | 37.1         |                  |                 | 111.2                    | ••                                    |                     | 11 6<br>\$1 5             | +                            | ┼╌╌╉             | 14 92<br>14.16 | _                               |       |                  |
| 2-38         | 9.1                      |                    | 42.1                  | · · · ·    |                   |              | 32               |                 |                          | 20                                    |                     | //                        |                              | <b> </b>         |                | 97                              |       |                  |
|              | 9.7                      |                    | 441                   |            |                   |              | 4.7              |                 | 59                       | 10 1                                  | <u> </u> −- -       |                           | ¦                            |                  | 1              | CJ                              |       |                  |
| -2 -548      | e 19.5<br>4 ±            |                    | 46.2                  | -+-        |                   |              | 31               | - 7             | 7                        |                                       | <u> </u>            |                           |                              | I I              |                | 11<br>.1/                       |       |                  |
|              | 1 95 1                   |                    | 91.5<br>563           |            |                   |              | \$1<br>42        |                 |                          | 1                                     |                     | 34                        | 7                            |                  |                | 22                              | ·     |                  |
| -2-42        | 97                       |                    | 51.3                  |            |                   |              | 41               |                 |                          |                                       |                     | 10                        |                              |                  | 1              | (0.5<br>190                     |       |                  |
|              | .18.2                    |                    | 71.5                  |            |                   |              | 4.2              |                 | 16                       | 76                                    | <u> </u>            |                           | 1                            |                  | +              | uf2                             |       |                  |
|              | 14.2                     |                    | 71 2                  |            |                   |              | 9.2              |                 |                          | 2                                     |                     |                           | <u>≺ا</u>                    |                  | 10             | 65<br>64                        |       |                  |
| -2-57        |                          |                    | 24.5                  |            |                   |              | 2.1              |                 | 110                      | 10                                    |                     |                           |                              |                  | 14             | 11                              |       |                  |
| 2.26         | 10 5                     |                    | 74.9<br>441<br>461    |            |                   |              | 4.2              |                 | 140                      | Ü.                                    |                     | 11                        | <del>7</del>                 |                  | <u>.</u>       |                                 |       |                  |
|              |                          | _                  | 97.1<br>47.7          |            |                   | ·   ·        | 4.2              |                 | 16                       |                                       | <b>├</b> ─- -       | - 2                       | 3                            |                  |                | 94                              |       |                  |
| 2-51         |                          | 1 1                | 45.1                  |            |                   |              | 4.2              |                 | 91                       | 1.2                                   |                     | 14                        | 3                            | 1                | 5.             | 14                              |       |                  |
|              | 115                      |                    | 477                   |            | -                 |              | 42               | -++             | 94                       | · · · · · · · · · · · · · · · · · · · | · -                 | נק<br>על                  | ;                            |                  |                | 44<br>57                        |       |                  |
| 2 7          | <u> </u>                 |                    | 551/<br>64-3          | -+         |                   |              | 1 22             |                 | 94<br>47<br>47           | 7 <i>1</i>                            |                     | 11                        | 4                            |                  | . 4            | 44                              |       |                  |
|              | 90                       |                    | 41.5<br>57.5          |            |                   |              | J.1<br>J.1       |                 | 4)<br>4)                 |                                       | -                   | 13                        | 3                            | H                |                | .70                             |       |                  |
| 1-31         | H 5<br>94                |                    | <u>57.5</u>           |            |                   |              |                  | +               |                          |                                       |                     | د بر                      |                              |                  |                | 57<br>74                        |       |                  |
| \$ 57        | HS                       |                    | 68 8<br>61-5          |            |                   |              | 39               |                 | - #4<br>9/               | - 2                                   |                     | 21                        | 3                            |                  | 11             | 44                              |       |                  |
| · y - /25    |                          |                    | 475 498               |            |                   |              | 11               | 3               | 91                       | 7 2 0                                 |                     |                           | .1                           |                  | 15.            | 10                              |       |                  |
|              | 10.5                     |                    | 39.5                  |            |                   |              | Ĩ                | 1               |                          | 75.6                                  |                     |                           | 174                          |                  |                | 1 0 84                          |       |                  |
| 3 · /#3      |                          |                    | 57.4                  |            |                   | _            | *                | <del>;</del>    |                          | 517<br>314                            |                     |                           | 11 1                         | ┼──┟             |                | 1.31                            |       |                  |
|              | 1 10 V<br>7 L<br>9 E     |                    | 55 7                  |            |                   |              | 4                | ļ               |                          | 31 3<br>41.1                          |                     |                           |                              | 1:               |                | 1.1                             |       |                  |
| e-117        | 4.1                      |                    | 454                   |            |                   |              |                  | 1               |                          | 94.7                                  |                     |                           | 182                          |                  |                | 13C<br>                         |       |                  |
|              | 9.4                      |                    | 346                   | _          |                   |              |                  | -               |                          | 17 e<br>19 4                          |                     | _                         | 291                          |                  |                |                                 |       |                  |
| . 194        | ) //.*                   |                    | 492                   |            |                   |              | *                | 7               | ·                        | 111.4                                 |                     |                           | 111                          | <u>t-</u>        |                | 9.51                            |       |                  |
| 1/9/         | 95                       |                    |                       | -+         |                   |              | 3                | 1               |                          | 471                                   | 1 1                 |                           | 0420<br>15 2                 |                  |                | 9.4<br>17 11<br>- 14.11<br>6.91 |       |                  |
|              | ¥+                       |                    | 119                   |            |                   |              | 0<br>5<br>4<br>7 | -               |                          | 41 9                                  |                     |                           | 111                          | 1 1              |                | 1110                            |       |                  |
| 3-592        | <u> </u>                 |                    | <u>35 1</u><br>57.5   |            |                   |              |                  | :               |                          | 93.7<br>74.4<br>13.9<br>32.1          |                     |                           | 1.0.2                        | 1 — · · f        |                | 5.91                            | 1.1   |                  |
|              | A.                       |                    | 285                   | <u> </u>   | <b>→</b> →        | <b>-</b>     | 5.               |                 |                          |                                       | ·                   |                           | - 181                        | 1 1              |                | 1.95                            | i     | •                |

٠.

Ξ.

|                                                                                                                                                                                                                                     | HERMO                  | CHE      | RICAL                                | TEST                                  | ARE      | A         |         |                    |            |                 |            |                                        |                                        | ····                    |            |        |            |            |             |                 | <u> </u>       |         | ·       |                  |            |           | 1                                            | DC          | C. NO       |                  | REVISI                                    | ÓN                         | <del>,                                     </del> |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------------------------------|---------------------------------------|----------|-----------|---------|--------------------|------------|-----------------|------------|----------------------------------------|----------------------------------------|-------------------------|------------|--------|------------|------------|-------------|-----------------|----------------|---------|---------|------------------|------------|-----------|----------------------------------------------|-------------|-------------|------------------|-------------------------------------------|----------------------------|---------------------------------------------------|-----|
| LM RCS SUBSYSTEM TEST DATA SUMMARY                                                                                                                                                                                                  |                        |          |                                      |                                       |          | -         |         |                    |            |                 |            |                                        |                                        |                         |            |        |            |            |             |                 |                |         |         |                  |            |           |                                              |             |             |                  |                                           |                            |                                                   | B-5 |
| LM RCS SUBSYSTEM TEST DATA SUMMARY                                                                                                                                                                                                  |                        |          |                                      |                                       |          |           |         |                    |            |                 |            |                                        |                                        |                         |            |        |            |            |             |                 |                |         |         |                  |            |           |                                              |             |             |                  | -                                         | <u></u>                    | 0F #                                              |     |
| LM RCS SUBSYSTEM TEST DATA SUMMARY                                                                                                                                                                                                  |                        |          |                                      |                                       |          |           |         |                    |            |                 |            |                                        |                                        |                         |            |        |            |            |             |                 |                |         |         |                  |            |           |                                              | •           |             |                  |                                           |                            |                                                   |     |
| LM RCS SUBSYSTEM TEST DATA SUMMARY                                                                                                                                                                                                  |                        |          |                                      |                                       |          |           |         |                    |            |                 |            |                                        |                                        |                         |            |        |            |            |             |                 |                |         |         |                  |            |           |                                              |             |             |                  |                                           |                            |                                                   |     |
| LM RCS SUBSYSTEM TEST DATA SUMMARY                                                                                                                                                                                                  | • • • •                |          |                                      |                                       |          |           | -       |                    |            |                 |            |                                        |                                        |                         |            |        |            |            |             |                 |                |         |         |                  |            |           |                                              |             |             | •                |                                           |                            |                                                   |     |
|                                                                                                                                                                                                                                     | · · ·                  |          |                                      | ·····                                 |          |           |         |                    |            |                 |            |                                        |                                        |                         |            | · —    |            |            |             |                 |                |         |         |                  |            | •         |                                              | ·····       |             |                  | ~                                         |                            |                                                   | 1   |
|                                                                                                                                                                                                                                     | 1                      |          |                                      |                                       | ••       |           |         |                    |            |                 | 1.         |                                        | ~~                                     | ~~                      |            |        | - 64       |            | от          |                 | <b>Г</b> ( )   | ~       |         | <b>D</b> V       |            |           |                                              |             |             |                  |                                           |                            |                                                   |     |
|                                                                                                                                                                                                                                     |                        |          |                                      |                                       |          |           |         |                    | -          |                 | L          | VI K                                   | 65                                     | 50                      | 821        | r S, I | ЕM         | 15         | 51          | DAI             | IA :           | 501     | (IVI A  | Κĭ               |            |           | 1                                            | •           |             |                  |                                           |                            | -                                                 |     |
|                                                                                                                                                                                                                                     |                        | 1        | ·····                                |                                       | •        | 14.1      | - 51    |                    | <u> </u>   |                 |            |                                        | 4                                      |                         |            | -      |            |            |             |                 | <u> </u>       | -       |         |                  | ·          |           |                                              |             |             |                  | - 100                                     |                            |                                                   | 4   |
| LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL <thl< th="">LLLLLL&lt;</thl<> | RUH                    | PUL      | SE PULSE                             |                                       | TINE OF  | 85        |         |                    |            |                 |            | PRESS                                  | URE (PSIA.                             | RES<br>FUE              | PONSE (    | DXID   |            | SPONSE (   | (MS)<br>OND | DELAY ()        | 4S] 1<br>2 ENG | 2 ENG   | 4 EN6   | II ENG 13        | OXID V     | G 4 EN    | H (PSIA)<br>G I: ENG                         | 13 MALVE CL | LOSVRE (PS. | A ANTE CLOSINE   | STSTEM A                                  | SYSTEM B SYSTE             | V A SYSTEM B                                      | 5   |
|                                                                                                                                                                                                                                     |                        |          |                                      |                                       |          | 1 State   | 1 00 20 | IS RENGINENCI      | sengzena e | an manager      | 029X849X21 | C122 A                                 | 8 4 8                                  | 640<br>23<br>44<br>25:0 | -13=12*    |        | 100 K      | 3-8-8-     | 말드립그림       | 28 8 8          | BMIN           | WAX YON | MAX MIN | AX MA MAX        | MIN MAX MU | -         | MAX MIN P                                    | AX ENGRENO  | H ENGINERS  | SEN 32 ENGA ENGI | 263 C MIN. MAX                            | MIN MAX, MIN               | VAX. NIN. MAX                                     | -   |
|                                                                                                                                                                                                                                     | · <u>E -83 -175</u>    | <u> </u> | P 0.00                               | •                                     |          | 11        | 2 #     |                    |            | <sup>72</sup> . |            | - 1/1/3                                |                                        |                         | 3          |        |            | 5-0<br>F-0 | -++-        | <u> </u>        |                |         | 113     |                  |            |           |                                              |             | 769         |                  | 216 114                                   | 123 155 195                | 256 176 1920                                      | 4   |
|                                                                                                                                                                                                                                     | ar - 18 m - 18 m       |          |                                      | 15-8                                  | 643      | 31        | 3.2     | - 147              |            | 71-             | 7/         | 156.9                                  | 1134                                   | 1                       | -91        |        |            |            | =           |                 |                |         |         | 191              |            | <u>  </u> | ╞╧┨╌╡                                        |             | 115         |                  | 713 244                                   | 172 155 145                | 201                                               | -   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                             | 8-8-2-19               | ,        | 1.60                                 |                                       | (153     | 11_       | 1.2     | 111                |            | 14              | 11         | 111.2                                  | 111 1                                  |                         |            |        |            |            | -           |                 |                |         |         | 111              |            |           |                                              |             | 217         | +                | 134 304                                   | 152 157 145                | 14C<br>193 (1.5 10)                               | ]   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                             | 1 - A - 2 - 171        | Ľ        | 6 160                                |                                       | 0134     | 12        | 1.2     | 102                |            | 7.5             | 71         |                                        |                                        | 1 17                    | 9          |        |            | 4          | - 1-0       |                 |                |         |         |                  |            |           |                                              |             |             | ┼╌┟╼┽╌┨          | 183 157                                   | 154 115 144<br>155 175 121 | 192 153 193<br>200 123 199                        | -   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                             | R.R.2.19               |          | 1 107                                | 12-5                                  | 6333     | 33        | 1.5     | - 01               |            |                 | 11-        | 16 17 1                                | 115 5                                  |                         | 7.2        |        |            | 6.1        |             |                 | <u>H</u> J     |         |         | 152              |            |           |                                              |             |             |                  | 2491 154 213<br>2491 154 213              | 179 184 125                | 244 122 122                                       | -i  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                             | z -8-2-151             |          | e est<br>0 0.50                      | 11-5                                  | 15/2     | 84        | 1.2     | 155                |            | - 7             |            | 11 1115                                |                                        |                         | - 13<br>11 |        |            | - 4-       |             |                 | 12.3           |         |         | 125              |            |           | 126<br>91 1                                  |             | 26          | 2                | 242) 134 223<br>259 153 215               | 124 JS4 155<br>174 JS4 151 | 267 119 140<br>192 180 189                        | 4   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                             | -                      |          | 0 150                                |                                       |          |           |         |                    |            |                 |            |                                        |                                        |                         | 69         |        |            |            |             | +               | 11             |         |         | 94 26.9          | ┝╼┝╍┞╼     |           | <u>                                     </u> | 167<br>167  | 25          |                  | 262 153 215<br>152 155 212<br>214 154 117 | 124 116 154                | 194 110 193<br>192 113 154                        | 1   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                             |                        | -        | 6.110                                | +                                     | 1        |           | 3.2     |                    |            |                 |            |                                        |                                        |                         | 74         |        |            |            | +           |                 | H 1            |         |         | 138 115          |            | <b></b>   | 47                                           | 26          | . 22        |                  | 177 157 213                               | 131 11 157                 | 11/ 113 191                                       | 9   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                             | 7-1-1-55               |          | 0.150                                |                                       |          |           |         |                    |            | 10              |            | 20 1754                                | 1.97.5                                 |                         | 2.0        |        |            |            |             |                 | 101            |         |         | 110 24           |            |           |                                              |             | X).<br>24   |                  | 155 216                                   |                            | 170                                               | ļ   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                             |                        |          | 6.814                                | 47-6                                  |          |           |         |                    |            |                 |            |                                        |                                        |                         | 65         |        | + + +      | 5.0        |             |                 |                |         |         | 134              |            |           |                                              |             | 25          |                  | 154 218                                   | 174 157 152                | 114 112 134                                       | ส   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                             |                        |          | 4.417                                |                                       |          |           |         |                    |            |                 |            | $\left\{ \cdot \right\}$               |                                        |                         | 7.8        |        |            | 63         |             |                 | 112            |         |         | 119              |            |           |                                              |             | AL<br>31    | ž                | 157 159 219<br>194 159 219                | 174 159 151                | 215 170 157                                       | 1   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                             | # +8-2+156             |          | \$ 150                               |                                       | 6 4 40   | 13        | 1.2     |                    |            |                 |            | 20 13(2                                |                                        |                         | 6.6        |        |            | 4.4<br>6.2 |             | a national data | 105            |         |         | 91 211<br>95 718 |            |           | +                                            |             | 27          | 3                | 155 215                                   |                            |                                                   | -   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                             | <b>#</b> . # . # . # . |          | 0,100                                |                                       | 650      | 54        | 14      | 129                |            | - 10            |            | 78 1/1 4                               | 117.1                                  |                         | 70         |        |            | 69         |             |                 | 11.2           |         |         | 119 215          |            |           | - 125                                        | 144         | 27          | <u> </u>         | 279.159 210                               | 177 181 121                | 184                                               | 4   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                             |                        |          | 6 /50                                |                                       |          |           |         |                    |            | 71              |            | 69 111 2                               |                                        |                         | 2.0        |        |            | 2.5        |             |                 | 14 4           |         |         | 11.5 199         |            |           | 116                                          | 12          | 1 121       | ž III            | 170 154 216                               | 175 190 134                | Ai                                                | 1   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                             | 20-8-1-1               |          | 6.esz                                |                                       | 20 42    | . ".      | 125     |                    |            |                 | 4.         | ·///////////////////////////////////// | 1 <u>4 //1.5 //F</u>                   | 4.1                     | 1.1        | 4 1 4  | 61 1       | 1 11       |             | 189 1           | ·!             |         |         |                  |            | +         |                                              |             | <u> </u> ,  |                  | 124 221                                   | 105                        |                                                   | 1   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                             |                        | 12       | 4.473                                |                                       | . 21.2.7 | 94        | 10      | 151                |            |                 |            | 25 18 3 1                              | v a 137 2 1581                         | 4 1 1                   | 11         | -      | 1          | - 61       | 7           |                 | # <b>1</b>     |         |         |                  |            |           | ╎─┤──┞                                       |             |             |                  |                                           |                            |                                                   | ĺ   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                              |                        | 12       | 14 I . C . C . C . C . C . C . C . C | 12-3                                  |          |           |         |                    |            |                 |            | 71 mr 1                                | 1 1 11 1 11 11 11 11 11 11 11 11 11 11 | 79                      | 6.1        |        | 44         | 1.11       | <u> </u>    | 10.             | 1.7            |         |         |                  |            |           |                                              |             |             |                  | 118 280                                   |                            | 250                                               | 1   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                             |                        | F        | 0 1.ell                              |                                       | <u> </u> |           |         |                    |            |                 |            |                                        | $\pm$                                  | 17                      | ( 2        |        | 4.4        | 5.7        |             | 11.0            | ; . ;          |         |         |                  |            |           | ┇╌╎╌┤                                        |             |             |                  | 3/4                                       | 125                        | ⇒7P                                               | 1   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                              |                        | 177      | t <u>0.015</u>                       |                                       | -        | -         |         |                    |            |                 | 15         |                                        | .                                      | 6.7                     | 4          |        | 44)        |            | 79          | 143             | <u></u>        |         |         |                  |            | -         |                                              |             |             |                  | 145 249                                   | 146                        | 290                                               | }   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                             |                        | ×.       | s. 156                               |                                       |          |           | -++     |                    |            | - 75            | ++         | 77                                     |                                        |                         |            |        | <u>†</u> † | 6.5        |             | 6               |                |         |         |                  |            | 1         |                                              |             |             |                  |                                           |                            | ╤╋╧                                               |     |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                             | <u>-1-1-1-1</u>        |          |                                      |                                       | erd      | , rea     | 1.4     |                    | 71         | 57              | 57         | 111 0 1                                |                                        | 7.4                     | 27         | ┝╌┠╶┟╴ | 1.1        |            | 74 74       | 41              |                |         |         |                  |            | 1.1.      |                                              |             |             |                  |                                           |                            | 19                                                | -   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                             | ·                      | 1        | 0 111                                |                                       |          |           | ///     |                    | 19         |                 | 7          |                                        |                                        | 7.1                     | 11<br>1.1  |        |            | - 7.7      |             | 11.5<br>16.7    |                | -       |         |                  |            |           |                                              |             |             |                  | 11/1 213                                  | 12.6                       | 524                                               | -   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                              |                        | 1        | 1.117                                |                                       |          |           |         |                    |            |                 |            |                                        |                                        | 5.7<br>6.9              | 1 1 2      |        | 111        | 7.9        |             | 10.0            |                | iН      |         |                  |            | +         |                                              |             |             |                  | 111 112                                   |                            | 211<br>11/                                        | 1   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                              |                        |          | 6.417<br>4.691                       |                                       |          |           |         |                    |            |                 |            |                                        |                                        | 14                      | 7.0        |        |            |            | <i>1,1</i>  | 1 145           | #5             |         |         |                  |            |           | ╪╌┤═┼                                        | -           |             |                  |                                           |                            |                                                   | 1   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                              |                        | 10       |                                      |                                       |          |           |         |                    |            |                 |            |                                        |                                        | EF                      | 74         |        | 1          | 65         |             |                 | 11 I<br>14 I   |         |         |                  |            |           |                                              |             |             |                  |                                           |                            |                                                   |     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                              | FT-8 #+1               | F        | . C. SET                             |                                       | 14.40    | - <u></u> |         | - 1.50             | 74         |                 | 13         |                                        | 29 11 1 11 1                           | 77                      | 2          |        |            | 13         |             |                 |                |         |         |                  | ┝╺┫╾┠╴     |           |                                              |             |             |                  |                                           | . 114                      | avy                                               | į   |
|                                                                                                                                                                                                                                     |                        | 1        | 0.100                                | · · · · · · · · · · · · · · · · · · · |          |           | 187     |                    | 14         |                 | t          |                                        |                                        | 7.4                     | 14         |        | 1.0 1      |            |             | 14.5            |                |         |         |                  |            |           | 1-1-4                                        |             |             | +                | 158 222                                   | 94                         | 232                                               | 1   |
|                                                                                                                                                                                                                                     |                        |          | 3.474                                |                                       | 1        |           |         | $\pm \overline{+}$ | Ħ          |                 |            |                                        |                                        |                         |            |        |            |            | +           | N C             |                |         |         |                  |            |           | 1                                            |             |             |                  | 111 22                                    | 9#                         | 344                                               | 4   |
|                                                                                                                                                                                                                                     |                        |          |                                      | <u> </u>                              | 1        |           |         |                    |            |                 |            |                                        |                                        |                         |            |        |            | <u>r9</u>  |             | <i>n.</i> 1     |                |         |         |                  |            |           |                                              |             |             |                  | 796 214                                   |                            |                                                   | 1   |

t

• •

.

٠.

- THERMOCHEMICAL TEST AREA ----

· ·

MSC-EP-R-68-17 New, OF B-14

.

۱ ۱

|                                         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LM RCS SUBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YSTEM TEST DATA SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RUN<br>NUMBER                           | PRESSURE SWITCH PRESSURE SWITCH PRESSURE A<br>CLOSING TIME ( INS) GPENING TIME ( MS) CLOSING<br>CHI 2 ENO 4 ENO 1 ENGL TE ADNO 4 ENGL ENGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AT SWITCH PRESSURE AT SWITCH STEADY STATE CO - VE TO 75% OF MAK LATTAGE<br>(PSIA) OPENING (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT INCH TAREAL (PSIA)<br>AT IN AT INCH TAREAL (PSIA)<br>AT IN AT INCH TAREAL (PSIA)<br>AT INC | RATED - 6<br>A-SEC  <br>REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <u>2</u> - A - 2 - 13<br>2 - A - 2 - 13 | 3 (4A) 564<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.7         671         673         674           6.1         974         107         1           6.3         996         175         1           6.4         996         175         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Adl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2-A-2-19                                | II.1         St4           5         II.3         St9           -         Ib.1         S19           4         II.3         S19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 (41)<br>1 577<br>1 560<br>1 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>X - A - X - 16</b><br>               | 0 11.4 1777<br>11.4 14.8<br>14.5 14.9<br>1.7 14.8<br>14.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>1.7 14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9 | 54         54         64           54         54         64           54         915         64           64         622         64           63         64         622           64         622         24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (4(3))         (4(4))           120         (4(4))           640         (4(4))           640         (4(4))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <u>=-</u> A-2+65:<br>#+A-2-65:          | 1 ///0 ////0 //////////////////////////                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.61         8.4.1         3.861           6.4.1         75.4         12.7           6.6         976         12.7           6.6         976         12.8           4.6         10.7         11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 450 <br>  453 <br>  992 <br>  657 <br>  655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| E -4-3-33                               | 12.1         37.7           12.1         31.0           13.5         39.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4% L         100 / 1         100 / 1           94 L         20 / 1         100 / 1           94 L         20 / 1         100 / 1           94 L         20 / 1         100 / 1           94 L         20 / 1         100 / 1           94 L         20 / 1         100 / 1           94 L         20 / 1         100 / 1           94 L         20 / 1         100 / 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>14 |
| T-A-2+154                               | 123         456           125         46.7           115         46.7           115         56.7           115         56.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ////<br>/////////////////////////////////                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2-3-3-157<br>7-8-3-151<br>72-8-1-1      | II.7         35.6           II.7         35.7           II.2         43.3           II.2         35.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.2         100         100         100           6.7         100         100         100           6.7         100         100         100           6.7         100         100         100           6.7         100         100         100           6.7         100         100         100           6.7         100         100         100           6.7         100         100         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 283<br>847<br>647<br>647<br>647<br>105<br>105<br>105<br>105<br>105<br>105<br>105<br>105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7-A-2-1<br>1-A-2-16<br>X-A-5-1          | its         its         its           its         its         its         its                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     201     20     201     201     20     201     20     201     20     201     20     20     201     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20     20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         | 13:1         17:1           15:4         14:1           15:5         13:0.5           10:5         34:4           10:5         35:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| · A · 4 · )                             | 10.1 51.1<br>10.9 56.7<br>10.6 55.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29  <br>= 0.54  <br>= 0.55  <br>↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7-8-1-11                                | (A-1)         21.2           (A-1)         (A-1)           (A-1)         (A-1)           (A-1)         (A-1)           (A-1)         (A-1)           (A-1)         (A-1)           (A-1)         (A-1)           (A-1)         (A-1)           (A-1)         (A-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Iff     bittlen & mu pp and theteropy, Am. Emil, and the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end of the end o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -8-84                                   | h.5         J27           ml1         gr3           dl1         gr3           lat         gr4           lat         gr4           lat         gr4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         | 1841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H1         H1         L01           5.2         417         84           (6.2         119         84           6.2         119         84           6.2         119         14           6.2         119         14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 665 State & Herbon an TEST HERBEL DAY - 1917, and -193 Head Law: and Day 354<br>States & Law (Lett. And - 1917, and -193 Head Law: and Day 354<br>Arts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CAP         HI         HT         Ext           H.J.         HY         HA         EB           A.T.         HY         HA         EB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

