

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA

VOYAGER MARS PLANETARY QUARANTINE BASIC MATH MODEL REPORT
This work was performed for tine Jet Propulsion Laboratory, California Instinte of Technology, sponsored by the National Aeronautiss and Space Administration under Contract NAS7-100.

Parpanko or

M. Mantim

Amalvsis and Techniojes
Aovaneed Mission Requiaements
Spackcmart Department
Valley Fonge. Pennstlvania
E. Bergen

Aovanceo 1 ntenpianeial Progimams
Aovanced Requinementi Plamiong Oferations Pabaiema. Calif anla

Ampoved er

Prepared For
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena, California
Under JPL Contract No. 951112

TABLE OF CONTENTS

Section Page
INTRODUCTION v
1 APPROACH TO MATH MODEL
1-1
2 MECHANIZATION 2-1
3
ENTRY . 3-1
4 SENSITIVITY
4-1

1iis/iv

INTRODUCTION

The prime goal of the Planetary Quarantine Subtask under the Voyager Phase 1A Task C Study is to show the effect of the Planetary Quarantine requirements on the Voyager mission and its clements.

Figure I is a simplified work flow diagram showing the major Planetary Quarantine subtasks and their interrelationships. Activities performed on this contract are being dorumented in bimonthly progress reports and a separate serics of technical reports and mernos. The present report presents the activities to date under the Basic Math Model Development Subtask. Section 1 discusses the basic questions involved and the selected approach to be used. Section 2 describes the mechanization of the basic concepts. Two previous reports, VOY-C2-TR7 and VOY-C2-TR4, presented work done in the basic parametric analysis subtasks for Orbit Mechanics and Entry Analysis. Section 3 of the present report presents the work performed in taking the basic entry results and converting them to a form suitable for incorporation into the math model computer programs. Section 4 of this report gives an example of how the math model is used in performing sensitivity studies, the next major subtask in the Planetary Quarantine Study. Appendix A gives a complete listing of the programs developed for this task.

Table I lists the reports issued to date on the Planetary Quarantine Task.

Figure I. Planetary Quarantine Task, Simplified Work Flow Diagram

Table I. Report Index for Voyager Planetary Quarantine Task C

$\begin{aligned} & \text { VOY } \\ & \text { C2 } \end{aligned}$	Title	Author	Date
TR 1	On the Distribution of Density at Orbital Altitudes in the Martian Atmosphere.	Vachon	15 August 1960
TR 2	Prelim. Assessment of the Micrometeorid Phrnomena.	Good	July 1966
TR 3	Influence of Space Vehicle Charge and Plasma Field on the Quarantine of the Planet Mars.	McKee	1 September 1966
TR 4	Voyager Mars Planetary Quarantine Particle Burnup Study.	Parker Beerger Burrow:	15 September 1966
TR 5	An Investigation into the Feasibility of Conducting an Experiment To Determine the Effects of Rocket Combustion on the Viablity of Mieroorganisms.	Oberta	23 September 1966
TR 6	An Approximate Plume Analysis for the Voyager, Task C, Planetary Quarantine Study.	Hamel	30 September 1966
Tr 7	Voyager Mars QuarantineEjected Particle Trajectory Study.	Korcustein	30 Novermber 1966
TM-1	Preliminary Combinatorial Probability Model for the Voyager Quarantine Problem (Phases 1, 2, 3).	T. Green	October 1966
TM-2	Vojager Mars P.Q. Thermal Kill of Bacteria during Mars Entry.	M. Martin	October 1956
TM-3	Loose Particle InvestigationAc Evaluation of the Problem.	R. Waite	October 1966
TM-4	Micrometeoroid Effects Analytical Studies Status Report- September 30, 1966,	R. Good	October 1966
TM-5	Voyager P. Q. Literature Search Cold Jas Systems.	J. Mascon	October 1968
TM-6	Preliminary Bio Burden Cata - Voyager P.Q.	M. Korsterer	October 1886
TM-7	Combustion Lethality Experfment - Status Report.	Oberta	November 1868
TM-8	Radiation Effect on the Viability of Microorganisms.	Peteracn Koenterer	December 1968
TM-9	CLE-Integ. Dev. Test Plan	Oberta Gillis Iandry	December 1866
TM-10	Micraneteorotd 8tudies - 	Cood Behringar Nayor	December 1968
TM-11	Miorometeoroid Bimulation Experimental studies Stabus Report, Jar, 1967.	SCoemtarer Behringer Bemon Bayor	Jamiary 1967
.7M-18	Cold Gas ACS Experimental Program-8tatue Roport Jamaty 1967.	Masen	Jomaty 1967
TM-13	Looet Particle hivestigation Status Report, Jamary 1967.	Jomes Besta Naver	Samary 1007

Section Page
1 APPROACH TO MA'JH MODEL 1-1
1.1 Rationale 1-1
1.2 Computational Problems 1-6
1.3 Implementation 1-10
1.4 Computer Program Development 1-17
LIST OF ILLUSTRATIONS
Figure Page
1-1 Math Model Format 1-2
1-2 Computational Flow Diagram 1-3
1-3 Input Data Format 1-4
1-4 Alternate Data Formats 1-5
1-5 Typical Output Format 1-6
1-6 Conditional Probability Density Functions 1-7
1-7 Conditional Probability Density Functions 1-8
1-8 Summation of Probability Density Functions 1-9
1-9 Intervals of Variables Problem 1-11
1-10 Intervals of Variables Solution 1-12
1-11 Intervals of Variables Solution 1-14
1-12 Intervals of Variables Solution 1-14
1-13 Intervals of Variables Solution 1-15

SECTION 1

APPROACH TO MATH MODEL

1.1 RATIONALE

1.1.1 STATEMENT OF PROBLEM

The problem of determining the probability of contaminating Mars before time T, afs is result of a Voyager mission, is essentially one of identifying all possible contamination sources associated with the "Voyager hardware" (launch vehicle, spacecraft, lander, e.t.) and describing the various mechanisms that will cause viable organisms to reach the surface of Mars. The events of interest, therefore, can be described generically as follows--One or more viable organisms launched from earth on Voyager hardware are placed on an impact trajectory to the surface of Mars using some mechanism and furvive all potential kill mechanisms (e.g., U.V., atmospheric entry heating, etc.) and arrive, survive and spread on the surface of Mars before time T. The probability of the occurrence of all such events, then, is the probability of contaminating Mars before time T as a result of the missions.

Figure 1-1 illustrates the approach being used in matrix form. The rows of the matrix enumerate all possible sources of contamination while the columns of the matrix are descriptive of how particles find their way to the surface of Mars. For purposes of illustration, culy four scurces of contamination are listed.

ROUTE TO MARS											
	1	2	3	4	5	c	7	8	9	10	11
						strvive vacuum					$\begin{aligned} 5 \\ 4 \\ 0 \end{aligned}$
ATtITUDE CONTROL Gas Syster:											
orbit insertion engine											
LOOSE PARTICLES											
MICRO-METEOROID EJECTA											

Figure 1-1. Math Model Format

To determine how viable organisms might find their way to the surface of Mars, one must first consider the initial loading on the vehicle, second the transport process that the particles undergo in arriving at the surface of Mars, and third the potential kill mechanisms that the viable organisms are subjected to enroute to Mars. Column 1 calls for input data on the initial loading of viable organisms on the vehicle. Column 2 calls for data describing the probability that the viable organisms initially on the vehicle will survive during the trip before the time of ejection. Data describing the manner in which the particles are ejected from the vehicle is called for in Column 3. Column 4 describes the process by which the ejected particles find their way to Mars. Columns 5 through 10 call for data on the probability that the organisms will be killed enroute to Mars.

Finally after performing the operations indicated by Columns 1 through 10 on all of the sources of contamination indicated by the rows, the number of viable organisms that reach the surface of Mars and survive before time T is given in Column 11. Column 11 then is totalled for all possible sources of contamination giving the tntal number of viable organisms that reach the surface of Mars and survive before time \%.

1.1.2 INPUT

Figure 1-2 illustrates the flow of information by considering some important elements of the problem, ---the initial loading of viable organisms, the transport process, the Mars atmosphere entry heating kill mechanism, and finally the number of viable organisms arriving at the surface of Mars and surviving before time T. Consider first the initial loading of viable organisms on the vehicle. In what terms might the initial loading be given? It might be stated as an average number of the several measurements of the loading. A more conservative approach would be to state it as some upper or maximum value of several measurements of the loading. A realistic description would be to describe this number as several ranges of values, each with an associated probability. Figure 1-3 graphically shows this type description. Note from the figure that the initial loading could be small in number, that is near 0 , or it could be very large, as high as say one million. The probabiliy however, that the number is very small, or very large, is a small probability. The most probable value is somewhere in the range of one thousand. The actual intervals shown here were arbitrarily selecied. Any apprcpriate intervals may be used.

Figure 1-2. Computational Flow Diegram

Figure 1-3. Input Data Format

Consider next the transport process. By this point in the problem, the manner in which particles leave the spacecraft has been considered. The trajectory the ejected particles take must be considered to determine if they can impact the surface of Mars by time T. An analysis must be made to determine if the particle will enter the atmosphere and eventually impact the surface of Mars. Some of the significant parameters associated with this analysis are the $\frac{M}{C_{D} A}$ of the particle, the velocity at which the particle leaves the spacecraft, and the angle at which it leaves the spacecraft. This analysis has been described in detail in document numbci VOY-C2-TR7.

Although the particle may take on a trajectory that will cause it to reach Mars, viable organisms carried by this particle may be killed enroute. As an example of one of the kill mechanisms, consider the atmosphere entry heating. The time-temperature history of the particle as it enters the Mars atmosphere and continues through the atmosphere to the surface of Mars must be ronsidered to determine if the organisms will survive this kill mech: ism. Parameters associated with this analysis are again the $\frac{M}{C_{D} A}$ of the particle, the velocity and angle at which the particle enters the atmosphere of Mars, and the material properties of the particle, such as emissivity. This analysis is discussed in Section 5 of this report.

Figure 1-4 illustrates ' tye data that might be applicable to the descripiion of the parameters associated with the transpor ${ }^{\text {c }}$ process and the atmosphere entry heating. The three types of density functions that we encounter are a) the smooth continuous probability density function, b) a continuous probability density function having a finite number of intervals with the density uniform over each interval, and c) a discrete type probability density function which takes on only certain values, such as integers, each value having some probability of occurrence. Each of these probahility density functions may be approximated by either of the other two. Parameters such as $\frac{M}{C_{D} A}$, velocity, angle, emissivity, etc., are normally described by continuous type density functions. Such parameters as number of viable organisms, however, are best described by discrete type density functions. If it is sufficient to describe the number as lying within some range, however, then the second type of density function may be used to describe the number of viable organisms.

1.1.3 OUTPUT

Consider now the number of viable organisms that reach the Mars atmosphere or surface and survive before time T, which is the output of the contamination analysis for a given source. Figure i-5 illustrates the type density function that might represent this output. A discrete type density function is used to represent the number of viable organisms in the region near zero. This allows one to look at the probability of getting one or more organisms, two or more organisms, three or more organisms, etc. For the larger numbers it may be sufficient merely to state the probability that the

Figure 1-4. Alternate Data Formats number lies within some range or ranges, such as between five and one hundred, or between one hundred and one million. Based on the hypothetical information in Figure 1-5, the probability that one or more viable organisms
will reach Mars surface and continue to survive before time T is 10^{-3}. This is arrived at by either adding up the probabilities for $1,2,3,4,5$, and on up, or by subtiacting the probability of zero (which is 0.939) from 1. This hypothetical density function also shows that the probability of four or more viable organisms reaching Mars surface and continuing to survive before time T is 10^{-4}. If, for example, the criteria for contamination of Mars was one or more organisms reaching Mars and the constraint is that the probability of contaminating Mars must not exceed 10^{-4}, then the constraint would not have been met based on the information shown in the figure. If, on the other hand, as many as three viable organisms reaching Mars could be tolerated without representing contamination, then the constraint of 10^{-4} would have been met. If it were to cost a great deal more to meet the constraint of 10^{-4} using the criteria of one or more viable organisms representing contamination, then some reevaluation of the problem may be in order.

NO. OF V.O. 's REACHING MARS' SURFACE AND CONTINUING TO SURVIVE PF:OR TO TIME T \longrightarrow

Figure 1-5. Typical Output Format

1.2 COMPUTATIONAL PROBLEMS

Primarily, there are three distinct kinds of computational problems associated with the determination of the probability of contaminating Mars before time T. The first is that of
operating on an initial probability density function by a set of conditional probability density functions and thus generating a marginal probability density function as the output. The second is that of summing probability density functions. The third is that of generating the probability density function on a randum variable that has been defined as some function of one or more other random variables, each having its own a priori probability density function.

1.2.1 CONDITIONAL PROBA BILITY DENSITY FUNCTIONS

This computation arises in sicu tions such as:
a. Given a range of size; of particles (S) (probability density function on size), what are the number of viable organisms (O) carried by these particles? 'This computation is represented graphically by Figure 1-6.

Figure 1-6. Conaitional Probability Density Functions

The output (or marginal) distribution is computed as follows:
$p\left(\mathrm{O}_{1}\right)=p\left(\mathrm{O}_{1} \mid \mathrm{S}_{1}\right) \cdot p\left(\mathrm{~S}_{1}\right)+\mathrm{p}\left(\mathrm{O}_{1} \mid \mathrm{S}_{2}\right) \cdot \mathrm{p}\left(\mathrm{S}_{2}\right)+\mathrm{p}\left(\mathrm{O}_{1} \mid \mathrm{S}_{3}\right) \cdot \mathrm{p}\left(\mathrm{S}_{3}\right)+\mathrm{p}\left(\mathrm{O}_{1} \mid \mathrm{S}_{4}\right) \cdot \mathrm{p}\left(\mathrm{S}_{4}\right)$
$\mathrm{p}\left(\mathrm{O}_{2}\right)=\mathrm{p}\left(\mathrm{O}_{2} \mid \mathrm{S}_{1}\right) \cdot \mathrm{p}\left(\mathrm{S}_{1}\right)+\mathrm{p}\left(\mathrm{O}_{2} \mid \mathrm{S}_{2}\right) \cdot \mathrm{p}\left(\mathrm{S}_{2}\right)+\mathrm{p}\left(\mathrm{O}_{2} \mid \mathrm{S}_{3}\right) \cdot \mathrm{p}\left(\mathrm{S}_{3}\right)+\mathrm{p}\left(\mathrm{O}_{2} \mid \mathrm{S}_{4}\right) \cdot \mathrm{p}\left(\mathrm{S}_{4}\right)$
$\mathrm{p}\left(\mathrm{O}_{3}\right)=\mathrm{p}\left(\mathrm{O}_{3} \mid \mathrm{S}_{1}\right) \cdot \mathrm{p}\left(\mathrm{S}_{1}\right)+\mathrm{p}\left(\mathrm{O}_{3} \mid \mathrm{S}_{2}\right) \cdot \mathrm{p}\left(\mathrm{S}_{2}\right)+\mathrm{p}\left(\mathrm{O}_{3} \mid \mathrm{S}_{3}\right) \cdot \mathrm{p}\left(\mathrm{S}_{3}\right)+\mathrm{p}\left(\mathrm{O}_{3} \mid \mathrm{S}_{4}\right) \cdot \mathrm{p}\left(\mathrm{S}_{4}\right)$

In general notation, the above can be written in one statement as follows:
$p\left(O_{i}\right)=\sum_{j=1}^{j=4} p\left(O_{i} \mid S_{j}\right) \cdot p\left(S_{j}\right) \quad ; \quad i=1,2,3$
b. Given a range of number of viabia organisms that are subjected to a certain kill mechanism (X) (prob. density function on number), what are the numbers of viable organisms (Y) that survive the kill mechanism? This computation is represented graphically by Figure 1-7.

Figure 1-7. Conditional Probability Density Functions

1．2．2 SUMMATION OF PROBABILITY DENSITY FUNCTIONS

This computation arises，primarily，in arriving at the total number of viable organisms that will reach the surface of Mars as a result of all possible contamination sources． Conceptually，the computation consists of adding all possible combinations of numbers from the several probability density functions，computing the probability of each combination， establishing groups of common sums of numbers，and then computing the probability of each group of common sums．A very simplified illustration of this is given in Figure 1－8 and Tables 1 and 2．Two discrete probability density functions are considered for this purpose．

1.3 MP LAMENTATION

There are four basic ways of implementing the computational process described in the previous section.

1.3.1 CLOSED FORM SOLUTION

This approach requires that the probability density functions be described in closed mathematical form. The data from which these density functions are derived rarely lend themselves to a closed form mathematical description. However, some density functions may be described in this form either directly or through curve fitting.