FOLDOUT FRAME 2

| MUG                                      | 9 C N I G                                                      | L TES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | il AH                | EA                   | <u></u>        |                                   |                            |                                       |               |                                                                |                                                                    |                                        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                  |                                                                                                      |                                                                             |                                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             | 1                                                                                             | C. NO.<br>C-EP-R                                        | -68-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | REVISION<br>. <u>New</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PAGE                                                                             |
|------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|----------------|-----------------------------------|----------------------------|---------------------------------------|---------------|----------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|                                          |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      | •                    |                |                                   |                            |                                       |               | -                                                              |                                                                    |                                        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                  |                                                                                                      |                                                                             |                                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                           |                                                                                               | <b>F</b> a .                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |
|                                          |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      | •                    |                |                                   |                            |                                       | LM            | RCS                                                            | su                                                                 | BSY                                    | STEN                               | M TE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ST D                                                                                             | ΑΤΑ                                                                                                  | SUM                                                                         | 1 M A F                              | ۲Y                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ÷<br>;                                                      |                                                                                               |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |
| (7)<br>BER<br>(~3~)                      | HUNDER H                                                       | ILSE DAT<br>DTH LISE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 71 (HR               | <u>₹ </u>            | INJUSTICE COLL | Markenari leva                    | FUEL IN<br>TEMPERATU       | LET OXI<br>REPETENPE<br>SIJENT.SD6220 | GAENO, ENGS   | INITIAL INL<br>PRESSURE (<br>FUEL 02<br>A 8 A<br>105 14.4 1111 | PSIA, RE<br>20 Fu<br>문·문·문·                                        | 3-8-3-8                                | S)                                 | VALVE CLOSI<br>RESPONSE (1<br>FUEL C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (S) DE(<br>2010 ~<br>지금-급수 분                                                                     | MITION<br>AY (MS)<br>+ = 2 0<br>2 0 0<br>2 0<br>2 0<br>2 0<br>0 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | TNLE<br>FUEL VAL<br>ING 2 ENG<br>IN MAX MIN                                 | VE OPEN (F<br>4 ENG H<br>MAX MIN MAX | MINE ASAS MI             | TWLE I<br>OXID VALVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DPEN (PSIA)<br>OPEN (PSIA)<br>ENG II ENG<br>X MIN MAX MIN M | MAXIN-NA<br>PRESSUR<br>3 VALVE CL<br>AX EIKGZ EHS                                             | THEGT. IN<br>E AT FUEL P<br>DSURE PUEL V<br>SURE PUEL V | ADBUM JAGET<br>RESSURE AT OX<br>ALVE CLOSURE (*<br>1522/1034EN5ILEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122 122 121 101 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NAX MIN 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X MIN MAX                                                                        |
|                                          | 30<br>42<br>40<br>27<br>3<br>40<br>7<br>3<br>40<br>7<br>7<br>3 | 0, 679<br>6, 10 20<br>1. 21 5<br>1. 21 5<br>1. 21 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                      |                | 191                               | 77                         |                                       | 12            |                                                                | 2.4<br>1.57<br>1.1<br>2.4<br>7.8<br>6.9                            | . f.1                                  |                                    | 1 79<br>1 54<br>57 5 7<br>69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  | 9.7 T                                                                                                |                                                                             |                                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             |                                                                                               |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 142 215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 103 44<br>105 23<br>167 24<br>144 47<br>144 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7<br>7<br>3<br>5                                                                 |
| <i>q-1</i>                               | 7777<br>25<br>14<br>21<br>35<br>46                             | .050<br>.050 18-<br>.087<br>Lats<br>0.091<br>2 653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9                    | 13 9.7               | 1.5 III<br>    |                                   | 1<br>79                    | . 77                                  |               | 19 <u>7.9</u> 11.0 177 1                                       | 1579 6.9<br>71<br>71<br>71<br>71<br>63                             | 7.5<br>1.5<br>9.4<br>7.7<br>7.1<br>7.1 | 56.7                               | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75<br>41<br>47<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40     |                                                                                                      |                                                                             |                                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             |                                                                                               |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 143 245<br>131 247<br>181 247<br>181 244<br>143 249<br>175 249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 110 AU<br>113 Ja<br>110 BB<br>129 Ju<br>125 JB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                |
|                                          | 6<br>8<br>8<br>8<br>H                                          | 0.017<br>0.015<br>0.017<br>0.815<br>0.815<br>0.815<br>0.017<br>0.017<br>0.017<br>0.017<br>0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                      |                | 193<br>147<br>147                 |                            | <u>4</u>                              | 2<br>54<br>79 |                                                                |                                                                    | E(1 1                                  | 4 64                               | 4 7<br>3 7<br>1 8<br>4<br>4<br>4<br>4<br>5<br>1 4<br>4<br>5<br>1 4<br>4<br>5<br>1 4<br>4<br>5<br>1 4<br>1 4<br>1 4<br>1 4<br>1 4<br>1 4<br>1 4<br>1 4<br>1 4<br>1 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 75                                                                                             | 11 4<br>2 7<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4                                  |                                                                             |                                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             |                                                                                               |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 145 242<br>135 237<br>137 241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 145 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                |
| 5-1                                      | 9<br>17<br>17<br>14<br>14<br>13                                | 0.420<br>0.179<br>0.420<br>0.419<br>0.419<br>0.419<br>0.419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 11                 | 24 95                | <u>14 49</u>   |                                   | 71                         |                                       |               | 1171 1174 (11 1                                                | 474 ( ) )                                                          | 10+1<br>171<br>- 6.Ft<br>- 75<br>- 75  | J.4<br>7.8<br>4.4                  | 6.5<br>6.1<br>6.1<br>74<br>74<br>71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 74<br>71<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1    | 11.2<br>11.2<br>11.3                                                                                 |                                                                             |                                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             |                                                                                               |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 194 2//<br>132 123<br>1345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 114 2<br>132 Au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                |
| -                                        | 59<br>77<br>77<br>77<br>7<br>7                                 | 0-016<br>0-055<br>0-057<br>0-017<br>0-018<br>0-018<br>0-018<br>0-018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                      |                | (34                               | <u> </u>                   |                                       | и<br>и<br>    |                                                                | 4-3<br>7-5<br>7-5<br>7-5<br>7-5<br>7-5<br>7-5<br>7-1<br>7-1<br>7-1 |                                        | <u>67</u><br>70                    | F.0<br>5.0<br>4 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 114<br>114<br>114                                                                                | 19<br>19                                                                                             |                                                                             |                                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             |                                                                                               |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 144 2371<br>151 213<br>144 222<br>157 215<br>147 235<br>147 235<br>147 235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 129 22<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7<br> 9 <br> 5 <br> 7                                                            |
| -)-1<br>-1-1                             | 12<br>94<br>12.<br>1                                           | 0.687<br>0.654<br>0.654<br>0.017<br>0.017<br>0.654<br>0.017<br>0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      | •<br>** 91<br>*7. 97 |                | 198                               |                            |                                       | 12            | 111-1 112- 11- =<br>111-2 1468 AV                              | 21<br>21<br>21<br>21<br>21                                         |                                        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1<br>4<br>2                                                                                      | 40<br>47<br>47<br>47<br>47<br>47<br>47                                                               | - 15<br>1<br>1<br>1<br>1<br>1                                               |                                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             |                                                                                               |                                                         | 313<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 142 345<br>146 215<br>145 227<br>139 344 739<br>147 455 129<br>147 455 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11 37<br> 14 20<br> 95 17<br> 257-191 2<br> 257-191 3<br> 14 25<br> 14 25<br> 14 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 201<br>17:<br>17:<br>11: 147 347<br>72: 107: 147<br>72: 107: 141<br>73: 148: 414 |
| -]-9<br>-]-9<br>-2-1                     | /A<br>/A<br>/                                                  | 0.047<br>0.150 JA<br>0.150 JA<br>0.150 JA<br>0.150 JA<br>0.017 J2<br>0.017 J2<br>0.017 J2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6 <u>65</u><br>6 100 | 12 11                |                | 198                               | 94<br>94<br>91 91<br>93 93 | 8) 11 1<br>11 11 11                   | 13            | 177. F 17. V 174. 9<br>171. 4 174. V 177 1<br>177. 177. 177. 1 | 28                                                                 |                                        |                                    | 4 7<br>10 55 76 R<br>17 6 17 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 1.1<br>1.9<br>1.0<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7              |                                                                             | 218<br>241<br>224                    |                          | 92 39<br>7e3 34<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>963 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12<br>965 12 | (<br>2<br>                                                  |                                                                                               | 2<br>1<br>7<br>3<br>2<br>3<br>4                         | 459<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 122 222 193<br>149 321 199<br>135 224 192<br>145 224 192<br>145 221 197<br>177 195 100<br>15 75 123 101<br>12 37 323 101<br>12 37 323 101<br>12 37 323 101<br>12 37 323 105<br>12 37 323 105<br>12 37 323 105<br>12 37 323 105<br>12 37 323 105<br>12 37 323 105<br>12 37 323 105<br>12 37 323 105<br>12 37 323 105<br>12 37 323 105<br>12 37 323 105<br>12 37 323 105<br>12 37 323 105<br>12 37 323 105<br>12 37 32 32<br>12 37 32 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 32<br>12 37 37<br>12 37 37<br>12 37 37<br>12 37 37<br>12 37 37<br>12 37 37<br>12 37 37<br>12 | 326 134 21<br>219 132 31<br>321 134 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19 145 213<br>14 161 209<br>16 145 112                                           |
| 14 14 14 14 14 14 14 14 14 14 14 14 14 1 |                                                                | 1.650<br>- 150<br>- 150<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160<br>- 160 | 6<br>6               | 12 . 91              | AA 47          | 1 <u>31 (33</u><br>145 r/3<br>150 | <u>81 12</u><br>A 71<br>93 | 99 5 .<br>99 5 .<br>97 71             | × 72          | 117.4 117.1<br>127.4 177.7<br>127.4 177.7<br>177.4 177.9       | 71 72                                                              | 7 9<br>7 9<br>7 9                      | 5 7 6 1<br>7 4 6 1<br>9 7 6 4      | (1 4 7 77<br>(1 4 7 77 7<br>(1 4 4 7 7 7<br>(1 4 4 7 7 7<br>(1 4 4 7 7 7<br>(1 4 4 7 7 7<br>(1 4 4 7 7 7<br>(1 4 4 7 7 7<br>(1 4 4 7 7 7<br>(1 4 4 7 7 7<br>(1 4 4 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7<br>(1 4 4 7 7 7 7 7<br>(1 4 4 7 7 7 7 7<br>(1 4 4 7 7 7 7 7<br>(1 4 7 7 7 7 7<br>(1 4 7 7 7 7 7<br>(1 4 7 7 7 7 7<br>(1 4 7 7 7 7 7 7<br>(1 4 7 7 7 7 7 7 7<br>(1 4 7 7 7 7 7 7 7 7 7 7 7<br>(1 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 10.2                                                                                             | 20 10 10 10 10 10 10 10 10 10 10 10 10 10                                                            | 1 278 44<br>1 279 49<br>1 279 49<br>5 261 35<br>1 247 39<br>1 247 39<br>1 1 | 271                                  | 115 119 50<br>91 201 5   | 119 51 10<br>7 201 14 21<br>9 317 54 31<br>7 213 59 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t                                                           | 93 867 94<br>118 847 96<br>118 367 96<br>118 364 96<br>119 353 39<br>119 353 39<br>119 353 39 | 1 256<br>1 256<br>1 856                                 | 311, 334, 3<br>591, 342, 3<br>594, 354, 3<br>195, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3<br>105, 3 | 59 12 377 149<br>64 41 311 114<br>11 17 212 147<br>58 57 376 166<br>45 186 213 183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 Jez 11 8 9.<br>1 Jez 11 8 9.<br>1 Jez 11 8 9.<br>1 Jez 11 8 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9.<br>1 Jez 11 9 | 5 173 222<br>14 4 5 247<br>15 171 247<br>47, 175 243<br>15 175 134               |
| 33<br>37                                 |                                                                | 148 AT-<br>150<br>1017 JR-<br>MIT<br>1454<br>1454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                      | .14            | 150                               | _90<br>_91<br>             | 53 74<br>54 74<br>54 74               | 74            | (153 - 177 4<br>177 1 177 1 177 1                              | 82<br>NTT2C<br>149<br>74<br>6.9                                    | 77 79<br>76 75<br>5.0 79               | 91<br>74<br>99 74<br>95 55         | 6.4' 5.4<br>6.4' 5.9<br>6.4' 5.9<br>6.4' 5.9<br>7.6<br>.2<br>.2<br>.2<br>.2<br>.2<br>.2<br>.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 4 11 11<br>145 11 1<br>7.5 11 1<br>7.5 12 1<br>5                                               | 112                                                                                                  | 17 115<br>87 197                                                            |                                      | 705 247 41<br>705 749 10 | 1796<br>1 789<br>1 789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 144                                                         | 15 287<br>uf 397                                                                              | 2554<br>21/1                                            | 15)<br>575 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 42 98 225 119<br>16 125 219 119<br>195 260 137<br>131 201 137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 117 117 3.<br>1 157 107 3.<br>1 155 151 3.<br>1 155 152 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27 170 188<br>16 197 193<br>75 192 294<br>53 192 29                              |
|                                          |                                                                | 417<br>445<br>445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | 15 90<br>            |                | /16                               | 91<br>91<br>90<br>90       | 52 74<br>                             | 14            | (179) 170 4 180 1<br>(179) 179 9 187 2                         | 7.1<br>(7                                                          | 71 95<br>71 93<br>71 93<br>5<br>74 94  | £1 £2<br>54<br>5<br>92 £1<br>92 £1 | r1<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.1 19 0                                                                                         | 126                                                                                                  |                                                                             |                                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             |                                                                                               |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 248 158<br>145 259 147<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 315 115 2<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11 143 31                                                                        |
|                                          |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                      |                |                                   |                            |                                       |               |                                                                | - 11                                                               |                                        |                                    | 13 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                  | 11 yl<br>V t                                                                                         |                                                                             |                                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             |                                                                                               |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |

· -

FOLDOUT FRAME

.

MSC 2227-68

| - | THE | RMO | CHER | 1 C / | IL T | ES | ΤI | AREA |  |
|---|-----|-----|------|-------|------|----|----|------|--|
|---|-----|-----|------|-------|------|----|----|------|--|

| DOC. NO.       | REVISION | PAGE B-8       |
|----------------|----------|----------------|
| MSC-EP-R-68-17 | New      | OF <u>B-14</u> |

|          | 1 | OF. | _ |
|----------|---|-----|---|
| <u> </u> |   |     | _ |
|          |   |     |   |
|          |   |     |   |
|          |   |     |   |

|         |                     |                                        |                      | •                                         | M DOO                                                                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|---------|---------------------|----------------------------------------|----------------------|-------------------------------------------|---------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|         |                     |                                        |                      |                                           | LM RUS S                                                                  | SUBSYST                     | EM TEST DATA SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|         |                     |                                        |                      |                                           |                                                                           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|         |                     |                                        |                      |                                           |                                                                           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|         | PRESSURE SWITC      | PRESSURE SWITCH                        | PRESSURE AT          | SWITCH PRESSURE AT SWITCH STEADY          | STATE OF ITWE TO TS %                                                     | OF WAX INTEGRATIC           | -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| UN      | CLOSING TIME ( M    | SI OPENING TIME MS                     | CLOSING [P           | SWITCH PRESSURE AT SWITCH MAXIM.          | STATE OR IT WE TO 75%<br>W CHAMBER 10 \$5 CHAMBE<br>IRE 1051 PRESSURE (W) | PSIA- SEC )                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| RIER    | cur aloue aloue who |                                        | mana dana dana       |                                           |                                                                           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|         | CHU 2 CH3 4240 HE   |                                        | IS ENG. 2 ENG 4 ENG. | NENGISENG ZENG 4 END HENGISENG ZENG       |                                                                           | LENGISENG SENG 4END IN      | ANG 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| - 7-1   |                     | 15.9                                   |                      | <u> </u>                                  | 112                                                                       | 2.16                        | SISTEM & THE MORTH THISTORY THE FORLY CAN BE THE CARD BIN THE THE THE FAIL AND BET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| ···· ·  | 15.4<br>IS 5        | 34.4                                   |                      | 14.7 Fr.5                                 | 1.4                                                                       | E46                         | \$1378d, R. INFE-Solent Kry=E886; No-115, 915-133. 0310; Nin-78 Net-376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
|         | 191                 | 17.9                                   |                      | 15.8 10.5                                 | 157                                                                       | 7.10                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|         | 13-2                | 19.61                                  |                      | 13 4                                      |                                                                           | 914                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|         | 18,6                |                                        |                      | 4.7 50                                    |                                                                           | 3.51                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|         | 1 12.5              | 30:0<br>343<br>14 41                   |                      | 4.1                                       | 34.1 15                                                                   | 1 095                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|         | 13.4                | 11.5                                   | 4                    | 176 52                                    | 40.4                                                                      | 18.7<br>8.4.8               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
|         | 13.5                | 17.5                                   |                      | 16.9 96.3                                 | 414                                                                       | 701                         | STATER & JIN AND NOT TRANKANT. ANN - FUEL - NIC-14 ANT AND AND ANN AN ANT -235<br>STATER & TRANSBURT AND - FORLY AND - 59 MAX- 449 - 2410 - 199 - 69 - 189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
|         | 17.1                | 111                                    |                      | 114 941                                   | 19.7                                                                      | 1.97                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|         | 15.6                | 11.5                                   |                      | 10 I - 96 J                               | 1.33.9                                                                    | 5.52<br>2.12                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|         | 14.9                | 414                                    |                      | 47                                        | 1 1 1 1 1 1 1 1                                                           | 114                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|         | 10.4                | 51.4                                   | · h                  | 6.1 52<br>5 L 15                          |                                                                           | 145                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|         | 16.4                | 35 2                                   |                      | 51 15                                     | 19.5                                                                      | 111                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|         |                     |                                        |                      | 6-6                                       | 111.1 11.                                                                 | 1.6.72                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|         | -   <u>"</u>        | 121 121                                | <u></u>              | 6ek                                       | 125.6                                                                     |                             | A33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
|         |                     | 41 43                                  |                      | 5.8                                       | 151                                                                       |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|         |                     | .1 44                                  |                      | 5.4                                       | 151                                                                       | A.1                         | 5.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 5-1     | 157                 | 12.8                                   | ╏┈┠─┠─               | 4.2                                       | <b>#</b> 3                                                                | 1.                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|         | 191                 | 121                                    |                      | 36.5 974                                  | 116<br>11.5                                                               | 614                         | STATION A. CA. HOL NEW AND THE PERCENT AND A THE AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A AND A |          |
|         | 15-5                | 170                                    | ┦┈┤──┼               | 11.0 (10.0                                |                                                                           | 112                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|         | 13.4<br> HJ         | 14.1                                   | +                    | 17.4                                      | 19.4                                                                      | 544                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|         | 44.6                |                                        |                      | 18.0 13.0                                 |                                                                           | 919 -                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|         | 149                 | 11.1                                   | ╺┝━╾┤╌╴              | IT1 Null                                  |                                                                           | 5.11                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|         |                     | 41.5                                   |                      |                                           |                                                                           | 4,87                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|         | 11.2                | 44.2                                   |                      | 4.7 44                                    | 200                                                                       | 1.92                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| -       | 4.5                 |                                        |                      | 54 100.<br>54 94                          |                                                                           | 7.51                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|         | 115                 | 31.2                                   | ╺┼╼┄┼╴╼┼╍━           | 51 55                                     | 1 1 448                                                                   | 4.99                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| -1-1    | /4.5                | 31.0                                   |                      | 48 10                                     | 1491-                                                                     | 1.74                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 1.2     | - 10.0              | 44 5                                   | <b>-{- }</b> ;       | 4.1 []<br>5.7 []                          |                                                                           | 187                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u> |
|         | 10.9                | 55 2                                   |                      | 5.2 95                                    |                                                                           | 4.18                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 1-      | 10.4                | 56 1                                   |                      | 5.2 91                                    |                                                                           | 14.52                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|         | # ž                 | 60.5                                   | ┤╶┼╾╇╼               | 3.7 AA.<br>4/3 AF                         |                                                                           | 11/ 22                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| -3-1    | 115 12.51           | 2 15.5 51 5 14                         | 4                    | 175 6.2 54 61.5 52.                       | 65.01 416 191                                                             | 11 5 6.74 0.75              | 697                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
|         | 12 1 11.1 . 1       | 63 173 42.2 93<br>53 11.5 94.5 40      | <u>╬</u> .           | 144 5.7 4.7 (10 45                        | 75 / 22 / 10 1                                                            | A. 1 6.9 × 4.54             | 4.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| - 2 - 2 | 1.1 11.2            | 11 11 11 11 11 11 11 11 11 11 11 11 11 |                      | 17 4 4.7 86 970 H.                        | 241 81.9 25.1                                                             | 376 375 754<br>314 487 4.17 | 4.1/<br>4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 1-1     | 149 11 1            | 3 7 28 1 59 ( 41                       | .0                   | #1 5.7 42 99.5. 96                        | 550 523 Ste                                                               | A.S 15.12 15 26             | /5.//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|         | 131                 | 2 11 4 02.0 02<br>2 4 30 5 51.6 50     |                      | 11-3 5-2 50 85 8 16                       | \$271 243 24.5                                                            | 8.6 15.6 13.32              | 15-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 3-1     | 14.6                | 64 15.5 34                             |                      | 11.5 5.2 5.2 91.7 91<br>11.5 34 34 377 91 | TO 4. 32.0 35.4<br>74.1 14.0                                              | 11 1 0.10                   | //////////////////////////////////////                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|         | 1413                | 2.3. 16.1 31                           |                      | 11.5 27 2251                              | 514 44.4                                                                  | 12.1 113                    | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
|         | 17.1                | 10 2.4 91<br>ht 11 52                  |                      | 21.5 5.1 11 T<br>21.4 11 T                | 95.0 24.5                                                                 | 28 7 12.28                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 4-1     | 42                  | 14 14.2 34                             | 4                    | おん    もの 11元                              | N C 11.5                                                                  |                             | 2 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|         | 19.5                | 2.1 14.6 43.8                          | 4                    | 155 42 555                                | 59.7 0.1                                                                  | 11.6 1.45                   | A//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| ·       | 1.5                 | - 43.7                                 | ╋╼┼╌┽╾               | <u>41</u><br>5.2 11                       |                                                                           | 4.75                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 1.3     | 151                 | 11 19.4 19                             |                      | 33.9 5.4 70.5                             | 77.5 198                                                                  | 19.9 1.13                   | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
|         | H.1                 | 17 11.4 41.4                           | 4                    | 14.6                                      | 121 188                                                                   | 81 5 139                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|         | //3                 | 44.4<br>514                            |                      | <u> </u>                                  | 13.3                                                                      | 4.21                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 1.6     | 15.5                | 24 146 1                               |                      | 745 5.8 9.2                               | 82.5 32.4                                                                 |                             | 6.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|         | 15.0                | <u>5.1 /1,6</u>                        | 4                    | 19.5. 4.2. 96.6                           | 54.2 25 0                                                                 | 19 4 455                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|         | 9.7                 | 47.0                                   | ┧┽┼╴┼                | 57 H                                      |                                                                           | 4.11                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|         |                     |                                        |                      |                                           | 1 205                                                                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |

THERMOCHEMICAL TEST AREA -

DOC. NO. REVISION MSC-EP-R-68-17 New

1

|                   |                |        |          |              |        |                   |                  |                 |                     |                 |                 |           |                      | -                 |          |                        |       |                    |               |                          | Τ [      |             |                   |                 |         |                |                    |       |                                              |            |               |                             |                                     |                          |                                              |                                        |                    | ,                   |          |                   |
|-------------------|----------------|--------|----------|--------------|--------|-------------------|------------------|-----------------|---------------------|-----------------|-----------------|-----------|----------------------|-------------------|----------|------------------------|-------|--------------------|---------------|--------------------------|----------|-------------|-------------------|-----------------|---------|----------------|--------------------|-------|----------------------------------------------|------------|---------------|-----------------------------|-------------------------------------|--------------------------|----------------------------------------------|----------------------------------------|--------------------|---------------------|----------|-------------------|
|                   | PULSE<br>WOTH  | DATE   | TIME OF  | E E          |        | NECTOR<br>MPERATU | HEAD<br>JRE (*F) | FUEL<br>FEMPERA | INLET<br>VIUNE (PF) | OXID<br>Tempera | NLET<br>TURE MF | PRESS     | AL INLE<br>URE (P    | SIA)              | RESPC:   | CPEN                   |       | 8                  | ALVE C        | E (MS)<br>exili<br>exili | ÐE       | GNITION     |                   | FUEL VAL        | ET W    | K IPSL         |                    | 0X!   | TWAET                                        | F OPEN     | VTA<br>(PSIA) | 1 PRE                       | INNIN INC<br>SEURE AT<br>ME CLOSURI | FT<br>FUEL F<br>E (PSID) | MAXIMUM THEE<br>PRESSURP AT<br>VALVE CLOSURE | CIT. FVE                               | SSURE (F           | 3141 03             | RESOLRE  | 4) Fos<br>( [PS]  |
| NUMBER            | WAUER          | (1967) | (HRS)    | ULIA<br>TENP | 3 2    | -                 | _                |                 | ENGLIENGU           |                 |                 |           | 8 A                  |                   |          |                        |       | 2.2                | JEL<br>12-2:2 |                          |          | ENG 1       | S NIN             |                 |         |                |                    |       |                                              |            |               |                             |                                     |                          | NO 2 EN 34 EN 54                             |                                        |                    |                     |          |                   |
|                   | 0 030          | 11.1   | 1550     | 90           | 12 11  | 7                 | 122              | 91              | 95                  | <i>14</i>       | 19              |           | 71 1121              | 114 78            |          | 14                     | - P4  | 164                | 164           |                          | 61       | 1 1.        | 156               |                 |         | <u>i -   -</u> |                    |       |                                              |            | _             |                             |                                     |                          |                                              | 144                                    | 246 148            | 1 208 1             | 54 294   | 151               |
| 7,                | 6 160          |        |          |              |        | 151               |                  | 97              |                     | 74              |                 |           |                      | 1.1               | 611      | 69. 9 A                |       | 4 4 4              | 6.1           | 79                       | <u> </u> |             | <u>11 20</u>      |                 |         |                |                    |       |                                              |            |               |                             | ·   · ·   · ·                       |                          |                                              | <b>—</b> <sup>//2</sup>                | 3+61/55            | 1 105 13            | 1        | <u>~</u>          |
| -                 | 0.115          | 17-9   | 6720     | 90           | 110    | 16                | 132              | 92              | . 53                | 74              | 50              | 15.0 12   | 87 157 1             | 12513             |          | 71                     |       | 16.9               | 6.4           |                          | 102      |             | 12 5              |                 |         | <u>i</u>       | 1                  |       | <u></u>                                      |            |               |                             |                                     |                          |                                              | - R                                    | 126 151            | an 1                | 71       | 139               |
| ÷,                | 6 151          |        | ·        |              |        | 197               |                  | 12              |                     | 74              | <u>`</u>        |           |                      |                   | 6.61     | 11 97                  | - L.  | 69<br>] a.9        | 11            | 111                      |          | 11 4        | # 5               |                 |         | + • • • •      |                    |       | -                                            |            |               |                             |                                     |                          |                                              | 129                                    | 259 11             | 7 262 11            |          | 1                 |
|                   | 0 176          | 12-8   | 6949     | <u> 71</u>   | 2.2    |                   | ¥\$ 150          |                 | 75 97               |                 | 75 91           | 116 6 12  | 1115                 | ar 5              | 74       | -3-1                   | 7171  | 1. 21              | 36 61         | 5.4                      |          | 118         | 1/4               |                 | 7.5     |                |                    |       | <del>   </del>                               | 93         | 1.44          |                             |                                     | 7 972                    | 347                                          | 114                                    | 1 105              | 1 324               |          | 11.2              |
| 10                | 0.017          |        |          |              | 3.2    | с ,               | 47 180           |                 | 25 97               |                 | 2# 90           |           |                      |                   |          |                        | 74 7  | r"                 | 67 54         | J.                       | 4        | 154         | 1.6               |                 | . 14    | 10 7           | đ (+)              |       |                                              | 95         | 139           |                             | 36                                  | 1 207                    | 215                                          | 290                                    | 1 13               | 4 3/0 ·             |          | 9)<br>1#9         |
|                   | 0 150          |        | <u> </u> | 90           |        |                   | 130              |                 |                     |                 |                 |           |                      | 12.1              | 7.1      | 7.9                    | 79 79 | 1                  | 71 24         |                          |          |             | 78                |                 |         |                | 1 207              |       |                                              |            | 218 128       |                             |                                     | 3 156                    |                                              | 127                                    | 1 1/4              | 238                 |          | 123               |
| -                 | 0.017          | 11-1   | 1054     | · (          | 1.5    |                   | 150              |                 | 27                  |                 |                 | 1.11 4 12 | 1 1                  |                   |          | 7.5                    |       |                    |               |                          |          |             | 11.4              |                 |         | Ì              | 4                  | _ _   | 1-1-                                         | +          |               | 1-1-                        |                                     | 1-1                      |                                              | $\mp$                                  | 14                 | 2 299<br>5 235      |          | 135               |
|                   | 0.65t<br>0.517 | 12-5   | .1952    |              | 2.2 1  | ·                 |                  | + 1 + 9         | T É                 | 11 12           | $\square$       |           |                      | 11 12.1           | 1 1      | 7.8                    | 1 1   |                    |               | 73 79                    | 24       |             | 19.4              |                 |         | $\downarrow$   |                    |       | 1.                                           | 1          |               |                             | 0 +64                               |                          | +12 418                                      | H.                                     | 11                 | 5 891 - 2           | 1 375    | 133               |
|                   | 0 517<br>0 517 |        | (        | 90           |        | 15                |                  | 74              |                     | 1 17            |                 | 100 10    |                      |                   |          | 44                     |       | 1000               | (             |                          | 152      |             | - 2               | Ť               |         |                |                    | 13    | 12.                                          | -1-        | <u> </u>      |                             | 0 400                               |                          | 357 398                                      | 90                                     | 523                |                     | 5 315    |                   |
| <u>.</u>          | 0.050          |        | 1139     |              |        |                   |                  |                 |                     |                 |                 |           |                      | 1 1               | 1.1      |                        |       |                    |               | 1.9                      |          | 140         |                   |                 |         | <b>[</b>       |                    | _     | 1                                            |            |               |                             |                                     | +-+                      |                                              | 1 108                                  | 112.<br>1 16.2 43  | 2 . 75 1            | 9 520    | 117               |
| 5                 | 4 644          |        | 2114     | 90           |        | ť)                | - **             | 78              |                     | <u> </u>        |                 | 1. 2 1 12 | <u>**</u> ****       | 22174             |          | 141.2                  |       | 11.6               | 1.1           |                          | 77 12.5  |             | # *               |                 |         | i 🛨            |                    |       | 1                                            | -          |               |                             |                                     |                          |                                              | 139                                    | 24.2 2             | 5 252 9             | 3 7.8    | 66                |
|                   | 0 011          |        | -        |              |        | - 14              |                  |                 |                     |                 | · ·             |           |                      |                   | <u></u>  | - 7                    | -     | 6.                 |               | 7 1                      |          |             |                   |                 |         |                |                    |       | ╉╌╪╸                                         | _          |               |                             | 11-                                 |                          |                                              |                                        |                    |                     |          |                   |
| st.               | 4045           | 81     | 2127     | 94           | 121    | *                 | / 52             | 17              | 17                  |                 |                 | 111 1     | 450003               | 111179<br>191     | 3        | 7 1 3 4<br>1 1 9 4     |       | 16.4               | 64            |                          | 26 1.1   |             | <u></u>           |                 |         |                |                    |       | +                                            | <u></u>    |               |                             |                                     | -                        |                                              | 141                                    | 143 10<br>250 J    | 2 242 10            | 1 2.57   | #                 |
| Ž.,               | 0 011          |        | · · · -  |              |        | /5 5              |                  |                 |                     | 73              |                 |           | _                    |                   | 7.9      |                        |       | 5.6                | 1             | 7 4                      |          | 18.0        |                   |                 |         | +              | •   •              | -     |                                              | _!_        |               |                             |                                     |                          |                                              |                                        |                    |                     |          | _                 |
| <u></u>           | 6.044          | 11-1   | 2152     | 91           | 101    | 28                | 133              | 71              | 17                  | 24              | 77              | 011 11    | 76/82                | dz. 7 21          |          | ( ] ] f (              |       | 4.5 _              | L. 1<br>L.L   |                          | 16 13 2  |             | 15 6              |                 |         |                |                    |       |                                              |            |               | <u> </u>                    |                                     |                          |                                              |                                        | 256 10             | 4 272 A<br>1 804:10 | 2 277    | 101<br>N.A        |
| Ý ;<br>4          | 0 017          |        |          |              |        | . 119             |                  | 78              | +                   |                 |                 |           | $\neg \neg$          |                   | 28       | $\square$              | ŦŦ    | 6.0                |               | 51                       |          | <u>7</u> 71 |                   |                 |         |                |                    | _     | ╬┼                                           | <u></u>    |               |                             |                                     |                          |                                              | ++                                     | ++                 | ++                  |          | <u></u>           |
| â,                | 0.110<br>0.114 | 12-1   | 2307     | 90           | 22 1   | 11                | 754              | 73              | - 74                | 27              |                 | 17.9 11   | 2 / <sub>1</sub> 9 4 | (11.7 2 4<br>7 7  |          | 7.5                    |       | 6.8                | 11.3          |                          | 76 91    |             | 1.4               |                 |         |                | 77                 |       |                                              |            |               |                             | ++-                                 |                          |                                              | 140                                    | 295 91             | 241° /              | 19 257   | 111               |
| 7                 | 0050           |        |          |              |        | 1.56              |                  | . 75            |                     | 77              |                 |           |                      | - 1               | - 21     |                        |       | 141                | 1 1 1         | 79                       |          | 11          | 1-                |                 |         | 1 1            |                    |       | 14                                           |            |               |                             |                                     |                          |                                              | F                                      |                    |                     |          | —                 |
| <u>.</u>          | 0 094          | 14-1   | 25,21    | 40           | 12 1   | 1                 | (77              | 95              | 71                  | 77              | 19              | 172 2 11  | 40 10 5              | 15-74             | 11       | 7/ 17                  | ,     | 2 6 7              | 13            | 52                       | 76 4.7   |             | 11 2              |                 | ·       |                |                    | 1     | 1                                            | 1.         |               |                             |                                     | +                        |                                              | 91                                     | 245 16             | 2 250 1             | 5 214    | 126               |
| 2                 | 0 150          |        |          |              |        | 126               |                  | 6               |                     | 17              | <u> </u>        |           |                      |                   | 77       | <u> </u>               |       | 11                 | 4             | - 27-                    |          | 꼴           | <u> </u>          | 41<br>1• •4     | ; .: :. |                | ÷7                 |       |                                              |            | L             | 1                           |                                     |                          |                                              | Ē                                      |                    |                     |          | F                 |
|                   | 0.140          | 12.1   | \$151    | PJ           | 121    | 5 131             | 190              | 16 24           | 94                  | 24 74           | 9.              | /15 7     | 1115                 | 71                | 21 6     | 6 1 8 6 1              | 4 1   | ر مراجع<br>د مراجع | 6 61          | 7978                     |          | #3          | 41 0              | . 0             |         |                | -                  | 19    | -29-                                         |            | 11            |                             | 13 1 13                             | 1.94                     | 712 312<br>352 352                           | 211 143                                | 3.2 11             | 8 457 14            | 1 1 2    | 777               |
|                   | 0 017          | 11 1   | 0109     | 50           | 221    | 17 135            | 14.2             | 75 75           | . 99                | 11 . 74         | . 74            | 120       | 10. 2                | 69                |          |                        |       | 75 7.              | 1 61          | 52 82                    | \$7 181  | 45 .        | <u>"</u>          | 166             | 14      |                | 3 181              | 4 13  | 1/ 16                                        | <u></u>    | 110           | 13,2 3<br>13,2 3<br>13,2 34 | 72 377                              | 3.37                     | 317 317                                      | 12:31/20                               | 217 22             | / 235 /             | er   3.9 | 1 81              |
| -",               | 0.030          | 11-1   | 6817     | .91          | 22 6   | 195               | //1              | 75 75           | 95                  | 25 75           | 93              | 134 5     | ·***                 | 71                | 74       | 7 4 9 4 9<br>7 1 7 2 1 | 18    |                    | 1 6 1         | 22 27                    | 7.2 11 4 | 15 5        | 14 4 10           | 134 34          | 1/1     | 1 . //         | 1 2.5              | 44 48 |                                              | f?         | 1. 109        | 17 19                       | 11001                               | 145                      | 350 236                                      | 135 110                                | 145 H              | 9 254               | !        | 70                |
| - <b>6</b>        | 0.30           |        | 1232     | 91           | 221    | 38 155            | 184              | 75 73           |                     |                 | \$2             | 12.1      | 114 8                |                   | 92 U     | 759919<br>(1           |       | 6.7 6              | 1 61          | 19 19                    | 75 03    | 172         | <u> </u>          | 131 44<br>213 4 | 25      | 1              | 19 151 .<br>C : AU | 11 10 |                                              | <u>.</u> 2 | 1. 450        | 113 3                       | 1 419                               | 149                      | 560 540                                      | 219 11                                 | 25.4 M             | r 1916              |          | 11.9              |
| 6                 | 0.017          | 19.4   | 01.92    |              | 14.1   |                   | 182              |                 | 75                  | 24              | 13              | 14-1      | 1.0.7                | - 2 #<br>5 1      |          | 75 97                  |       | 49                 | • • • •       |                          |          |             | 41.1 1<br>10.1 15 | 1               |         | 1              | - i                | £ .   |                                              | 1          | 141           | 38                          | 1                                   | 234                      | 111/                                         | 117 11                                 | 234 H<br>247 14    | (12)/               |          | 112<br>118<br>119 |
| 1<br>5            | 0 150<br>2 180 | 13-9   | 0239     |              | 1.5 1  |                   | /53              |                 | R.                  | 11              | 11              | 12 1      | 12.5                 | 71<br>71          |          | 74 1.1                 | *     | 4 11               |               | 79                       | 11 151   |             | 15 C 2<br>10 T 19 |                 |         |                | 1 915<br>13 411    | 48 24 | <u>.                                    </u> |            |               | 112 23                      | 72                                  | 244                      | 370                                          | 215 113                                | 742 13             | y 239               |          | 1 111             |
|                   | <u>0 (17</u>   | 12.9   | 0.942    | 90           | 14 1   | •                 | cte              | 41              | 74                  | 76              | 44              | 181 1     | 1271                 | 111 6 31          |          | 11                     | 1 1   | 844                | 6 9           |                          | 113      |             | 1411<br>11 I I    |                 |         |                |                    |       |                                              |            |               |                             |                                     |                          |                                              |                                        | 235 1              | 3 162               |          | 795               |
| 71                | 6.254          |        |          |              | -      | 153               | +                | 98              |                     | 15              | $\vdash$        |           |                      |                   | 6.9      |                        | 4     |                    |               | 5.4                      |          | 12 1        |                   |                 |         | +              | -                  | -1    |                                              | -          |               |                             |                                     |                          |                                              |                                        |                    |                     |          | <b>—</b>          |
| <sup>2</sup> /11/ | 0.017          | 18-9   | . 0465   | 90           | 14 1   | 24                | 150              | 7(              | <b>t</b> 5          | 74              | 6               | 11.5 13   | 7 - 2 1. 17. 2       | 110.0 78          | 47       | 75 94                  |       | 4,6                | 1 61          | 11                       | 112      |             | 114               |                 |         | 1-1-           |                    | -     |                                              | -          |               |                             |                                     |                          |                                              |                                        | 8 272 18<br>144 13 |                     | $\pm$    | 111               |
| 71                | 0.045          |        |          |              |        | 158               |                  | 75              |                     | 14              |                 | 1 .       | _                    |                   | 74       |                        |       |                    |               | 79                       |          | u 2<br>// T |                   |                 |         |                | ++                 |       | 1-+                                          | <b></b>    | <u> </u>      |                             |                                     |                          |                                              |                                        | T.                 |                     | F        |                   |
| <u>ته،</u>        | 0 450          | 11.9   | 0414     | "            | 12.1   | 20                | 182              | 77              | 95                  | 74              | Pd              |           | 167 15. 1            | 1 <u>10-1 7 7</u> |          |                        |       | 44                 | 61            |                          | 11 11 4  |             | 17.4              |                 |         |                | +                  | -     |                                              |            | 1 :           |                             | 1                                   |                          |                                              | <del> </del> #                         | 1 211 1            | 11 2/3              |          | 119               |
| t,                | 117            |        |          |              |        | · 154             |                  | 11              |                     | 71              |                 | 1=        |                      |                   |          |                        | 4     | 44                 |               | 114                      |          | 11          |                   |                 |         | 1-1-           | 1                  |       | ·!                                           | •          | <u>†</u>      | $\ddagger$                  |                                     | 1-                       |                                              | <b>—</b>                               | 1                  | +                   |          | 1                 |
| 3                 | 0 101          | 12-9   | 1419     | 40           | 1.2. 1 | 47                | 191              | 75              | 85                  | 74              | F-              | 12 11     | 111 10 5             | 140 1 7 1         | 0 9      | 71 57                  |       | 49                 | 6 9           | 12                       | N 2      |             | # <b>#</b>        |                 |         | 1+             |                    |       | <u>.</u>                                     |            |               |                             | 1-1-                                |                          |                                              | <u> </u>                               | C 2.5 14           | 12 113              |          | 102               |
| 7                 | 0 255<br>0-122 |        |          |              |        | 154               |                  | 75              |                     | 74              | tt.             |           |                      | 77                | 69       | 74                     | 11    | E 6 7 .            |               | <u>5 2</u><br>7.9        | 24 412   | 42          | 11                |                 |         |                |                    |       |                                              | 1          |               |                             |                                     |                          |                                              | ====================================== | 115 13             |                     |          | ļ.                |
|                   | <u> </u>       |        |          | <u>├</u> ·   |        |                   |                  |                 | ++                  | $\vdash$        | ···             |           |                      | $\rightarrow$     | <u>.</u> | +                      | - 1   | 6                  | 4-4-          | 7.9                      |          | 111         |                   | +-+             | +       | ++             |                    |       |                                              | -          | +             | ┼╍╺┼╺                       | -+ +-                               | +                        | + + + + + + + + + + + + + + + + + + +        | +-+-                                   | ++-                |                     |          | +                 |

иас 2023-63

- THERROCHENICAL TEST AREA -----

.

٦,

1

|                                       |                                        |               |                                    |                      |                                                                               |                    |                                                                                             |            |                              |              |          |              | · · · · · · · · · · · · · · · · · · · |
|---------------------------------------|----------------------------------------|---------------|------------------------------------|----------------------|-------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------|------------|------------------------------|--------------|----------|--------------|---------------------------------------|
|                                       |                                        | •             |                                    |                      |                                                                               | LΜ                 | RCS                                                                                         | s s        | UB                           | ŚΥ           | 'S T     | ΈN           | A TEST DATA SUMMARY                   |
|                                       |                                        |               |                                    |                      |                                                                               |                    |                                                                                             |            | -                            | •            |          |              |                                       |
| 48ER 1                                |                                        |               | AT SWITCH PRESSURI<br>(PSIA) OPENR |                      | enca:                                                                         | JONE LFA           | a) FREBAU                                                                                   | n≞ (ma     | <u>.</u>                     |              |          |              | REMARKS                               |
| ENG 2 SUG 4 ENG B EN                  |                                        |               | ING HENTISENG 2 ENG                | ENG LEN              | G 75 EH3 Z EN3                                                                | 4 ENG I LEN        |                                                                                             |            |                              |              |          |              |                                       |
| 146                                   | 5 11.1<br>5 11.1                       | 45.3          | 11-0                               | 1 4                  | 6.2 98.5<br>5.1 99.5                                                          | 1 9                | 46 18.9<br>46 18.9                                                                          |            | 316 4                        | ×67          |          | ***          |                                       |
| 10.1<br>11 L                          | 311                                    |               | 47                                 | 91 1                 | 97                                                                            | <u> </u>           |                                                                                             |            |                              | 9.7          |          |              |                                       |
|                                       | 15 191                                 | 410           | 125                                |                      | 1 350                                                                         | 1 11               | V9 156                                                                                      |            | 191 9                        | . 32         |          | 1.9%<br>3.98 |                                       |
|                                       | 51 4                                   |               |                                    |                      | 42                                                                            | 91 I               | 1 1 2                                                                                       |            |                              | \$.5<br>9.7  | yr!      |              |                                       |
| 1 411<br>1 411<br>1 1.11              |                                        | 34.2          |                                    | 43 4                 |                                                                               |                    | 10                                                                                          |            | 199                          | 9,1          | 4.90     | 04           |                                       |
| -3-3 133 1                            | A.4 ( 49 a                             | 412           |                                    | 2.6 5                | 2                                                                             | 11-2 /<br>97.6 9   | 77                                                                                          | 111        | 101<br>351<br>21.4           |              | 1.20     | 15.5/1       |                                       |
| -4-1. 4.4 L                           | 5.8 L                                  | 24+0<br>34.5  |                                    | 5.7 4                | 6                                                                             | 97.1 9<br>97.4 9   | 72                                                                                          | -          | 1,11.5                       |              |          | 19 45        |                                       |
| 14.41                                 | .4                                     | 47.5          |                                    |                      |                                                                               |                    |                                                                                             |            | 11.1                         |              | 1        | 4.18         |                                       |
| -1-1 15.5 13.0                        | 664 541                                | 46-5          |                                    | 5                    | 1 1 1 1 1                                                                     | <del>_</del>     ^ | 1.9                                                                                         | 1          | 113                          | 70 0 7       |          | 4 56         |                                       |
| 19.4                                  | 14.3 42.2                              |               | AS 64                              |                      |                                                                               | · · · · ·          | # 5 #                                                                                       |            | i lê                         | 16 AIA       | ·· !     |              |                                       |
| 167                                   | 2 11.4                                 | 214           | 18.2                               |                      | 14                                                                            | í 🚞                | 2<br>.4<br>13.7                                                                             | -          |                              | 4.2          | 5        |              |                                       |
| 11-3 A                                | 2 14.5                                 | 91.0          | 15.0                               |                      | (0.3 63<br>57.<br>57.<br>57.<br>57.<br>57.<br>57.<br>57.<br>57.<br>57.<br>57. | 1                  | .4 13.7<br>f.f. 13.t                                                                        |            | 111 1                        | 45           |          | 4.66         |                                       |
| 14:3<br>14:4                          | 42.9                                   | <u> </u>      |                                    | 5                    | <u>13-</u><br>16-                                                             | <u>+</u>           |                                                                                             | 13         | +                            | 115          | <u>-</u> |              |                                       |
| - 14-3 13-3 13-3 13-3<br>197 H        | 1 17.5                                 | 51.5          | 18.4                               |                      | 1 914<br>7 914<br>7 914                                                       | 1                  | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |            | 115 5                        | .94          |          | 4 57         |                                       |
| 11.2                                  | 44.4                                   |               | 5.2                                |                      |                                                                               |                    |                                                                                             | et         |                              | 1.13         | -        |              |                                       |
| 8-14-5 15-1                           | 4 18.4                                 | 44-5          | 15.4                               |                      | 1 414<br>2 MS                                                                 |                    |                                                                                             |            | 319 3                        | 30           |          | 5-65         |                                       |
| 147                                   | 15 M.S<br>31.7                         | 58 <u>.</u> 1 | <u>15.0</u><br>3.1<br>4.3          |                      | 77                                                                            | 11 1               | 2 172                                                                                       | 9          | 1975                         | 1.15         | Ł        | 5.5%         |                                       |
| G-4-9 156 1                           | 419                                    | 19.9          | 24.6                               | 1 1.5                | 4 077                                                                         | 1                  | 12 31 1                                                                                     | 6          | 111 0                        | 15           |          | 914          |                                       |
| 1810 I.                               | ·9 18.1<br>45.7<br>54.1                | 54.1          | 11.5                               |                      | 1 1000                                                                        | <sup>z</sup>       | ×5 31.7                                                                                     |            | 115 9                        |              |          | 9.16         |                                       |
| H Z<br><u>N.4</u><br>9-14-9 16 Z 12   | 5 19 2                                 | 415           | A1                                 |                      | 97,4<br>1 97,4<br>1 100,20                                                    | ¥ — [,             |                                                                                             | 11         | 120 1                        | 4.5          | 1        | 8.72         |                                       |
| 14.2 (4.7                             | 2 152                                  | 314           |                                    |                      | 100.2                                                                         |                    | 12 387                                                                                      | _          | 1.2 1                        | 74           |          | 161          |                                       |
| 9.2                                   | 44.9<br>42.6<br>42.6                   | 17.5          | +                                  |                      | 1                                                                             | <u> </u>           |                                                                                             |            | 117 0                        | 4.19         |          |              |                                       |
| 11.1 14.5 4                           | 2 197 45.5                             | 41.4          | 112 54<br>112 54<br>112 0.         |                      | 17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17                      | <u>/</u>           | 2.9<br>2.9<br>2.9<br>2.1<br>2.1<br>2.1<br>2.1<br>2.1<br>2.1<br>2.1<br>2.1<br>2.1<br>2.1     | 2.9        | 199 0                        | 58 6.53      | 71       | 1.00         |                                       |
| . 161 0.5 1                           | 1 17.4 92.5<br>3 19.8 50.6             | 34.7          | \$3.4 9.3                          |                      | 7 35 8                                                                        | \$ <b> </b> _ ;    | 6 15.5 1                                                                                    | 1+         | 21                           | 97 85        | 지        | 4.05         |                                       |
| -1-3 12.4 15.1 1.<br>15.4 15.1 15     | 1 198 56 1                             | 1415          | 11.5 4.                            | / 4<br>L 3           | 1 16.3 10.                                                                    |                    | <u>1 - 1(1 1</u><br>5.6 99.5                                                                | <u></u>    | 327 13                       | 25 15.5      |          | 15 70        |                                       |
| -3-4 137 146 6                        | 1 14.2 59.0<br>5 11 4 52.5<br>9 1 14.9 | 331           | 11.8 6.1                           | 2 3                  | 5 56.4 PS.                                                                    | 2 1                | 41 21 4 2<br>2 9 11 7                                                                       | 4.6        | 23 V 11<br>H 5 G<br>21 4 1   | 23 14.4      | -        | 18.67        |                                       |
| 15.3 /                                | 16 15 18                               | 34 5<br>35 l  |                                    |                      | 6 16.5                                                                        | 1 1                | 6.5 JC +                                                                                    |            | 21.4 1                       | <u>es</u>    |          | 1.07         |                                       |
| 19.2                                  | A 11.1                                 | 47.5          | 11.5                               | 3,                   | 4 96.7                                                                        | - 9                | 4.2 241<br>47 22 2<br>7 2 19 2                                                              | -          | 39.5 15<br>19.6 11<br>11.9 4 | 15           | 1        | 13 58        |                                       |
|                                       | 4 17.4                                 | 382<br>49.5   | 13.2                               | - +                  | 4 94.7<br>.7 93.2<br>7 16.5                                                   | 1 10               | 12 121                                                                                      | _          | 119 A<br>303 1               | 24           |          | 0.97         |                                       |
| 1000                                  | 450                                    |               |                                    |                      | - 95-                                                                         | ;                  |                                                                                             | 11         | 1                            | 40           | 3        |              |                                       |
|                                       | 4 11.4<br>.5 18.8<br>.43.2             | 38.7          | MJ<br>D7                           | 3                    | 3 99.3<br>3 92.9                                                              | 1 12               | 77 <u>8</u> 26<br>4.1 811                                                                   |            | 129 1                        | 15           |          | 112          |                                       |
| 11.4<br>H-S                           | 45.2                                   |               | 4                                  | 21 1                 | 1 1 1 1 1                                                                     | #! î               | 1 1                                                                                         |            |                              | 4.4.         | 2        |              |                                       |
| 1 1 18 11                             | 5 11 5                                 | 46.1          | 17.7                               |                      | 2 196                                                                         | 4                  | 4.5 19 5<br>5.5 3.8 2                                                                       | " <u> </u> | 211 4                        | 36           | 1        | # 15         |                                       |
| 15-1 11-1<br>15-1 11-1<br>11-1        | 4 16 3                                 | 41 4          | AL.7                               |                      | 1 111                                                                         | 7 2                |                                                                                             | 14         | 21.0 1                       | 37 4.5       | 2        | * **         |                                       |
| · · · · · · · · · · · · · · · · · · · | 4 18.1                                 | 44.5          | 5.3                                | 4                    | 111.                                                                          |                    | 7 ¥ 807 2<br>7 ¥ 89                                                                         |            | 311 4                        | 9.5.<br>9.9. | 3        | 430          |                                       |
| 14.5 11.5                             | 1 15.2 33.9                            | 44.1          | 16.0                               | <u></u>              | 1.7 939<br>1.3 45.8<br>99                                                     |                    | 17 119                                                                                      |            | 2.2 1                        | 12           | 1        | 4.47         |                                       |
| 11.7                                  | . 60.0                                 |               |                                    |                      |                                                                               | <u> -</u>          |                                                                                             |            |                              | 9.19         | 2        |              |                                       |
| - 1 - 1 - 1 - 1                       |                                        |               |                                    | · <del>  ·   ·</del> |                                                                               |                    |                                                                                             |            | ╉╼╼┿╼                        |              |          |              |                                       |

•

REVISION

New

PAGE <u>B-10</u> OF <u>B-14</u>

DOC. NO.

÷

MSC-EP-R-68-17

THERHOCHENICAL TEST AREA

| , | DOC. NO.               | REVISION - | PAGE | B_11    | l. |
|---|------------------------|------------|------|---------|----|
| t | 1/10 TO D CO 1/7       | New        | 0F   | B-14    |    |
|   | MSC = EP = R = 68 = 17 |            | ι Cr | <u></u> |    |