Even when all of the density functions of interest are known in closed mathematical form, it is generally not possible to perform the necessary mathematical integrations in order to arrive at a closed form solution of the problem of interest. This difficulty becomes greatly magnified when the density functions must be coinbined according to some complex equation.

1.3.2 MONTE CARLO SIMULATION

Conceptually, this is a very siraple technique in terms of formulating the problem. It consists, essentially, of randomly selecting a value from each density function, operating on the set of values in the appropriate manner (ie., summation, multiplication, division, or by some complex equation) and then repeating this process a sufficient number of times until the true density solution has been closely simulated.

The shortcoming of this approach is that, when a large number of random variables are involved, the number of samples required by the Monte Carlo approach to simulate the true answer is extremely large, thus requiring a large amount of high speed computer time. A further difficulty is that there is no technique available to determine in advance just how large the sample must be in order to approach the true answer with a given level of accuracy.

1.3.3 NUMERICAL APPROACH (DISCRETE VALUES)

This technique calls for combining all possible values of the parameters and computing the probability of each combination 80 that an output value is generated with an associated
probability. After all combinations have been generated, the output values are then grouped into common groupings and the probabiiity of each group is computed, thus describing the probability density function for the output. The total number of combinations can be extremely large if there are a large number of parameters to be considered simultaneously. Quite often the approach becomes impractical for this reason.

1.3.4 NUMERICAL APPROACH (INTERVAL CONCEPT)

This approach is also a straightforward technique of using discrete approximations of continuous functions, considering all possible combination of values, computing the probability of each combination of values, operating on the set of values appropriately to generate the output value, grouping similar output values and then computing the probability of each group. Each density function is divided into intervals so that the combination of values referred to above are combinations of intervals of values and not combinations of discrete values. Furthermore, the density functions are combined pairwise in such a manner as to reduce the total number of combinations under consideration.

To illustrate the interval approach a transfer function ($V=W \cdot X+Y / Z$), such as shown in Figure 1-9, is assumed. $\mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z each have probability density functions as shown. The density functions are truncated at lower and upper values and the parameters $\mathrm{W}, \mathrm{X}, \mathrm{Y}$, Z may take on any values within the range of their respective lower and upper values. The figures should be interpreted as follows: Looking first at the probability density function on W---"The probability that the value lies between 2 and 3 is 0.1 ; between 3 and 4 is 0.7 ; and between 4 and 5 is 0.2 .

Figure 1-9. Intervals of Variables Problem

The probability density functions on X, Y, and Z are interpreted in the same way as those for W. However, there is one difference. The widths of the intervals on W and X are not uniform. As stated earlier, any appropriate widihs of intervals may be used - they need not be uniform.

Figure 1-10 illustrates the combination of parameters by considering the first part of the transfer function $V=W \cdot X+Y / Z-\cdots$; that is, $W \cdot X$. Consider first the interval 2-3 on W and the interval $10-15$ on X. All values of W. X resulting from these intervals will lie in a new interval having as a lower value $2 \cdot 10=20$, and an upper value $3 \cdot 15=45$. The probability associated with this new interval is $0.1 \cdot 0.2=0.02$. This is simp!y the probability that the value of W lies between 2 and 3 and the value of X lies between 10 and 15. The output of this combination of intervals is shown in Row 1 of the table. Columns 1 and 2 show the lower and upper limits of the new inteival generated by combining the first interval of W with the first interval of X. Column 3 shows the probability that the new value $W \cdot X$ lies in the new interval. Columns 4, 5 and 6 are representative of the intervals into which the outputs of the transfer of W - X are to be grouped. The probability shown in Column 3 that is associated with the interval indicated by Columns 1 and 2 is appropriately prorated into Columns 4, 5 and 6. This process is repeated for each combination of intervals. Because W has three intervals and X has three intervals, there are nine combinations of intervals to be considered.

Figure 1-10. Intervals of Variables Solution

The intervals into which the outputs of the transfer of $\mathrm{W} \cdot \mathrm{X}$ are to be grouped have been arbitrarily designated as 20-50, 50-70 and 70-125.

The new interval generated by the first combination of intervals is 20-45 with an associated probability of 0.02 (this is shown in the first three columns - Row 1 of the table). Because this interval is wholly contained by the first interval of the output density function, the entire 0.02 is put into the $20-50$ interval.

Consider now the second combination of intervals (i.e., $-W \rightarrow 2-3$ and $X \rightarrow 15-20$). The new interval generated by this combination will have as its lower limit $2 \cdot 15=30$ and as its upper limit $3 \cdot 20=60$. The probability associated with this interval $30-60$ is $0.1 \cdot 0.6=0.06$ (this is shown in the first three columns - Row 2 of the table). This probability is prorated to the 20-50 interval by the ratio $30-50 / 30-60$, and to the $50-70$ interval by the ratio $50-60$ / $30-60$ (i.e. $\frac{20}{30} \times 0.06=0.04$ is put into the $20-50$ output interval and $\frac{10}{30} \times 0.06=0.02$ is put into the 50-70 output interval). The remainder of the nine combinations is done exactly in the same manner. The probabilities in each of the output intervals are now totaled thus defining the output probability density function. That is, the probability that the value of the output, W • X, lies in the interval.

- 20-50 is
0.184
- 50-70 is
0.720
-70-125 is
0.096

The solution generated by this technique approaches the exact solution as we consider more and more intervlas on the input parameters (i.e., as the width of the intervals approach zero). This allows the analyst to test for convergence to "sufficient" accuracy as the number of intervals considered are increased.

The rest of the computations for generating the output probability density function on \mathbf{V}, when \mathbf{V} has been defined by $\mathbf{V}=W \cdot X+Y / Z$ (shown in Figures 1-11 and 1-12), are accomplished in basically the same manner as we have shown here. Figure 1-13 graphically represents the total process. First operate on W and X according to the tranafer function to produce the output W. X. Then operate on Y and Z according to the transfer function to produce Y / Z. Finally, operate on (W P X) and (Y/Z) according to the transfer function to produce $\boldsymbol{V}=W \cdot X+Y / Z)$.

			1/8	8/64	64/128	- $(\mathrm{Y} / \mathrm{Z})$
4	15	0.04	0.013	0.027	-	
2	8	0.14	0.140	-	-	
1	4	0.02	0.020	-	-	
8	64	0.10	-	0.100	-	
4	32	0.35	0.050	0.300	-	
2	16	0.05	0.021	0.029	-	
32	128	0.06	-	0.020	0.040	
16	64	0.21	-	0.210	-	
8	32	0.03	-	0.030	-	
		1.00	0.244	0.716	0.040	PROB. (Y/Z)

Figure 1-11. Intervals of Variables solution

Tigure 1-12. Intervals of Variables Solution

$V=(W \cdot X+Y / Z)$
Figure 1－13．Intervals of Variables Solution
Not that the input and output density functions may have any number of intervals－they may vary in number from density function to density function．In the case of some parameters， a large number of intervals may be appropriate while in the case of other parameters a small number of intervals may be adequate．

The following is a brief summary of the computation methods discussed above．

2．An analytical solution－that is，arriving ai the output density function as a mathe－ matical expression in closed form－is generally nn！prajfical．The inpat functions usually cannot be expressed as closed form matienuatsai expressions．Fven when it is possible to do so，the sclution for arriving at the output（1．e．，the multiple integrations that must be performed）generally becomes intractable．
b．A numerical solution using a Monte Carlo simulation technique is at best questionable． Because this is basically a sampling technique，the question is－how many eamples must be taken in order to＂mdequately＂simulate the output？A good method for arriving at an answer to this question is not available．Industry＇s experionce has indicated that，in general，a very large number of eamples are required，thus requiring a lot of computer time．The problem gets eapecially severe when there are a large number of input random variables to be conaidered．
c. A numerical approach whereby an input probability density function is represented by a set of discrete values each with an associated probability of occurrence---all possible combinations of values from the parameters are generated with its associated probability. The concept is very simple but there may also be time of computation drawbacks associated with this technique. For example, let us consider the problem of arriving at the total number of viable organisms reaching the surface of Mars. Assuming that we have done this for each possible source of contamination and further assuming that there are 100 sources, we must now sum up over all 100 sources. If we were to consider all possible combinations of sums, we would have a very large number to compute. If each density function were described by only 3 discrete values there would be 3^{100} sums to compute. (This is approximately equal to 10^{50}.) If each calculation were to take 10^{-5} seconds on a computer, the total number of seconds of computer time required would be 1050 / $10^{5} \cong 10^{45}$ seconds or approximately 10^{38} years of continuous computer operation. If each density function was represented by 100 discrete values, the total number of sums to compute would be 100^{100} or 10^{200}. It is immediately obvious that this is not the method to use.
d. If the operation of summing was done pairwise, the total number of sums to be computed would be drastically reduced. Using the same example as before (i.e., 100 density function each having 3 discrete values) the technique is to:

- sum the first two density functions thus generating 3^{2} or 9 sums
- group these values and approximate the resulting density function by 3 discrete values
- continue this process until the 100 th density function has been added thus defining the final total.

The total number of sums that would have been generated is (100-1) $\cdot 3^{2}$ or approximately 900. It is true that three points are not very representative of most probability density functions. Therefore, consider 100 points on each density function. The pairwise approach would yield a total of (100-1) 100^{2} or approximately 10^{6} sums. If, as before, each calculation took $10^{-5} \mathrm{sec}$ of computer time, the time required would be $10^{6} / 10^{5}=10 \mathrm{sec}$. It is obvious then, that this is well within practical limits.

Now if the "interval concept" is considered which considers density functions pairwise, we see that the number of calculations are even further reduced. For example, if we consider 20 intervals of values instead of 100 discrete values, we reduce the last number of calculations
by a factor of $\left(\frac{20}{100}\right)^{2}=\frac{1}{25}$. It shouid be remembered that the interval approach allows you to constantly know the upper and lower bounds of the true value of the output. This feature is required so that the analyst will have confidence in the accuracy of his solution, given a set of iuput data.

1.4 COMPUTER PROGRAM DEVELOPMENT

To implement the calculations that have been described, a set of programs have been developed that may be used on the remote access computer system. (also called the Desk Side Computer System). The computational difficulties are somewhat minimized when one considers that high speed computers are available for the task. The problem is further minimized when one considers that desk side computer systems are available with the capability of having many different programs in storage for immediate callup. This type of system enables the analyst to work in his own office (or work area). An advantage of this is that he has the appropriate information and material immediately (and conveniently) available to him $\ddot{\sim} i d$ he can work at the computer as problems arise rather than storing up problems for one big computer run.

A group of subprograms, such as described in Section 2 of this report, enables the analyst to work on the total problem in pieces. This allows him to (1) become completely familiar with the inner workings of the program and (2) give him the ability to make sensitivity studies on parameters within confined areas of the total problem. A further advantage of having a group of subprograms, rather than one large integrated program, is that the analyst may wish to change the program in certain areas. It is very difficult to do this when the program has been developed as one integrated program.

```
SECTION 2
MECHANIZATION

\section*{By}
```

T. Green

TABLE OF CONTEN'IS

Section Page
2 MECHANIZATTON 2-1
2. 1 Basic Numerical Process 2-1
2. 2 Binomial Probabilities 2-4
2.3 Basic Combinatorial Model 2-7
2.4 Addition of Random Variables 2-13
2.5 Dependent Probabilities 2-20
2.6 Marginal Probability Calculation 2-22
2.7 Periapsis Distribution Determination 2-25
2.8 Mars Orbit Time and M / C_{D} A Distribution 2-30
2.9 Heliocentric Transfer Case 2-34
2.10 Entry Survival Probability 2-44
$2.11 \mathrm{M} / \mathrm{C}_{\mathrm{D}}$ A Survival and Scale Probabilities 2-47
2.12 Scale Probabilitios 2-49
2.13 General Combining of Random Variables 2-57
2.14 References for Section 2 2-59
2.15 Acknowledgements 2-59

SECTION 2

THE DESK SIDE VERSION OF THE VOYAGER PLANETARY QUARANTINE MATH MODEL

2.1 BASIC NUMERIC $A_{L} L$ PROCESS

The math model consists of a package of programs which help to provide insight into the various sensitivities of the effect of parameter values on random variables.

This section describes the key concepts involved in the development of the computer programs and contains a brief explanation of how to use each program.

The basic numerical process incorporated in many of the programs is the method of loading an interval probability onto a selected grid pattern. This technique is used for both discrete and continuous or interval probabilities. In the following runs the probability of 1 . at $0 ., 0$ to $1 ., 3 ., 0$ to $3 ., 0$, to., . 5 to $1.2,1$ to 3.5 , and 1.5 to 3 , respectively, were loaded into the basic grid pattern:

$$
0 ., 0 ., 1 ., 1,, 2,2 ., 3 ., 3 ., 4 ., 4 .
$$

Repeated numbers indicate that a discrete probability could be assigned. The logic is as follows:

If a discrete probability is given, it will either be loaded directly onto a discrete grid point or added into the appropriate interval. For an interval, no probability will be added onto discrete points but will be apportioned proportionately onto the grid pattern.

PROCRA: TU LOAD PROBADILITIES
NUIABER, OUTPUT GRID VALUES: $=10.0 \cdot, 0 \cdot, 1 \cdot, 1 \cdot, 2 \cdot, 2 \cdot, 3 \cdot, 3 \cdot, 4 \cdot, 4$.
INTERVAL START, END. PROBABILITY:=0.00.010

RESULTING PROEABILITIES

$0.096009 \mathrm{E}-01$ 0.00006GE-01
$0.000060 \mathrm{E}-01$ 0.0000EOE-01
$0.000000 \mathrm{E}-01$

INTERVAL START, END, PROBABILITY:=0.,1••1•

RESULTING PROBABILITIES
$0.090600 E-01$ 1.000000E+00
$0.000660 \mathrm{E}-01 \mathrm{O}$-000060E-01
0.060000E-K1
0.000000E-01
0.006000E-01

INTERVAL START, END, PROBABILITY\& $=3 \cdot 3 \cdot 3$. 1 .

RESULTING PROBABILITIES 0.000006E-01 0.800000E-01 $0.000000 E-011.000000 E+00$
9. 8BEOOEE-61 0.000000E-01
$0.000000 E-01$ 0.000006E-01

INTERVFL START, END, PROBABILITYi=0.,3.,1.

RESULTING PROBABILITIES -.080608E-01 3.333333E-01 3.333333E-81 -.8ge609E-61

- - 0300005-01
3.333333E-01
0.0000日0E-01

2-2

INTERVAL START，END，PROEABILITYZ＝C．．A．． 1 －

RESULTING PROBABILITIES
6．000000E－01 2．50¢G00E－0
$2.500009 \mathrm{E}-61$ 0．000000E－61
$0.000096 E-01$
2．509606E－6i
0．00000のE－01

INTERVAL START，END，PROBABILITY\＆＝．5．1．2．1．

RESULTING PROBABILITIES

0．000000E－GI
0．000000E－61

INTERVAL START，END，PROBABILITY\＆$=1 \times 3 \cdot 5,1$ ．

RESULTING PROBABILITIES
0．000000E～01 0．00000gE－01
4．000000E－01 0．000000E－0
0．0000の日E－01 4．000000E－01
$0.000000 \mathrm{E}-01$

INTERVAL START，END，PROBABILITY：$=1 \cdot 5,3 \cdot, 1$ ．

2.2 BINOMIAL PROBABILITIES

A fundamental distribution which appears to be basic to much of our study is the binomial.
If the probability that an organism survives an event is θ, then in repeated trials (n), the probability of survival X times is

$$
f(x)=\binom{n}{x} \theta^{x}(1-\theta)^{n-x}
$$

The mean of this distribution is $n \theta$, which gives an indication of its shape. For smaller θ the distribution piles up about $x=0$ and becomes increasingly skewed to the right.

The numerical evaluation of this distribution becomes difficult if the above expression is used directly.

Since

$$
\frac{f(x+1)}{f(x)}=\left(\frac{n-x}{x+1}\right)\left(\frac{\theta}{1-\theta}\right)=R(x)
$$

The recursion $f(x+1)=R(x) f(x)$
where $f(0)=(1-\theta)^{n}$ allows us to evaluate this distribution without the calculation of factorials or other combinatorial formulas.

A program called "BINOM" performs the above.