## LM RCS SUBSYSTEM TEST DATA SUMMARY

|                                        |                 |                  | -              |               |        |         |           |                     |          |              |               |              |               |              |                                              |                                                                                                                 |          |                  |                |              |        |                   |                                               |              |                    |                       |                       |                                              |               |                  |                |         |          |              |                    |          |            |          |                    |          |                      |          |                |                         |            |                 |                  |
|----------------------------------------|-----------------|------------------|----------------|---------------|--------|---------|-----------|---------------------|----------|--------------|---------------|--------------|---------------|--------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------|------------------|----------------|--------------|--------|-------------------|-----------------------------------------------|--------------|--------------------|-----------------------|-----------------------|----------------------------------------------|---------------|------------------|----------------|---------|----------|--------------|--------------------|----------|------------|----------|--------------------|----------|----------------------|----------|----------------|-------------------------|------------|-----------------|------------------|
|                                        | 1               | PULSE            |                | TIME OF       | ដ្ដ    | 클콜      | NJEGTO    | OR HEAD             | 0 8      | UEL IN       | LET           | ox           | D INLET       |              | 21734)<br>E \$510                            |                                                                                                                 |          | VAL<br>9ESP      | VE CP          |              |        |                   | VE CLI<br>PONSE                               |              |                    | IGNI<br>DEL AM        | FION<br>(MS)          |                                              |               | NLET             | OPEN           | H       |          | 54           | LET                | OPEN {   |            |          | ARE AT F           | T HA     |                      | LET.     | PLEL A         | ANIFOL<br>IF LPSI       |            | D. MAR          | IPS-ALD          |
| RUN DUMBER N                           | PULSE<br>AUMBER | MOTH             | DATE<br>(1967) | 0 49          | 11     | , și    | EMPERA    | OR HEAD<br>ATURE (* | THITEN   | PERATL       | 182 (°F)      | TEMPE        | RATURE        | CEX F        | UEL                                          | OXID                                                                                                            |          | FUEL             |                | G .          | - +    | FJE;              |                                               | C KIC        |                    | V T                   | = 3                   | ENG                                          | 2 6           | NG 4             | ENG I          | I ENG   | 13 Er    | 13 Z E       | #G 4               | ENO 11   | I CNG 13   | VILVE    | CLOSURE            | PSUC YA  | TAE CTO2             | UREIPSLA | STATEN         | ASTSTE                  | 4 8 SYS    | ITEY A          | TSTEN            |
|                                        |                 |                  |                | (HRS)         | 1 5    | 로 걸 이   | NG 2000 4 | den cultor          | adera    | 20440        | GUENGIS       | SNG ZEN      | נסובים ב      | 2454.3 A     | a                                            | 4                                                                                                               | 2        | 2+ <sup>12</sup> | 5.00           | - 2-2        | -302   | 97,9              | 0.5                                           | NZ+,3        |                    | 8                     | 2 2                   | MIN                                          | MAX MO        | S. MAX           | MIN M          | ахімія  | MAX VI   | 2 MAX 4      | IN. MAX            | MIN MAX  | ( NIN MAX  | 5002     | HIGH ENGLI         | ENGISEN  | 201340               | anician  | NOL MA         | K 1918                  | 44 1 12 IN | 1 14.0          | UN RA            |
| ·                                      | a_1.1           | 4.050            | 12.9           | 0454          | - 11   | 11      | 233       | 1 13                | 58 57    |              | 1 96          | 75           |               | 84 12        | 1 ,11 1                                      | 1.8.5 4                                                                                                         |          |                  | 1.1.1          |              | 2.1 6  | νĒ                | \$6.1.3                                       | 2            | - 76 7             |                       |                       | *                                            |               |                  | ++             |         | · · ·    | Ηİ           |                    |          | ╞╌╂╼       |          |                    |          | +                    |          |                | 1 144 1                 |            | +-+             | 101 33           |
|                                        | - 4             |                  |                |               |        |         | 134       |                     |          |              | 1.            | - I.         | <u>_</u>  _   |              |                                              |                                                                                                                 | 11       |                  | 12.1           | $\square$    | 1 1/   |                   | 1. 5                                          | 5            |                    | 1 2                   | 11                    | e                                            |               | - · · ·          |                |         |          | $\square$    | - I -              |          | 4          | -i       |                    |          |                      | -        | 182 XH         | 1.50                    | 102        |                 | 13               |
|                                        |                 | 6 6 76           |                | ···· ·        |        | -       | - ///     | +                   |          | ₩+           |               | H ť          |               |              | +                                            |                                                                                                                 |          | 5.2              | <del>! i</del> | ++           | ++     | 20                | <u> </u>                                      | 20           | -+                 | 101                   |                       | +                                            | $\rightarrow$ | -                | ++             | -       |          | +            |                    |          |            | ┼─┤      |                    |          | +                    |          |                |                         | ÷          | ++              | <del></del> -    |
| 6-8-1                                  |                 | C 617            | 11 9           | 0850          | 94     | 1.2     | 137 134   | 1.1                 | 17       | 77           | - [ -         | 74           | 76-           | ut .         | 7 131-                                       | 177.1 .1                                                                                                        |          | 15               |                | 4 96         |        |                   |                                               | 1 7.5        | -14                | 17,13 2               | 1                     | 4                                            |               | 4                |                |         | - 1      |              | 6                  |          |            | -75      | 378                |          | 1 115                |          | 13 14          |                         | 1          |                 |                  |
| · c · # · z                            |                 | - C M2-<br>0 235 | 13-9           | 0915          | 98     | 12      | - 177     | <b>/</b>            |          | 37           |               |              |               | 1/2          | 2 .77 1                                      | 17.74                                                                                                           |          | 75               | ┼┼             | 75           | -f*    |                   |                                               | 5155.        |                    | H Y                   |                       |                                              |               | 9                | ┼─┼─           |         |          | ┥╌┼╸         | <u> </u>           |          | +          | 397      | 397                | 3/       | # 3H                 |          | 55 77          |                         |            | ++              | - <del> </del> - |
|                                        | 3               | 1 253            |                |               |        |         |           |                     |          |              |               |              |               |              |                                              |                                                                                                                 |          | 75               | LL.            | 1. 1.        |        | 17                |                                               | 1.1          | 4                  | 10-                   |                       |                                              |               |                  |                | -       |          |              | _                  |          |            |          |                    |          |                      |          | 111 25         | 51                      |            |                 |                  |
| ·C · //· / 2.3                         | <u>.</u>        | 0.05V            | 13.4           | 1824          | \$0    | 12      | (44 ]     | 1 14                | 20 20    | +            | 70            | 174          | + +           | 74 11        | <u>e wes</u>                                 | 1111                                                                                                            | 71       |                  | 29 f<br>4 i    | 4-+-         | 1 1    |                   | 4.5                                           | έ⊦.⊥_<br>ε   |                    | 12                    | 11                    | 3                                            |               |                  | ╆╼┽╸           |         |          | ┥┯╞╴         | -                  |          | ┼┼─        |          |                    | $\vdash$ |                      |          | 107 27         | 21 42                   | 540        |                 | 11 33            |
|                                        | <u> </u>        | e.er7            |                |               |        |         | 134       | 1                   | _        | 74           |               |              | 14            |              | 1                                            |                                                                                                                 |          | 2.5              | fr             |              |        | 5-5               |                                               |              | <u>1</u>           | #9                    |                       |                                              |               |                  |                |         |          | TT.          |                    | i i      |            |          |                    |          |                      |          |                | 1                       | 1          |                 |                  |
| -C-R-5 3.                              | <del>.</del>    | 0.017            | 12.9           | 1035          | 91     | 2.2.    | 47        |                     | 12 /3    | ╂─┼╴         | 1.70          | 74           | + +           | 74 17        | 1 121                                        | 12.5 11                                                                                                         |          | н —              | 7/6            | F 63         | 924    | 1 7               | ·:,                                           | 41 T.P.      | 76 1               | <u></u> 9             |                       |                                              |               |                  | <u></u>        |         |          | +            |                    |          | +          |          |                    | $\vdash$ | ++                   |          | 113 25         | 1.<br>1.                | 2741       | ┉               | \$0.55           |
|                                        | 3               | 6.0-15           |                |               |        |         |           |                     |          |              |               |              |               |              | 1                                            | in the second second second second second second second second second second second second second second second | 17.0     |                  | 2.2            |              | 95 5   | <u>.</u>          | 44.5                                          | 477          | 77.6               | ÷                     | 12                    |                                              |               | <u> </u>         |                | 1       |          |              |                    |          |            |          |                    |          |                      |          | 89 24          | 11                      |            |                 | 79 35            |
|                                        |                 | 0.017<br>0.017   |                |               | [···-] |         | 13/4      | 4                   |          | 17           | —             | H            | <sup>78</sup> |              |                                              | ┼──┤╸                                                                                                           |          | 7.5<br>5.1       | ┼┼             | 94           | +-+    | 115               | -1 -                                          | 77.          | i r                | -43                   |                       |                                              |               |                  | ╎╍╸╎╍          |         | ┝╼╾┨╾╸   | ┥╌┝          |                    | ┢━━┠━━   | +          |          |                    |          |                      | _        |                | +                       | +          | +               |                  |
| C N-3 2                                | å /             | 0.000            | 11.1           | 1047          | 11     | 17      | 127       | 13                  | 33 71    |              | 75            | 74           |               | 74 12        | 5                                            | 12 6 17                                                                                                         | 771      |                  | 14 <u>1</u> -  | 亡亡           | 4.4    | <u>s.</u>         | _1.1 B                                        | 1            | 76 4               | #]                    | : ty                  | ,                                            | ÷÷-           |                  | <u>+ </u>      |         |          | 1            | _                  |          |            | <u> </u> |                    |          |                      |          |                | 174.42                  |            |                 | 95 10            |
|                                        | • <del>*</del>  | 6.014            |                |               |        | +       | /52       |                     | +        | 17           |               |              |               | [            |                                              | ļ <u>.</u>                                                                                                      | 17 *-    |                  |                | £77          | -19,4% | 6.5               | 64.3                                          | 5            | 79 r               |                       | л                     | -                                            | ·             |                  | I—ŀ            |         |          |              | +                  |          | +          |          |                    |          | +                    | _        | 95 24          | 5 74                    | 294        |                 | 12 52            |
|                                        |                 | 6 817            |                |               |        |         |           |                     |          |              |               |              |               | <u> </u>     | 1-                                           |                                                                                                                 |          | <u> </u>         | ±1.            |              | L_i    |                   | ÷                                             | : :          | <u> </u>           | 140                   |                       | <u> </u>                                     | <u> </u>      | <u>-1</u>        | <u>  · ·  </u> | <u></u> |          | <u></u>      |                    |          |            |          |                    | - 1 -    |                      |          |                | 1-                      |            | 1.1             |                  |
|                                        |                 | 0.140            | 18-9           | 1040          | "      | 11      | 142       |                     | 73 17    | ┢╌┼╴         | 174           | 15           |               | 76 18        | 1412                                         | 10 8 10                                                                                                         | 74       |                  | 354            |              | 120 6  | <u>s</u>          | 6.57                                          | <u>.</u>     | 11.4               | <u>1</u>              |                       | <u>.                                    </u> |               | !                | 1              |         | H        | 17           |                    |          |            |          |                    |          | $\square$            | -        | 116 23         | 1 119                   | 257 1      | -T              | 65 59            |
|                                        | 7. Î.           | 6.051            |                |               |        | ····-   | 134       |                     |          | 77           |               |              | 75            |              |                                              |                                                                                                                 | -11      | 71'              | 414            | 1-1-         | j 🕂    | 4.7               | 6.9                                           | 2.0          | ;l"                | 1.13                  | а. "Р.<br>Пара в Пара | 1 - 1                                        | †             | -+               | +              |         |          |              |                    |          | -          |          |                    |          |                      |          | 137 40         | 1 1                     | 1          | 1.1             | 07.71            |
|                                        |                 | 8 4.50           | 74-4           |               | -      | 24      |           | 1-1-                | 54 74    | –⊢           | 7.5           |              |               | 25 111       | <u> </u>                                     | <u> </u>                                                                                                        | -        |                  | 730            |              |        |                   | 1.10                                          |              | +                  |                       |                       | + +                                          |               |                  | Ц-             |         | Ŧ        |              |                    | $\vdash$ |            | Ì        |                    |          |                      |          | 116 2          |                         |            | +-+             | fet · Se         |
| <u>.</u>                               | 3               | 0,091            |                | 1155          | - 72   |         | 1.        |                     | 49 14    |              |               | <u> </u>     |               | <u></u>      | 1.                                           | <u></u>                                                                                                         | 175      |                  | wi             |              | 1 12   |                   | 4.5                                           | " !          | 20,1               |                       |                       | 5-1                                          |               |                  |                |         |          |              |                    |          |            |          |                    |          |                      |          | 129 41         | 1 126                   | 111        |                 | 16 1             |
| · ~ ~                                  | * ;             | 0.011            |                |               |        |         | 132       |                     |          | 74           | ==            |              | 7             |              |                                              |                                                                                                                 | <u> </u> | 15               |                | 11           | 1.1    | 8.2               | 4.5                                           | 10           |                    | ه ان ا                |                       | .1.1                                         |               |                  |                |         |          |              |                    |          |            |          |                    |          |                      |          |                |                         |            |                 |                  |
| -0-1-1                                 | *               | R 850<br>R. e.t  | 14-4           | 1145          | 90     | 1.2     | 111 155   | 147                 | 77       | 77 3         | 79            | 74           | 74 77         | - 111        | -                                            | 1774                                                                                                            |          | 761              | ┼┼╴            | - ₩-         |        |                   | çi                                            | ·18.2.       |                    | 12 9                  |                       | ¥7                                           | - 4           |                  | 103            |         | - 3      | <del>,</del> | 34                 | 1/5      | +          | 312      | 312 199            | 1 10     | \$4 7541 3           | üs .     | 17 93          | 3 139                   | 196 33     | 7 392           | 174 20           |
|                                        |                 | 001              |                |               |        |         |           |                     |          |              |               |              |               |              | -                                            |                                                                                                                 |          | 79.79            |                | 1-1-         | 6      | 1495              | 1                                             | s7           | ·                  | 12.47                 | H F.                  | - 13                                         |               |                  | 186            |         | 2        |              | 50                 | 124      |            |          | 297 242            | - 24     | 4 1.81 4             | 10       | 97 52          | 4 1561                  | 197 75     | \$ 312          | 171 12           |
| .0.1.4                                 | 4               | 6414             | 11.1           | 1150          | 40     | 1.1     | 137 184   | 1 140               | 70       | 70 2         | 75            | 12 3         | 11 17         | 1.77         | -                                            | 1110                                                                                                            |          | 24124            |                |              | -1-12  | 14                | <u>, , , , , , , , , , , , , , , , , , , </u> | <u>z</u> -:, |                    | 11.00                 | <u> </u>              | 95                                           |               | 15               | 128            |         |          |              | 79<br>55           | 130      |            |          | 302 763<br>453 320 |          | 3 365 1              |          | 12 31          | 5,157 <u>.</u><br>4 165 | 194 73     | 1 502           | 172 11           |
|                                        | 15              | 0.516            |                |               |        |         |           |                     |          |              | -             |              |               |              | -                                            |                                                                                                                 | 17       | \$ 1197          |                | -    -       |        | 716.2.5           | <sup>2</sup> 1                                | 1            |                    |                       | <i>tt</i> -1          | - 4                                          | 3             | 19               | 143            |         | 51       | · · ·        | 55                 | 144      |            | 511      | 541 265            | 150      | 5 325 1              | 265      | 84 31          | 1. 156                  | 317 52     | 2 262           | 129 32           |
| -9-14                                  | -14             | A.414            | 12.6           | 1.56.9        | 80     | 12      | 01 199    | 1 101               | 76       | 1 11         | 76            | 15 1         | 15 74         | - a          |                                              | 17=0                                                                                                            |          | 85 91            |                | 1 1          | 1 12   | 1626              | <u>*</u> +-                                   | 1 10         |                    | 17 <u>8</u><br>17,175 |                       | 49                                           |               |                  | /1/5           | —       | - 91     |              | 94<br>94           | 147      | ┼┼         |          | 506 153<br>478 365 |          | 5 265 2              |          | 94 32<br>77 33 |                         |            |                 | 181 24           |
|                                        | 15              | 6.214            |                |               |        |         |           |                     |          |              |               |              |               |              | · ·                                          | -                                                                                                               | 11       | 1.2 6.1          |                | 17           | v. 14  | 6 6 6 . 2.        | s                                             |              | 1. 1               | 18                    | 171                   | 37                                           | 5             | 7                | 135            |         | 4        |              | 45 I               | 141      | 1          | 11       | 44 311             |          | 11 421               | W.       | 17 11          | z /2/ j                 | 15 , 41    | 7 542           |                  |
| -0-4-4                                 | 40              | 6.014            | 116            | 1850          | 80     | 14      | (44 151   |                     | - 7      | 11 1         |               | 73 7         | 70 70         | - 10         | <u>.                                    </u> | 1000                                                                                                            |          | 75 F.J           |                | <del>,</del> | 14     | 4 4 4 4<br>1      | 1.<br>1                                       | ,+¥          | 1                  | 1                     |                       | 67                                           |               |                  | 1/35           | _       | 1        |              | 15                 | 154      | + +        |          | 44 315             |          | 9 94 1               |          | 17 1           | 0 /45 .<br>0 /72 .      | 115 54     | 111             | 170 1            |
|                                        | 15              | 1 214            |                |               |        |         |           |                     |          |              |               |              |               |              | <u> </u>                                     |                                                                                                                 | 1.1      | 84.99            |                |              | 1      | 5. j. j.          | 3                                             |              |                    |                       | 1                     |                                              | 10            | 6                | 145            |         |          | L            | 12                 | 151      |            | 395      | 390 251            | 36       | 3 22.9               | 211      | 62 3           | 0 163                   | 195 54     | \$ 199          | 154 3            |
| .0-31                                  | 31              | 1 812            | 18-6           | 1302          |        |         | 107 134   | d and               | 1 11     | 1 29 3       | <i></i>       | 78 3         | 24 14         | - di         |                                              | 1011                                                                                                            |          | 11:14            | 1              | 9 97         |        | 2 9.2 .<br>       | °                                             |              |                    | 1.1 =                 |                       | 41                                           | 4             | 2                | 145            |         | - 44     |              | . 6<br>. T         | 141      |            | 170      | 376 441            | 57       | 6 375 A<br>11 295 1  | 49       | 91 24          | 9 165 -<br>3 172 -      | 197 55     | 195             | 122 2            |
|                                        | #               | 6 014            |                |               |        |         |           |                     |          |              |               |              |               |              | <u> </u>                                     |                                                                                                                 | [J Z]    | 76119            |                | 182          |        | 66.0              | 1.                                            |              |                    | 1.5.15 4              | 11 2                  | 59                                           |               | 4                | 131            | _i      | 11       | £ 1          | uj -               | 141      |            | 769      | 267 400            |          | e sec 1              | UP .     | 9P 33          | 6 172                   | 242. 55    | 5 995           | 171 12           |
| - 0 - 3 A                              |                 | 8812 BE12        | 12.4           | A746          | 70     | 14      | 11 139    |                     |          | 10 1         | <del>,,</del> |              | 77 70         |              |                                              |                                                                                                                 | -15      | 1 1 2 4          | 1-1            | 45           |        | e 64 e<br>Kihat 6 | 5,                                            | ÷÷,          | , <del>,</del> - ť | 14<br>                |                       | - #1                                         | - P           |                  | 151            | _       | ····· #  | <b>ε</b> ι   | 46                 | 151      |            | 77       | 564 262            |          | 9 2 792 3<br>9 504 3 | 25       | 11 23          | 0 160                   | 100 23     | 7 2/5<br>6 .300 | 177 (2)          |
|                                        | 10              | 6 612            |                |               |        | A. M.   | <u>"</u>  |                     |          | 1            |               | ĽĽ           |               |              | 2-                                           |                                                                                                                 |          | 6 9 7.6          |                | <u> </u>     | . 16   | 6.6               | 4                                             | іŤ           | 1 4                |                       | <u>.</u>              | 12                                           | 7             |                  | 125            |         | 9        | r            | 88                 | 151      |            | 11       | \$70 111           | 57       | 7 517                | 112      | 15 54          | 1 (72)                  | 362 61     | 7 315           | 177 20           |
| and e                                  | <u>**</u>       | Acra             | 10.4           |               |        |         | u1        |                     | - 19     |              |               |              |               |              | 1                                            |                                                                                                                 |          | 14 21            | 4              |              | -11'   | 1 2 1             | 4                                             | -l-k         | · · · · · ·        | 2.12                  | "                     | 100                                          |               | ¥                | 131            |         | P.       |              | P0                 | 154      | - <u> </u> | 572      | 372 149            | 3/       | 1 311 1              | 15       | 85 37          |                         |            | 7 321           |                  |
| ······································ |                 | · · ·            | - 40 (T        | 0112          |        | .A.A. 1 |           |                     | <u> </u> |              |               |              |               |              | <u> </u>                                     | 111 1                                                                                                           | 71       |                  |                |              | ;      | ž                 |                                               | 11           |                    | 0                     | itt                   | 1                                            |               | _                |                | _       |          | +-+          | _                  |          | fint-      | $\pm$    |                    |          |                      |          | 110 23         |                         | 11.        | 5 274           |                  |
|                                        | 30              |                  |                |               | T      |         |           | <u></u>             | _ _      | +            |               | I−F.         | ,             | _ <u> </u>   |                                              | $\vdash$                                                                                                        | - 47     | 74               | 17             | 4            | - 4    | * <u>. ]</u> .    | .   <u> </u>                                  | 4.1          |                    | 1.4.1                 |                       |                                              |               |                  | +              |         |          | - T          |                    |          |            | 1        |                    | 1-1-     |                      |          | 125 21         |                         |            | 4 2/5           |                  |
|                                        |                 |                  |                |               |        |         |           |                     |          | <u> "</u>  . | ·             |              | 17            | _ <u>†</u> - | 1.                                           |                                                                                                                 | _        | c.7              | 1              |              |        | 4.9               | 1                                             |              |                    | 11                    |                       |                                              |               |                  |                |         |          |              | +                  | <u>i</u> | <u>ti</u>  | 1        |                    | 1-1-     |                      |          | 126 22         |                         |            | 1 <u>284 8</u>  |                  |
|                                        | · ( ]           |                  |                |               | ⊢÷Ţ    |         |           | 150                 |          | ₽            | 15            | [-           |               |              | 1                                            | $+ \Gamma$                                                                                                      | 1        |                  | + -            | 11           | F      |                   | 4                                             |              |                    |                       | A.1                   |                                              |               |                  |                |         | <b>—</b> |              |                    |          |            |          |                    |          | - []-                |          |                |                         |            | 1-1             |                  |
|                                        | 12              |                  |                |               |        |         |           |                     | 30       |              | 54            |              |               | 15           | 1                                            |                                                                                                                 | _        |                  | 7.5            |              |        | ۲ľ                | 16.0                                          | ť            | 7                  | _                     | 121                   | 1                                            | -+-           |                  |                |         | <u> </u> | +·           |                    |          |            |          |                    |          |                      |          | <u>+</u>       | -                       |            |                 |                  |
|                                        | *               | 6 1.50           |                |               |        |         | 194       |                     |          | 1[           | - T-          | I            |               | -            | _                                            |                                                                                                                 | 1        |                  | 6.6            |              |        | - F F-            | 100                                           | 11           | 7.6                |                       | , A                   | 3                                            | <u> </u>      |                  |                |         |          |              |                    |          |            |          |                    |          |                      |          | 1.             |                         |            |                 |                  |
| -J - 4.                                | á l             | 1 1 50           | 12:4           | p.9.96_       | _70    | 3.2     | 14.9      |                     |          | - ** -       |               | ĽĽ           |               |              | 1                                            | 3755                                                                                                            |          | 363<br>11 3      | <u> -</u>  -   | 249          | +      | 91                | +                                             | ++           | +                  | 3,3<br>5 + 2          |                       | -                                            |               | 15 15T<br>14 153 |                |         | <b> </b> |              | 144 143<br>157 166 |          |            |          | 381                | ┼─┼─     | 377                  |          | +              |                         |            |                 |                  |
|                                        |                 | 1230             |                |               |        |         | 159       |                     |          | 1.1          |               |              |               |              |                                              | -                                                                                                               |          | 20 4             |                |              |        | a.r .             |                                               | 1.1          | 11                 | 25.4                  |                       |                                              |               | 159              |                | _       | <b>-</b> |              | 157 146            |          | ľ.         |          | 179                |          | 361                  |          | T              |                         | 1          |                 |                  |
| -2-17                                  | 3.              | 0050             | 18.77          | <u>0.2.19</u> | 71     | 3.2     | - /"      | ╘┤╌╌┥╌              |          | 46           |               | <b>⊢</b>   • | ╩┝╌┤          | 107          | 4                                            | 115.7                                                                                                           |          | A1               | ┿╼╋╴           | ++           | ┼┽     | 15.7              | ┢                                             | ┼╌┼╴         | ++                 | 13.9                  |                       | -1{                                          |               | 10 211.          |                |         |          |              | 137 140            |          |            | +        | 230                | +        | 252                  |          | i-+-           | +                       |            | + ;             |                  |
|                                        | 4               | 0 652            |                | _             |        |         |           |                     | -        |              |               | <b>.</b>     |               |              | 1_                                           |                                                                                                                 |          | 12.5             |                |              |        | 121-              | Li                                            |              | 11                 | 159                   | i                     |                                              | - U           | e_ 16            |                |         |          | _            | 28. 16             |          |            |          | 1.15               | i –      | 10.13                |          |                | 1                       |            |                 |                  |
| -1-11.                                 | +               | 0 110            | 12-11          | 1547          | 77     | 12      | 154       | 4                   | +        | 66           | +             | 4            |               | 177          | 4—                                           | 175.7                                                                                                           |          | 80.2<br>88-8     | +              | ++           | +-+    | 9.8               | ++                                            | ne.          | +-+-               | 21                    |                       | - [ ]                                        |               | 5 130            |                | _       | $\vdash$ |              | 54 711             |          |            | 1        | 764<br>164         | Į        | 8620                 |          | ++-            | +                       |            | -               | <u></u> -        |
| -7:4                                   | 1               | 0 0 20           | 12.11          | 0414          | 94     | 3.5     | <u> </u>  | 1                   | 30       |              | 67            |              | _             | 68 4.76      | 4                                            | 100.0                                                                                                           |          | <u> </u>         | 111            | 1            | 127    | -                 | 16.74                                         | <u>i-t</u>   | -t-t               |                       | n                     | 4                                            |               | - 153            |                | . 115   | 110      |              |                    |          | 58 19      |          |                    | 153      |                      |          |                |                         | 1          | 1_1             |                  |
| F                                      |                 | 0.030            |                |               |        | T       |           | +                   | -        | ┼╌┡          |               | H-F-         |               |              |                                              | H-F                                                                                                             | 1        |                  | 24             |              | -29-   | -[-]-             | 11.4                                          | T            |                    |                       | - 44                  | 9                                            |               |                  |                | H5.     | \$25     | -            |                    |          | 153 101    | _        |                    | 155      |                      | 119      |                |                         |            | ! _             |                  |
|                                        |                 |                  |                |               |        |         |           |                     |          |              |               |              |               | •            |                                              | • f                                                                                                             |          |                  | 1.1.1          | 1            | 200    |                   |                                               |              |                    |                       | : 04.                 |                                              |               |                  |                |         | 105      |              |                    | 1 1      |            |          |                    |          |                      |          |                |                         | 1          |                 |                  |
| $\pm$                                  | "               |                  |                |               |        | ·       |           |                     |          |              |               |              |               |              |                                              |                                                                                                                 |          |                  |                |              |        |                   | 107                                           |              | 1.1                |                       |                       |                                              |               | 1.               |                |         | - I      |              |                    |          | 1          |          |                    | 1 1      |                      |          |                |                         |            | T               | •                |

| MOCHEMICAL TEST AREA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | DOC. NO.       | REVISION                              | PAGE |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|---------------------------------------|------|
| · -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ٠                 | MSC-EP-R-68-17 | New                                   | OF   |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | L              |                                       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                |                                       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                |                                       |      |
| · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                |                                       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                |                                       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r                 | -              |                                       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LM RCS SUBSYSTEM TEST DATA SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                |                                       | • -  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                |                                       |      |
| PRESSURE SAITCH PRESSURE SAITCH PRESSURE AT<br>CLOSING TIME LUSS GPENING TIME LWS CLOSING L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SWITCH PRESSURE AT SWITCH STATE OR THE TO 75% OF MAXLENTEGATED - C.<br>SKA) OPENING (PSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESIA PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA) PRESSURE (FSIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                |                                       |      |
| RUN CLOSING TIME LISS GPENING TIME (NS) CLOSING (<br>UNBER FING 2 FRO AFYE UPSC VENT AFYE AFYE AFYE AFYE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ρηζόζουλας (μεγαι το μετά τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη είναι τη                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IARKS             |                |                                       |      |
| - e - y + y   15.4   9.2   15.1   45.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25.9 1.7 1.8 1 9.6 1.2 1 1.0 4 4.9 1 4.0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                | <u></u>                               |      |
| 12.2. 11.4 11.4 38.4<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10-2 17 10-0 17 120 17 17 17 17 17 17 17 17 17 17 17 17 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                |                                       |      |
| -C-3-1 11 & 13 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.5         17.4         11.4         17.5           17.6         47.1         51.1         47.5         51.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                |                                       |      |
| · 18.4 12.6 13.8 12.6<br>• C + 2 136 92.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N 5 V 51 52.5 VI.3 (9.5 19.5) 0 75 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                |                                       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | #4         777         136         8.77           #7         #7         #3         6.77         1.75           #7         #7         #3         6.77         1.75           #7         #7         #3         6.77         1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                | · · · · · · · · · · · ·               |      |
| 15.4 11.6 15.6 45.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.5 4.7 12.4 11.9 223 11.2 259 853                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                |                                       |      |
| - 17 2 17 2 17 2 17 2 17 2 17 2 17 2 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·· · · ·          |                |                                       |      |
| 112 377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | ·····          |                                       |      |
| -C-11-5 15,C 17.C 13.A 43.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109 4.4 154 1 10 100 112 112 112 112 112 112 112 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                | -                                     |      |
| 15.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>A.J.</u> 47 A.J. 367 A.J. 416 5.64 5.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • • • • • •       |                |                                       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                |                                       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                |                                       |      |
| -C-10-9 H.1 18.9 19.7 45.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 185 445 945 257 276 276 A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                |                                       |      |
| 11.9 11.1 14.7 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                |                                       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 193 3.5 44 850 57.5 37.2 3.4 194 11.2 2.42 1.17 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                |                                       |      |
| 11.1 11.1 10.9 156 45.0 425<br>11.4 10.1 10.1 15.1 45.6 45.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 125 10 52 175 400 175 1 181 181 181 181 181 181 181 181 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | · · · · · · ·  |                                       |      |
| H.a. U.d. (0.1. [5.1. 43.6 41.5]<br>-D-1-5. 14.6 13.4 13.4 13.4 14.5 34.5 13.2<br>14.6 14.4 13.4 13.4 14.6 44.9 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 11 515 515 317 31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                | •                                     |      |
| -D-1 11.4 11.4 11.4 11.4 11.3 11.9<br>-D-1 11.4 11.4 11.7 11.5 11.5 11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (127 4/2 4/1 4/2 4/2 5/2 6/2 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • • • • • • • • • |                |                                       |      |
| 11.7 17.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{R^2}{R^2} = \frac{R^2}{R^2} \frac{R^2}{R^2} \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} - \frac{R^2}{R^2} \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + \frac{R^2}{R^2} + R^$ |                   |                |                                       |      |
| -0-3-2 19.9 19.5 18.2 13.8 30.9 34.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 115 485 81 620 116 1 0.71 667 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                |                                       |      |
| - 0- 0-1 His 12 A 12 4 14.4 38.5 34.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                |                                       |      |
| 184 160 13.4 11.5 38 4 30.9<br>184 183 11.1 U.L. 38.9 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 102 55 55 466 500 57 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                |                                       |      |
| -0-5-2 11 4 14.1 14.5 14.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1725 52 50 444 268 49 19 19 19 19 10 103 557<br>105 156 55 201 104 105 105 107 105 107 107 107 107 107 107 107 107 107 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MISTIKES          |                |                                       |      |
| 1-11 12.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 112 211 77 W 227 211 W 1 43 22 0 232 232 233 233 54 24 24 24 24 24 24 24 24 24 24 24 24 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 55 1194 - 311   | -              | •                                     |      |
| 168 11,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 102 1021 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                |                                       |      |
| 11.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                |                                       |      |
| 11 35.7<br>11 35.7<br>55.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                |                                       |      |
| -E-14 355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                |                                       |      |
| 25.6 476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                |                                       |      |
| - <u>Z - II</u> <u>PCZ</u> <u>SU</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 49.1         115         121         172           49         644         515         239         1972 http://doi.org/00.0000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                |                                       |      |
| 27-3 572<br>31 k<br>-7- 18 55 577<br>51 4<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 18 555<br>-7- 1 | 344 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                |                                       |      |
| 17 19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22 52 52 52 52 732 732 732 199 199 199 199 199 199 199 199 199 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                |                                       |      |
| 26.9 47.6 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.4 11/ 11/ 11/ 13/ 13/ 13/ 13/ 13/ 13/ 13/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e                 |                | ·                                     |      |
| 24 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                | · · · · · · · · · · · · · · · · · · · |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                |                                       |      |

FOLDOUT FRAME (

|           |             |                                              |                | -                       |              |                                         |                        |                 |                                      |                      |                                     |                        |                  |                   |                       |                 |                          |       |                     |      |                                        |                                         |                                        |                          |                                          |                                         |                             | MSC-                                                 | EP-R-                  | -68-i7                                        | <u>1</u> .                                                                | ION<br>Iew                                           |                                                          | GE <u>B</u><br>F     |
|-----------|-------------|----------------------------------------------|----------------|-------------------------|--------------|-----------------------------------------|------------------------|-----------------|--------------------------------------|----------------------|-------------------------------------|------------------------|------------------|-------------------|-----------------------|-----------------|--------------------------|-------|---------------------|------|----------------------------------------|-----------------------------------------|----------------------------------------|--------------------------|------------------------------------------|-----------------------------------------|-----------------------------|------------------------------------------------------|------------------------|-----------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------|
|           |             |                                              |                | -                       |              |                                         | <u> </u>               |                 |                                      |                      |                                     |                        |                  |                   |                       |                 |                          |       |                     |      |                                        |                                         |                                        |                          |                                          |                                         |                             |                                                      |                        | ,<br>,                                        |                                                                           |                                                      |                                                          |                      |
|           |             |                                              |                |                         |              |                                         |                        |                 |                                      |                      | -                                   |                        |                  |                   |                       |                 | -<br>TE                  |       |                     |      |                                        |                                         |                                        |                          |                                          |                                         | 1                           |                                                      |                        |                                               | -                                                                         |                                                      | -                                                        |                      |
| <b>7R</b> |             |                                              | DATE<br>(1967) | TIME OF<br>DAY<br>(HRS) | INITIAL CELL | INJEC<br>INJECTEMPER<br>TEMPER          | TOR HEAD<br>NATURE ("F | FUEL<br>TEMPERA | INLET<br>TURE (*# )Y<br>ENG (ENGLIGE | OXID INL<br>EMFERATO | ET PAS<br>RE (°F) FL<br>C. 20.0.5 A | ITIAL INLI<br>SSURE (F |                  |                   | ENING<br>(MS)<br>OXID |                 |                          |       |                     |      | ZALA<br>FUEL VALI<br>2 ENG<br>MAXMIN N | T HY<br>18 OPEN<br>4 EN3 1<br>AX IAN MA | T #<br>TPS14}<br>II ENG II<br>AXMIN 19 | OX<br>3 ENG<br>AX MIN MA | TWLET<br>D VALVE C<br>END 4<br>X MIN MAX | WTH<br>PEN_(PS<br>ENG :1  <br>WIK MAX N | (1.17) (1.13)<br>ENG 1.3 VA | XINUN THE<br>ESSURE AT<br>VE CLOSURE<br>OZ CHO4 ENSI | FUEL PRES<br>PSIA VALA | SURE AT OXI<br>E GLOSURE PR<br>E VG4 ENGLIGER | PRESSOR                                                                   | HIFOLD DX<br>C (PSIA) P<br>SYSTEM 8 SY<br>WIN MAX.MI | ID. PHANIFOL<br>RESSURE (P)<br>STEM A STST<br>N WAX LINK | 20<br>5 × 3<br>1 × 3 |
|           |             | 0 454<br>9 859<br>0.858<br>0.114             | 13:11          | 59,52                   |              |                                         |                        |                 |                                      |                      | 1, 12                               |                        |                  | 110               | ╇                     | 27              | 72.9                     |       |                     | 36.5 |                                        |                                         | 11-1 14                                |                          | <u>+</u>                                 |                                         | 53 119<br>12 11+            |                                                      | 244                    |                                               | 6                                                                         |                                                      |                                                          |                      |
| -63       |             | A.184                                        |                | 24.5                    | 24           | 1.1                                     | 134                    | ╞╼╌╞╌╸╡         | 67                                   |                      | 47 12-                              | 1.75 0                 |                  | 710               | $+ \square$           | 1561            | 175<br>175               | ++    |                     |      |                                        | ++                                      | 119 30                                 |                          |                                          | ====                                    | 53 184                      |                                                      | 214                    | 1                                             | 4                                                                         |                                                      | ++-                                                      | 日                    |
| 4         | 7.3         | 1.534<br>- 121                               | 18-16          | 1211                    | 100 .        | 2. 196                                  |                        | 17              |                                      | rs                   | (M)                                 | 12 0 157 7             | 1151 ( 11<br>4 4 |                   |                       |                 | 115<br>1.2<br>1.2<br>1.2 | - - - | 17                  | 47.6 |                                        | +                                       | 119 71                                 | ╧┼╌┼╴                    | ╪╪╡                                      |                                         | 52 154                      | ╪╪╧                                                  |                        |                                               |                                                                           | 9                                                    | 3 212                                                    | Ħ                    |
|           | 33 1        | 1 7 93 1                                     | _              |                         |              |                                         |                        |                 |                                      |                      |                                     |                        | 4.4              |                   | ?                     |                 | 1 9 2<br>1 3 7           |       | 8.2                 | 1 ·  |                                        | #                                       | 1-1-                                   | ++                       | ╪╪╡                                      |                                         | +++++                       | ++-                                                  | Ħ                      |                                               | 150 213<br>142 310<br>142 310<br>142 316<br>142 316<br>124 948<br>127 948 | 12                                                   | 2 244<br>5 224<br>7 215                                  | H                    |
| _         | 2           | - 6 692<br>- 9 6 FT<br>- 6 6 FT<br>- 5 6 251 |                |                         |              | /1                                      | 5                      | 17              |                                      | 10                   |                                     |                        | <u> </u>         | <u> </u>          | 3<br>6.Y              |                 | <u> </u>                 | 1.0   | 9.5<br>11.5<br>11.2 |      |                                        |                                         |                                        | <u> </u>                 |                                          |                                         | 1                           | -E-i-                                                | H-                     | E                                             | 140 346                                                                   | 12                                                   | 9 241                                                    | E                    |
|           | <u>,5 (</u> | - <u></u>                                    |                |                         |              |                                         |                        | ╏╴┟╴┨           |                                      |                      |                                     |                        |                  |                   | 12<br>12              |                 | ┞╌┟──├━┧                 |       | 11.6                |      |                                        | Ŧ                                       |                                        |                          |                                          | 13                                      |                             | +-+-                                                 |                        | $\Box$                                        | 127 223                                                                   | 11                                                   | 9 255                                                    |                      |
| Ŧ         |             | 0 0.01<br>0 040<br>0 044                     |                |                         |              |                                         |                        | ╞╌┼╌┤           |                                      | _                    |                                     |                        |                  |                   |                       |                 |                          | ++    |                     | 10   |                                        | +                                       |                                        |                          |                                          |                                         |                             |                                                      |                        |                                               |                                                                           |                                                      |                                                          | Ħ                    |
| £         | 21          | 0000                                         |                | \$346                   | 71           | 1.2. 11                                 | -                      | 15              |                                      | 15                   | int.                                | 1165 1255              | Sec. 6. M        | 1-1 <sup>64</sup> |                       | 6.7<br>7<br>7.4 |                          |       | 47                  | 10.6 |                                        |                                         |                                        | -1-1-                    |                                          |                                         | # +                         | ++-                                                  |                        | ╞╼╞╼╞                                         | 120 225                                                                   | <b>    -   -</b>   -                                 | 2 2/4                                                    | Ħ                    |
| -         | N<br>23     | 0 69                                         |                |                         |              |                                         |                        | ËEI             |                                      |                      | Ŧ!                                  |                        | 1928 6.9<br>     |                   | 3                     | - 8.2 -         |                          | ++    | 11.5                |      |                                        |                                         | 11                                     | ++                       |                                          | ═┼╍┾                                    | <u> </u>                    |                                                      | <b> </b> -             |                                               | 119 32.                                                                   |                                                      | 9 344                                                    | Ħ                    |
| ÷         | 31          | 5 042 L                                      |                |                         |              |                                         |                        |                 |                                      |                      |                                     |                        | 61               | ŢŢ                | 9                     | - 7.4           | 7.5                      | 4     | 11.2                |      |                                        | ++-                                     | 11                                     | ++                       |                                          |                                         |                             | ++                                                   | $\vdash$               | ++-                                           | 135 114                                                                   | 1                                                    | 5 2/4                                                    |                      |
| f         | <u> </u>    | 0 09)<br>2 011<br>2 021                      |                |                         |              |                                         | 3                      | . 13            |                                      | 15                   |                                     |                        |                  |                   | 7.4                   | 72              |                          | 5     | 1 10                |      |                                        | ++                                      | 1                                      | 1                        |                                          |                                         |                             |                                                      |                        |                                               | 120 925                                                                   | 11                                                   | 2. 212                                                   |                      |
| 4         | _js         | <u> </u>                                     | _              |                         |              |                                         |                        | $\vdash \Box$   |                                      |                      |                                     |                        |                  | 1-1               | 7.4                   | Τį              |                          |       | 11 S                |      |                                        |                                         |                                        |                          | 1-1-1                                    |                                         |                             |                                                      |                        |                                               | 111 2.25                                                                  |                                                      | 2 3 39                                                   |                      |
| +         | -           |                                              |                |                         |              |                                         | +                      |                 |                                      |                      |                                     |                        |                  |                   |                       |                 |                          | +-    |                     |      |                                        |                                         |                                        |                          |                                          |                                         |                             | <u>+</u>                                             | $\vdash$               |                                               |                                                                           |                                                      |                                                          | <u>†</u>             |
| #         |             |                                              |                |                         |              |                                         |                        |                 |                                      |                      |                                     |                        |                  | ╞╧╪               |                       |                 |                          |       |                     |      |                                        |                                         |                                        | 17                       |                                          |                                         | 17                          |                                                      |                        | <u>i t-E</u>                                  |                                                                           |                                                      |                                                          | <u> </u>             |
| =‡        |             |                                              |                |                         |              |                                         |                        |                 |                                      |                      |                                     |                        |                  | ┟╌╏═╠             | 1                     | <u>.</u>        |                          | ++-   |                     |      |                                        |                                         |                                        |                          |                                          |                                         |                             |                                                      |                        | ╘┼╾┼╴                                         |                                                                           |                                                      | 11                                                       |                      |
|           | {           |                                              |                | =                       | =            | =++                                     | ++                     | +               |                                      |                      | +                                   |                        | ┍╺┥╸╎╸           | ╞╾╂               | ++                    | ++-             |                          |       |                     |      |                                        | +                                       | ╧╋                                     | ++                       | ┼┼┥                                      |                                         |                             | ╧                                                    |                        |                                               |                                                                           |                                                      | ╧╪╧                                                      |                      |
| -         |             |                                              |                | _                       |              |                                         |                        |                 |                                      |                      | +                                   |                        |                  | ╪╪╪╡              |                       |                 |                          |       |                     |      | ╞╦╧╉                                   |                                         |                                        | ╧                        |                                          |                                         | -+                          |                                                      |                        |                                               |                                                                           | <u>i   1</u>                                         | ++-                                                      | <b>  </b>            |
| -         |             |                                              |                |                         |              |                                         |                        |                 | _ _                                  |                      |                                     |                        | ╞╌┼╍┨╼           | ╞═╡╧              |                       | ╧╪╪╧            | ╞╪╡                      | ╡╌┠╸  |                     |      |                                        |                                         |                                        | ╧╧                       |                                          |                                         |                             |                                                      |                        | ╞╪╪                                           | +++                                                                       | +++                                                  |                                                          |                      |
| -         |             |                                              |                |                         | _            | -1-1-                                   |                        |                 |                                      |                      |                                     |                        |                  |                   | $\mp$                 | ╧               |                          |       |                     | + -  |                                        |                                         |                                        | +‡                       |                                          | _1_1                                    | 71                          | · <u> </u>                                           | <u>†</u>               | <u>↓</u> ↓↓                                   | ++-                                                                       |                                                      | ╪╌╞╌                                                     | Ħ                    |
| -         |             |                                              |                |                         |              |                                         |                        |                 |                                      |                      |                                     |                        |                  | <b>     </b>      |                       | ++-             |                          |       |                     |      |                                        | - 1-                                    | +                                      | +-+                      | ╈                                        | -1 +                                    | 474                         |                                                      |                        |                                               | +                                                                         |                                                      | +-1                                                      | 1                    |
|           |             | _                                            |                |                         |              |                                         |                        |                 |                                      |                      | ŦΕ                                  |                        |                  |                   |                       |                 |                          |       |                     |      | $\square$                              |                                         |                                        | 1                        | 1-1-1                                    |                                         |                             |                                                      |                        |                                               | 1=                                                                        | ╞╼╋╾┼                                                | - <b> </b>                                               | Ħ                    |
| Ē         |             |                                              |                |                         |              |                                         |                        |                 |                                      |                      | $\square$                           |                        |                  | - +               |                       |                 |                          |       |                     |      |                                        |                                         | -                                      | 1                        |                                          |                                         |                             |                                                      |                        |                                               |                                                                           |                                                      |                                                          |                      |
|           |             | <del></del> }                                |                |                         |              | <u>-+</u> F                             |                        | ]               |                                      | $\pm \pm$            | $\pm c$                             |                        |                  |                   |                       |                 |                          |       |                     |      |                                        |                                         |                                        |                          | ++                                       |                                         |                             | ++                                                   |                        |                                               | <del>.</del>                                                              | <u>}</u> {}-                                         |                                                          | <u> </u>             |
| _         |             |                                              |                |                         |              |                                         |                        |                 |                                      | $\pm \Gamma$         |                                     |                        |                  |                   |                       |                 |                          |       |                     |      |                                        |                                         |                                        |                          |                                          |                                         |                             |                                                      |                        | - +                                           |                                                                           | ÷ .                                                  |                                                          |                      |
| +         |             |                                              |                |                         |              | _====================================== |                        | $\vdash$        |                                      |                      | + +                                 |                        |                  | ┢╍╞╌┠             |                       |                 |                          | + T   |                     |      |                                        |                                         |                                        |                          |                                          |                                         |                             | - []                                                 | 1                      |                                               |                                                                           |                                                      |                                                          | E                    |
| -         |             |                                              |                |                         |              |                                         |                        |                 |                                      | ++                   |                                     |                        |                  | ╞╡╂               |                       |                 |                          |       |                     |      |                                        |                                         |                                        |                          |                                          | - 🗖                                     |                             | -E-E                                                 |                        |                                               | -                                                                         | +                                                    |                                                          |                      |
| -         |             |                                              |                |                         |              |                                         |                        |                 |                                      |                      |                                     |                        |                  |                   |                       |                 | ┝┥┥┥                     |       |                     |      |                                        |                                         |                                        | 1                        |                                          |                                         |                             | +                                                    | <u>+-i-</u>            | !E                                            | · + + -                                                                   |                                                      |                                                          |                      |
| +         |             |                                              |                |                         |              |                                         | $\pm$                  |                 |                                      |                      |                                     | ┝━┼━╊                  |                  |                   |                       |                 |                          | -     |                     |      |                                        |                                         | 1                                      | 1                        |                                          |                                         |                             |                                                      |                        | <u>t</u>                                      |                                                                           |                                                      |                                                          |                      |
|           |             |                                              |                |                         |              |                                         |                        | ╞╧╪╧╡           |                                      |                      |                                     |                        | <u>++</u>        | ╞═┿═┨╴            | +++                   | $\pm\pm$        | ╞┥╍┝┥                    |       |                     |      |                                        |                                         |                                        | <u>+-</u> +              |                                          | <u>_</u>                                | -                           |                                                      | <u>;   _</u>           | <u>                                     </u>  |                                                                           | ╆┥╋                                                  |                                                          |                      |
| 7         |             |                                              |                |                         |              |                                         | + +                    | 11              |                                      | ++                   | 十戸                                  | ╞━┼━┤                  |                  |                   |                       | _               |                          |       |                     |      |                                        |                                         |                                        |                          | ┶╼┼━┼                                    | ╼┼╾┼                                    |                             | ╧                                                    | +                      | ╏╾┼╾┟                                         |                                                                           | ╪╪╌╁                                                 |                                                          | $\blacksquare$       |
| -+        |             |                                              |                |                         |              | _                                       |                        | ╞╼╌╎╼╴┤         | <u></u> ++                           | ╡╪                   | 十十                                  | ╞═╪═┨                  |                  | ╞╾╡╧╋             |                       |                 |                          | - - - |                     |      | <u>⊨</u> =.                            | ·                                       | · [ · L                                | -+                       |                                          |                                         |                             |                                                      | i                      | ┼╌┼─┼                                         | ++-                                                                       | ╁╌╪╾┠╸                                               | ╧╋                                                       | 曰                    |
| -         |             |                                              |                |                         |              | ╤                                       |                        | ╞╪╡             |                                      | -1-1-                | ++-                                 |                        |                  | ╞╡╡               | +                     | ╪╪              |                          |       |                     |      | ╞╼╍┿╌╴┾                                | -+-+-                                   |                                        | ╧╋╧                      | ا<br>ا                                   |                                         | <u>+</u> +                  | <u>+</u> +                                           |                        | ╞╾┼─┼╴                                        | ╧╧╧                                                                       | ╞╞╧                                                  | +-+                                                      | Ħ                    |
| -         | L           |                                              |                |                         |              | - <del>dadi</del>                       | 1.1                    |                 |                                      |                      |                                     | <b>⊢</b>               |                  |                   |                       |                 |                          |       |                     |      |                                        |                                         |                                        |                          | <u></u>                                  |                                         | <u>-+</u> +-                | 1-1-                                                 |                        |                                               |                                                                           |                                                      | <u></u>                                                  |                      |

. •

EURODU EBANG - FOLDOUT ERAME 2

150 2227-68

- THERMOCHENICAL TEST AREA -

-

.

 DOC. NO.
 REVISION
 PAGE
 B-14

 MSC-EP-R-68-17
 New
 OF
 B-14

|      |                | •     |                      |                     |                   |      |            |                   |          |             |                    |   |                     |                | Lľ      | И               | RC       | S                                            | S        | UI           | BS        | Y:         | SТ | ΈI                  | M TEST DATA SUMMARY                                                                                                                           |
|------|----------------|-------|----------------------|---------------------|-------------------|------|------------|-------------------|----------|-------------|--------------------|---|---------------------|----------------|---------|-----------------|----------|----------------------------------------------|----------|--------------|-----------|------------|----|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| IBER | PRESSU         |       |                      |                     |                   |      |            | URE AT<br>SING (F |          |             |                    |   |                     |                |         |                 |          |                                              |          |              |           |            |    |                     |                                                                                                                                               |
|      | EHG. 2 ENG     |       |                      | 16. 2 EN            | s ateng           |      |            | NG < ENG          | F LIENG. | 13 ENG 2    | END 47             |   |                     | KO Z EN        | G 4 ENG | I I ESA         | 3,2%5    | 2,5 \6                                       |          |              |           | 255 4      |    |                     |                                                                                                                                               |
| T.42 |                |       | 26.5                 | -+-                 |                   | 47.5 |            | -                 | _        | -           | $\vdash$           | - | #4                  |                |         | 11<br>95<br>189 | <u></u>  | <del></del>                                  | T        | 34.6         | -         |            |    | 5,00                | 1913181 8. Dia das Instander Int — POLL, das - 507 Her 150, 6410 Art 459 Her 183                                                              |
|      |                |       | 96-5<br>16-9<br>26-5 |                     |                   | 54.5 |            |                   | _        |             | $\square$          |   | 3.0<br>4.71<br>4.31 | -              |         | 199             |          | Į                                            |          | Stor 1       |           |            |    | 2.57                |                                                                                                                                               |
|      |                |       | 32.7                 | -i-                 |                   | 431  |            |                   |          |             |                    |   | 2.9                 |                |         | 100             |          |                                              | [        | 36 y<br>35.9 |           |            |    |                     | SISTERS CALLES OF LEGENBROKE EN - FOLSI FAN - SYA MER BOY GAUDI MAN- SYI MAR- STR                                                             |
| - 1  | 14.5           | 1.0   |                      | 7.9                 | -                 |      | <b> </b> - |                   | _        | 28 7        | $\vdash$           |   |                     | 92.9           |         |                 | 11.4     | -                                            | <u>i</u> |              | 4.17      |            |    |                     | SYSTEM A MARCH THERMONISTION - SUIL MAR IS MIT JOT GAID MAR 73 MAR JAZ<br>SETTEM A MARCH AND TRANSPORT BUN - FUEL MAR JAT CANDIMAR 15 MAR JAT |
|      | 141            |       |                      | 74                  |                   | _    |            |                   |          | 18.9        | TTT                |   |                     | 27. 3          |         | <u>í</u>        | 16       |                                              | ·        |              | 1.53      |            |    |                     |                                                                                                                                               |
|      | 16.            |       |                      | 4.9<br>14 <u>.9</u> |                   |      |            | -                 |          | 15.0        |                    |   |                     | 96 8  <br>97 5 |         | -               | 10 0     | 1 19 7                                       |          |              | 7.40      |            |    |                     |                                                                                                                                               |
|      | 10             | .3    |                      | 31                  |                   |      |            |                   | _        |             | 4.3                |   | _                   | 9              | 10      |                 |          | 197                                          |          |              |           | 142        |    |                     |                                                                                                                                               |
|      | - 10           |       |                      |                     | 3                 | _    |            |                   | -        | 1           | 49                 |   |                     |                | 4.5     |                 | 1        | 10.5                                         |          |              |           | 123        |    |                     |                                                                                                                                               |
|      |                |       | 14.4                 |                     |                   | 42.5 |            |                   |          |             | <u> </u> +         |   | 2,1<br>6.7          |                |         | 19              | 3        |                                              |          | 26.5         |           |            |    | 239<br>6.44<br>4.55 |                                                                                                                                               |
|      |                |       | 10.9                 |                     |                   | 44.5 | -          |                   |          | _           | $ \rightarrow$     |   | 5.2                 |                | -       | 105             | 4        | <u>.                                    </u> |          | 19 +<br>18 Z |           |            |    | 4.5                 |                                                                                                                                               |
| _2   | 10.1           | 1     |                      | 17.6                |                   |      |            |                   |          | 18.0        |                    |   |                     | Péré           |         |                 | 22       | <u>e</u> –                                   |          |              |           |            |    |                     | Spill R. Die ein der internet den - Fusi- ein- 52 vers sed dillesond-68 men -881                                                              |
|      | 16 +<br>15 - 5 |       |                      | 17.1<br>17.4        |                   |      |            |                   |          | 17.5<br>K.5 | <u> </u>           |   |                     | 1.1            |         |                 | 13.      |                                              | F        |              | 246       |            |    |                     |                                                                                                                                               |
|      | 15.1           |       | -                    | K. 0                |                   |      |            |                   |          | 17.2        | $\square$          |   |                     | 173            | -       |                 | 1.10     | 7-                                           | Ē        |              | 1.50      |            |    |                     |                                                                                                                                               |
|      | L : L ja       |       |                      | 1                   |                   |      | i          |                   |          |             | 4.4                |   |                     | 4.4            | 5.9     | 1               |          | 1.01                                         | • • •    | 1 1          |           | 1.00       |    |                     |                                                                                                                                               |
|      | 13             | 3     |                      | 3                   | <u>9.6</u><br>1.7 |      | ┼─┼        | _                 |          |             | 5.9                |   |                     |                | s.s     |                 | • •      | 197                                          |          |              |           | 1.50       |    |                     |                                                                                                                                               |
|      |                |       |                      |                     |                   |      |            |                   |          |             | $\square$          |   |                     |                |         |                 |          |                                              |          |              |           |            |    |                     |                                                                                                                                               |
|      |                |       |                      |                     |                   |      |            |                   |          |             |                    |   |                     |                | -       |                 |          | 1                                            | i        |              |           |            |    |                     |                                                                                                                                               |
|      | <u>├</u>       |       |                      | -                   | +                 | -    | +          | _                 |          | -           | ┢─┤                | - |                     | +              |         | -ŀ              | -        | 1                                            | • ••     |              | <u></u>   |            |    | t                   |                                                                                                                                               |
|      |                |       |                      | -                   |                   |      | 1.1        |                   | _        |             | $\square$          |   |                     |                |         | -[              |          | 1.                                           | Ξ        | -            |           |            |    |                     |                                                                                                                                               |
|      |                | _     |                      |                     |                   |      |            |                   |          |             |                    |   |                     |                |         | _1              |          | <u> </u>                                     | I        |              |           |            | -  |                     |                                                                                                                                               |
|      |                | ·   · |                      | -  -                | -+-               |      | +          |                   |          |             | $\vdash$           |   |                     |                |         |                 |          | ÷ -                                          |          |              | -         |            |    |                     |                                                                                                                                               |
|      |                |       |                      |                     |                   |      |            |                   |          |             | F                  |   |                     |                |         | _Ę.             |          | 4                                            | 4        | i            | L         |            |    |                     |                                                                                                                                               |
|      |                |       | -                    |                     |                   |      | 1          |                   | 1        |             |                    |   |                     |                |         | ••†-            | <u> </u> | <u>+</u>                                     | ·        | <u> </u>     | <u> </u>  | ·          |    |                     |                                                                                                                                               |
|      |                |       |                      |                     |                   |      | ┝╌┼        |                   |          | - ·         | +                  |   | -                   |                | - +     |                 |          |                                              | h        |              |           |            |    |                     |                                                                                                                                               |
|      |                |       |                      |                     | _                 |      | 1          |                   |          | - ·         | $\square$          |   |                     |                |         | -1-             | - ļ      | ·                                            | <u></u>  |              | ļ         | 드그         |    |                     |                                                                                                                                               |
|      |                |       |                      |                     |                   |      |            |                   |          |             |                    |   |                     |                |         |                 |          |                                              |          |              |           |            |    |                     |                                                                                                                                               |
|      |                |       |                      |                     |                   |      |            | +                 |          | +           | 1                  |   |                     |                |         | -1-             | + -      |                                              | 1        |              |           |            |    |                     |                                                                                                                                               |
|      |                |       | -                    |                     |                   |      | · ···[     |                   |          | 1.          |                    |   |                     |                |         |                 |          |                                              | +        | · .          |           |            |    | <u> </u>            |                                                                                                                                               |
|      |                |       |                      |                     |                   |      |            |                   |          |             | <u></u>            |   | ŀ                   |                |         |                 | · + · ·  | +                                            |          |              |           |            |    |                     |                                                                                                                                               |
|      | ┼┅╍┝╍          |       | <u> </u>             |                     |                   |      | ╉━┼        |                   |          |             | +-1                |   | -                   |                |         |                 | +        | · [· ·                                       |          |              |           | <u> </u>   |    |                     |                                                                                                                                               |
|      |                | _     | F                    | _                   |                   | _    |            |                   | -        | -           | $\square$          |   |                     |                |         |                 |          |                                              | +        |              |           |            |    | 1                   |                                                                                                                                               |
|      |                |       |                      |                     |                   |      |            | 1.                | _        | 1_          |                    |   |                     |                |         |                 |          | +                                            | 1        |              | <u>t-</u> | <u> </u>   |    | <u> </u>            |                                                                                                                                               |
|      |                |       |                      |                     |                   |      |            |                   | -        |             | +                  |   |                     |                |         | -+-             |          |                                              |          |              | {         |            |    |                     |                                                                                                                                               |
|      |                |       |                      | -                   |                   | _    | +          |                   |          |             |                    |   |                     |                |         |                 | .        |                                              |          | ŀ .          | ļ         |            |    | <u> </u>            |                                                                                                                                               |
|      |                | _     |                      | -                   |                   | 1    |            |                   | ·        | 1           |                    |   |                     |                |         | 1-              | -1-      |                                              | 1        |              | 1         |            |    |                     |                                                                                                                                               |
|      | ┝━━╋┈          |       | ┢──┢                 |                     |                   | _    | ╂╍╍┤       |                   | _        |             | $+ - \overline{+}$ |   | $\rightarrow$       |                |         | 1               | +        | -                                            |          |              | +         |            | }— |                     |                                                                                                                                               |
|      |                |       |                      | -                   |                   |      | ļ          |                   |          |             | F                  |   |                     |                | _       |                 |          |                                              | ł        |              |           | ļ          | ŀ. |                     |                                                                                                                                               |
|      |                |       | ļ                    |                     |                   |      | 1          |                   |          | 1           | 1                  |   |                     |                |         |                 |          |                                              | <u></u>  |              |           |            |    |                     |                                                                                                                                               |
|      |                |       | -                    | - <del> </del> -    |                   |      | ╂─┤        |                   | -+-      |             | $+ \overline{+}$   |   |                     |                | -       |                 | -+-      |                                              | +        |              |           |            |    |                     | fan · · · · · · · · · · · · · · · · · · ·                                                                                                     |
|      |                |       |                      |                     |                   |      |            |                   |          |             | F                  |   |                     |                |         | _ _             | 1        | Τ.                                           | 1.7      | 1.0          |           |            |    | 77                  |                                                                                                                                               |
|      | •••••          |       | <b>⊢</b>             |                     |                   |      | f 1        |                   |          | +-          | +                  |   |                     | <u> </u>       |         | -ł-             | -1 -     |                                              | 1        | I -          |           | <u> </u> _ | -  |                     |                                                                                                                                               |

.