For large n, the recursion becomes less attractive for obvious reasons. In this case, if

$$
\frac{1}{n+1}<\theta
$$

The binomial can be approximated by the normal in a 3σ range about the mean. Denoting the cumulative values of the normal by $\Phi(x)$, the approximation is

$$
\begin{array}{r}
\operatorname{Pr}\{\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}\} \triangleq \Phi\left(\frac{\mathrm{b}+\frac{1}{2}-\mu}{\sigma}\right)-\Phi\left(\frac{\left.\mathrm{a}+\frac{1}{2}-\mu\right)}{\sigma} ;\right. \\
\mu=\mathrm{n} \theta, \quad \sigma=\sqrt{\mathrm{n} \theta(1-\theta)}
\end{array}
$$

A program called＂BINOMX＂performs the above calculations by utilizing a technique developed and described in Reference 3.

It is recommended that＂BINOMX＂be used for $\mathrm{n}>100$ ．

The two following sets of examples illustrate the output of BINOM and BINOMX．

In BINOMX，the equivalent upper and lower bounds for the given first and last values are in terms of the standard normal distribution．

Note that essentially all（99． 99 percent approximately）of the probability lies between $\mathbf{+ 3}$ ．

BINOMIAL PROBABILITIES
READ PROBABILITY AND NUMBER：＝． 1,0
VALUE PROBABILITY
$1.000000 \mathrm{E}+00$
SUM $=$ ．1．0006000
READ PROBABILITY AND NUMBERz＝． 1,3
VALLE PROBABILITY
－7．290000E－01
1 2．430000E－01
2 2．700000E－02
3 1．000000E－03
sum＝1．0日0の000
READ PROBABILITY AND NUMBERza． 1.7

value	PROBABILITY
－	A．782969E－01
，	3．720087E－61．
2	1－248029E－01
3	2．296350E－62
4	2．551500c－63
5	1．701000E－04
6	6．3009005－66
7	1－0005月0E－67
surs	1－880e

READ PROBABILITY AND NUMBERI $=\cdot 1,16$
VALUE PROBABILITY
（3） $3.486784 E-01$
$13.874205 E-01$
1．937102E－01 5．739563E－02 1．116026E－82 1．488035E－03 1．377810E－84 8．74890のE－06 3．645990E－97 9．0日B000E－B9 1．80000のE－16
sume
1－009egen

NORMAL APPPCIIMATION TO BINOMIAL
READ FIRST:LAST VALUE, NUMBER: PROBABILITY:=10.,50.,550., 1
 PROBABILITY $=0.261216 \mathrm{E}+00$

READ FIRST,LAST VALUE, NUMBER, PROBABILITY:=10.,100.,550.,..1
STANDARD NORMAL LIMITS***** -0.646709E+01 0.646709E+01 PROBABILITY= 0.100000E+01

READ FIRST, LAST VALUE, NUMBER, PROBABILITY:=20.,30.,550., 1
STANDARD NORMAL LIMITS***** - $0.504575 E+01-0.348228 E+01$ PROBABILITY $=0.248358 \mathrm{E}-03$

READ FIRST,LAST VALUE, NUMBER, PROBABILITY8=20.,25.,100.,.5 5 STANDARD NORMAL LIMITS***** - 0.610000E+01-0.490000E+01 PROBABILITY= $0.478653 \mathrm{E}-06$

READ FIRST•LAST VALUE, NUMBER, PROBABILITY: $=25 ., 75 \cdot, 100 \ldots 5$ STANDARD NORMAL LIMITS***** -0.51P000E+01 0.510000E+01 PROBABILITY $=0.100000 E+01$

READ FIRST,LAST VALUE, NUMBER, PROBABILITY: $=30 ., 60 ., 100 ., .5$

```
STANDARD NORMAL LIMITS***** -0.410000E+01 0.210000E+01 PRORABILITY= \(0.982115 E+00\)
```

READ FIRST,LAST VALUE, NUMBER, PROBABILITYs=40.,60.,100.,.5 STANDARD NORMAL LIMITS***** -0.210000E+01 0.210000E+01 PROBABILITY: 0.964271E+00

READ FIRST,LAST VALUE, NUMBER, PROBABILITY: $=45,, 55,100,0.5$

```
STANDARD NORMAL LIMITS***** -0.110000E+01 0.110000E+01 PROBABILITY: 0.728668E+60
```

READ FIRST,LAST VALUE, NUMBER•.PROBABILITY: $=47,: 53:, 100 ., 05$

READ FIRST,LAST VALUE, NUMBER, PROBABILITY\&=SSTOP READY.

2.3 BASIC COMBINATORIAL MODEL

The basic module in the numerical math model is the two-segment program titled "Basic 1, Basic 2." The primary function of the program is to combine probabilities in the following form:

Viable organisms can be thought of as being available from various sources about the spacecraft and environs. The number availabie conceivably could be a random variable and thus can be represented as a "row" probability distribution. Each event (represented by a column) can be thought of as altering the row (source) probability distribution. The simplest way of representing the effect of an event is to say that an organism has probability of surviving the event. If it can be hypothesized that each organism has the same probability, then the conditional distribution of survival is of a binomial nature. That is, given n organisms, the probability of x survivors is

$$
\operatorname{pr}(x / n)=\left(\frac{n}{x}\right) \epsilon^{x}(1-\epsilon)^{n-x}
$$

the resulting marginal probability

$$
p r(x)=\sum_{\frac{n}{2}}^{\frac{n}{1}} p r(x)\left(\frac{x^{1}}{x} e^{x}(1-c)^{n_{1}^{-x}}\right.
$$

(where N is the total number of organisms before the event. If the binomial hypothesis is not satisfactory any conditional distribution, can be used in place of $\mathrm{pr}(\mathbf{x} / \mathrm{n})$. It is primarily the function of this program to calculate each succeeding marginal probability as one courses through the events. As a row is completed, the resulting random variables can be added by another program called "BUGS" which is described elsewhere.

1. Read in basic GRID pattern.
2. Read in Row probability source distribution along with its own grid pattern.
3. Adjust source probability distribution to standard grid pattern.

4. Read in row probability end points.
5. Read in associated probabilities.
6. Read in the standard set of ond points to be used daring the course of row calculations.
7. Adfuet the input probability distribation to the etandard set of end points.

2-8
5. Read in code word:

1: Binomial probabilities
2: Conditional distributions at arbitrary nature
3: Proportion, probability

4: Scale the standard end points

5: Return to choose another row distribution and thence to process another row.
6. Process according to code word and print the input and output marginal distributions.

The option is described below:

OPTION CODE

1. Conditional nrobabilities are computed by assuming a binomial condition is satisfactory. Appropriately, the probability that an organism survives an event is input initially.
2. The conditional distributions are provided one at a time starting at the second to lowest grid value. The distributions are provided in the standard interval concept.
3. The conditional distributions are provided by inputting two numbers for each distribution (θ, ξ). Each conditional distribution has the end points σ, $\mathbf{G}(\mathrm{I}) * A, G(I)$ with associated probabilities $\boldsymbol{\xi}$ and $1 .-\boldsymbol{\xi}$.
4. A simple scale change is provided here. If the scale factor is q, then the new standard grid pattern is $q^{*} G(I)$ with the same probabilities.
5. This indicates that a new row probability is to be provided. Essentially this restarts the program.

The combinatorial technique is based on the fundamental concept of conditional and marginal Nrobability. Reference 4 describes the approach.

The combinatorial procedure is at best a computer approximation and requires some explanation of the method. Figure 2-1 illustrates the procedure.
$\mathrm{GP}(\mathrm{I})$ represents the input probabilities.
$G(1)$ represents the standard grid points.
$\overline{\operatorname{POUT}(I)}$ is the output (marginal) probability distribution.
$P R(J) / G(I)$ describes the conditional probabilities.

The conditional distributions in option 1 are either generated by the basic binomial recursion formula or the normal approximation to the binomial (see Reference 33) if the given number is greater than 100.

Options 2 and 3 require that the conditional distributions, be input via the interval concept.

The marginal probability distribution is calculated by

$$
\operatorname{PO} U T(J)=\sum_{I=J+1}^{N S T} G P(I-1)(\operatorname{PR}(J) / G(I))
$$

The probabilities GP (I) are associated with $G(I+1)$. This appears to be the most conservative approach.

It is recommended that the first value for the standard grid be zero. This is consistent with the concept of the binomial hypothesis.

RASIC CJARI．VAJOKIAL MJOEL

NO PMORABILITIES：$=06, \ldots 3,1$

READ I． $\operatorname{CODE}(1-5):=1$
SIMPLE His HABILITY：＝．Qil

¢	LAST	－	
Q．ARADAME－DI	1－ARCORCE＋日A	3．BGVADQE－01	8．6142：35E01
		3．5ancaren 01	5．175419E－02
5．GrimonaE＋DA	1．aragamatar	9．333333E－02	4．934453E－9？
1．9600の日E＋P1	1．ampanate +02	1．743299E－01	4．593731E－22
	1－MPPAACE＋ 03	9．183673k－4？	
	2．QRaneate 03	の．日GのロのaE－ロ1	O．DOADGOE－0．1
	3．nepache 03	0．ODOAODE－81	F－
3．Eqaagne＋ 33	4．ด¢の日age＋03		
4．ИADAC．GE＋63	S．ПИのन00E＋03		の． 060060 O － 1

READ IN CODF（ $1-5):=$ ？

ONNDITIONAL FFORABILITIES：$=1$ ．

CONDITIO．NAL PKJEABILITIES：$=.7,2,21$

CONOI TIOVAL PEOHRARILITIES：$=, 8, \ldots, r$ ．

CONUI TIUNAL P PRABILITIES：＝．9．． 1
 CONDI TIONAL μ R）RARILITIFS：$=.95$ ， 0 日

CONDITIONAL PIXRARILITIES：$=5,5$

CONDI TINNAL FRORAHILITIES：＝10．か．

CNNDITIONA PRJRFAILITIES\＆ 1 ．

CONOI TIONAL PRORARILITIESI： 1 ．

FI RST	LAST	1 NHUT	UUTPUT
のamanaE－e1		3．614P35E	9．136P3PE－61
1．Amapactatan	5．langrzhetar		4．7379674－62
5．GRの日，MGE＋F．a	1．Amana＠E＋${ }^{\text {a }}$	4．PRR 453E－02	
		4．5937K1E－ap	3．915647E－9？
1．gmanamet Mp	1－¢．7pmankt 93	M．PGBmamp－Pi	A．Fiamamat－pl
1．Anommanetas	P．Psphats．tas		A．anagrac－ 11
	3．Amanctact Ps		
3．Apmapriftm3	4．Pangametas	0．AnAの日aE－ 1	－armacresei．
A＊anmevititant	5．Piapunafta3	P．nanagat－at	A．A．CPrame－${ }^{\text {a }}$

READ IN $\operatorname{CODE}(1-5):=3$				
PROPORTION，	PROBABILITY	FOR	（	1．00000E＋00）：$=\cdot 3.8$
PROPORTION，	PROBABILITY	FOR	（	5．00000E＋00）：$=\cdot 5 \cdot .65$
PROPORTION，	PROBABILITY	FOR	（	1．00000E＋01）：$=0.87$
PROPORTION，	PROBABILITY	FOR	（	$1 \cdot 00000 \mathrm{E}+02):=\cdot 25 \cdot 1$
FROPORTION，	PROBAEILITY	FOR	c	1．00000E＋03）：$=\cdot 1 \cdot .001$
PROPORTION，	PROBABILITY	FOR	c	2． $00000 \mathrm{E}+03):=1 ., 1$ ．
PROPORTION，	PRORABILI TY	FOR	（	$3 \cdot 00000 \mathrm{E}+03):=1 \cdot 31$.
PROPORTION，	PRO BILITY	FOR	（	$4 \cdot 00000 \mathrm{E}+033):=1 \cdot \cdots 1 \cdot$
PROPORTIDIV，	pkobability	FOR	6	5．00000E＋03）：$=1.21$.

FI RST
0．OODODOE－01
1．OOODODE +00
5．ganonobena 1．日ดดの00E +01 1．000000E＋02 1． $0000000 \mathrm{E}+0.3$ 2． $000000 \mathrm{E}+03$ 3．000000E＋03 4．И00000E +03

LAST

1．000000E +00 S．MロMのDOE +00 1．OODODOE +01 1．000000E＋02 1． $000000 \mathrm{E}+03$ 2．日0ロロの日E +03 3．000000E 003 4．000000E＋03
5．000000E＋03

INPUT
9． 136232 E －01 4． $732967 \mathrm{E}-02$ 6．890672E－03 3．215647E－0．2 0．000000E－01 0．000000E－01
0．OOOODOE－01
0．00000DE－01

OUTPUT
9．266605E－01
3． 795019 E －02
4． 519 132E－03
3． $987021 \mathrm{E}-02$
0．000000E－01
$0 \cdot 000000 \mathrm{E}-01$
$0.000000 \mathrm{E}-01$
0．000000E－01
0． $000000 \mathrm{E}-01$

READ IN CODE（1－5）：$=4$
SCALE FACTOR：$=20 \cdot 1$

LAST	INPUT	OUTPUT
1．000000E＋00	9．266605E－01	4．633302E－02
5．000000E＋00	3．795019E－02	1．853321E－01
1． $000000 \mathrm{E}+01$	4． 519132 E －03	2．316651E－01
1．000000E＋02	3．087021E－02	5．012804E－01
1． $10000005+03$	0．000000E－01	1．823923E－02
2．000000E＋03	0．000000E－01	1．715012E－02
3．000000E＋03	D．000000E－01	0．000000E－01
4．日®D日00E＋03	0．000000E－81	0．000000E－01
5．000000E＋03	D．000000E－01	0．000000E－01

READ IN CODE（1－5）：$=5$

NUMBER，ROW END POINTS： READY．

2.4 ADDITION OF RANDOM VARLABLES

A common combinatorial problem is the computation of the distribution of the sum of two random variables. This occurs, for example, in the processing of combining row probabilities as described in Riference 4.

Consider the determination of the distribution of $Z=x+y$ where $0 \leq x \leq 10,0 \leq y \leq 10$, and it is assumed that the probability density functions of x and y are independent. (This is a basic assumption that will be made between rows or sources.)

The cumulative distribution

$$
F\left(Z_{0}\right)=\operatorname{Pr}\left(Z \leq Z_{0}\right)=\iint_{R} f(x) g(y) d x d y
$$

where R is the space in the $x-y$ plane such that $Z \leq Z_{0}$.

The distribution can be explicitly written
$\operatorname{Pr}\left(x+y \leq Z_{0}\right)=\int_{0}^{Z_{0}} \int_{0}^{Z_{0}^{-x}} f(x) g(y) d y d x\left(0 \leq Z_{0} \leq 10\right)$

$$
\operatorname{Pr}\left(x+y \leq y \leq Z_{0}\right)=1-\int_{Z_{0}-10}^{10} \int_{Z_{0}-x}^{10} f(x) g(y) d y d x\left(10 \leq Z_{0} \leq 20\right)
$$

and zero elsewhere.

For example, let $g(y)=\frac{1}{10} ; f(x)=\frac{1}{10}$ for $0 \leq x \leq 10$ and $0 \leq y \leq 10$.

Then the resulting probabilities from $(0 \rightarrow 20)$ could be tabulated as follows:
Interval Probability

$0 \rightarrow 2$	0.02
$2 \rightarrow 4$	0.06
$4 \rightarrow 6$	0.10
$6 \rightarrow 8$	0.14
$8 \rightarrow 10$	0.18
$10 \rightarrow 12$	0.18
$12 \rightarrow 14$	0.14
$14 \rightarrow 16$	0.10
$16 \rightarrow 18$	0.06
$18 \rightarrow 20$	0.02

where $\operatorname{Pr}\left(Z_{1} \leq Z_{0} \leq Z_{2}\right)=\frac{z_{2}{ }^{2}-Z_{1}{ }^{2}}{200}\left(0 \leq Z_{0}<10\right)$

$$
\begin{aligned}
\operatorname{Pr}\left(Z_{1} \leq Z_{0} \leq Z_{2}\right)= & \left(\frac{-Z_{2}^{2}}{200}+\frac{Z_{0} Z_{2}}{100}-1\right)-\left(\frac{-Z_{1}^{2}}{200}+\frac{20 Z_{1}}{100}-1\right) \\
& \left(10 \leq Z_{0}<20\right)
\end{aligned}
$$

If the probabilities $f(x)$ and $g(x)$ where given in more complex form, say as a mixed funcdion defined as constant over prescribed intervals, it is more advantageous from a computer standpoint to develop an algorithm to "lump" probabilities assigned over prescribed intervals into the standard grid pattern.

The above problem was checked by using the intervals given above.

The following illustrates the results of a probability "adder."