## - THERMOCHEMICAL TEST AREA -----

.

.

| DOC. NO.       | REVISION | PAGE | <u>C-1</u>  |
|----------------|----------|------|-------------|
| MSC-EP-R-68-17 | New      | 0F   | <u>C-10</u> |

APPENDIX C

EQUIPMENT LIST

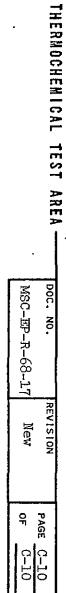
•

| Item       | Description                                | Manufacturer                | Specification no. | Serial no.                   |                |
|------------|--------------------------------------------|-----------------------------|-------------------|------------------------------|----------------|
| l          | Engine cluster IV, up                      | Marquardt                   | LSC310-2          | 1013(P/N227895)              |                |
| 2          | Engine — cluster IV, down                  | Marquardt                   | LSC310-2          | 1045(P/N227895)              |                |
| 3          | Engine cluster IV, forward                 | Marquardt                   | LSC310-2          | 1036(P/N227895)              |                |
| 4          | Engine - cluster IV, side                  | Marquardt                   | LSC310-2          | 1004(P/N227895)              |                |
| 5          |                                            | Marquardt                   |                   | <sup>a</sup> 1003(P/N228795) |                |
| 6          | Engine — cluster III, down                 | Marquardt                   | LSC310-2          | 1038(P/N227895)              |                |
| 7          | Engine — cluster III, forward              | Marquardt                   | LSC310-2          | 1035(P/N227895)              |                |
| 8          | Engine cluster III, side                   | Marquardt                   | LSC310-2          | 1009(P/N227895)              |                |
| 9          | Engine — cluster II, up                    | Marquardt                   | LSC310-2          | 1042(P/N227895)              |                |
| 10         | Engine cluster II, down                    | Marquardt                   | LSC310-2          | 1037(P/N227895)              |                |
| 11         |                                            | Marquardt                   | LSC310-2          | 1004(P/N228795)              |                |
| 12         | Engine — cluster II, side                  | Marquardt                   | LSC310-2          | 1043(P/N227895)              |                |
| 13         | Engine — cluster I, up                     | Marquardt                   | LSC310-2          | 0324(P/N228685)              |                |
| 14<br>1    | Engine — cluster I, down                   | Marquardt                   | LSC310-2          | 1044(P/N227895)              |                |
| 15         | Engine — cluster I, forward                | Marquardt                   | LSC310-2          | 1039(P/N227895)              |                |
|            | Engine cluster I, side                     | Marquardt                   | LSC310-2          | 1046(P/N227895)              | M              |
|            | RCS tankage module assembly "A"            | GAEC                        | LPT-25003-1       | 0001                         | ្រុស្ត         |
| 101        | Helium tank                                | Airite                      | LSC310-301-1      | 0036                         |                |
|            | Helium initiation valve                    | Pelmec                      | LSC310-302-1      | NA                           |                |
| 103        | Helium initiation valve                    | Pelmec                      | LSC310-302-1      | NA                           | 1              |
|            | Helium filter                              | Vacco                       | LSC310-303-3      | NA                           | MSC-EP-R-68-17 |
| 108        | Helium regulator                           | Fairchild                   | LSC310-305-3      | 03825B640216                 |                |
| 109        | Check valve (fuel)                         | Accessory Products          | LSC310-306-4      | 100200001025                 |                |
| 110        | Check valve (oxid)                         | Accessory Products          |                   | 100200001009                 |                |
| 111        | Relief valve (fuel)                        | Calmec                      | LSC310-307-4      | 021220266352                 | New            |
|            | Relief valve (oxid)                        | Calmec                      | LSC310-307-3      | 021220266308                 |                |
| 115        | Fuel tank                                  | Bell                        | LSC310-405-12     |                              |                |
| 116        | Oxid tank                                  | Bell                        | LSC310-405-11     | 9                            |                |
| 117        | Main shutoff valve — fuel                  | Parker                      | LSC310-403-204    | 0059                         | PF             |
|            | Main shutoff valve — oxid                  | Parker                      | LSC310-403-303    | 0032                         | Ι.             |
| _          |                                            |                             |                   | <b>u</b> –                   | C-10           |
| 1<br>To to | ector head was replaced with injector head | from T1C P/N228687, S/N0001 | 7 -               |                              | 日上             |

| Įtem | Description               | Manufacturer | Specification no.            | Serial no. |               |
|------|---------------------------|--------------|------------------------------|------------|---------------|
| 119  | Ascent Interconnect valve | Parker       | LSC310-403-103               | 0026       |               |
| 120  | Ascent Interconnect valve | Parker       | LSC310-403-303               | 0021       |               |
| 121  | Fuel crossfeed valve      | Parker       | LSC310-403-204               | 0054       |               |
| 122  | Oxid crossfeed valve      | Parker       | LSC310-403-303               | 0052       |               |
| 123  | Cluster isolation valve   | Parker       | LSC310-403-206               | 214        |               |
| 124  | Cluster isolation valve   | Parker       | LSC310-403-103               | 0030       |               |
| 125  | Cluster isolation valve   | Parker       | LSC310-403-404               | 0038       |               |
| 126  | Cluster isolation valve   | Parker       | lsc310-403-303               | 0069       |               |
| 127  | Cluster isolation valve   | Parker       | LSC310-403-204               | 0061       |               |
| 128  | Cluster isolation valve   | Parker       | LSC310-403-103               | 0033       |               |
| 129  | Cluster isolation valve   | Parker       | LSC310-403-404               | 0028 .     |               |
| 130  | Cluster isolation valve   | Parker       | LSC310-403-303               | 0062       |               |
| 131  | Propellant filter         | Wintec       | LSC310-125-2-C               | 146        |               |
| 132  | Propellant filter         | Wintec       | LSC310-125-1-C               | 114        |               |
| 133  | Propellant filter         | Wintec       | LSC310-125-2-C               | 147        |               |
| 134  | Propellant filter         | Wintec       | LSC310-125-1-C               | 147        | C M           |
| 135  | Propellant filter         | Wintec       | LSC310-125-2-C               | 153        | 15            |
| 136  | Propellant filter         | Wintec       | LSC310-125-1-C               | 146        | 5             |
| 137  | Propellant filter         | Wintec       | LSC310-125-2-C               | 152        |               |
| 138  | Propellant filter         | Wintec       | LSC310-125-1-C               | 111        | MOC-55-5-00-1 |
| 139  | Thruster heater           | Cox          | LSC310-601-11                | 403        | Ľ             |
| 140  | Thruster heater           | Cox          | LSC310-601-11                | 404        | ľ             |
| 141  | Thruster heater           | Cox          | LSC310-601-11                | 406        |               |
| 142  | Thruster heater           | Cox          | LSC310-601-11                | 313        | MOM           |
| 147  | Thruster heater           | Cox          | LSC310-601-11                | 405 .      |               |
| 148  | Thruster heater           | Cox          | LSC310-601-11                | 402        |               |
| 149  | Thruster heater           | Cox          | LSC310-601-11                | 401 .      | <u> </u>      |
| 150  | Thruster heater           | Cox          | LSC310-601-11                | 309        | Ş             |
| 151  | Press. switch             | EOS          | EOS Model No.<br>101038-0003 | 3          | 1,            |
| 152  | Press. switch             | Fairchild    | LSC310-651-3                 | 141        |               |

| MSC       |      |                             |                    |                   |              |                            |
|-----------|------|-----------------------------|--------------------|-------------------|--------------|----------------------------|
| FORM 360B | Item | Description                 | Manufacturer       | Specification no. | Serial no.   |                            |
| 4 36      | 153  | Press. switch               | Fairchild          | LSC310-651-3      | 156          | THERMOCHEMICAL             |
| ΰB        |      | Press. switch               | Fairchild          | LSC310-651-3      | 0158         | R                          |
| -         | -    | Press. switch               | Fairchild          | LSC310-651-3      | 0164         | 0                          |
| (JAN 6    |      | Press. switch               | Fairchild          | LSC310-651-3      | 173          | CH                         |
| n,        | 157  |                             | Fairchild          | LSC310-651-3      | 167          | in                         |
| 2         | >1   | 11000. 042001               |                    |                   |              |                            |
|           | 158  | Press. switch               | Fairchild          | LSC310-651-3      | 155          | C A                        |
|           |      | RCS tankage module assembly | GAEC               | LPT310-25003-1    | 0002         |                            |
|           |      | Helium tank                 | Airite             | LSC310-301-1      | 0035         |                            |
|           | 202  |                             | Pelmec             | LSC310-302-1      | NA           | TEST                       |
|           | 203  |                             | Pelmec             | LSC310-302-1      | NA           |                            |
| 1         |      |                             |                    |                   |              | AREA                       |
|           | 204  | Helium filter               | Vacco              | LSC310-303-3      | NA           | Ê                          |
|           | 208  | Helium regulator            | Fairchild          | LSC310-305-3      | 03825J640400 | 7 <b>2</b> -               |
|           | 209  |                             | Accessory Products | LSC310-306-4      | 100200001021 |                            |
|           |      | Check valve (oxid)          | Accessory Products | LSC310-306-3      | 100200001023 | 1                          |
|           | 211  | Relief valve (fuel)         | Calmec             | LSC310-307-4      | 021220266342 |                            |
|           |      |                             |                    |                   |              | оос. No.<br>MSC-ЕР-R-68-17 |
|           | 212  | Relief valve (oxid)         | Calmec             | LSC310-307-3      | 021220266318 | P ?                        |
|           | 215  | Fuel tank                   | Bell               | LSC310-405-12     | 10           | 된 S                        |
|           | 216  | Oxid tank                   | Bell               | LSC310-405-11     | 11           | 5                          |
|           | 217  | Main shutoff valve — fuel   | Parker             | LSC310-403-204    | 0054         | 6                          |
|           | 218  | Main shutoff valve — oxid   | Parker             | LSC310-403-303    | 0043         | P <sup>m</sup>             |
| - 1       |      |                             |                    |                   |              | 17                         |
| J         | 219  |                             | Parker             | LSC310-403-204    | 0051         |                            |
|           | 220  |                             | Parker             | LSC310-403-303    | 0058         | REVISION                   |
| l         | 221  | Cluster isolation valve     | Parker             | LSC310-403-204    | 0062         |                            |
|           | 222  | Cluster isolation valve     | Parker             | LSC310-403-103    | 0032 .       | SION                       |
|           | 223  | Cluster isolation valve     | Parker             | LSC310-403-404    | 0041         |                            |
| j         |      |                             |                    |                   | 22/7         |                            |
|           | 224  |                             | Parker             | LSC310-403-303    | 0065         |                            |
|           |      | Cluster isolation valve     | Parker             | LSC310-403-204    | 0049         | OF PA                      |
|           |      | Cluster isolation valve     | Parker             | LSC310-403-103    | 0036         | PAGE<br>OF                 |
|           |      | Cluster isolation valve     | Parker             | LSC310-403-404    | 0039         |                            |
|           | 228  | Cluster isolation valve     | Parker             | LSC310-403-303    | 0063         | ဂုဂု                       |
| 1         |      |                             |                    |                   |              | 164                        |
|           |      |                             |                    |                   |              |                            |

| ñ<br>n   |      |                                          |                   |                   |                                         |                            |
|----------|------|------------------------------------------|-------------------|-------------------|-----------------------------------------|----------------------------|
| <b>۲</b> | Item | Description                              | Manufacturer      | Specification no. | Serial no.                              | -                          |
| 360 A    | 229  | Propellant filter                        | Wintec            | LSC310-125-2-C    | 113                                     |                            |
|          | 230  | Propellant filter                        | Wintec            | LSC310-125-1-C    | 101                                     | a                          |
|          | 231  |                                          | Wintec            | LSC310-125-2-C    | 109                                     | 5                          |
|          | 232  | Propellant filter                        | Wintec            | LSC310-125-1-C    | 152                                     |                            |
| 3        | 233  | Propellant filter                        | Wintec            | LSC310-125-2-C    | 104                                     | , ש כעשט הש רש ז גאר<br>1  |
|          | 234  | Propellant filter                        | Wintec            | LSC310-125-1-C    | 110                                     | ,<br>2<br>1                |
| 1        | 235  | Propellant filter                        | Wintec            | LSC310-125-2-C    | 108                                     | -                          |
|          | 236  | Propellant filter                        | Wintec            | LSC310-125-1-C    | 148                                     | ŗ                          |
|          | 237  | Thruster heater                          | Cox               | LSC310-601-12     | 396                                     | 1 5 3 1                    |
|          | 238  | Thruster heater                          | Cox               | LSC310-601-12     | 389                                     | 200                        |
|          | 243  | Thruster heater                          | Cox               | LSC310-601-12     | 390                                     | 5                          |
|          | 244  | Thruster heater                          | Cox               | LSC310-601-12     | 410                                     |                            |
|          | 245  | Thruster heater                          | Cox               | LSC310-601-12     | 412                                     |                            |
|          | 246  | Thruster heater                          | Cox               | LSC310-601-12     | 408                                     |                            |
|          | 251  | Thruster heater                          | Cox               | LSC310-601-12     | 409                                     | MSC                        |
|          | 252  | Thruster heater                          | Cox               | LSC310-601-12     | 411                                     |                            |
| 1        |      | Press. switch                            | Fairchild         | LSC310-651-3      | 0181                                    | 日 S                        |
|          | 254  | Press. switch                            | Fairchild         | LSC310-651-3      | 161                                     | . <del>1</del> 2           |
|          | 255  | Press. switch                            | Fairchild         | LSC310-651-3      | 0149                                    | ا فر ا                     |
|          | 256  | Press. switch                            | Fairchild         | LSC310-651-3      | 0168 .                                  | DDC. NO.<br>MSC-EP-R-68-17 |
|          | 257  | Press. switch                            | Fairchild         | · LSC310-651-3    | 171                                     |                            |
|          | 258  | Press. switch                            | Fairchild         | LSC310-651-3      | 0165                                    | REVISION<br>New            |
|          | 259  | Press. switch                            | Fairchild         | LSC310-651-3      | 176                                     | New                        |
|          | 260  | Press. switch                            | Fairchild         | LSC310-651-3      | 178                                     | z z                        |
|          | Pl   | Helium tank "A" press.                   | Whittaker Wiancko | LSC360-601-103-1  | 50003                                   |                            |
|          | P2   | Helium tank "B" press.                   | Microsystems      | lsc360-624-103    | 60729                                   |                            |
|          | P7   | Helium regulator outlet press. "A"       | Microsystems      | LSC360-624-105-1  | 61708                                   | OF PA                      |
|          | Рġ   | Helium regulator outlet press. "B"       | Whittaker Wiancko | LSC360-601-105    | 50018                                   | PAGE<br>OF                 |
| ľ        | P13  | Propellant tank outlet press. "A" - fuel | Kistler           | 601A              | 22932                                   | 11 1                       |
|          | P14  | Propellant tank outlet press. "A" oxid   | Kistler           | 601A              | 25322                                   | 1 <u></u> 22               |
|          |      |                                          |                   |                   | _,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Ц<br>О                     |
|          |      |                                          |                   |                   |                                         | 1 -                        |


| tem        | Description                              | Manufacturer | Specification no. | Serial no.      |                |
|------------|------------------------------------------|--------------|-------------------|-----------------|----------------|
| P15        | Propellant tank outlet press. "B" fuel   | Kistler      | 601A              | 25320           |                |
| <b>P16</b> | Propellant tank outlet press. "B" - oxid | Kistler      | ALOG              | 17958           |                |
| P17        | Engine 1-3 inlet press. — fuel           | Microsystems | LSC310-121-4      | 59350 L         |                |
| P18        | Engine 1-3 inlet press oxid              | Microsystems | LSC310-121-3      | 59695 L         |                |
| P19        | Engine 2-4 inlet press. — fuel           | Kistler      | 601A              | 55638           |                |
| P20        | Engine 2-4 inlet press oxid              | Kistler      | 601A              | 17948           |                |
| P21        | Engine 5-8 inlet press. — fuel           | Kistler      | ALOG              | 7950            |                |
| P22        | Engine 5-8 inlet press. — oxid           | Kistler      | 601A ·            | 25321           |                |
| P23        | Engine 6-7 inlet press fuel              | Microsystems | LSC310-121-4      | 59356 г         |                |
| P24        | Engine 6-7 inlet press. — oxid           | Microsystems | LSC310-121-3      | 59674 Г         |                |
| P25        |                                          | Microsystems | LSC310-121-4      | 5933 <b>1</b> L |                |
| P26        | Engine 9-12 inlet press. — oxid          | Microsystems | LSC310-121-3      | 59697 L         |                |
| P27        | Engine 10-11 inlet press fuel            | Kistler      | 601A              | 17954           |                |
| P28        | Engine 10-11 inlet press oxid            | Kistler      | 601A              | 25319           | <u> </u>       |
| P29        | Engine 13-15 inlet press fuel            | Kistler      | 601A              | 25323           | MSO            |
| P30        | Engine 13-15 inlet press oxid            | Kistler      | 601A              | 25324           | MSC-EP-R-68-17 |
| P31        |                                          | Microsystems | LSC310-121-4      | 59342 L         |                |
| P32        | Engine 14-16 inlet press oxid            | Microsystems | LSC310-121-3      | 59677 L         | Ĩ              |
| P33        | Engine 3 chamber press.                  | Taber        | Model 185-5A      | 671259          | မြည်           |
| P34        | Engine 1 chamber press.                  | Taber        | Model 185-5A      | 661059          | 1<br>1<br>1    |
| P35        | Engine 4 chamber press.                  | Microsystems | Marquardt 228658  | 59210 L         |                |
| P36        | <u> </u>                                 | Microsystems | Marquardt 228658  | 59254 L         | Ň              |
| P37        | Engine 8 chamber press.                  | Microsystems | Marquardt 228658  | 59237 .         | New            |
| P38        | Engine 5 chamber press.                  | Microsystems | Marquardt 228658  | 59209 L         |                |
| P39        | Engine 6 chamber press.                  | Taber        | Model 185-5A      | 671263          |                |
| P40        |                                          | Taber        | Model 185-5A      | 671264          |                |
| P41        | Engine 12 chamber press.                 | Taber        | Model 185-5A      | 671269          | ٩F             |
| P42        | Engine 9 chamber press.                  | Taber        | Model 185-5A      | 671267          | 1              |
| P43        | Engine 10 chamber press.                 | Microsystems | Marquardt 228658  | 59255 L         | ļļ             |
| Р44        | Engine ll chamber press.                 | Microsystems | Marquardt 228658  | 59263 L         |                |

| Item | Description                              | Manufacturer      | Specification no. | Serial no. |     |
|------|------------------------------------------|-------------------|-------------------|------------|-----|
| P45  | Engine 15 chamber press.                 | Microsystems      | Marquardt 228658  | 59203 L    |     |
| P46  | Engine 13 chamber press.                 | Microsystems      | Marquardt 228658  | 58730 L    |     |
| P47  | Engine 16 chamber press.                 | Taber             | Model 185-5A      | 671272     |     |
| P48  | Engine 14 chamber press.                 | Taber             | Model 185-5A      | 671271     |     |
| P50  | Propellant tank outlet press. "A" - oxid | Whittaker Wiancko | LSC360-601-105-1  | 50013      |     |
| P51  | Propellant tank outlet press. "A" — fuel | Microsystems      | LSC360-624-105-1  | 61711      |     |
| P52  | Propellant tank outlet press. "B" oxid   | Microsystems      | LSC360-624-105    | 60737      |     |
| P53  | Propellant tank outlet press. "B" - fuel | Microsystems      | lsc360-624-105-1  | 61709      |     |
| QI   | A system PQMD (EOS P/N 880817-1)         | EOS               | lsc360-628-1-1    | 1001       |     |
| Q2   | B system PQMD (EOS P/N 880817-1)         | EOS               | lsc360-628-1-1    | 1002       |     |
| Dl   | Helium fill coupling "A" flight half     | On Mark           | LSC310-308-3      |            |     |
|      | ground half                              |                   | LSC310-308-2E     | 114        |     |
| D2   | High press. coupling "A" flight half     | On Mark           | LSC310-308-3      |            |     |
|      | ground half                              |                   | LSC310-308-2E     | 124        |     |
| D9   | Low press. coupling "A" flight half      | On Mark           | LSC310-308-3      |            |     |
|      | ground half                              |                   | LSC310-308-2E     | 123        | Ιč  |
| D10  | Oxid check valve port cou-               |                   |                   |            |     |
|      | pling — "A" — flight half                | On Mark           | LSC310-308-3      |            | 17  |
| D12  | Oxid check valve port cou-               |                   | _                 |            | 1   |
|      | pling — "A" — flight half                | On Mark           | LSC310-308-3      |            |     |
| DII  | Fuel check valve port cou-               |                   |                   |            | Ŀ   |
|      | pling "A" flight half                    | On Mark           | LSC310-308-3      |            |     |
| D13  | Fuel check valve port cou-               |                   |                   |            |     |
|      | pling — "A" — flight half                | On Mark           | LSC310-308-3      |            | New |
| D14  | Oxid relief valve port cou-              |                   |                   |            |     |
|      | pling — "A" — flight half                | On Mark           | LSC310-308-3      |            | 1   |
| D15  | Fuel relief valve port cou-              |                   |                   |            |     |
| 1    | pling "A" flight half                    | On Mark           | LSC310-308-3      |            |     |
| D16  | Helium vent coupling — oxid —            |                   |                   | 0 0        | Ş   |
|      | "A" flight half                          | J. C. Carter      | LSC310-401-703    | 8098123    | 1.  |
|      | ground half                              |                   | LSC310-401-751    | 8605118    |     |

| Iten<br>D17 | Helium vent coupling — fuel —<br>"A" — flight half<br>ground half                     | Manufacturer<br>J. C. Carter | Specification no.<br>LSC310-401-804<br>LSC310-401-852 | _Serial no.<br>7057112<br>5925108 | THERMOCHEMICAL                                                                                                  |
|-------------|---------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------|
| ງ D18       | •                                                                                     | J. C. Carter                 | LSC310-401-303<br>LSC310-401-351                      | 7509121<br>5920105                |                                                                                                                 |
| D19         |                                                                                       | J. C. Carter                 | LSC310-401-404<br>LSC310-401-452                      | 8433135<br>4892101                | CAL                                                                                                             |
| D20         | Oxid fill coupling — "A" — flight half<br>ground half                                 | J. C. Carter                 | LSC310-401-103<br>LSC310-401-151                      | 8092127<br>5918104                | TES                                                                                                             |
| D21         | . Fuel fill coupling — "A" — flight half<br>ground half                               | J. C. Carter                 | LSC310-401-204<br>LSC310-401-252                      | 7508122<br>6960111                | T ARE                                                                                                           |
| D22         | ground half                                                                           | J. C. Carter                 | LSC310-401-503<br>LSC310-401-551                      | 8434133<br>8542117                | A                                                                                                               |
| D23         | ground half                                                                           | J. C. Carter                 | LSC310-401-604<br>LSC310-401-652                      | 7055116<br>8516118                | Jan 25 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 and 10 |
|             | Helium fill coupling — "B" — flight half<br>ground half                               | On Mark                      | LSC310-308-3<br>LSC310-308-2E                         | 121                               | poc.                                                                                                            |
|             | 5 High press. coupling — "B" — flight half<br>ground half                             | On Mark                      | LSC310-308-3<br>ME273-0010-0004B                      | 064810000013                      | EP-R-R                                                                                                          |
| D42         | 2 Low press. coupling — "B" — flight half<br>ground half                              | On Mark                      | lsc310-308-3<br>lsc310-308-2E                         | 117                               | <b>рос. No.</b><br>MSC-EP-R-68-17                                                                               |
|             | Fuel check valve port cou-<br>pling — "B" — flight half<br>Fuel check valve port cou- | On Mark                      | LSC310-308-3                                          |                                   | REVISION                                                                                                        |
| D41         | pling "B" flight half                                                                 | On Mark                      | LSC310-308-3                                          |                                   | i on<br>Mew                                                                                                     |
|             | pling — "B" — flight half                                                             | On Mark                      | LSC310-308-3                                          |                                   |                                                                                                                 |
|             | 5 Oxid check valve port cou-<br>pling "B" flight half                                 | On Mark                      | LSC310-308-3                                          |                                   | PAGE                                                                                                            |
| D4'I        | ' Fuel relief valve port cou-<br>pling — "B" — flight half                            | On Mark                      | LSC310-308-3                                          |                                   |                                                                                                                 |
|             |                                                                                       |                              |                                                       |                                   | C-8<br>C-10                                                                                                     |

| MSC F     | Item       | Description                                                                                           | Manufacturor               | Specification no.                                  | Gomiolana                     |                                           |
|-----------|------------|-------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------|-------------------------------|-------------------------------------------|
| P.<br>₽   | TCGI       | Description                                                                                           | Manuracourer               | opectitestion no.                                  | bertar no.                    | ۱<br>ــــــــــــــــــــــــــــــــــــ |
| FORM 360B | D48        | Oxid relief valve port cou-<br>pling "B" flight half                                                  | On Mark                    | LSC310308-3                                        |                               | THER                                      |
| (JAN 67)  | D49        | Helium vent coupling — fuel —<br>"B" — flight half<br>ground half                                     | J. C. Carter               | LSC310-401-804<br>LSC310-401-852                   | 7057110<br>5925111            | H J O K                                   |
| \$7)      | D50        | Helium vent coupling — oxid —<br>"B" — flight half                                                    | J. C. Carter               | LSC310-401-203                                     | 8098124                       | T H E R H O C H E M I C A L               |
|           |            | • ground half<br>Fuel bleed coupling "B" flight half<br>ground half                                   |                            | LSC310-401-751<br>LSC310-401-404<br>LSC310-401-452 | 8544117<br>8433134<br>5398103 | L TEST                                    |
|           | D52        | Oxid bleed coupling — "B" — flight half<br>ground half                                                | J. C. Carter               | LSC310-401-303<br>LSC310-401-351                   | 8015125<br>8397111            | T ARE                                     |
|           |            | Fuel fill coupling "B" flight half<br>ground half                                                     | J. C. Carter               | LSC310-401-204<br>LSC310-401-252                   | 7508120<br>6960120            | ËA -                                      |
|           |            | Oxid fill coupling — "B" — flight half<br>ground half                                                 | J. C. Carter               | LSC310-401-103<br>LSC310-401-151                   | 8430131<br>5918107            |                                           |
|           |            | Fuel service coupling — "B" — flight half<br>ground half<br>Oxid service coupling — "B" — flight half | J. C. Carter               | LSC310-401-604<br>LSC310-401-652                   | 8097126<br>8400114            | DOC. NO.<br>MSC-EP-R-68-17                |
|           |            | Engine 1-3 fuel feed temp.                                                                            | J. C. Carter<br>Winsco     | LSC310-401-503<br>LSC310-401-551<br>LSC310-122-2   | 8552143<br>8404112<br>009     | BP-R-                                     |
|           |            |                                                                                                       |                            |                                                    | -                             | 68-                                       |
|           | T15<br>T16 | Engine 1-3 oxid feed temp.<br>Engine 2-4 fuel feed temp.<br>Engine 2-4 oxid feed temp.                | Winsco<br>Winsco<br>Winsco | LSC310-122-1<br>LSC310-122-2<br>LSC310-122-1       | 013<br>025<br>031             |                                           |
|           |            | Engine 5-8 fuel feed temp.<br>Engine 5-8 oxid feed temp.                                              | Winsco<br>Winsco           | LSC310-122-2<br>LSC310-122-1                       | 026<br>033 .                  | REVISION                                  |
|           | T20        | Engine 6-7 fuel feed temp.<br>Engine 6-7 oxid feed temp.<br>Engine 9-12 fuel feed temp.               | Winsco<br>Winsco<br>Winsco | LSC310-122-2<br>LSC310-122-1<br>LSC310-122-2       | 042<br>036<br>048             |                                           |
|           | T22        | Engine 9-12 oxid feed temp.                                                                           | Winsco<br>Winsco<br>Winsco | LSC310-122-2<br>LSC310-122-2                       | 048<br>038<br>027             | PAGE                                      |
|           |            |                                                                                                       |                            |                                                    |                               | C9                                        |

| MSC 1         |                                 |                                                                                                                                                              |                                                |                                                                              |                                   |
|---------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------|
| FORM          | Item                            | Description                                                                                                                                                  | Manufacturer                                   | Specification no.                                                            | Serial no.                        |
| 3608 (JAN 67) | T24<br>T25<br>T26<br>T27<br>T28 | Engine 10-11 oxid feed temp.<br>Engine 13-15 fuel feed temp.<br>Engine 13-15 oxid feed temp.<br>Engine 14-16 fuel feed temp.<br>Engine 14-16 oxid feed temp. | Winsco<br>Winsco<br>Winsco<br>Winsco<br>Winsco | LSC310-122-1<br>LSC310-122-2<br>LSC310-122-1<br>LSC310-122-2<br>LSC310-122-1 | 039 .<br>037<br>041<br>028<br>043 |
| -             |                                 | Blanket and shield aşsy RCS<br>, aft cluster-partial (eng. III D/6)                                                                                          | GAEC                                           | LSK280-11127-1                                                               |                                   |



, **'** 

| r | - THERMOCHEMICAL | TEST | AREA        | DOC. NO. REVISION |     |                     |
|---|------------------|------|-------------|-------------------|-----|---------------------|
|   |                  |      |             | MSC-EP-R-68-17    |     | PAGE D-1<br>OF D-16 |
|   |                  |      |             |                   | 100 |                     |
|   |                  |      |             |                   |     |                     |
|   |                  |      |             |                   |     |                     |
|   |                  |      |             |                   |     |                     |
|   |                  |      |             |                   |     |                     |
|   |                  |      |             |                   |     |                     |
|   |                  |      |             |                   |     |                     |
|   |                  |      |             |                   |     |                     |
|   |                  |      |             |                   |     |                     |
|   |                  |      |             |                   |     |                     |
|   |                  |      |             |                   |     |                     |
|   |                  |      |             |                   |     |                     |
|   |                  |      |             |                   |     |                     |
|   |                  |      |             |                   |     |                     |
|   |                  |      |             |                   |     |                     |
|   |                  |      | APPENI      | DIX D             |     |                     |
|   |                  |      | INSTRUMENT/ | ATION SETUP       |     |                     |
|   |                  |      |             |                   |     |                     |
|   |                  |      |             |                   |     |                     |
|   |                  |      |             |                   |     |                     |
|   |                  |      |             |                   |     |                     |
|   |                  |      |             |                   |     |                     |
|   |                  |      |             |                   |     |                     |
|   |                  |      |             |                   |     |                     |
|   |                  |      |             |                   |     |                     |
|   |                  |      |             |                   |     |                     |
|   |                  |      |             |                   |     |                     |
|   |                  |      |             |                   |     |                     |
|   |                  |      |             |                   |     |                     |
|   |                  |      |             |                   |     |                     |
|   |                  |      |             |                   |     |                     |
|   |                  |      |             |                   |     |                     |
|   |                  |      |             |                   |     |                     |
|   |                  |      |             |                   |     |                     |
| L |                  |      |             |                   |     |                     |

- THERMOCHEMICAL TEST AREA -----

| DOC. NO.       | REVISION | PAGE | D2   |
|----------------|----------|------|------|
| MSC-EP-R-68-17 | New      | OF   | D-16 |

# DEVIATIONS FROM LM RCS INSTRUMENTATION SETUP

## NOTE

Deviations from the normal strip chart recorder instrumentation setup as shown on the subsequent instrumentation planning sheets were made at several points during the test program.