The first number is a sum for the resulting probabilities and the following are the probabilities of Z in the intervals $0 \rightarrow 2,2 \rightarrow 4$, etc.

```
LOAD LIMITS 06345 15505
:=6,0.,2.,4.,60,8.,10.
:=6,0.,2,.4.,60,8.,10.
:=11,0.,2,.4.,60.8.,10.,12.,14.,160,18.,20.
:=-2,.2,.2,.2,.2
:=.2,.2,.2,.2,.2
SUM
    1.000000E+00 2.000000E-02 6.000000E-02 1.000000E-01 1.400000E-01
    1.800000E-01 1.800000E-01 1.400000E-01 1.0000005,:% 6.000000E-02
    2.000000E-02
```

 : = SSTOP
 READY.

Let the above triangular distribution be approximated by rectangles representing (areas) approximate probabilities of

$$
\frac{18}{50}, \frac{14}{50}, \frac{10}{50}, \frac{6}{50}, \frac{2}{50}
$$

The analytical probabiliti-s should be (if the above represents both x and y)

Interval

$$
\begin{array}{rl}
0 \rightarrow 2 & 0.0648 \\
2 \rightarrow 4 & 0.1656 \\
4 \rightarrow 6 & 0.212 \\
6 \rightarrow 8 & 0.2104 \\
8 \rightarrow 10 & 0.1672 \\
10 \rightarrow 12 & 0.1032 \\
12 \rightarrow 14 & 0.0504 \\
14 \rightarrow-16 & 0.02 \\
16 \rightarrow 18 & 0.0056 \\
18 \rightarrow 20 & 0.0008
\end{array}
$$

Probability
where for $\left(0 \leq Z_{0}<10\right)$

$$
\operatorname{Pr}\left(Z_{1} \leq Z_{0} \leq Z_{2}\right)=\int_{0}^{Z_{0}} \int_{0}^{Z_{0}-x}\left(\frac{1}{50}\right)^{2}(10-x)(10-y) d y d x
$$

and for $\left(10 \leq Z_{0} \leq 20\right)$

2-16

$$
\operatorname{Pr}\left(Z_{1} \leqslant Z_{0} \leq Z_{2}\right)=1-\int_{Z_{0}-10}^{10} \int_{z_{0}-x}^{10} \frac{1}{50}(10-x)(10-y) d y d x
$$

```
LOAD LIAITS 06345 15505
8=6,0.02.040.06.,8.,10.
=206.,2.,A0,60,8.,10.
=11,0...2.,40.6.,8.,10.,12.,14.,16.,18.,20.
8%.36*.23..20.120.04
:=.36,.28,.2,.12=.04
            SUM
        1.000000E400 6.480000E-02 1.656000E-01 2.120800E-01 2.104000E-01
        8.000000E-04
```

The probabilities thus tend to "bunch" closer to the lower end of the scale.

For nonlinear frequency distributions, the above procedure is an approximation; however, the finer the grid, the closer the approximation to the true probability.

From these preliminary studies, a program called "BUGS" was written to handle the "mixed" (discrete plus continuous cases) probability addition problem. The program was set up to allow a recursive addition of sample spaces. An example follows which illustrates the addition of four distributions such that the probabilities are discretely defined at 0,1 and continuously between 1-5 and 5-10. This illustrates the case when the probability of low discrete numbers is important enough to be preserved.

LOAD LIMITS 0662215505

PROGRAM TO FIND PROBABILITY OF SUMS


```
FIRST SET OF PROBABILITIES:= 6 6,0.,.2,.19,.81
NUMBER,POINTS FOR RESULTING DENSITY:=10,0.,0.,1,,1,,5,,10.,20.,30.
:=40.,50.
NUMBER,POINTS FOR NEXT DENSITY:=6,0.,0.,1.,1.,5.,10.
NEXT SET OF PROBABILITIES:=.7,0.,.21,.082,.008
RESULTING PROBABILITIES
    4.200日00E-01 0.000000E-01 2.660000E-01 2.722675E-01 3.961250E-9%.
    2.120000E-03
CHECK SUM = 1.000000
```

NUMEER,POINTS FOR NEXT DENSITY: $=6,0 ., 0 ., 10.10 .50 .10$.
NEXT SET OF PROBABILITIES: $=.61,0 ., \cdot 13, \cdot 17,009$.
RESULTING PROBABILITIES
2.562000E-01 0.000000E-01 2.168600E-01 3.498日13E-01 1.482011E-の1
2.857413E-02 2.834743E-の4
CHECK SUM $=1.0000 日 0$
NUMBER,POINTS FOR NEXT DENSITY: $=6,0 ., 0 ., 1, \cdot 10,5,10$.
NEXT SET OF PROBABILITIES\&z.75,0.,.111..07..07
RESULTING PROBABILITIES
1.921500E-01 0.00000日E-01 1.908270E- 01 3.536343E-61 1.984907E- 1 1
6.225241E-02 2.622169E-03 2.343387E-05
CHECK SUM = 1.000006
（ ）NUMBER，POINTS FOR NEXT DENSITY\＆＝SSTOP READY．

2－18

(2.5 DEPENDENT PROBABILITIES

In the calculation of the distribution of a function of other random variables in general, it is assumed that the independent variables are stochastically independent and the joint probability is simply the product.

However, if future needs require the combining of dependent or correlated variables the calculation could be modified.

A simple example can be described.

Suppose we have 2 distributions given by
$p(A)=\{0.6,0.4\}$ at $A=\{0,1,2\}$
and $p(B):\{0.1,0.9\}$ at $B=\{0,1,2\}$

Then the distribution of the product of the variables is approximated by

$$
\begin{aligned}
& p(0 \leq Z<1)=0.06+0.54\left(\frac{1}{2}\right)+0.04\left(\frac{1}{2}\right)=0.35 \\
& p(1 \leq Z \leq 2)=0.54\left(\frac{1}{2}\right)+0.04\left(\frac{1}{2}\right)+0.36\left(\frac{1}{3}\right)=0.41 \\
& p(2<Z \leq 3)=0.36\left(\frac{1}{3}\right)=0.12 \\
& p(3 \leq Z \leq 4)=0.36\left(\frac{1}{3}\right)=0.12
\end{aligned}
$$

Suppose, however, that the variable B depends on A. How can we describe this? One way is to consider that $p(B)$ is not constant but "varies" with A.

That is, for example, for

$$
(0 \leq A \leq 1):\left\langle\begin{array}{l}
p(0 \leq B \leq 1)=0.9 \\
p(1 \leq B \leq 2)=0.1
\end{array}\right.
$$

but for

$$
(1 \leq A \leq 2):<\begin{aligned}
& F(0 \leq B \leq 1)=0.2 \\
& p(1 \leq B \leq 2)=0.8
\end{aligned}
$$

This indicates that when A is small, B is likely to be small also and vice versa. In this casa the result becomes:

$$
\begin{aligned}
& p(0 \leq Z \leq 1)=0.54+0.06\left(\frac{1}{2}\right)+0.08\left(\frac{1}{2}\right)=0.61 \\
& p(1 \leq Z \leq 2)=0.06\left(\frac{1}{2}\right)+0.03\left(\frac{1}{2}\right)+0.32\left(\frac{1}{3}\right)=0.1766 \\
& p(2 \leq Z \leq 3)=0.32\left(\frac{1}{3}\right)=0.1066 \\
& p(3 \leq Z \leq 4)=0.32\left(\frac{1}{3}\right)=0.1066
\end{aligned}
$$

.Thus the independent care $<u n$ be considered as a special case of dependency where $p(B)$ is unchanged for all intervals of A.

It is anticipated that "DELP" for example, will require this treatment, since pitch down angle and the associated velocity increment conceivably have a correlation.

2.6 MARGINAL PROBABILITY CALCULATION

Probability input appears to be frequently in the form of the probabıity of surviving a specified event. Also the hypothesis that the probability of an organism surviving remains unchanged from one organism to another seems to be a reasonable assumption in many cases.

The marginal distribution of a random variable x can be written in density function form as

$$
f_{1}(x)=\int f_{2}(y) f(x \mid y) d y
$$

where y may be thought of as the given random variable and \mathbf{x} as the new random variable after suffering the effects of an event.

Numerically this can be approximated by considering
y in interval form with the following distribution:

$$
\begin{aligned}
& \operatorname{Pr}\{\mathrm{yo}<\mathrm{y} \leq \mathrm{y} 1\}=\operatorname{Py} 1 \\
& \operatorname{Pr}\{\mathrm{y} 1<\mathrm{y} \leq \mathrm{y} 2\}=\operatorname{Py} 2 \\
& ,-2
\end{aligned}
$$

y in interval form
withy the following distribution:

Under the binomial hypotheses, the conditional distributions $f(x / y)$ cen be generated using the numerical techniques in "BINOM" and "BINOMX."

The resulting marginal distribution which approximates $\mathrm{fl}(\mathrm{x})$ is

$$
\operatorname{Pr}\left\{x_{j-1}<x \leq y_{j}\right\}=\sum_{k=1}^{n} \operatorname{Pr}\left\{y_{k-1}<y \leq y_{k}\right\} \operatorname{Pr}\left\{x_{j-1}<x \leq x_{j} \left\lvert\, \begin{array}{l}
\text { given } \\
y_{x-1}<y \leq y_{k}
\end{array}\right.\right\}
$$

A program called "ICBMAR" was written, which computes $f_{1}(x)$ over integer values for a selected y values up to or less than 100.
$:=55,4, \ldots 1,1$ ．
$1=.6, .2, .1, .1$
$1=0,3,7,55$

0	7.
1	8．766064F－32
2	2．337959F－02
3	1．344830F－62
4	1．607464E－02
5	$1.794576 \mathrm{E}-02$
6	1．660133E－02
7	1．291166E－02
8	8．667769E－03
9	4．994631E－03
0	2．552812E－03
11	1．16月369E－03
12	4．727429E－04
3	1．737431E－04
14	5．791437E－05
15	1．758881E－05
16	4．885780E－06
17	1．245395E－06
18	2．921297E－67
19	6．320934E－08
20	1．264187E－08
21	2．341087E－09
2	4．020048E－18
23	6．408772E－11
24	9．494477E－12
25	1．308128E－12
6	1．677087E－13
27	2．001462E－14
28	2.22384
2	2．300531E－16
30	2．215326E－17
31	1．985059E－18
32	$1.654216 \mathrm{E}-19$
33	1．281043E－20
34	9．210112E－22
35	6．140674E－23
36	3．790169E－24
37	2．162559E－25
3 B	1．138189E－26
39	5．512596E－28
46	2．450043E－29
41	9．959524E－31
42	3．688712E－32
43	1．239162E－33
	3．754856E－35
45	1．819837E－36
	2．463375E－38
47	5．241294E－40
48	9．705970E－42
	1．540630E－43
	2．854174E－45
	2．237662E－47
	1－912531E－49
53	1．202850E－51
	4．95AB0日E－54

$1.245395 E-06$ 2．921297E－67 6．320934E－08 1．264187E－08 2． $341087 \mathrm{E}-09$ 6．A $987725-11$ 9．494477E－12 1．308128E－12 2．677087E－13 2．223847E－15 2． $300531 \mathrm{E}-16$ 1．985059E－18 $1.654216 \mathrm{E}-19$ $1.281043 \mathrm{E}-20$ $9.210112 E-22$
$6.148674 E-23$ 3．790169E－24 2．162559E－25 5．512596E－28 2．450043E－29 9．959524E－31 $3.688712 E-32$
$1 \cdot 239162 E-33$ 3．754856E－35 1．819837E－36 2．463375E－38 5．2412？4E－40 9．705970E－42 1．540630E－43 2． $854174 \mathrm{E}-45$ $2.237662 E-47$
$1.912531 E-49$ 1．802850E－51 A．95月006E－5A
nnamf－56

1．609009 +06

8ESSTOP

READY．

An example was run for $y=\{0,3,7,55\}$ with associated probabilities $\{0.6,0.2,0.1,0.1\}$ and $(0 \leq x \leq 55)$.

The results are shown on the previous page for a probability of survival of 0.1 :

If the y values are considered to be mean values for the intervals $(0,1) ;(1,5) ;(5,10) ;(10$, 100) then the relationship to interval probabilities can be established. If the resulting y probabilities are grouped into intervals then the input and output distributions cand be pictured as follows:

As might be expected, the .1 probability has created a "piling up" effect about $X=0$. In the event the probability is large, say .8 , the piling effect occurs in two different places and tends to create a bimodal distribution. For the same y distribution two run 3 were made for ε probability of .8 and .5. The approximate results are shown below:

2.7 PERIAPSIS DISTRIBUTION DE TERMINATION

Reference 5 contains a set of six curves which relate the function $\Delta \mathrm{p} / \Delta \mathrm{V}$ to λ where:

$$
\begin{aligned}
& \Delta \mathrm{p}=\text { periapsis decrement }(\mathrm{km}) \\
& \Delta \mathrm{V}=\text { incremental velocity magnitude }\binom{\mathrm{m}}{\mathrm{~s}} \\
& \lambda=\text { angle of attack (deg.) }
\end{aligned}
$$

These velocities are small (compared to orbital). This is concerned with ejecta that may enter the Martian atmosphere and thus violate the quarantine. The curves represent a varity variety of periapsis and apoapsis altitudes. The curves are cosine type and consequently were fitted with a finite Fourier series. The result of the curve fitting appears at the end of this section. The function fitted is of the form:

$$
f(\partial \mathrm{p}, \partial \mathrm{v})=\Delta \mathrm{p} / \Delta \mathrm{V} \approx \frac{A_{0}}{Z} \quad \sum_{k=1}^{10}\left\{A_{k} \cos \left(\frac{\pi k Z}{9}\right)+B_{k} \sin \frac{\pi k Z}{9}\right.
$$

$$
\text { where } Z=\frac{\lambda-90}{10}\left(90^{\circ} \leq \lambda \leq 270^{\circ}\right)
$$

$\mathrm{f}(\Delta \mathrm{p}, \Delta \mathrm{V})$ has a double-valued, inverse; however, the point $\lambda=180$ separates to curve into single valued branches. The interval concept appears to be a satisfactory technique in this case. A two-segment program called "DELP 1 " and "DELP 2" was written to compute an approximation to the distribution of $\Delta p=\Delta V \times f(\Delta p, \Delta V)$, given the distributions of λ and ΔV. The program requires the number of the orbit (1 through 6) and proceeds to select the appropriate one. Otherwise, the nature of the input and output is similar to that of the other programs in the package.

A sample run follows. The curve-fitting results are as follows where the cosine terms refer to the A_{k} and the sine terms refer to the $\mathbf{B}_{\mathbf{k}}$ which incidentally are zero due to the cosine nature of the curves.