The following table defines the strip chart locations for the various portions of the test program. Setup A was used as the normal setup; Setup B was used for Blocks IV-L and IV-M; Setup C was used for Blocks III-B, IV-F, IV-K, and IV-E; and Setup D was used for Blocks IV-M(A), IV-I, and IV-J. Block descriptions are included in appendix A.

| Strip chart no.                                             |                                                                                   | PARAMETER SYN                                                                     | 4BOL                                                                                |                                                                                   |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|                                                             | Setup A                                                                           | Setup B                                                                           | Setup C                                                                             | Setup D                                                                           |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12 | T67<br>T68<br>T95<br>T73<br>T74<br>T77<br>T78<br>T81<br>T82<br>T85<br>T86<br>P100 | T39<br>T40<br>T56<br>T55<br>T65<br>T69<br>T78<br>T91<br>T89<br>T67<br>T86<br>P100 | тб7<br>т68<br>т70<br>т73<br>т74<br>т90<br>т78<br>т81<br>т82<br>. т85<br>т86<br>₽100 | T67<br>T65<br>T70<br>T66<br>T69<br>T90<br>T78<br>T89<br>T91<br>T92<br>T86<br>P100 |

| TEST NUMBER          | DATF                                  | IN         | ISTRUMENTATION | L DI ANI   |               | YEET        |             | 71 47 1      | NOT NEE F     | 2    | CELL NUMBE     |
|----------------------|---------------------------------------|------------|----------------|------------|---------------|-------------|-------------|--------------|---------------|------|----------------|
| 27404                | October 4, 1967                       |            |                | 1 1 6 400  |               |             |             | В            | levins        |      | 110            |
| PARAMETER            | SYM                                   | RANGE      | TRANSDUCER     | FM<br>Chan | GALVO<br>CBAN | SEL<br>CHAN | E I<br>Gran | S "C<br>Chan | SCOPE<br>Chan | MISC | REMARKS        |
| Eng. 1 valve voltag  | e Il                                  |            |                | B<br>V 4   | 1             |             |             |              |               |      |                |
| Eng. 2 valve voltage | e I2                                  |            |                | B<br>V S   |               |             | <u> </u>    |              |               |      | ·              |
| Eng. 3 valve voltage | e I3                                  |            |                | вз<br>v 5  | }             |             |             |              | L             |      |                |
| Eng. 4 valve voltage | <b>∋</b> I4                           |            |                | В 3<br>V 7 |               |             |             |              |               | •    |                |
| Eng. 5 valve voltage | e 15                                  |            |                | В 4<br>V 4 |               |             |             | <br>         |               |      |                |
| Eng. 6 valve voltage | e 16                                  |            |                | B<br>V 5   |               |             |             |              |               |      |                |
| Eng. 7 valve voltage | e 17                                  |            |                | в 4<br>V 6 |               |             |             |              |               |      |                |
| Eng. 8 valve voltage | e 18                                  |            |                | B 4<br>V 7 |               |             |             |              | [             |      |                |
| Eng. 9 valve voltage | ≥ I9                                  | <u>.</u> . |                | <b>₽</b> 3 |               |             | <u> </u>    |              |               |      |                |
| Eng. 10 valve voltag | ge I10                                |            |                | A 3<br>V 5 |               |             |             |              |               |      |                |
| Eng. 11 valve volta  | ge Ill                                |            |                | \$ }       |               |             |             |              | <b></b>       |      |                |
| Eng. 12 valve voltag | ge I12                                |            |                | \$ 7       |               |             | ·           |              |               |      |                |
| Eng. 13 valve voltag | çeI13                                 |            |                | A 4<br>V 1 |               |             |             |              |               |      |                |
| Eng. 14 valve voltag | çe Il4                                |            |                | \$ ₹       |               |             |             |              |               |      |                |
| Eng. 15 valve volta  | geI15                                 |            |                | 0 4        |               |             |             |              |               |      |                |
| Eng. 16 valve volta  | çe 116                                |            |                | A 4<br>7   |               |             |             |              |               |      |                |
| Eng. 2 heater voltag | e H139                                |            |                |            |               |             |             |              |               | 2    | On-off signals |
| Eng. 4 heater voltag | ge H140                               |            |                |            |               |             |             |              |               | 4    | On-off signals |
| Eng. 5 heater voltag | · · · · · · · · · · · · · · · · · · · |            |                |            |               |             |             |              |               | 5    | On-off signals |
| Eng. 8 heater voltag | ce H142                               |            |                |            |               |             |             |              |               | 8    | On-off signals |

,

.

THERMOCHEMICAL TEST AREA DOC. NO.

REVISION New

PAGE .

D-3 D-16

MSC-EP-R-68-17

.

.

| TEST NUMBER DATE.<br>2T404 October | r 4, 1967 |       | NSTRUMENTATIO | N PLAN     | NING S        | HEET        |             | 1           | FNGINEER<br>Levins | 2              | CELL NUMRIR     |
|------------------------------------|-----------|-------|---------------|------------|---------------|-------------|-------------|-------------|--------------------|----------------|-----------------|
| PARAMETER                          | SYM       | RANGE | TRANSOUCER    | FM<br>Chan | GALVO<br>Chan | SEL<br>CHAN | E I<br>Chan | S/C<br>Chan | SCOPE<br>Ch An     | M I SC<br>Chan | REMARKS         |
| Eng. 11 heater                     | H147      |       |               |            |               |             |             |             |                    | 11             | On-off. signals |
| Eng. 10 heater                     | н148      |       |               |            |               |             |             |             |                    | 10             | On-off signals  |
| Eng. 13 heater                     | H149      |       |               |            |               |             |             |             |                    | 13             | On-off signals  |
| Eng. 15 heater                     | H150      |       |               |            |               |             |             |             |                    | 15             | On-off signals  |
| Eng. 1 heater                      | H237      |       |               |            |               |             |             |             |                    | 1              | On-off signals  |
| Eng. 3 heater                      | H238      |       |               |            |               |             |             |             |                    | 3              | On-off signals  |
| Eng. 7 heater                      | H243      |       |               |            |               |             |             |             |                    | 7              | On-off signals  |
| Eng. 6 heater                      | H244      |       |               |            |               |             |             |             |                    | 6              | On-off signals  |
| Eng. 9 heater                      | H245      |       |               |            |               |             |             |             |                    | 9              | On-off signals  |
| Eng. 12 heater                     | H246      |       |               | -          |               |             |             |             |                    | 12             | On-off signals  |
| Eng. 14 heater                     | H251      |       | -             |            |               |             |             |             |                    | 14             | On-off signals  |
| Eng. 16 heater                     | H252      |       |               | ſ.         |               |             |             |             |                    | 16             | On-off signals  |
| Eng. 2 pressure switch             | S151      |       | EOS           | B 5<br>S 4 |               |             | [           |             |                    |                | Switch closure  |
| Eng. 4 pressure switch             | S152      |       | Fairchild     | B A        |               |             |             |             |                    |                | Switch closure  |
| Eng. 5 pressure switch             | S153      |       | Fairchild     | B B<br>S 3 |               |             |             |             |                    |                | Switch closure  |
| Eng. 8 pressure switch             | S154      |       | Fairchild     | B 9<br>S 4 |               |             |             |             |                    |                | Switch closure  |
| Eng. 11 pressure switch            | S155      |       | Fairchild     | A 6<br>5 3 |               |             |             |             |                    |                | Switch closure  |
| Eng. 10 pressure switch            | S156      |       | Fairchild     | A 5<br>5 4 |               |             |             |             |                    |                | Switch closure  |
| Eng. 13 pressure switch            | S157      |       | Fairchild     | A B<br>S 3 |               |             |             |             |                    |                | Switch closure  |
| Eng. 15 pressure switch            | s158      |       | Fairchild     | A 9<br>S 3 |               |             |             |             |                    |                | Switch closure  |
| Romarks:                           |           |       | -             |            |               |             |             |             |                    |                |                 |

MSC FORM 375 (Rev Jul 66)

.

.

THERMOCHEMICAL

| TEST NUMBER 27404    | DATE<br>October 4 | , 1967      | INS        | STRUMENTATIO         | N PLAN              | VING SI        | HEET        |            |             | ENGINEER<br>Levins |              | CELL NUMBLR<br>116 |
|----------------------|-------------------|-------------|------------|----------------------|---------------------|----------------|-------------|------------|-------------|--------------------|--------------|--------------------|
| PARAMETER            |                   | SYM         | RANGE      | TRANSDUCER           | FM<br>Chan          | GAL VO<br>Chan | SEL<br>Chan | E1<br>Chan | S/C<br>Cran | SCOPE<br>CHAN      | MISC<br>Chan | REMARKS            |
| Eng. 1 pressure swit | ch                | 5253        |            | Fairchild            | B<br>S<br>B<br>B    |                |             |            |             |                    |              | Switch closure     |
| Eng. 3 pressure swit | ch                | 5254        |            | Fairchild            | 86<br>83            |                |             |            |             | 1                  |              | Switch closure     |
| Eng. 7 pressure swit | ch                | 5255        |            | Fairchild            | n ann an<br>Foundar |                |             |            |             |                    |              | Switch closure     |
| Eng. 6 pressure swit | ch                | s256        |            | Fairchild            | B 0<br>S 4          |                |             |            |             |                    |              | Switch closure     |
| Eng. 9 pressure swit | ch                | s257        |            | Fairchald            | A 5<br>S 3          |                |             |            |             |                    |              | Switch closure     |
| Eng. 10 pressure swi | τch (             | s258        |            | Fairchild            | S 4 1               |                |             |            |             |                    | ·····        | Switch closure     |
| Eng. 14 pressure swi | tch               | s259        |            | Fairchild            | A 8<br>S 4          |                |             |            |             |                    |              | Switch closure     |
| Eng. 16 pressure swi | tch               | \$260       |            | Fairchild            | A 2<br>5 4          |                |             |            |             |                    |              | Switch closure     |
| He tank pressure A   | 1                 | pl          | 0 to 3500A | Whittaker<br>Wiancko |                     | • •••          | 28          | 75         |             |                    |              | SN 50003           |
| He tank pressure B   | 1                 | p2          | 0 to 3500A | Microsystem          |                     |                | 50          | 76         |             |                    |              | SN 60729           |
| He reg. pressure A   | I                 | pĩ          | 0 to 350A  | Macrosystem          |                     |                | 9           | 77         |             |                    |              | SN 61708           |
| He reg. pressure B   | 1                 | p <b>8</b>  | 0 to 350A  | Whittaker<br>Wiencko |                     |                | 10          | 78         |             |                    |              | SN 50018           |
| Fuel tank outlet A   | I                 | <b>513</b>  | 0 to 350D  | Kistler<br>601 A     | A l                 |                |             |            |             |                    |              | SN 22932           |
| Fuel tank outlet A   | I                 | 551         | 0 to 350A  | Microsystem          | B 3<br>V 1          |                | 11          | 79         |             |                    |              | SN 61711           |
| Oxid tank outlet A   | I                 | <b>51</b> 4 | 0 to 350D  | Kistler<br>601 A     | A 2                 |                |             |            |             |                    |              | SN 25322           |
| Oxid tank outlet A   | I                 | o50         | 0 to 350A  | Whittaker<br>Wisncko | B 4<br>V 1          |                | 12          | 80         |             |                    |              | SN 50013           |
| Fuel tank outlet B   | I                 | p <b>15</b> | 0 to 350D  | Kistler<br>601 A     | A 11                |                |             |            |             |                    |              | SN 25320           |
| Fuel tank outlet B   | I                 | 53          | 0 to 350A  | Microsystem          | A 3<br>V 1          |                | 13          | 81         |             |                    |              | SN 61709           |
| Remarks:             |                   |             |            |                      |                     |                |             |            |             |                    |              |                    |

THERMOCHEMICAL TEST AREA

DOC. NO.

REVISION

PAGE OF

D-5 D-16

чяс-др-R-68-17

MSC FORM 375 (Rev Jul 60)

| TEST NUMBER DAT<br>2T404 Oc |      | 4, 1967 | 1113      | STRUMENTATION     | PLAN                | NING S        | HEET        |             |             | NGINEER<br>Vins |                | CELL NUMBER |
|-----------------------------|------|---------|-----------|-------------------|---------------------|---------------|-------------|-------------|-------------|-----------------|----------------|-------------|
| PARAMETER                   |      | sym     | RANGE     | TRANSDUCER        | FN<br>Chan          | GALVO<br>CHAN | SEL<br>CHAN | E I<br>GHAN | S/C<br>Chan | SCOPE<br>CHAN   | N I SC<br>CHAN | RENARKS     |
| Oxid tank outlet B          |      | p16     | 0 to 350D | Kistler<br>601 A  | B 2                 |               |             |             |             |                 |                | SN 17958    |
| Oxid tank outlet B          |      | p52     | 0 to 350A | Microsystem       | A 4<br>V 1          |               | 14          | 82          |             | _               |                | SN 60737    |
| Regulator reference pre     | :55. | p1176   | 0 to 15A  | Taber             |                     |               |             | 12          | L           |                 |                | SN 671496   |
| Engines 1 to 3 fuel inl     | .et  | pl7     | 0 to 500A | Microsystem       | B 22<br>B 22<br>B 0 |               |             |             | <b></b>     |                 |                | SN 59350L   |
| Engines 1 to 3 oxid inl     | .et  | p18     | 0 to 500A | Microsystem       | B 6<br>S 2          |               |             |             |             |                 |                | SN 59695L   |
| Engines 2 to 4 fuel inl     | .et  | p19     | 0 to 500D | Kistler<br>601A   | B 10                | 1             |             | 1           | 1           |                 |                | SN 55638    |
| Engines 2 to 4 oxid inl     | .et  | p20     | 0 to 500D | Kistler<br>601A   | B 11                |               |             |             |             |                 |                | SN 17948    |
| Engines 5 to 8 fuel inl     | .et  | p21     | 0 to 500D | Kistler<br>601A   | B 12                |               |             |             |             |                 |                | SN 7950     |
| Engines 5 to 8 oxid inl     | .et  | p22     | 0 to 500D | Kistler<br>601A   | B 13                |               |             |             |             |                 |                | SN 25321    |
| Engines 6 to 7 fuel inl     | .et  | p23     | 0 to 500A | Microsystem       | B 8<br>S 2          |               |             |             |             |                 |                | SN 59356L   |
| Engines 6 to 7 oxid 1nl     | .et  | p24     | 0 to 500A | Microsystem       | B 9<br>S 2          |               |             |             |             |                 |                | SN 5967)L   |
| Engines 9 to 12 fuel in     | let  | p25     | 0 to 500A | Microsystem       | A 5<br>S A 0        |               |             |             |             |                 |                | SN 59331L   |
| Engines 9 to 12 oxid in     | let  | p26     | 0 to 500A | Microsystem       | A D<br>S 2          |               |             |             |             |                 |                | SN 59697L   |
| Engines 10 to 11 fuel i     | nlet | p27     | 0 to 500D | Kistler<br>6014   | A 10                |               |             |             |             |                 |                | SN 17954    |
| Engines 10 to 11 oxid i     | nlet | p28     | 0 to 500D | Kistler .<br>601A | A 11                |               |             |             |             |                 |                | SN 25319    |
| Engines 13 to 15 fuel i     | nlet | p29     | 0 to 500D | Kistler<br>601A   | A 12                |               |             |             |             |                 |                | SN 25323    |
| Engines 13 to 15 oxid i     | nlet | p30     | 0 to 500D | Kistler<br>601A   | A 13                |               |             |             |             |                 |                | SN 25324    |
| Engines 14 to 16 fuel i     | nlet | p31     | 0 to 500A | Microsystem       | 8 4                 |               |             |             |             |                 |                | SN 59342L   |
| Engines 14 to 16 oxid i     | nlet | p32     | 0 to 500A | Microsystem       | A 9<br>S 2          |               |             |             |             |                 |                | SN 59677L   |
| Romatks:                    |      |         |           |                   |                     |               |             |             |             |                 |                |             |

MSC FORM 360B (JAN 67)

THERMOCHEMICAL TEST AREA DOC. NO. MSC-EP-R-68-17 REVISION

PAGE OF

<u>р-д</u>

ł

MSC FORM 360B (JAN 67)

,

| TEST NUMBER DAT<br>2T404 Oct | e<br>ober 4, 1967 | IN        | STRUMENTATIO | V PLAN     | NING S        | HEET        |            | 1           | ENGINEEF<br>Blevin: |              | CELL NUMBER |
|------------------------------|-------------------|-----------|--------------|------------|---------------|-------------|------------|-------------|---------------------|--------------|-------------|
| PÄRANETER                    | SYM               | RANGE     | TRANSOUCER   | FN<br>CHAN | GALVO<br>CHAN | SEL<br>CHAN | E1<br>CHAN | S/C<br>CHAN | SCOPE               | MISC<br>CHAN | REWARKS     |
| Engine 3 PC                  | p33               | 0 to 300A | Taber 185    | B 3        |               | <u>†</u>    | †====      |             |                     |              | SN 671259   |
| Engine 1 PC                  | p34               | 0 to 300A | Taber 185    | B B        |               |             |            | [           |                     |              | SN 661059   |
| Engîne 4 PC                  | p35               | 0 to 125A | Microsystem  | B 5<br>S 1 |               |             |            |             | }                   |              | SN 59210L   |
| Engine 2 PC                  | p36               | 0 to 125A | Microsystem  |            |               |             |            |             | [                   |              | SN 59254L   |
| Engine 8 PC                  | p37               | 0 to 125A | Microsystem  | <u> </u>   |               |             |            |             |                     |              | SN 59237    |
| Engine 5 PC                  | p38               | 0 to 125A | Microsystem  | B 9        |               | L           | <u> </u>   |             |                     |              | SN 59209L   |
| Engine 6 PC                  | p39               | 0 to 300A | Taber 185    | BV<br>V    |               |             |            |             |                     |              | SN 671263   |
| Engine 7 PC                  | p40               | 0 to 300A | Taber 185    | B 4<br>V 3 |               | L           |            |             |                     |              | SN 671264   |
| Engine 9 FC                  | p41               | 0 to 300A | Taber 185    | A 3        |               |             |            |             |                     |              | SN 671267   |
| Engine 12 PC                 | p42               | 0 to 300A | Taber 185    | A 3<br>V 2 |               |             |            |             |                     |              | SN 671269   |
| Engine 10 PC                 | p43 ·             | 0 to 125A | Macrosystem  | A 5<br>S 1 |               |             |            |             |                     |              | SN 59255L   |
| Engine 11 PC                 | ք4կ               | 0 to 125A | Microsystem  | A 6<br>S 1 |               | •           |            |             |                     |              | SN 59263L   |
| Engine 15 PC                 | p45               | 0 to 125A | Microsystem  | A 8<br>5.1 |               |             |            |             |                     |              | SN 59203L   |
| Engine 13 PC                 | р46               | 0 to 125A | Microsystem  | A 9<br>S 1 |               |             |            |             |                     |              | SN 58730L   |
| Engine 16 PC                 | p47               | 0 to 300A | Taber 185    | A 4        |               |             |            |             |                     |              | SN 671272   |
| Engine 14 PC                 | p48               | 0 to 300A | Taber 185    | A 4        | _             |             |            |             |                     |              | SN 671271   |
| Fuel tank A temp.            | ·                 | (a)       | C/A TC       |            |               |             | 1          |             |                     |              |             |
| Oxid tank A temp.            | T2                | (a)       | C/A TC       |            |               |             | 2          |             |                     |              |             |
| Fuel tank B temp.            | T3                | (a)       | C/A TC       |            |               | •           | 3          |             |                     |              |             |
| Oxid tank B temp.            | <br>T4            | (a)       | C/A TC       |            |               |             | 4          |             |                     |              |             |

- THERMOCHEMICAL TEST AREA -

DOC. NO. MSC-EP-R-68-17 REVISION

PAGE .

D-7

.

•

| TEST NORDER                                                 | DATE     |        |            | NSTRUMENTATIO | N PLAN     | NING S        | HEET        |             |
|-------------------------------------------------------------|----------|--------|------------|---------------|------------|---------------|-------------|-------------|
| 2T404 · (                                                   | October  | 4,1967 |            |               |            |               | ·           |             |
| PARAMETER                                                   |          | SYM    | RANGE      | TRANSDUCER    | FM<br>Chan | GALYO<br>Chan | SEL<br>CHAN | E Î<br>Chan |
| Eng, 1 to 3 fuel feed                                       | temp.    | T13    | (b)        | CU/C TC       |            |               |             | 13_         |
| Eng. 1 to 3 oxid feed                                       | temp,    | т14    | (b)        | CU/C TC       | 1          |               |             | 14          |
| Eng. 2 to 4 fuel feed                                       | temp.    | T15    | (ъ)        | CU/C TC       |            |               |             | 15          |
| Eng. 2 to 4 oxid feed                                       | temp.    | T16    | (b)        | CU/C TC       |            |               |             | 16          |
| Eng. 5 to 8 fuel feed                                       | temp.    | T17    | (b)        | CU/C TC       |            |               |             | 17          |
| Eng. 5 to 8 oxid feed                                       | temp.    | T18    | (ъ)        | CU/C TC       |            |               |             | 18          |
| Eng. 6 to 7 fuel feed                                       | τemp.    | T19    | (b)        | CU/C TC       |            |               |             | 19          |
| Eng. 6 to 7 oxid feed                                       | temp.    | T20    | (ъ)        | CU/C TC       |            |               |             | 20          |
| Eng. 9 to 12 fuel feed                                      | i temp.  | T21    | (b)        | CU/C TC       |            |               |             | 21          |
| Eng. 9 to 12 oxid feed                                      | l temp.  | T22    | (b)        | CU/C TC       |            |               |             | 22          |
| Eng. 10 to 11 fuel fee                                      | ed temp. | T23    | (b)        | CU/C TC       |            |               |             | 23          |
| Eng. 10 to 11 oxid fee                                      | ed temp. | T24    | (b)        | CU/C TC       |            |               | }           | 24          |
| Eng. 13 to 15 fuel fee                                      | ed temp. | T25    | (b)        | CU/C TC       |            |               |             | 25          |
| Eng. 13 to 15 oxid fee                                      | ed temp. | т2б    | (b)        | CU/C TC       |            |               |             | 26          |
| Eng. 14 to 16 fuel fee                                      | ed temp. | T27 `  | (b)        | CU/C TC       |            |               |             | 27          |
| Eng. 14 to 16 oxid fee                                      | ed temp. | т28    | <u>(b)</u> | CU/C TC       |            |               |             | 28          |
| Eng. 1 fuel valve seat                                      | temp.    | T29    | (c)        | C/A TC        | ]          | <u>}</u>      |             | 29          |
| Eng. 1 oxid valve seat                                      | temp.    | т30    | (c)        | C/A TC        |            |               |             | 30          |
| Eng. 2 fuel valve seat<br>Remarks.                          |          | T31    | (c)        | C/A TC        |            |               |             | 31          |
| <sup>b</sup> 0° to 200° F.<br><sup>c</sup> -100° to +300° F |          |        |            |               |            |               |             |             |

٠

TEST ENGINEER

SCOPE CH AN

HISC

CHAN

Blevins

S/C Chan

CFLL NUMBER

REMARKS

Winsco SH 009 Winsco SN 013

Winsco SN 025 Winsco SN 031 Winsco SN 026

Winsco SN 033 Winsco SN 042

Winsco SN 036 Winsco SN 048 Winsco SN 038

Winsco SN 027 Winsco SN 039 Winsco SN 037 Winsco SN 041 Vinsco SU 028 Vinsco SH 043

•

116

MSC FORM 375 (Rev Jul 68)

MSC FORM 360B (JAN 67)

.

.

| TEST NUMBER                | DATE                |              |            | NSTRUMENTATIO |            | NING S         | исст        |               | TEST 6      | NGINEER       |              | CELL NUMBER   |
|----------------------------|---------------------|--------------|------------|---------------|------------|----------------|-------------|---------------|-------------|---------------|--------------|---------------|
| 2T404                      | October             | 4, 1967      | ·          |               |            |                |             |               | Ble         | vins          |              | 116           |
| PARAMET                    | ER                  | SYM          | RANGE      | TRANSDUCER    | FM<br>Chan | GAL VO<br>CHAN | SEL<br>CHAN | EI<br>Chan    | S/C<br>Chan | SCOPE<br>Chan | MISC<br>Chan | REMARKS       |
| Eng. 2 oxid valve          | seat temp.          | T32          | (c)        | C/A TC        |            |                |             | 32            |             |               |              |               |
| Ing. 3 fuel valve          | seat temp.          | <u>T33</u>   | (c)        | C/A TC        |            |                |             | 33            |             |               |              | On valve body |
| Eng. 3 oxid valve          | e seat temp.        | т34          | (c)        | C/A TC        |            |                |             | 34            | L           |               |              |               |
| Eng. 4 fuel valvo          | seat temp.          | T35          | (c)        | C/A TC        |            |                |             | 35            |             |               |              |               |
| Eng. 4 oxid valve          | seat temp.          | <u>T36</u>   | <u>(c)</u> | C/A TC        | L          |                |             | 36            |             |               |              |               |
| Ing. 5 fuel valve          | <u>seat temp.</u>   | <u>T37</u>   | (c)        | C/A TC        | <u> </u>   |                |             | 37            |             |               |              |               |
| Ing. 5 oxid valve          | seat temp.          | T38          | (c)        | C/A TC        |            |                |             | 38            |             |               |              |               |
| Eng. 6 fuel valve          | seat temp.          | T39          | (c)        | C/A TC        |            |                |             | 39            |             |               |              |               |
| Eng. 6 oxid valve          | seat temp.          | т40          | (c)        | C/A TC        |            |                |             | 40            |             |               |              |               |
| Ing. 7 fuel valve          | seat temp.          | <u>41</u>    | (c)        | C/A TC        |            |                |             | 4.2           |             |               |              |               |
| Eng. 7 oxid valve          | <u>seat temp.</u>   | T42          | _(c)       | C/A TC        |            |                |             | 42            |             |               |              |               |
| Eng. 8 fuel valve          | seat temp.          | T43_         | (c)        | C/A TC        |            |                |             | 43            |             |               |              | On valve_body |
| Eng. 8 oxid valve          | seat temp.          | _T44_        | (c)        | C/A TC        |            |                |             | 44            |             |               |              |               |
| Eng. 9 fuel valve          | seat temp.          | T45_         | (c)        | C/A TC        |            |                |             | 45            |             |               |              |               |
| Ing. 9 oxid valve          |                     | T46          | _(c)       | C/A TC        |            |                |             | 46            |             |               |              | On_valve_body |
| ing. 10 fuel valy          | e_seat_temp.        | т47          | (c)        | C/A TC        |            |                |             | 47_           |             |               |              | On valve body |
| Eng. 10 oxid valu          | ve_seat temp.       | т48          | (c)        | C/A TC        |            |                |             | 1,8           |             |               |              |               |
| Ing. 11 fuel valu          | <u>e seat temp.</u> | _т49         | (c)        | C/A TC        |            |                |             | _ <u>49</u> _ |             |               |              |               |
| Eng. 11 oxid valy          | e seat temp.        | <u>Т50 _</u> | (c)        | C/A TC        |            | ·              |             | 50            |             |               |              | On valve_body |
| Ing. 12 fuel valu          | <u>e seat temp.</u> | T51          | (ę)        | C/A TC        |            |                |             | _51_          |             |               | ·            |               |
| Remarks.                   |                     |              |            |               |            |                |             |               |             |               |              |               |
| <sup>'c</sup> -100° to +30 | 0° F.               |              |            |               |            |                |             |               |             |               |              |               |
|                            |                     |              |            |               |            |                |             |               |             |               |              |               |
|                            |                     |              |            |               |            |                |             |               |             |               |              |               |
| ISC FORM 375 (Rev Jul      |                     |              |            |               |            |                |             |               |             |               |              |               |

.