PERI AFSIS DI STRIFUTION FROERAM
-) RHIT TYFE $1-6):=1$

NUMAER, ANGLE ATTACK UALLES: $=7,90_{0}, 120,2150,180,210,240_{0}, 2790$

VELDCITY INCFEMENT FFORAEILITIES: $=2,2,2, \ldots 2,2,2$
PERIAPSIS DECEEMENT DI STRIRUTION
1.467342E-0.1 1.037801E-01 1.229073E-01 1.253384E, 01 1.261699E-01
1.243205E-01 1.2S2317E-の1 1.2.49776E-01 4.030254E-05

CHECK SLM $=1$. DOROQR

TYPE 1：

```
DESIRED NUABER OF HARMONICS TO TRY：＝GO
DO YOU UISH TO USE MAGNETIC TAPE，TYPE YES OR NO：＝NO
TOTAL NUMBER OF DATA POINTS：：＝18
READ IN DATA POINTS：\(=.25,1,7,3 ., 4,2,5,4,6,4,7 \cdot 1,7 \cdot 7,8 \cdot, 8 \cdot 1,8\) ． \(:=7 \cdot 7,7 \cdot 1,6 \cdot 4,5 \cdot 4,4 \cdot 2,3 \cdot, 1 \cdot 7\)
```

HARMONIC	COS TERMS	SINE TERMS	ERROR SS REMOVED
0	1．059444E＋01	0．0ดのดの日E－01	5．050901E＋02
1	－3．348694E＋00	3．311308E－07	1．009238E＋02
2	－7．277126E－01	1．625647E－07	4．766090E＋吅
3	－2．944445E－01	1．039552E－07	7．802780E－81
4	－1．791110E－01	9．375554E－08	2．887267E－01
5	－1．401124E－01	8．947539E－08	1．766833E－01
6	－1．388889E－01	1．027006E－07	1．736112E－01
7	－9．452752E－02	8．567242E－08	8．041907E－02
8	－7．650987E－02	7－765082E－08	5．268384E－02
9	－9．444452E－02	0．000000E－01	2．006948E－02

TYPE 2：

FIHITE FOURIER SERIES
DO YOU HISH TO USE HAGNETIC TAPE，TYPE YES OR NO $=$ NO TOTAL NUMEER OF DATA POINTS：$=18$

READ IN EATA POIATS8＝．25，1．6．2．7．3．9．5．，5．9．6．6．7．1．7．4．4．7．5．7．4 $8=7 \cdot 1 \cdot 6 \cdot 6,5 \cdot 9,5 \cdot, 3 \cdot 9,2 \cdot 7 \cdot 1 \cdot 6$

SINE TERMS 0．0000008－01 3．343161E－07 1．4467332－67 9．4814325－08 7．948839民－08 7－6838781－88 8－155167E－08 8．9663374－98 9．1807761－88 8．800000E－01

ERROR SS REMOVED 4．316901E＋02 8．651681と＋01 4． $657533 E+08$ 6．136113E－81 2－002681E－61 1－813980E－91 1．002778E－01 9．818841 $\mathrm{E}-62$ 8．303348E－08 2－006948E－98

TYPE 3:

DESIRED WUMBER OF HARTAONICS TO TRY: $=G O$.
DO YOU GISH TO USE HAGNETIC TAPE, TYPE YES OR HO\&=AO
TOTAL MU:ABER OF DATA POIUTS: $=18$
READ IN DATA POINTS: $=\cdot 25,1 \cdot 4,2 \cdot 5,3.7,4 \cdot 7,5 \cdot 6,6 \cdot 2,6 \cdot 6,7 \cdot, 7 \cdot 1,7 \cdot 2$ $8=6 \cdot 6,6 \cdot 2,5 \cdot 6,4 \cdot 7 \cdot 3 \cdot 7,2 \cdot 5 \cdot 1 \cdot 4$

HARMONIC	COS TERHS	SINE TERMS	ERROR SS REHOVED
0	9.194444E+00	0.0000005-01	3.8G4201E+G2
1	-2:9A6966E+00	3.1124035-07	7.78A351E4G1
2	-6.530866E-61	1.454036E-67	3.838628E+00
3	-2.722222E-01	9.947438E-08	6.669446E-01
4	-1.066668E-01	5.931057E-08	1-012514E-01
5	-1.198378E-61	7.928457E-08	1.292501E-01
6	-7:222224E-02	6.237313E-088	4.694446E-02.
7	-5.586342E-02	5.906008E-68	2.808649E- ¢2
8	-9.085276E-02	8.954265E-08	7.428891E-02
9	-7.222228E-02	0.000000E-01	1.173613E-02

TYPE 4:

DESIRED NUMBER OF HARMONICS TO TRY:=GO

DO YOU WISH TO USE MAGNETIC TAPE, TYPE YES OR NO:=NO TOTAL NUMBER OF DATA POINTS\&=18
 $8=11 \cdot 8,11 \cdot 4,16 \cdot 7,9 \cdot 5,8 \cdot, 6 \cdot 3,4 \cdot 4,2 \cdot 4$

HARMONIC 0	$\begin{gathered} \text { COS TERMS } \\ 1.569444 E+81 \end{gathered}$	SINE TERMS 6.8000005-81
1	-5.966866E+00	5.586665E-67
2	-1-155144E+86	2.570172E-07
3	-4.277778E-61	1-519897E-07
4	-3.681248E-61	1-479787E-07
5	-\&-253168E-61	10341112E-67
6	-1;388889Eャ61	100431372-07
7.	- 1: $511513 E-61$	1-2504985-87
8	-1:286644E-61	1-1552065-07
9	-1.277779E-61	6.860606E-61

ERROR SS REMOVED
1.108420E+03
$2.256183 \mathrm{E}+02$
1.200922E+61
$1.646945 E+06$
8.106742E-61
4.569089E-61
1.736112E-91

1.476845E-91
3.673617 15-08
$3-4 \cdot 277778 \mathrm{E}-61$

- 3.0612485-61

6 -1•388889Eャ61
7. - 1:-51 $1513 \mathrm{E}-61$
$9-1.277779 \mathrm{E}-61$

TYPE 5：

FINITE FOURIER SERIES
DO YOU WISH TO USE MAGNETIC TAPE，TYPE YES OR NO：＝NO
TOTAL NUMBER OF DATA POINTS：$=18$
READ IN DATA POINTS：$=0.25,2 \cdot, 4 \cdot 2,6 \cdot 1,7 \cdot 7,9.1,10 \cdot 3,11,11,4,11 \cdot 5,11.4$ $:=11 ., 15.3,9.1,7.7,6 \cdot 1,4.2,2$ ．

HARMONIC	COS TERMS	SINE TERMS	ERROR SS REMOVED
0	1．503889E＋の1	0．000000E－D1	1．017757E＋03
1	－4．891183E＋0日	5．526868E－0．7	$2.153130 E+92$
2	$-1.157197 \mathrm{E}+00$	2．532923E－07	1．205195E＋A1
3	－4．509000E－01	1．591590E－07	1．82250のE＋の日
4	－3．137546E－01	1．549004E－07	8．859775E－01
5	－1．722799E－01	1．057807E－07	2．671232F－01
6	－9．444444E－012	7．599485E－08	8．02．7777E－02
7	－8．653781E－02	7．955296E－DR	6．739914E－09？
8	－7．904804E－02	7．977436E－08	5．6237335－02
9	－5．006005E－02	0．0000日のE－01	5．625011E－ค．3

TYPE 6：

DESIRED NUMBER OF HARMONICS TO TRY：$=$ GO
DO YOU WISH TO USE MAGNETIC TAPE，TYPE YES OR NO：$=$ N n
TOTAL NUMRER OF DATA POINTS：$=18$
READ IN DATA POINTS：$=0.25,1.3,3.9,5 \cdot 7,7 \cdot 6,8.8,9.9,10.7,11 \cdot 1,11,3$ $8=11 \cdot 1,10 \cdot 7,9.9,8 \cdot 8,7 \cdot 6,5 \cdot 7,3.9,1 \cdot 3$

MARMONIC	COS TERMS	SINE TERMS	ERROR SS REMOVED
0	1．439444E＋61	0．00000日E－01	
1	－4．944771E＋00	5．681179E－07	2．20日569E＋B2
2	－1．200388E＋00	2．695222E－07	1．29683RE＋ 1 1
3	－4．944444E－01	1．717053E－97	2．209278E＋00
4	－2．284768E－の1	1．161753E－07	4．698150E－日1
5	－1．005758E－01	6．827849E－68	9．183944E－92
6	－7．222217E－62	6．183543E－08	4．694438E－02
7	－3．798681 E－02	4．629503E－08	1－298698E－B2
8	7．886461E－02	－3．737432E－68	5．597663E－02
9	1．655556E－61	日．月0000のE－日1	2．5月6946E－68

2. 8 MARS ORBIT TIME AND M/C A DISTRIBUTION

Reference 5 contains two curves relating the quantity $T / h_{a}\left(M / C_{d} A\right)$ to periapsis altitude (all distances in km). The terms are: T, orbital lifetime (years); b_{a}, apoapsis altitude for the six types of orbits in the periapsis section; and $M / C_{d} A$, drag parameter.

The independent variable $P=P_{a}-\Delta P$ where P_{a} is the periapsis altitude for the type of orbit under consideration and ΔP is the random variable whose distribution has been determined in the periapsis section. Each curve represents extremes in the VM-3 atmosphere variation. The curves were fit by fitting orthogonal polynomials to $\ln \left(T / h_{a}\left(M / C_{d} A\right)\right) V S . P$. That is, each curve was approximated by

$$
f\left(T, h_{a}, M / C_{d} A\right)=T / h_{a}\left(M / C_{d} A\right)=e^{\left(\sum \sum B_{j} \Phi_{j}(P)\right)}
$$

where $\Phi_{j}(P)$ are orthogonal polynomials of degree j. The shape of the curves indicates that transforming to $\sqrt{ } P$ would help the approximation, and so this will be attempted at a later date. The present results do look satisfactory, however. The curve-fitting results are shown at the end of this section.

Since the curves are monotonic, the interval technique should be effective. The programs titled "TIMF1" and "M/C $C_{d} A 1$ " were written to provide the distributions of T and $M / C_{d} A$, respectively. Obviously, the former approximates the density of $T=h_{a} \times\left(M / C_{d} A\right) \times$ $f\left(T, h_{a}, M / C_{d} A\right)$, while the latter approximates $T=h_{a} x \frac{1}{f\left(T, h_{a}, M / C_{d} A\right)}$.

In "TIME" the orbit type (1 through 6) and atmosphere type (1 or 2 , where 1 is the upper curve and 2 is the lower curve) are entered initially. The associated h_{a} and p_{a} are printed out as a check. Following this the grid and probabilities for P and $\left(M / C_{d} A\right)$ are entered, including the output (T) grid in the usual way. Note that $T, M / C_{d} A$, and P are all considered as random variables in each case. A typical run follows.

```
READY.
SRUN
WAIT.
LOAD LIMITS 07440 15311
    TIME IN MARS ORBIT PROGRAM
```

 ORBIT TYPE (1-6), ATMOS TYPE(1 OR 2):=1,1
 APOAPSIS(KM) PERIAPSIS(KM)

NUMBER, PERIAPSIS VALUES: $=3,200.200 .1000$.
PERIAPSIS PROBARILITIES: $=\cdot 7, \cdot 3$
NUMBER, UALUES FOR TIME IN ORBIT: $=6,0,55,10,100,1000 ., 2000$.
NUMBER, YALUES FOR DRAG PARAMETER: $=3,1 \cdot E-5,1 \cdot E-4,1 \cdot E-3$
DRAG PARAMETER PKOBABILITIES: =* 4* 6
TIME IN ORBIT DISTRIBUTION
$2.218431 E-01 \quad 1.235655 E-01 \quad 4.544181 E-01 \quad 1.515289 E-01 \quad 4.864454 E-62$
CHECK SUM $=1.000000$
REPOY.
süuv
bAIT.
LOAD LIMITS A744の 15311
M/CDA DISTRIHUTION FROGKAM
JFRIT TYPE(1-6), ATMOS TYPE(1OR 2): $=1.1$
AFOAPSIS(KM) PERI PPSIS(KM)
1. APGOARE + GA 1. RAMGBOE+03
NLIAREK, PERI APSIS VALUES: $=3,200.3600 \cdot 1000$.
PESI APSIS FRORAHILITIESE=.7.0.3

:

mCDA DI STRI BUTION
2.336781E-01 2.85211AE-01 3.811170E-61
CHECK SLM = 1.0日月ano

The curve－fitting results for the pair of curves is shown below：

DESIRED NIMMEER OF POLYNDMIALS TO TRY：$=4$
WHICH ONES：$=1,2,3,4$
1NPUT：＝2 3 月．
PREDICTED VALUE $-1.369558 \mathrm{E}+01$
INPUT：$=300$ ．
PREDICTED VALUE－5．679175E＋89
INPUT：$=480$ ．
PREDICTED VALUE－1．343aGGE＋AA 1NPUT：＝5月の．

PREDICTED VALUE $8.341239 E-01$ INPUT：＝60月．

PREDICTED VALUE $1.999112 \mathrm{E}+00$
INPUT：＝790．
PREDICTED VALUE 2．878955E＋a日 INPUT：$=80$ ．

PREDICTED VALUE 3．799のAAE＊R日 1 NPIIT $=989$ ．

PREDICTED VALUE 4．638！1ect08 1 NPUT：$=1000$ ．

PREDICTED VALUE 4．9182RIE＋のM 1 NPUT：＝ 1 －E75

DESIRED NUMBER OF POLYNOMIALS TI TRY：＝30

```
DO YOU WISH TO USE MAGNETIC TAPE，TYPE YES OR NO：＝NO
```

TYPE NUMBER OF POINTS，MAXIMUM DEGREE：$=9,8$
TYPE IN DEPENDENT DATA：$=-13.81551,-8.111728,-5.298317,-3.912$ QP3 $:=-2.65926,-1.699438,-.5108256,0 ., .6931472$

$\begin{aligned} & \text { DEPENDENT DATA MEAN } \\ & -3.913773 E+\emptyset \emptyset \end{aligned}$		BETA	COEFF	
	ALPHA			SSR
1	6．0日0ดの日E＋02	の．0000日0E－の1	1．57979ar－a？	1． $48 \Rightarrow \triangle 285+02$
2	6．ดูの日の日E＋の2	6．666667E＋04	－2．496592E－95	$1.919755 E+a 1$
3		$5.133333 E+04$	5．334836E－08	4.95740 PE＋an
4	6．ロ9acgne + ¢	$4.628571 E+64$	－1．37a223E－10	1．194629E＋an
5	$6.0000098 \mathrm{E}+02$	4．126984E＋®A	2．781683E－13	1．699454E－al
6		3．535354E＋64	4．881966E－16	1．404315E－0？
7	6．0日pande＋ 2	2．832168E＋04	6．220964E－19	4．581667E－94
8		2．010256E＋04	3．018112E－2の	1．154623E－A？

DESIRED NUMBER OF POLYNOMIALS TO TRY：＝4
WHICH ONES：$=1,2,3,4$
INPUT：＝200．
PREDICTED VALUE－1．375220E＋01 INPUT：＝ 300 ．

PREDICTED VALUE $-8.267269 E+0 D$
INPUT：＝400．
PREDICTED VALUE－5．298967E＋EO INPUT：＝500．

PREDICTED VALUE－3．705065E＋00
INPUT：$=600$ ．
PREDICTED VALUE－2．67219日E＋G0 I NPUT：＝730．

PREDICTED VALUE－1．715821E＋の日 INPUT：＝80日．

PREDICTED VALUE－6．892939E－01 INPUT：$=90$ ．

PREDICTED VALUE 2．6120BDE－91 I NPUT：＝1090．

PREDICTED VALUE 6．966411E－01 I NPUT：$=5 S T O P$

2.9 HELIOCENTRIC TRANSFER CASE

Reference 5 contains information on the various effects on the Mars impact miss distance during the transfer orbit phase. This report contains four curves which relate the four following quantities to time in days to intercept.
a. In-plane miss distance due to tangential component of ejection velocity.

$$
{ }^{T_{1}} \Delta V_{T}=f_{1}(t) \quad\left(k m / \frac{m}{B}\right)
$$

b. In-plane miss distance due to normal ejection velocity component.

$$
{ }^{T} 2 / \Delta V_{N}=f_{2}(t) \quad\left(\mathrm{km} / \frac{m}{s}\right)
$$

The results here were multiplied by 10^{3} to obtain the necessary units.
c. Radiation pressure perturbation to transfer trajectories.

$$
T_{3}\left(\frac{M}{C_{d}^{A}}\right)=f_{3}(t) \quad \mathrm{km} /\left(\frac{s l u g s}{\mathrm{ft}^{2}}\right)
$$

Two curves (Type I, 1973 and Type II, 1975)
d. Out-of-plane component of particle miss distance caused by out-of-plane component of ejection velocity.

$$
\mathrm{R} / \Delta V_{R}=\mathrm{f}_{4}(\mathrm{t}) \quad\left(\mathrm{km} / \frac{\mathrm{m}}{\mathrm{~g}}\right)
$$

Two curves (Type I, 1973 and Type II, 1975). The results here were multiplied by 10^{3} to obtain the necessary units.

Thus the four random variables ($\Delta \mathrm{V}_{\mathrm{T}}, \Delta \mathrm{V}_{\mathbf{N}^{\prime}}, \mathrm{M} / \mathrm{C}_{\mathrm{d}} \mathrm{A}$, and $D \mathrm{~V}_{\mathbf{R}}$) contribute to the Mars quarantine area miss distance, including a bias deliberately programmed into the guidance system.

Denoting R and T as the out-of-plane and in-plane components in the impact plane, the impact point (T_{I}, R_{I}) components are given
by $\mathrm{T}_{1}=\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{3}$
$\mathrm{R}_{\mathrm{I}}=\mathrm{R}$.
The miss distance from Mars ($\mathrm{T}_{\mathrm{m}}, \mathrm{R}_{\mathrm{m}}$) is given by
$d=\sqrt{\left(T_{I}-T_{m}\right)^{2}+\left(R_{I}-R_{m}\right)^{2}}$ (kilometers)

It is the job of the two segments "HELIO 1" and HELJO $2^{\prime \prime}$ to approximate the distributuc-
 of d, given the above-described random variables. The four (actually six) curves were fit in the following ways:
a. Orthogonal polynomials were used to fit $\ln f_{1}(t) V S \sqrt{t}$.
b. Orthogonal polynomials were used to fit $10^{3} \times f_{2}(t)$ VS. t
c. Orthogonal polynomials were used to fit $\ln f_{3}$ (t) VS. \sqrt{t} (for both curves).
d. Orthogonal polynomials were used to fit $10^{3} \times f_{4}(t)$ VS t (for both curves).

The results of the fits follow for all six curves. The procedure is fairly simple. The user inputs the four grids and associated probabilities and the output (d) grid. He also must provide: days to impact, orbit type (1 or 2 -needed for $f_{3}(t), f_{4}(t)$, and the Mars bias coordinates in the impact plane (in km .) The program then samples the appropriate curves and calculates intervals for:
a. $\quad T_{1}=\Delta V_{T} \times f_{1}(t)$
b. $\quad T_{2}=\Delta V_{N} \times 10^{3} \times f_{2}(t)$
c. $T_{3}=f_{3}(t) / M / C_{d} A$
d. $R=\Delta V_{R} \times 10^{3} \times f_{4}(t)$

Thus for $n_{1}, n_{2}, n_{3}, n_{4}$ intervals, the program form $n_{1} \times n_{2} \times n_{3} \times n_{4}$ intervals and computcs $\mathrm{d} \sqrt{\left(\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{3}-\mathrm{T}_{\mathrm{m}}\right)^{2}+\left(\mathrm{R}-\mathrm{R}_{\mathrm{m}}\right)^{2}}$ for each interval. The probability associated with cach interval is the product of the probability for each variable for the particular intervals concerned.

ORTBOCONAL POI．YVO：TLAL CURVE FITTING

TYPE NUMBER OF POINTS，MAXIMUH DEGREE：$=13,12$
TYPE IN DEPENDEHT DATA：$=18.81978 .10 .73204 .10 .63586,10.18667$
$:=9.21034 .8 .922658,6.907755 .5 .857933 .4 .434382 .3 .931826$ $:=2 \cdot 944439,2 \cdot 302585,0$ ．

TYPE IN INDEPENDENT DATA：$=18.70829 .17 .32051 .15 .81139$
$:=14 \cdot 14214,12 \cdot 24745,10 ., 7 \cdot 071468,5 \cdot, 3 \cdot 535534,2 \cdot 5,1 \cdot 767767$
$:=1.251998$－ 0 ．

DEPENDENT DATA MEAN 3．949407E＋00 DEGREE ALPHA BETA COEFF SSP $14.970734 E+00$ $\begin{array}{ll}2 & 1.128421 E+01 \\ 3 & 9.779519 E+00\end{array}$ $0.000000 \mathrm{E}-016.436589 \mathrm{E}-01$ 4．113012E＋0！－3．821528E－02

3．748817E＋02 $2.392741 E+D 1$ $1.639684 \mathrm{E}+0 \mathrm{D}$ 6．134089E－01 1．108942E－01 8．6S8 675 E －02 1．422646E－02 7．278603E－02 8．901758E－03 ：－132336E－02 －．244618E－01 6．941599E－62

ORTHOGONAL POLYNOMIAL CURVE FITTING
DO YOU WISH TO USE MAGNETIC TAPE，TYPE YES OR NO：＝NO

TYPE NUMRER OF POINTS，MAXIMILM DFFREE：$=8,7$
TYPE IN DEPENDENT DATA：$=-4,6,-.8,3,, 6,6,8, ?, 7,3,4.2,9$.

DEPENDENT DATA MEAN 2．9875の日E＋の日

DEGREE

ALPHA
1．75のロのロE＋のR
1．75月9のAE＋のR
1．75の日の日E＋0？
1．759の日のE＋の？
1．75月の日のE + ク？
1．7509AME＋M2
$1.750 \mathrm{MOOE}+02$

BETA
COEFF
の－ดの日ดดのE－の1－1．7の7143E－3？

 R．839P86E＋0．3 3．924243E－99

 4．405594E＋03－9．9の475月E－16

SSR
3．CKMaSムF＋m1
1．GRAMD．9F＋MO
 1－988977E＋ค円 9．3R3M94E－n？ 3．185んの5F－n？ 4．4318の7F－m3

ORTHOGONAL POLYNOMIAL CIIRVE FITTING
OO YOU ！ISH TO IISE MAFNETIC TAPE，TYPE YEG OR NO：＝NO $\ln \left(T_{3}\left(\mathrm{C}_{\mathrm{d}^{A}}^{\mathrm{A}}\right)\right)$
TYPE NIABER OF POINTS，AAXIGit：NFGRFE：$=7,6$
Type I（1973）

 $:=5 ., 3.1$ Кつつ78，？

DFPENMFAT DATA REAN：
？．23719Кテーの1
MEARFR ALPHA RFTA SOFFF SSR

	$4.879 \cap 32 \mathrm{Can}$		5.979 MROF－91	1
$?$	1．111457F＋${ }^{\text {a }} 1$	4．99990隹＋m品	－5．189791F．－T． 2	1－12ムイ4F下－ 1
3	9．39？？3．3E＋กn	¢．кวロ， $763 \mathrm{~F}+97$		
4	F．57Rの3KE＋Oの	9．72746，7E＋99	3．3m119つF－rí	A．1177175
5		9．33．3．3．3E＋の9	3．147つ79F－94	．
6		7．36R $716 \mathrm{FF}+$ ？	9．596986F	． 37917

Type II（1975）

：＝ －
TYPE IN INए，

BFPFANF：T DATA ：PAR

A．75115．3E－「1				
noterar	ALPI！	2F．7 ${ }^{\text {P }}$	ロッロッF	¢
1	9．－ $937395-71$		4．7974787－？ 1	3．97ス73イ5＋のn
2	1－439．389F＋31		－1．4．35R415－9？	3．5．3．3．395．＋nา
3	1．7947515＋31	1－282の67E＋の1		
4	1．9537～805＋＂1	1． $5.535^{n 7 \%}+$＋ 1		1．AFAつけテー「1
5	1． $7750917+\cap 1$		A－4COTucrar	
6	1．$\rightarrow 3972 \times 8+\cdots 1$			7．195へ515－～の
7	1．095830－$+\cdots 1$		－5．＜n1？ $15-$－ 7	5．610：10．m
R			－1．7755ヶ＾スー？ 7	－ $0 \cdot 37.37$
9	1．rス99515＋～1	1－3？${ }^{\text {－}}$（ ${ }^{\text {a }}$		

ORTHOGONAL POLYNOMIAL CURVE FITTING
DO YOU WISH TO USE MAGNETIC TAPE, TYPE YES OR NO: \#NO
TYPE NUMBER OF POINTS, MAXIMUM DEGREE: $=5,4$ - $10^{3} \times \frac{R}{\Delta}$
TYPE IN DEPENDENT DATA: $=3 \cdot 3,7 \cdot 4,6 \cdot 8.3 \cdot 4,0$.
Type I (1978)
TYPE IN INDEPENDENT DATA: $=200 . .150 .9100 ., 50 ., 0$.
TYPE IN WEIGHTS:=1.,1.,1.,1.,50.
dependent data mean 3.870370E-91

DEGREE ALPHA BETA ClEF SSR

1	$9.259259 E+00$	$0.000000 \mathrm{E}-01$	$3.448158 \mathrm{E}-02$	$8.366891 \mathrm{E}+01$
2	$1.585039 \mathrm{E}+02$	$1.303155 \mathrm{E}+03$	$-4.781210 \mathrm{E}-04$	$2.921414 \mathrm{E}+01$
3	$1.227774 \mathrm{E}+02$	$1.816049 \mathrm{E}+03$	$-3.141853 \mathrm{E}-86$	$2.466142 \mathrm{E}+00$

3 1.227774E+02 1.816049E+03 -3.141853E-86 2.466142E+0n
4 1.088396E+02 1.954920E+03 6.000009E-09 1.173576E-02

DO YOUS WISH TO USE MAGNETIC TAPE, TYPE YES OR NO:=N $\eta_{10} 0^{3} \frac{R}{\Delta}$ TYPE NUMBER OF POINTS, MAXIMUM DEGREE: $=8,7$

Type II (1975)

TYPE IN NEIGHTS:=1.,1.,1..,1.,1.,1.,1...1.
dependent data mean
$3.637509 E+99$


```
SLOAD HELIO1.HELIO2
LOAD LIMITS 11643 13611
    HELIOCENTKIC OKBII PKOBABILITY FROGRAM
DAYS TO IMPACT, ORBIT TYPE, T,R MAKS \(:=3,1,0,0\). NUMEEK, TANGENTIAL VELOCITY VALUES: \(=3,0,5\)., ib. TANGENTIAL PKOBABILITIES: \(=08, .2\)
NUMEEK, NOKMAL VELOCITY VALUES: \(=3,0 ., 5,10\).
NOKMAL PROBABILITIES: \(=\cdot 7 \cdot \cdot 3\)
NUMBEK, M/CDA VALUES: \(=4,1 \cdot E-1,1 \cdot E-2,1 \cdot E-3,1 \cdot E-4\)
M/CLA FROBABILITLES:=.7,.2,.1
NUMBER, 0-0-P VELOCITY VALUES: \(=3,0,50,10\).
O-O-L PKOBABILITIES: \(=\cdot 6, .4\)
NUMBEK, MISS DISTANCE VALUES: \(=10,0,100 \cdot, 1000 ., 1 \cdot E 4,1 \cdot E 5,1 \cdot E 6\) : = 1.E7,1.E8,1.E9,1.E10
TI/DVT T2/DVN T3(M/CDA) R/DVK C-F
\(1.593031 \mathrm{E}+01 \quad 2.415908 \mathrm{E}+02 \quad 2.528376 \mathrm{E}+00 \quad 1.690686 \mathrm{E}+02\) IN-PLANE MISS LISTANCE FROBABILITIES
1.014702E-02 1.921751E-01 7.269995E-01 7.067839E-02 CHECK SUM \(=1.000000\)
```

DAYS TO IMPACT, ORBIT TYPE,T,R MARS $:=\$ S T O P$ KEADY.

ADDENDUM TO HELIOS, MELIO2

The segments HELIO1, HELIO2 perform as described in PIR 5540-41.

A new program, to be loaded as HELIO3, HELIO2, was written to allow the user to input ejection velocity magnitude and two angles along with drag parameter. These four quantities are considered to be stochastically independent.

Define a local axis system as $\mathrm{N}, \mathrm{T}, \mathrm{R}$ where N is the local normal of the velocity vector, T is the local tangent of the velocity vector, and R is the out of (transfer) plane component.

It is along the three axes that the "old" program HELIO1, HELIO2 considered as lis basic input.

The miss distance from the center of Mars is calcuited as

$$
d=\sqrt{\left(T-T_{M}\right)^{2}+\left(R-R_{M}\right)^{2}}(k m)
$$

where $\quad T=T_{1}+T_{2}+T_{3}$
$=C_{1} V \sin \theta \sin \varphi+C_{2} V \sin \theta \cos \varphi+C_{3} / \beta$
$R=C_{4} V \cos \theta$
V , magnitude of velocity $\left(\frac{\mathrm{m}}{\mathrm{s}}\right)$
θ, polar angle (deg)
φ, N - T plane angle (deg)
$\beta, \operatorname{drag} \operatorname{term}\left(\frac{\text { slugs }}{\mathrm{ft}^{2}}\right.$)
($M / C_{d} A$)

$$
R=C_{4} V \cos \theta
$$

and

$$
\begin{aligned}
& \mathrm{C}_{1}=\mathrm{T}_{1} / \Delta \mathrm{V}_{\mathrm{T}} \\
& \mathrm{C}_{2}=\mathrm{T}_{2} / \Delta \mathrm{V}_{\mathrm{N}} \\
& \mathrm{C}_{3}=\mathrm{T}_{3} \beta \\
& \mathrm{C}_{4}=\mathrm{R} / \Delta \mathrm{V}_{\mathrm{R}}
\end{aligned}
$$

which are curve-fitted results of curves supplied by D. A. Korenstein given as a function of "TIME" (days to intercept).
$\mathrm{T}_{\mathrm{M}}{ }^{\text {ander }}{ }_{\mathrm{M}}$ are the coordinates of the center of Mars in the impact plane. (T , transfer plane direction and R, out of transfer plane direction.)

Note that the T_{1}, T_{2}, T_{3} components of velocity are not independent and involve a complete different numerical process as performed in HELIO1, HELIO2.

The numerical technique involves calculating all 16 possible d 's for each combination of random variable values ($V, \theta, \varphi, \beta$), choosing the minimum and maximum, and loading the associated probabilities by the technique described in the writeup of "PLOAD."

Thus, for $n 1$ values of $V, n 2$ values of $\theta, n 3$ values of φ, and $n 4$ values of β the program must calculate d a total of ${ }^{4} \times(n 1-1) \times(n 2-1) \times(n 3-1) \times(n 4-1)$ times. Also (n1-1) $\times(n 2-1) \times(n 3-1) x$ ($n 4-1$) intervals are loaded onto the " d " grid as in the usual manner.

SAMPIJE PROBLEM

A time of 5 days to impact was chosen for a TYPE1 orbit and Mars coordinates of ($\mathbf{- 1 0}$., -10).

SSTOP READY.

CHECK CASE
12/15/66

SLOAD MELIO3, HELIO2

LOAD LIMITS 11521 13611
HELIOCENTRIC URBIT PROBABILITY PROGRAM

DAYS TO IMPACT, ORZIT TYPE, T,R MARS $:=5,1,-10,-10$.
NUMBER, VELOCITY MAG VALUES(M/S): $=3,0,010 ., 20$.
VELOCITY MAG PROBABILITIES:=.8:. 2
NUMBER, POLAR ANGLE VALUES(DEG) $:=2,5 \cdot, 15$.
POLAR ANGLE PROBABILITIES\&=1.
NUMBER, $N-T$ PLANE ANGLE VALUES(DEG) $8=2,5 ., 15$. .
N-T PLANE ANGLE PROBABILITIESizi..
NUMBER, M/CDA VALUES(SLUGS/FT*FT): $=2,1, E-3,1 \cdot E-2$
M/CDA PROBABILITIES;=1. .
NUMBER, MISS DISTANCE VALUES (KM): $=10,0 ., 1000 ., 2000.3000 ., 4000$. .

2. 10 ENTRY SURVIVAL PROBABILITY

Reference (1) contains a description of the parametrization of the estimated effect of heat-time on viable organisms entering the Martian atmosphere.

NO. OF SURVIVING ORGANISMS

The above diagram illustrates the process. If we have " A " organisms to start with, the die off will proceed (negative exponential) as is shown in the dotted curves at constant temperatures. The history of an entering particle may suffer a heat-time curve in the heat-time plane as illustrated.

Reference 1 develops a justification for computing a particular index of the particle history called the lethality integral (I_{L}). Once I_{L} is computed, the probability of an organism surviving (to some indicated percentage) is

$$
\frac{1}{\left({ }_{A}^{I}\right)}
$$

Thus if I_{L} is a random variable itself, the probability of survival can be estimated by

$$
\operatorname{pr}(\text { survival })=\sum_{j} \operatorname{pr}\left(L_{L}=I_{L_{j}}\right)\left(\frac{1}{\left(I_{L_{j}}\right)}\right.
$$

In Reference $1^{1,1}$ L is considered to be a function of several parameters. In particular, four seem to be the most important:

$$
\begin{array}{ll}
\epsilon & =\text { emissivity } \\
\nu & =\text { initial entry velocity } \\
\gamma & =\text { initial entry angle } \\
z= & \text { drag paramster }
\end{array}
$$

M. A. Martin has demonstrated that the re'ationship:

$$
\rho n_{1 \epsilon} I_{L}=3.34036-5.34036\left(\frac{\xi}{\xi 2}\right)
$$

where

$$
\xi_{2}=k_{1}+k_{2} \bar{z}+k_{3} \bar{\gamma}+k_{4} \bar{\nu}+k_{5} \bar{z} \bar{\gamma}+k_{6} \bar{\gamma} \bar{\nu}+k_{7} \bar{\nu} \bar{z}+k_{8} \bar{z} \bar{\gamma} \bar{\nu}
$$

where

$$
\begin{aligned}
& \bar{z}=z \times 10^{4} \\
& \gamma=\left(\frac{90-\gamma_{2}}{100}\right) \\
& \bar{\nu}=\left(\frac{\nu}{10^{4}}\right)^{3}
\end{aligned}
$$

is a satisfactory form in his preliminary studies from available data. Appropriately, the program "LID" was written to compute the probability distribution of I_{L}. The input is by the same method of providing grid intervals and probabilities used in other programs.

```
NUMBER, DALLIISTIC COEFFICIENTS
:=3,4.E-5,22.E-5, A.E-4
BALLISTIC PROBABILITIES
:x.8..2
NUMBER, INITIAL,ENTRY ANGLES
:=3,5.,10.,25.
ENTRY ANGLES PROBABILITIES
:=.5..5
NUMEER, INITIAL PARTICLE VELOCITY
:=3,12000..13000..14000.
PARTICLE VELOCITY PROBABILITIES
z=.5,.5
NUMBER, EMISSIVITIES
8=3,.2,.3..4
EMISSIVITY PROBABILITIES
&=.7*3
NUMBER, LETHALITY INTEGRAL
:=10,1.E-4,1.E-3,1,E-2,1.E-1,1.,2.,5.,10.,1.ESH+\omega+100.,1.E5
***LETHALITY PROBABILITIES
\[
\begin{array}{lllll}
2.934343 E-04 & 2.648213 E-03 & 2.649075 E-02 & 1.338197 E-01 & 4.328347 E-02 \\
1.298504 E-01 & 1.236249 E-01 & 3.835066 E-01 & 1.564824 E-01 &
\end{array}
\]
07704 EOT
SUM \(=1.000000 E+00\)
```

```
NUMBER, BALLISTIC COEFFICIENTS
```

NUMBER, BALLISTIC COEFFICIENTS
\&=$STOP
 &=$STOP
READY..

```
READY..
```


2.11 M/CDA SURVIVAL PROBABILI'IIES

According to Reference 7, one method of determining the distribution of M/CDA that enters the atmosphere is to generate a distribution of upper limits on M/CDA entering the atmosphere (M/CDA program).