THERMOCHEMICAL TEST AREA

DOC. NO. MSC-EP-R-68-17 REVISION New

PAGE OF

<u>D-16</u> <u>0-0</u>

| TEST NUMBER DATI<br>2T404 Octob | er 4, 1967                                                     | 11           | NSTRUMENTATIO | N PLAN     | NING S        | HEET        |             | Blev        | NGINEER       |              | CELL NUMBER   |
|---------------------------------|----------------------------------------------------------------|--------------|---------------|------------|---------------|-------------|-------------|-------------|---------------|--------------|---------------|
| PARAMETER                       | SYM                                                            | RANGE        | TRANSDUCER    | FM<br>Chan | GALVO<br>Chan | SEL<br>CHAN | E I<br>CRAN | S'C<br>Chan | SCOPE<br>Chan | MISC<br>Chan | REMARKS       |
| Eng. 12 oxid valve seat te      | mp. <u>T52</u>                                                 | (c)          | C/A TC        |            |               |             | 52          |             |               |              |               |
| Eng. 13 fuel valve seat te      | mp. <u>T53</u>                                                 | (c)          | C/A TC        |            |               |             | 53          |             |               |              | On valve body |
| Eng. 13 oxid valve seat te      | mp. T54                                                        | (c)          | C/A TC        |            |               |             | 54          |             |               |              |               |
| Eng. 14 fuel valve seat te      | mp. T55                                                        | (c)          | C/A TC        |            | ļ             |             | 55          |             | <u> </u>      |              |               |
| Eng. 14 oxid valve seat te      | mp. T56                                                        | (c)          | C/A TC        |            |               |             | 56          |             |               |              |               |
| Sng. 15 fuel valve seat te      | mp. T57                                                        | (c)          | C/A TC        |            |               |             | 57          |             |               |              | On valve body |
| Sng. 15 oxid valve seat te      | mp. <u>T58</u>                                                 | (c)          | C/A TC        |            |               |             | 58          |             |               |              |               |
| Eng. 16 fuel valve seat te      | mp. 1759                                                       | (c)          | C/A TC        | [<br>      |               |             | 59          |             |               |              |               |
| Eng. 16 oxid valve seat te      | mp                                                             | (c)          | C/A TC        |            |               |             | 60          | . <u></u>   |               |              |               |
| Quad I cluster temp.            | тбі                                                            | (a)          | C/A TC        |            |               | 21          | 61          |             |               |              |               |
| Quad II cluster temp.           | т62                                                            | (a)          | C/A TC        |            |               | 22          | 62          |             |               |              |               |
| Quad III cluster temp.          | т63                                                            | (a)          | C/A TC        |            |               | 23          | 63          |             |               |              |               |
| Quad IV cluster temp.           | т64                                                            | (a)          | C/A TC        |            |               | 24          | 64          |             |               |              |               |
| Eng. 6 flange temp. no. 1       | т65                                                            | ( <u>e</u> ) | C/A TC        |            |               | 25          | 65          |             |               |              |               |
| Sng. 6 flange temp. no. 2       | т66                                                            | (e)          | C/A TC        |            |               | 26          | 66          |             |               |              | Heater temp.  |
| Eng. 6 combustor temp. no.      |                                                                | (f)          | C/A TC        | <br>       |               | 27          | 69          |             |               |              |               |
| Eng. 6 combustor temp. no.      | 2 T70                                                          | (f)          | C/A TC        |            |               |             | 70          |             |               |              |               |
| Eng. 14 combustor temp. no      | . 1 T89                                                        | (f)          | C/A TC        |            |               | 29          | 89          |             |               |              |               |
| Eng. 14 combustor temp, no      | . а т90                                                        | ( <u>g</u> ) | C/A TC        |            |               |             | 90          |             |               |              |               |
|                                 | <sup>f</sup> 0 <sup>0</sup> to 1500<br><sup>g</sup> 0° to 2000 |              |               |            |               |             |             |             | ŗ             |              |               |

DOC. NO.

REVISION

PAGE D-10 of D-16

MSC-EP-R-68-17

1

.

| TEST NUMBER<br>2T404                                                                    | DAIE<br>October | 4,1967    |       | NSTRUMENTATIO | N PLAN     | NING S        | HEET        |             |             | NGINEL4       | 1            | CELL NUMBER      |
|-----------------------------------------------------------------------------------------|-----------------|-----------|-------|---------------|------------|---------------|-------------|-------------|-------------|---------------|--------------|------------------|
| PARANETER                                                                               | - <b></b>       | SYM       | RANGE | TRANSDUCER    | FN<br>Chan | GALVO<br>Chan | SEL<br>CHAN | E I<br>Chan | S/C<br>Chan | SCOPE<br>Chan | MISC<br>Chan | REMARXS          |
| Eng. 14 flange temp.                                                                    | no.l            | T91       | (e)   | C/A TC        |            |               | 30          | 91          |             |               |              |                  |
| Eng. 14 flange temp.                                                                    | no, 2           | T92       | ('e)  | C/A TC        |            |               | 31          | 92          |             |               |              | Heater temp.     |
| Wire bundle no. 1 te                                                                    | mp.             | т71       | (e)   | C/A TC        |            |               |             | 71          |             |               |              |                  |
| Wire bundle no. 2 te                                                                    | mp.             | T72       | (e)   | C/A TC        |            | <u> </u>      |             | , 72        |             |               |              |                  |
| Free air temp. no. 1                                                                    |                 | 767       | (e)   | С/А ТС        |            |               |             | 67          | 1           |               |              | On crossfeed sec |
| Free air temp. no. 2                                                                    |                 | 168       | (e)   | C/A TC        |            |               |             | 68          | 2           |               |              | In "B" module    |
| Isolation valve no.                                                                     | 125 tempk       | דעד       | (e)   | C/A TC        |            |               |             |             | 3           |               |              |                  |
| He tank A temp.                                                                         |                 | т97       | (h)   | C/A TC        |            |               | 32          | 97          |             |               |              | Skan             |
| He tank B temp.                                                                         |                 | т98       | (h)   | C/A TC        |            |               | 33          | 98          |             |               |              | Skin             |
| Eng. 1 to 2 fire vol                                                                    | tage            | Vl        | (1)   |               |            |               | 1           |             |             |               |              | Opposing 4u-4d   |
| Eng. 5 to 6 fire vol                                                                    | tage            | V2        | (i)   |               |            |               | 2           |             | 1           |               |              | Opposing 3u-3d   |
| Eng. 9 to 10 fire vo                                                                    | ltage           | V3        | (i)   |               |            |               | 3           |             |             |               |              | Opposing 2u-2d   |
| Eng. 13 to 14 fire v                                                                    | oltage          | V4        | (i)   |               |            |               | 4           |             |             |               |              | Opposing lu-1d   |
| Eng. 4 to 16 fire vo                                                                    | ltage           | ٧5        | (i)   |               |            |               | 5           |             |             |               |              | Opposing 4s-1s   |
| Eng. 8 to 12 fire vo                                                                    | ltage           | V6        | (1)   |               |            |               | 6           |             |             |               |              | Opposing 3s-2s   |
| Eng. 3 to 7 fire vol                                                                    | tage            | V7        | (i)   |               |            |               | 7           |             |             |               |              | Opposing 4f-3f   |
| Eng. 11 to 15 fire v                                                                    | oltage          | <u>v8</u> | (i)   |               |            |               | 8           |             |             |               |              | Opposing 2f-lf   |
| A system PQMD                                                                           |                 | Q1        | (j)   | EOS           |            |               | 15          | 73          |             |               |              |                  |
| B system PQMD                                                                           | 1-              | Q2        | (3)   | EOS           |            |               | 16          | 74          |             |               |              |                  |
| <sup>e</sup> 0° to 500° F.<br><sup>h</sup> .100 to +200° F<br><sup>i</sup> 0 to 28 V dc |                 |           |       | ad on downstr | eam si     | .de.          |             |             |             |               |              | ,<br>,           |

THERMOCHEMICAL TEST AREA

DOC. NO.

REVISION

PAGE D-11 of D-16

MSC-EP-R-68-17

•

.

| TEST NUMBER DATE<br>2T1+04 Octobe                 | r 4, 1967   | • 11                                  | STRUMENTATIC | N PLAN       | NING S        | HEET        |            | TEST<br>Blev | ENGINEER      | 1            | CELL NUMBER |
|---------------------------------------------------|-------------|---------------------------------------|--------------|--------------|---------------|-------------|------------|--------------|---------------|--------------|-------------|
| PARAMETER                                         | , SYM       | RANGE                                 | TRANSDUCER   | F N<br>Chan  | GALVO<br>CHAN | SEL<br>CHAN | EJ<br>Chan | S/C<br>CHAN  | SCOPE<br>Chan | MISC<br>Chan | REMARKS     |
| Load cell — A oxid tank                           | TGJ         | 0 to 300                              | Alinco       |              |               | 17          | 5          |              |               |              |             |
| Load cell — A fuel tank                           | LC2         | 0 to 200                              | Alinco       |              |               | 18          | 6          | <u> </u>     |               |              |             |
| Load cell - B oxid tank                           | LC3         | 0 to 300                              | Alinco       | <u> </u>     |               | 19          | . 7 .      | <u> </u>     | <br>          |              | L           |
| Load cell - B fuel tank                           | LC4         | 0 to 200                              | Alinco       |              |               | .20         | 8          |              |               |              |             |
| Timing                                            | -           | · · · · · · · · · · · · · · · · · · · |              | A 14<br>B 14 |               |             |            |              |               |              |             |
| SSC pressure                                      | p100        | (1)                                   | (m)          |              |               |             |            | 12           |               |              |             |
|                                                   |             |                                       |              |              |               |             |            | <u>`</u>     |               |              | <br>        |
| Eng. 1 inj., head temp.                           | T73         | (e)                                   | C/A TC       |              |               | 34          |            | 4            |               | ·····        | <u> </u>    |
| Eng. 2 inj. head temp.                            | <b>T</b> 74 | (e)                                   | C/A TC       |              |               | 35          | <u> </u>   | 5            |               |              | <u> </u>    |
| Eng. 3 1nj. head temp.                            | T75         | (e)                                   | C/A TC       | [            |               | 36          |            | ļ            |               |              | ļ           |
| Eng. 4 inj. head temp.                            | 176         | (e)                                   | C/A TC       |              |               | 37          |            |              |               |              |             |
| Eng. 5 inj. head temp.                            | <b>T</b> 77 | (e)                                   | C/A TC       |              |               | 38          |            | 6            |               |              |             |
| Eng. 6 inj. head temp.                            | 178<br>1778 | (e)                                   | C/A TC       |              |               | 39          |            | 7            |               |              |             |
| Eng. 7 inj. head temp.                            | T79         | (e)                                   | C/A TC       |              |               | 40          |            |              |               |              |             |
| Eng. 8 inj. head temp.                            | T80         | (e)                                   | C/A TC       |              |               | 41          |            |              |               | _            | •           |
| Eng. 9 inj. head temp.<br>Eng. 10 inj. head temp. | T81<br>T82  | (e)<br>(e)                            | C/A TC       |              |               | 42          |            | 8            |               |              | \           |
|                                                   |             |                                       | C/A TC ,     |              |               | 43          |            | 9            |               |              |             |
| Eng. 11 inj. head temp.                           | T83         | (e)                                   | C/A TC       |              |               | 44          | L          |              |               |              |             |
| <sup>e</sup> 0° to 500° F.                        |             |                                       |              |              |               |             |            |              |               |              | •           |
| 10 to 10 mm Hg                                    |             |                                       |              |              |               |             |            |              |               |              |             |
| <sup>m</sup> MKS baratron                         |             |                                       |              |              |               |             |            |              |               |              |             |

-

THERMOCHEMICAL TEST AREA -

•

MSC-EP-R-68-17 REVISION New

DOC. NO.

PAGE D-12 of D-16

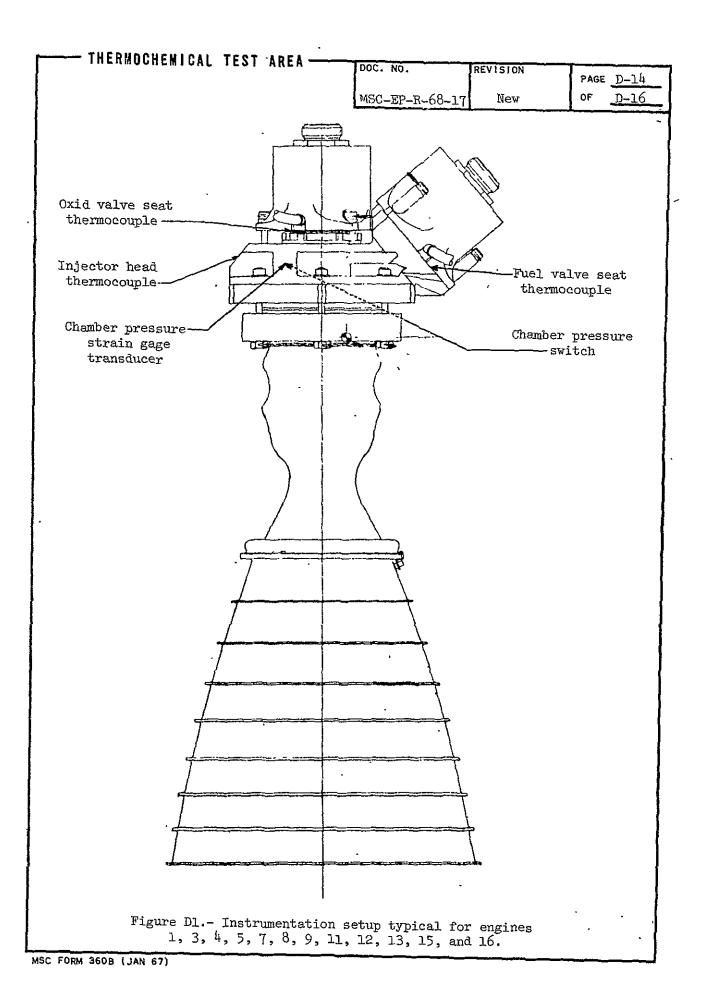
.

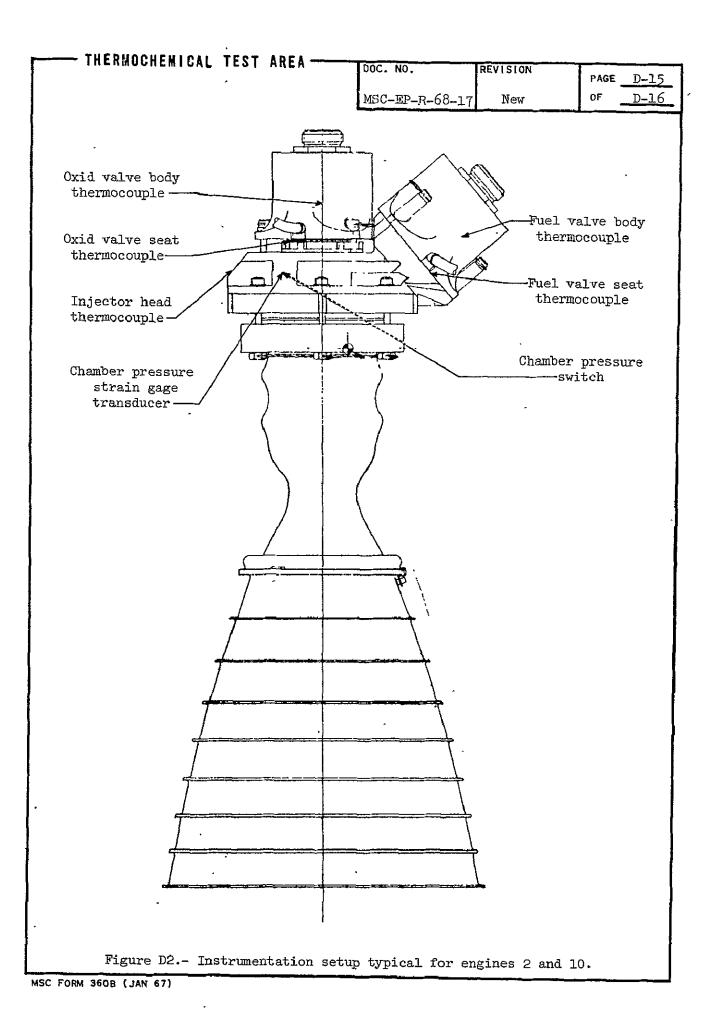
.

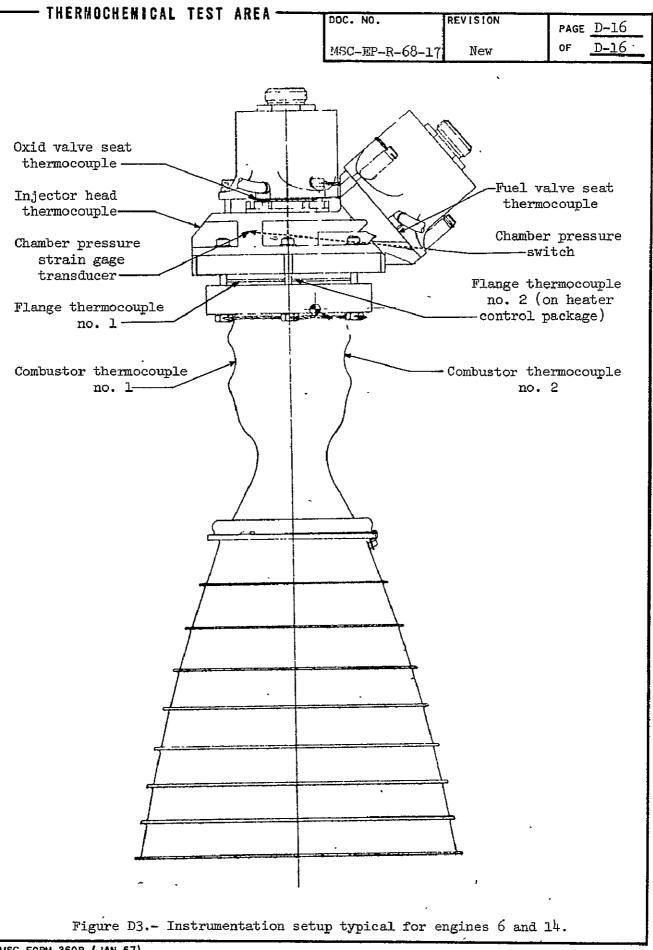
.

.

٠


-


| rest number<br>20404                                     | OATE<br>October | 4, 1967     | 7 INSTRUMENTATION PLANNING SHEET |            |            | TEST ENGINEER<br>Blevins |                   |                             | CELL NUMBE II<br>116 |               |              |         |
|----------------------------------------------------------|-----------------|-------------|----------------------------------|------------|------------|--------------------------|-------------------|-----------------------------|----------------------|---------------|--------------|---------|
| PARAMETER                                                | R               | SYM         | RANGE                            | TRANSDUCER | FM<br>Chan | GALVO<br>Chan            | SEL<br>CHAN       | E I<br>CHAN                 | S / C<br>Chan        | SCOPE<br>CHAN | HISC<br>CHAN | REMARKS |
| Eng. 12 inj. head                                        | temp.           | т84         | (e)                              | C/A TC     |            |                          | 45                |                             |                      | <u> </u>      | _            |         |
| Eng. 13 inj. head                                        | temp.           | <b>T</b> 85 | (e)                              | C/A TC     |            |                          | 46                |                             | 10                   |               |              |         |
| Eng. 14 inj, head                                        | temp,           | т86         | (e)                              | C/A TC     | [          | }                        | 47                |                             | 11                   |               |              |         |
| Eng. 15 inj. head                                        | temp.           | T87         | (e)                              | C/A TC     |            |                          | 48                |                             |                      |               |              |         |
| Eng. 16 inj. head                                        | temp.           | т88         | (e)                              | C/A TC     |            | •                        | 49                |                             |                      |               |              |         |
| Ing. 2 fuel valve                                        | temp.           | <b>T</b> 7  | (n)                              | C/A TC     |            |                          |                   | 85                          |                      |               |              |         |
| Eng. 2 oxid valve                                        | temp.           | т8          | (n)                              | C/A TC     |            |                          |                   | 86                          |                      |               |              |         |
| ing, 10 fuel valve                                       | e temp.         | T9          | (n)                              | C/A TC     |            |                          |                   | 87                          |                      |               |              |         |
| ing. 10 oxid valve                                       | temp.           | T10 ·       | (n)                              | C/A TC     |            |                          |                   | 88                          |                      |               |              |         |
|                                                          |                 | -           |                                  |            |            |                          |                   |                             | [                    |               |              |         |
|                                                          |                 |             |                                  |            |            |                          |                   |                             |                      | <b>—</b>      |              |         |
|                                                          |                 |             |                                  |            | ,          |                          |                   |                             |                      |               |              |         |
|                                                          |                 |             |                                  |            |            |                          |                   |                             |                      |               |              |         |
|                                                          |                 |             |                                  |            |            |                          |                   |                             |                      |               |              |         |
|                                                          |                 |             |                                  |            |            |                          |                   |                             |                      |               |              |         |
|                                                          |                 |             |                                  |            |            |                          |                   |                             |                      |               |              |         |
|                                                          |                 |             |                                  |            |            |                          |                   |                             |                      |               |              |         |
|                                                          |                 |             |                                  |            |            |                          |                   |                             |                      |               |              |         |
|                                                          |                 |             |                                  |            |            |                          |                   |                             |                      |               |              |         |
| otals                                                    |                 |             |                                  |            | 73         |                          | 50                | .93.                        | 12                   |               | .16          |         |
| omarks.                                                  |                 | <b></b>     |                                  |            |            | <b></b>                  | La an da Tanana a | #-, <i>4</i> , <del>-</del> |                      |               |              | , , ,   |
| <sup>e</sup> 0° to 500° F.<br><sup>n</sup> 0° to 300° F. |                 |             |                                  |            |            |                          |                   |                             |                      |               |              | •       |
| 0. 20 300. E.                                            | 1               |             |                                  |            |            |                          |                   |                             |                      |               |              |         |
|                                                          |                 |             |                                  |            |            |                          |                   |                             |                      |               |              |         |
|                                                          |                 |             |                                  |            |            |                          |                   |                             |                      |               |              |         |


- THERMOCHEMICAL TEST AREA -

MSC-EP-R-68-17

<u>р-13</u>







MSC FORM 360B (JAN 67)

# - THERMOCHEMICAL TEST AREA ------

| DOC. NO.       | REVISION | PAGE | E-1        |
|----------------|----------|------|------------|
| MSC-EP-R-68-17 | New      | OF   | <u>E-3</u> |

# APPENDIX E

ENGINE III U/5 ANOMALY REPORT

THERMOCHEMICAL TEST AREA ----

| DOC. NO.       | REVISION | PAGE | E-2        |
|----------------|----------|------|------------|
| MSC-EP-R-68-17 | New      | OF   | <u>E-3</u> |

## Anomaly Description

The engine III U/5 chamber pressure data indicated that the engine operated at reduced performance during this test. The following chamber pressure values were recorded at various stages of the program (see appendix A for run descriptions).

| Run no.   | Pulse duration, | Steady state Pc,<br>psia |  |  |
|-----------|-----------------|--------------------------|--|--|
| II-A-1-5  | 1.000           | 90                       |  |  |
| II-A-1-5A | 1.000           | 89                       |  |  |
| II-A-2-63 | 0.050           | 78                       |  |  |
| II-A-2-64 | 0.100           | 79                       |  |  |
| II-A-2-65 | 0.150           | 78                       |  |  |
| II-A-1-73 | 1.000           | 75                       |  |  |
| IV-K-1    |                 | 75                       |  |  |

Note: Nominal steady state Pc = 97 psia

Run II-A-1-5 was the first firing on engine III U/5, and run IV-K-1 occurred near the end of the test program.

### Engine History

Engine III U/5 as received from The Marquardt Corporation after the design verification testing was considered unsuitable for test operation. The injector face was severely eroded as shown in figure 21. Therefore, the injector head assembly (TMC P/N 228795, S/N 1003) was replaced with the injector head assembly from TMC P/N228687, S/N0007. The engine was then acceptance tested before installation in the test subsystem. After installation, the engine was gas flow tested. The pretest water calibration results were 439 and 686 pounds/hour for the fuel and oxidizer valves, respectively. These values are well within acceptable limits. The engine injector orifice flow test results and the engine gas flow test results (see figures 24 and 26) were also acceptable.

Investigation Description and Discussion

An extensive investigation was conducted in an attempt to ascertain the cause of the apparent low engine performance. The hot-firing portion of the test was completed on December 11, 1967. On January 30, 1968, a - THERMOCHEMICAL TEST AREA DOC. NO. REVISION PAG

| DOC. NO.       | REVISION | PAGE <u>E-3</u> |
|----------------|----------|-----------------|
| MSC-EP-R-68-17 | New      | of <u>E-3</u>   |

static calibration check of the engine III U/5 chamber pressure transducer was performed through the data acquisition system which had been reconstructed to the hot-firing configuration. This test indicated that the chamber pressure transducer was functioning properly. A post-test gas flow test was then performed on system A with results almost identical to the pretest data. The engine was then removed from the LM RCS test article and subjected to a series of post-test checkouts. An inspection of the engine inlet filters revealed no evidence of contamination or damage. Injector orifice flow test, water calibration, and leakage check results were acceptable.

The engine and the original chamber pressure transducer were again installed on the LM RCS test article. During the hot-firing tests described in reference 21, the engine was fired with a resultant steady state chamber pressure of 85 psia.

Cluster III was removed from the LM RCS and mounted on another propellant feed system to accomplish the testing described in reference 22. At this time the positions of the III U/5 and III S/8 engines were reversed, making the questionable engine a side firing engine. In addition, the original engine III U/5 chamber pressure transducer was installed in engine III S/8, and a new transducer was installed in engine III U/5. Steady state chamber pressure readings from both engines were nominal in this test.

In view of the above results, it appears that both engine III U/5 and the engine III U/5 chamber pressure transducer were capable of nominal operation. The acceptable results of the pretest and post-test water calibrations, injector orifice flow tests, and engine gas flow tests indicate that the engine propellant flow rates should have been nominal during the subsystem testing. The propellant inline filter/cluster isolation valve assemblies are the only other possible flow restrictor in the subsystem. A flow restriction in these assemblies of the magnitude required to reduce the engine performance by 25 percent would have caused a drastic reduction in the propellant inlet pressures, but inlet pressures for engine III U/5 appeared to be nominal. In addition, the chamber pressure transient characteristics appeared nominal.

### Conclusion

From the above discussion, it appears that the anomalous performance indication on engine III U/5 was the result of either an unknown data acquisition system problem or shifts in the chamber pressure transducer output.