This distribution is then merged with the given M/CDA distribution to determine the surviving distribution of M/CDA that enters the atmosphere.

Define

$$
\begin{aligned}
& \mathrm{Z}=\text { original a priori random variable } \\
& \mathrm{Z}_{\mathbf{u l}}=\text { upper limit random variable } \\
& \mathrm{Z}_{\mathbf{a}}=\text { resulting "a posteriori" random variable }
\end{aligned}
$$

When a value for $Z_{u l}=\alpha$ is given, the conditional distribution for Z

can be found by dividing the modified area A. That is the density of Z is modified to form

$$
f\left(z \mid z_{u l}=\alpha\right)=\frac{f(z)}{A}
$$

The final distribution becomes:

The numerical procedure consists of reading the density for Z and $Z_{u l}$ in interval probability form and generating the distributing of Z_{A} in the same form by calculating the summation described above. A program now exists on the DSCS to perform this calculation.

The program is known as "LIMIT".

To use the program, provide first the upper limit points and related probabilities; next the M / C_{D} A points and probabilities and finally the desired put points for the resulting marginal distribution.

2.12 SCALE PROBABILITIES

A program called "HEX" was written, utilizing the interval concept, to compute an estimate of probabilities of a series of scale-related quantities. These quantities are all associated with the geometry and mass of a homogeneous spherical particle.

The interval concept is valid when in computing the distribution of a function of several variables, say $\xi=\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{p}}\right)$, the intervals (or input grid) are chosen small enough so that $\frac{\partial \xi}{\partial x_{j}} \cdot(j=1, \ldots, p)$ do not change sign in the given p-dimensional regions.

The quantities under consideration are:

> d , diameter
> s , surface area
> z , ballistic parameter (M/CdA)
> V , volume
> M , mass
> A , cross - sectional area

They are all related in such a way that the above restriction is satisfied. In fact, the functions (30 in all) are all one-to-one for any given interval.

The program HEX given any other. The 30 relations, however, are avoided and reduced to 6 by the suggestion of E. Berger. Instead, the relations are computed recursively in what may be thought of as a counterclock wise direction around the rim of a hexagon.

2-49

The six functions are given by:

1. \quad Given $\mathrm{d}: ~ S=\pi d^{2}$
2. Given $S: Z=2 \sigma \sqrt{\frac{5}{\pi}} / 3 C_{D}$
3. Given Z: $V=\frac{9 \pi}{16} \frac{\left.C_{D ~ Z ~}\right)^{3}}{\delta}$
4. Given $V: M=V \delta$
5. Given $M_{i} A=\frac{\pi}{4}\left(\frac{(5 \mathrm{M})}{\pi \sigma}\right)^{2 / 3}$
6. Given $A: d=\sqrt{\frac{4 A}{\pi}}$

Where σ is the density of the particle and ${ }^{C_{D}}$ is the (unities) drag coefficient.

Note that the units cancel out appropriately
so that it is necessary only that the given
function be consistent in units with δ

For example if we start with $\mathrm{d}=\mathrm{cm}$, then S is $\mathrm{cm}^{2}, \mathrm{Z}$ is $\mathrm{gm} / \mathrm{cm}^{2}$ (if δ is $\mathrm{gm} / \mathrm{cm}^{3}$), V is $\mathrm{cm}^{3}, \mathrm{M}$ is gm, A is cm^{2}, and d is cm .

The question may arise concerning the loss of significance encountered in "going around the horn."

This turns out to be no serious problem in the test runs encountered so far. To illustrate this, a program was written which, initially calls for δ and C_{D}.

Following this, it calls for the code and related functional value. The program then computes "around the horn" to the given function and prints this on the following line.

In the following runs, no round off was observed out to seven digits.

The program usage is simple and is described briefly in the following.

The program will print the title and code initially.

The first input will be the number (integer) and functional values of the given quantity (in the standard grid format).

Following this is the set of probabilities in the standard interval concept (one less than number of end points).

Next the program calls for three A quantities: given function code (integer), density, and drag coefficient (both floating).

The function code of the desired quantity is then called for (integer).

Finally the number (integer) and functional values of the desired quantity (that is, the output grid) are called for.

The resulting probabilities (out to the last non-zero value) are printed.

The program will treat this as the input distribution for further calculations. Appropriately the code and then the related number and functional values are called for.

The recursion can be halted by giving a function code 27 . The program will then call for a new input distribution.

A sample series of runs is shown below:

The first and second test the ability to restart over for a called function code ≥ 7.
The third and fourth demonstrate the recursion and the fifth demonstrates the ability to "recreate" the input distribution.

PROGRAM TO COMPUTE SCALE PROBABILITIES

FLIVCTION CODE
1, DI AMETER
?, SURFACE AREA
3. DRAG PARAMETER
4. WLUME
5. MASS
6. CROSS-SECTIONAL AREA

NLMBEF, END POINT VALUES: $=3,1,2,2,3$.
PROBABILITIES: $=$ - $1, .9$
GIVEN FUNCTIDN CODE, DENSITY, DRAG: $=1,2 \ldots, 3$.
READ NEXT FLINCTION CODE: $=2$
NUMRER, POINTS FOK NEXT DENSITY: $=5,0 ., 1,, 50,10,50 ., 100$.
RESILTING PROBARILITIES
 CHECK SLM = 1. OROOAD

READ NEXT FUNCTION CODE: $=7$

NUMBER, END POINT VALUES: $=3,10,20,3 \cdot$
PROBABILITIES: =-1. 9
FIVEN FUNCTION CODE, DENSITY, DRAG\& =1, 2., 3.
READ NEXT FUNCTION CODE: $=2$
NUMBER, POINTS FOR NEXT DENSITY\& =5,0., 10,50,10.,50.
RESULTING PRORABILITIES
0.0000日0E-01 1.9768315-02 5.305i65E-02 9.272300E-01 CHECK SLM = 1.0000日0

RFFD NEXT FLINCTION CODE: $=8$

NLMFER, END POINT VALUES: $=5,0,0,1,5,10,10$.

GIVFIN FLNCTIDA CODE, DENSITY: DRAG: $=3,2 ., 3 \cdot$
READ NFXT FUNCTION CODE: $=6$
NUAअEK, PNINTS FOR NEXT DENSITY: $=10_{0} \mu_{0}, 10,5,10_{0}, 50_{0}, 100,200_{0}$.

HECILTINF FKOBABILITIES
 CHFCK SLiA = 1. AOMAOQ

FFAD VFKKT FIWCTION CDDE: $=\$ S T O F$ NF.ADY.

An associated program with＂HEX＂is the progran：known as＂SPHERE＂．

Thi ingu＇is similar to that of＂HEX＂，but the probabilities are not required．Only the function code，density，drag parameter and end points are needed．

The program will provide a specirum of end points values for all the functions associated with the given end points．Oí course，whatever probability is required will hold for all the end point values across each function．


```
FINCTIN: COnF
1, nIAveTF:
1, SIRFACT APF, 
3. ntar patan`ter
A. vnlipir
5. M^ &
G, r+.ISS-SFCTIMNAL AREA
GIUFN F!NO:TINV GONF, DF,WSITY, DRAR:=I.R.,A.
NIMAFR, PNINTS:=5,n,,1,,N,,3.,n.
\begin{tabular}{|c|c|c|c|c|c|}
\hline ER & SIIPFACF． & \％ & Unl＿19\％ & \＃Ac¢ & \(r\) \\
\hline \＃．mannf－ 1 & ก．9าดดร．－n1 &  & ก．าๆูกธーก1 & 9．กクロッтーก！ & nil \\
\hline 1．manamena & 3．1416E＋9n & 3．3339上－n1 &  & 1．\(\cdot\) ． \(1705+\) an & 7．7．アイn－－ 1 \\
\hline ？．manamy & 1．95NRE＋71 & 6．66ヶ7ए－n1 & A．19？\％ctan & \(8.37785+m \mathrm{r}\) & \(\cdots+1\) 1cran \\
\hline  & 2．9．27AF．＋ 1 &  & 3．A才：775＋ 1 & 0． \(30745+\) 1 & 7－「¢7 \\
\hline A．CMGnF．am & 5．0．5455＋71 & 3．3335＋ & 3．35195． &  & 1. \\
\hline
\end{tabular}
```


ПIPMET「\％	Sirsarf．	npar：			ranrsacre
Q．ananam．－ 11				mone－n	
1－9nnmF－9n	2．1416F＋An	3－3．7．3．35－91	$5.3 .36750 \% 1$	1．0／700＋00	
D．mannriang	1． $7546 F+\pi 1$	K．KRinction	A．123¢54のrs	？．377ヘr＋の	2．1A5
	0．807A5＋C1	0.9907 COR	1－A1．77\％＋N1		
	$5 . \cap つ 65 F+$ ？ 1	1－3．3？．35＋${ }^{\text {ar }}$		\＆．79ワロッ＋～1	1．9ラハイア＋71

DI AMETSR	surpacir	nriar：	yกt．10：	\％$\%$ S	Pnnec－efr
9．9manf－71	©．\quad Mnar－n！			の．promb－r	$\bigcirc .9$ mamerl
9．99995－n1	3．1A15F4mer	3．3．3．3．75－－1	G．ヘワラッケーア！	1．ハプロッツの	
	1．05RRR＋	R．RAR7F－－ 1	A．1～の9rtan	－．2777\％＋－．7	－1，Arrerm
$3.9 \times 975+$ an	2．707AF＋ 11		1－A1975スヘ1		
3．9пクロr．an		1－2．3．35＋0\％			

FIVFN FIINCTION CC:OE, NPNSITY, DRAF: $=4 \cdot 2 ., 4$.
NUMOFR, POTATS: $=5,4 . ; 59358,4.1289,14 \cdot 137,33.5 \mathrm{mR}$

GIUFN FIMCTIMN GODE, DENSITY, DRAG: $=5, ? ., 4$.
NIMFER, POINTS: $=5,9 ., 1.0472,8.3776,28.274,67.971$

GIUEN FUNCTION CODE, DENSITY, DRAF: $=6,2 ., 4$.

FIUEN FIINCTION CODF, DFNSITY, DRAG: = T STOP READY.

2.13 GENERAL COMBINING OF RANDOM VARIABLES

As an aid for general enginecring analysis of the probability of combinations of variates, a program called "CŌMBl" was written to accommodate such problems.

This program is a generalization of "BUGS", in that it now allows for not only addition but subtraction, multiplication and division of random variates.

The user's instructions are similar to that of "BUGS", with the only extra requirement that the binary operation code be entered.

```
PRORPA: jn rmvmiNE RANMO:: VAP!! TFS
OPEPOTITN RCNF
ARr, 1
AMr, 1
MILTIPLY,?
Milutiply,
RESTART, 5 ON MEEATG
NHMRER,POINTG ERE FIRCT NENSITY:=,2,1,.O.,5.
FIRST SET OF PROFANILITIFS:=*A,.A
```



```
s=90.,5n..tma.
READ OPFRATION CODF(1-4):=1
NUNAFR,PNINTS FOR NEKT DENSITY:=0,1.,O.
NFXT EF.T OF PROMNDILITIFS:=1.
    *******RESMLTING PRCRARILITIES*******
```



```
3.ดดดआดกต5.-71
CHECK S'F4 = 1.паのaman
```

READ OPERATION CODE($1-A):=5$

FIRST SET OF PRARANILITIESzE.4...

t=29..59..19の.

READ OPERATION CODE(1-4): $=$?
MUMBER,POINTS FRR NEXT DENSITY: $=9.0-9 . .-1$ -
NEXT SET OF PROAAGILITIESI=1.


```
CHECK simm = 1.fagagm
```

READ OPERATION CODE（1－4）：＝5

```
NUMRER,POINTS FOR FIRST DENSITY:=3,1.,?.,5.
FIRST SET OF PRODABILITIES:=.4,.6
NIPARFR,POINTS E\capR RESIILTINF DENSITY:=10,N.,1,,0,,3,,A.,5.,1\pi.
:=PA.,5%., 19%.
RFAD OPERATICN CODF(1-4):=?
NUMRER,POINTS FO.. NEXT DENSITY:=?,1.,?.
NEXT SET OF PRORABILITIES:=1.
    ******RTSILTINR PROTAAMILITIES*******
```



```
    3.75@のดのF-の1
CHECK SiMM = 1.Emaman
```

READ OPERATION CODE $(1-4):=5$

NUMRER，POINTS FOR FIRST DFNSITY：＝3，1．，2．，5．
FIRST SET OF PROAAAILITIES：＝・タッ・保
 $:=20 ., 5 \pi ., 1$ の方。

READ OPERATION CODE（1－4）：＝A
NUMBER，POINTS FOR NEXT NFNSITY：＝？，1•，？．
NEXT SET OF PRORABILITIF．S：＝1．

```
    ******RFS!!LTINf PROBAPILITIFS******
```



```
CHECK SUM = 1.AAMga@
```


READ OPERATION CODE（1－A）：ERSTOP

 READY．
2.14 REFERENCES FOR SECTION 2

1. M. A. Martin, "Voyager Mars Planetary Quarantine: Thermal Kill of Bacteria During Mars Entry," Section 3 of this report.
2. A. Hald, Statistical Theory with Engineering Applications, John Wiley \& Sons, 1952.
3. G. M. Roe, A Computer Algorithm for the Error Integral, TIS 66-C-050, March 1966.
4. T.F'. Green, 'Preliminary Combinatorial Probability Model for the Voyager Quarantine Problem, " VOY-C2-TM1
5. D.^. Kcrenstein, "Voyager Mars Quarantine Ejected Particle Trajectory Study." VOY-C2-TR7
6. K. Maddock, "Compro-Combinatorial Probability Program." PIR 4T24-068, November 11, 1966.
7. E. Berger, Unpublished notes on the Math Model.
8. T. F. Green, Some Curve Fitting Techniques and Related Applications on the GE DeskSide Computer System, TIS 66SD314, September 13, 1966.

2.15 ACKNOWLEDGEMENTS

This is to acknowledge the assistance of Mrs. K. Maddock in the preparation of several of the programs described in this section.

SECTION 3
AN APPROACH TO THE EVALUATION OF THE THERMAL INACTIVATION OF MICROORGANISMS DURING MARS ENTRY

By

M. A. Martin
Section Page
3 ENTIPY 3-1
3.1 Introduction and Summary 3-1
3.2 Survival Ratio (i) and Lethaliiy Interral (I) 3-1
3.3 Decimal Reduction Time (D) and Thermal Deaih Time (F) 3-3
3.4 Curve 7 (t^{\prime}) for Thermal Resistance of Dry Spores 3-5
3.5 Functionalization of τ (t) 3-6
3.6 Compliter Programs for Determining I_{L} 3-8
3.7 Parameters Affecting I工 3-9
3.8 Computer Runs for Determining I_{L} 3-11
3.9 Variation of l_{L} with Emissivity (ϵ).Intermediate Variable (ϵ_{2}) 3-14
3.10 Variation of ϵ_{2} with Ballistic Coefficient (β) 3-16
3.11 Variation of ϵ_{2} with Entry Angle $\left(\gamma_{E}\right)$ 3-17
3.12 Variation of ϵ_{2} with Entry Velocity (VE) 3-17
3.13 Funciionalization of $\mathrm{I} L$ 3-18
3.14 Changes in Parameters 3-24
3.15 Organisms Carried by Nonviable Particles. 3-25
3.16 Refercnces 3-26
3.17 Acknowledgements 3-26
LIST OF ILLUSTRATIONS
Figure Page
3-1 Thermal Resistance of Dry Spores 3-5
3-2 Temperature Histories 3-12
3-3 Variation of I_{L} with ϵ 3-14
3-4 Variation of ϵ_{2} with ϵ_{1} 3-15
3-5 Variation of ϵ_{2} with β 3-17
3-6 Variation of ϵ_{2} with γ_{E} 3-17
3-7 Variation of ϵ_{2} with V_{E} 3-18
3-8 Variation of RMS with C 3-20
3-9 Evaluation of F-unctionalization 3-23

3-9 Evaluation of F-nctionalization
-23

SECTION 3

ENTRY

3.1 INTRODUCTION AND SUMMARY

An approach to evaluate the potential thermal kill of singular bacteria or small aggregates or clumps during Mars entry has been outlined in Reference 3-1. The concept of a lethality integral (I_{L}) permits the calculation of the survival ratio (f) under varied conditions.

In the preliminary investigation of the method reported here, the analysis of the effects of four parameters included: the ballistic coefficient, β; the entry angle, $\gamma \mathrm{E}$; the entry velocity, VE; and the particle emissivity, ϵ. Within the range of values used for these four parameters, it has been possible to determine an algorithm to compute the lethality integral and, hence, the survival ratio (f) for the effects of any combination of these four parameters.

The development of this algorithm is explained, and the results of the functionalization of I_{L} are evaluated.

Changes made in the choice and the values of the parameters for further investigation of this approach, now in progress, are mentioned.

Results of calculations made on individual or singular living microbial cells or spores carried by nonviable particles are given.

3.2 SURVNAL RATIO (f) AND LETHALIIY INTEGRAL IL

The kinetics of thermal death of microorganisms can be defined by the differential equation

$$
\begin{equation*}
\frac{d N}{N d t}=-K\left(t^{\prime}\right) \tag{3-1}
\end{equation*}
$$

Abstract

If N is the number of living organisms at time t, Equation 3-1, expresses that the relative rate of change of the number of living organisms is a constant depending upon the temperasure ${ }^{\prime}$ '.

Intcgration of Equation 3-1 yields

$$
\begin{equation*}
-\int_{t_{0}}^{t} K\left(t^{\prime}\right) d t \tag{3-2}
\end{equation*}
$$

which gives the survival ratio f (ratio of the number N of living organisms at time t to the number N_{o} of living organisms at time t_{0}) as a function of the time history $\mathrm{t}^{\prime}(\mathrm{t})$ of the temperature.

If the temperalure, \mathbf{t}^{\prime}, is constant, Equation 3-2 reduces to (if $\mathbf{t}_{\mathbf{0}}=0$)

$$
\begin{equation*}
f=\frac{N}{N_{0}} e^{-K\left(t^{\prime}\right) \cdot t} \quad\left(t^{\prime}=\text { constant }\right) \tag{3-3}
\end{equation*}
$$

In particular, the time $\tau\left(t^{\prime}\right)$ necessary to produce a specified survival ratio $\mathrm{f} \tau$ at temperature t^{\prime} is given by

$$
f \tau=e^{-K\left(t^{\prime}\right) \tau\left(t^{\prime}\right)} \quad\left(t^{\prime}=\text { constant }\right)
$$

If the time τ is known for a specified f, inversion of Eauation 3-4 yields

$$
\begin{equation*}
K\left(t^{\prime}\right)=-\frac{\ln f \tau}{\tau\left(t^{\prime}\right)} \tag{3-5}
\end{equation*}
$$

In all our equations, the symbol \ln represents a natural logarithm, and the symbol log represents a decimal logarithm.

Replacing, in Equation 3-2, $K\left(t^{\prime}\right)$ by its value from Equation 3-5 yields

$$
\begin{equation*}
f=\frac{N}{N_{0}}=e \quad \operatorname{lnf\tau } \int_{t_{0}}^{t} \frac{d t}{\tau\left(t^{\prime}\right)}=10 \quad \log f \tau \int_{t_{0}}^{t} \frac{d t}{\tau\left(t^{\prime}\right)} \tag{3-6}
\end{equation*}
$$

We can then define a lethality integral I_{L} by

$$
\begin{equation*}
I_{L}=\int_{t_{0}}^{t} \frac{d t}{\tau_{\left(t^{\prime}\right)}} \tag{3-7}
\end{equation*}
$$

The lethality integral, I_{L}, is the classical "sterility" considered in the food industry (Reference 3-2).

In our investigation, we have used:

$$
\begin{equation*}
\mathrm{f} \tau=10^{-12} \tag{3-8}
\end{equation*}
$$

Hence, in our case, Equation 3-6 can be written

$$
\begin{equation*}
f=\frac{N}{N_{0}}=10^{-12 \mathrm{I}_{\mathrm{L}}} \tag{3-9}
\end{equation*}
$$

For the purpose of this investigation, we have assumed that any survival ratio smaller than 10^{-4} is considered as meeting the planctary quarantine requirement. Consequently, the range of values of interest for I_{L} is from 0 to $1 / 3$.

3.3 DECIMAL REDUCTION TIME (D) AND THERMAL DEATH TIME (F)

Equation 3-3 can be written

$$
\begin{equation*}
f=\frac{N}{N_{0}}=10^{-K^{\prime}\left(t^{\prime}\right) t} \quad\left(t^{\prime}=\text { constant }\right) \tag{3-10}
\end{equation*}
$$

with

$$
\begin{equation*}
K^{\prime}\left(t^{\prime}\right)=(\log e) . K\left(t^{\prime}\right)=0.43429 K\left(t^{\prime}\right) \tag{3-11}
\end{equation*}
$$

The constant $K^{\prime}\left({ }^{\prime}\right)$ is determined experimentally from the measurement of the survival ratio, f, for a known time, t, at the specified temperature, t^{\prime}. Instead of $K^{\prime}\left(t^{\prime}\right)$, the biologists use its rectprocal $D(t)$, hence Equation 3-10 can be written

$$
\begin{equation*}
\mathrm{f}=\frac{\mathrm{N}}{\mathrm{~N}_{\mathrm{O}}}=10^{-\frac{\mathrm{t}}{\mathrm{D}\left(\mathrm{t}^{\prime}\right)}} \quad \quad\left(\mathrm{t}^{\prime}=\text { constant }\right) \tag{3-12}
\end{equation*}
$$

If the time, t, is equal to $D\left(t^{\prime}\right)$, the survival ratio, f, is $1 / 10$; that is, $D\left(t^{\prime}\right)$ represents the time to reduce the number of viable organisms in a population to one tenth of its initial value, hence the term Decimal reduction time given to D.

When $\mathrm{D}\left(\mathrm{t}^{\prime}\right)$ is known, the time $\tau_{\text {necessary }}$ to produce a specified survival ratio $\mathrm{f} \tau$ is given by

$$
\begin{equation*}
f_{\tau}=10-\frac{\tau}{D\left(t^{\prime}\right)} \quad\left(t^{\prime}=\text { constant }\right) \tag{3-13}
\end{equation*}
$$

hence

$$
\begin{equation*}
\tau=D\left(t^{\prime}\right) \cdot[-\log \mathrm{ft}] \tag{3-14}
\end{equation*}
$$

If N_{0} is the initial population and N_{τ} the population at time τ, we have

$$
\begin{equation*}
-\log \mathrm{f} \tau=-\log \frac{N_{\tau}}{N_{0}}=\log N_{0}-\log N \tau \tag{3-15}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\tau=D\left(t^{\prime}\right)\left[\log N_{0}-\log N \tau\right] \tag{3-16}
\end{equation*}
$$

NT may be interpreted as the probability of having, at time T, one living organism out of an initial population N_{0} maintained at constant temperature t.

The F value (time to sterilize, more commonly referred to as thermal death time) familiar to the biologists, is derived from the D value by the equation of schmidt (Reference 3-3), which can be written, with our notations,

$$
\begin{equation*}
F=D(t)\left[\log N_{0}+1\right] \tag{3-17}
\end{equation*}
$$

$3-4$
or by Hobby's modification of Sclmidt's Equation (Reference 4)

$$
\begin{equation*}
\mathbf{F}=\mathrm{D}\left(\mathrm{t}^{\prime}\right)\left|\log \mathrm{N}_{\mathrm{O}}+\mathrm{a} \tau-\log \mathrm{N} \tau\right| \tag{3-18}
\end{equation*}
$$

Equation 3-18 differs from Equation 3.16 only by the term at. Hobby takes ar equal to 2; Koesterer used the valuc 1 for a_{i}. Actually when N_{T} is specified, the value 0 should be used for this term. Adding it is equivalent to replacing N_{T} by

$$
\begin{equation*}
N_{\tau}^{\prime}=10^{-\mathrm{a} \tau} \cdot \mathrm{~N}_{\tau} \tag{3-19}
\end{equation*}
$$

3.4 CURVE $T\left(t^{\prime}\right)$ FOR THERMAL RESISTANCE OF DFY SPORES

From D values obtained at temperatures of $80^{\circ} \mathrm{C}, 100^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ by $5^{\circ} \mathrm{C}$ increments, and $160^{\circ} \mathrm{C}$, (Reference 3-5), and from D values obtainé from Decker's work for higher temperature (Refererice 3-6), M. Koesterer cstablished a curve (Figure 3-1) of τ as a function of the temperature t^{\prime} for $N_{0}=10^{8}$ and $N \tau=10^{-4}$. that is, for $\mathrm{f} T=10^{-12}$ as mentioned in Equation 3-8.

Figure 3-1 is actually a curve of F values. Koesterer used the value 1 for at; hence, the curve really corresponds to a value 10^{-13} for ft.

This fact was discovered only recently, and since the purpose of this preliminary investigation was to develop a method for the functionalization of the lethality integral I_{L}, the value 12 has been retained for this report.

Correction would involve replacing 12 by 13

Figure 3-1. Thermal Resistance of Dry Epores in Equation 3-9 and in all the caloulations which convert I into values of survival ratios. The use of 12 rather than 13 provides conservative estimates for the survival ratio.
(Arrhenius-Van t^{\prime} Hoff's theory provides a theoretical expression for $D\left(t^{\prime}\right)$:

$$
\begin{equation*}
D\left(t^{\prime}\right)=A e^{\frac{E_{d h}}{R T}} \tag{3-20}
\end{equation*}
$$

In Equation 3-20, A is a constant referred to as frequency factor, R is the gas constant, \mathbf{E}_{dh} is the thermal inactivation energy, and T is the absolute temperature (Reference 3-7).

We can transform Equation 3-20 into

$$
\begin{equation*}
\log D\left(t^{\prime}\right)=\frac{{ }^{a} D}{T}+b_{D} \tag{3-21}
\end{equation*}
$$

The coefficients a_{D} and b_{D} were determined to match Koesterer's curve for the temperatures $100^{\circ} \mathrm{C}$ and $160^{\circ} \mathrm{C}$. The resulting equation was

$$
\begin{equation*}
\log D\left(t^{\prime}\right)=\frac{6355.1}{T}-11.826 \tag{3-22}
\end{equation*}
$$

Since, in our case, τ is equal to 12 times the D value, values of τ were computed with Equation 3-22 for values of t^{\prime} from $80^{\circ} \mathrm{C}$ to $210^{\circ} \mathrm{C}$. The results are shown in Figure 3-1 (dotted line).
t can be seen that for high temperatures, the time required to produce a specified survival ratio is less than that predicted by the kinetic theory.

3.5 FUNCTIONALIZATION OF τ (t^{\prime})

For the purpose of our investigation, Koesterer's curve (Figure 3-1) was assumed to represent actual values.

Figure 3-1 represents $\log \tau$ as a function of the temperature t^{\prime}. For t^{\prime} betwcen $80^{\circ} \mathrm{C}$ and $210^{\circ} \mathrm{C}$, the curve is a straight line. The portion of the curve for t^{\prime} between $210^{\circ} \mathrm{C}$ and 3200 C was approximated by a portion of a rectangular hyperbola.

3-6

Specifically, the following functions have been used:

$$
\begin{align*}
& \tau=e^{\left(-0.089810 t^{\prime}+23.443\right)} \tag{3-23}\\
& \text { for } t^{\prime} \leq 210^{\circ} \mathrm{C} \tag{3-24}\\
& \tau=e^{\frac{-0.797776 t^{\prime}+416.679}{t^{\prime}-155.656}} \quad \text { for } t^{\prime}>210^{\circ} \mathrm{C}
\end{align*}
$$

In our calculations, Equation 3-24 was also applied to temperatures higher than the maximum temperature $\left(320^{\circ} \mathrm{C}\right)$ for which experimental data exist. The reason is that Equation 3-24 still provides reasonable extrapolated values for these higher temperatures. Furthermore, at $320^{\circ} \mathrm{C}$, an exposure time of 0.89 second is sufficient to produce a survival ratio of 10^{-4}; hence, when that temperature is reached or exceeded during Mars entry, the thermal kill is almost instantaneous. The exact value of n in the survival ratio 10^{-n} cannot be computed accurately, but is not pertinent when n is larger than 4.

Table 3-1 provides a synopsis of the quality of the functionalization of τ. Between $100^{\circ} \mathrm{C}$ and $210^{\circ} \mathrm{C}$, the \% error should be theoretically zero, since Koesterer's curve is a straight line and Equation 3-23 represents also a straight line when τ is plotted in logarithmic scale; the small errors are due to errors in interpreting the curve.

Table 3-1 shows that for the range of experimental temperatures, the value of τ functionalized by Equation 3-23 or 3-24 does not differ from the observed value by more than a few percent.

Table 3-1. Functionalization of T

$\begin{gathered} t^{\prime} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	τ (seconds)		Percentageof Error	$\begin{gathered} t^{\prime} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	τ (seconds)		Percentage of Error
	Read	Calculated			Read	Calculated	
100	1920000.	1910000.	-0.5	260	7.5	7.43	-0.9
120	313000.	317000.	1.3	270	6.0	5.81	-3.2
140	51000.	52500.	2.9	$280{ }^{\circ}$	2.8	4.73	-1. 5
160	8 ¢ 0	8.20.	3.8	290	4.0	3.97	-0.7
180	1390.	1.450.	4.3	300	3.4	3.42	0.6
200 '	235.	240.	2.1	310	3.0	3.00	0.0
210	100.	98.0	-2.0	320	2.66	2.67	0.4
220	43.5	42.4	-2.5	340		2.20	
230	23.0	23.0	0.0	360		1.88	
240	14.3	14.4	0.7	380		1.66	
250	10.0	10.0	0.0	400		1.49	

3. 6 COMPUTER PROGRAMS FOR DETERMINING I_{L}

The method of determination of a particle temperature during an entry trajectory is described in Reference 3-8.

A trajectory program is first run with selected initial conditions to provide values of the free molecular heat flux $\dot{\mathrm{q}}_{\mathrm{FM}}$ (in $\mathrm{Btu} / \mathrm{ft}^{2}-\mathrm{sec}$) as functions of time. At each instant, $\dot{\mathrm{q}}_{\mathrm{FM}}$ is proportional to the atmospheric density ρ_{a} at the particle position and to the cube of the particle velocity

$$
\begin{equation*}
q_{F M} \therefore \rho_{a} v^{3} \tag{3-25}
\end{equation*}
$$

The heat balance equation can be written (for a sphere)

$$
\begin{equation*}
\dot{\mathrm{q}}_{\mathrm{FM}}+\alpha \overline{\mathrm{S}}=\mathrm{K}_{1} \in \sigma \mathrm{~T}^{4}+\mathrm{K}_{2} \quad \text { rp } \mathrm{C}_{\mathrm{P}} \frac{\mathrm{~d} \mathrm{~T}}{\mathrm{dt}} \tag{3-26}
\end{equation*}
$$

In Equation 3-26,
$\alpha \quad$ is the solar absorptivity of the particle
$\overline{\mathbf{S}}$ is the solar constant for Mars (a value of $0.0653 \mathrm{Btu} / \mathrm{ft}^{2}-\mathrm{sec}$ was used)
$\epsilon \quad$ is the particle emissivity
σ is the Stefau-Boltzmann constant ($4.76 \times 10^{-13} \mathrm{Btu} / \mathrm{ft}-\mathrm{sec}-{ }^{\circ} \mathrm{R}$)
r is the particle radius (ft)
$\rho \quad$ is the particle density $\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$
C_{P} is the specific heat capacity of the particle ($\mathrm{Btu} / \mathrm{lb}^{-}{ }^{0} \mathrm{R}$)
T is the absolute temperature of the particle $\left({ }^{\circ} \mathrm{R}\right)$
K_{1} has value 4 for a spherical particle, and π for a cylindrical particle
K_{2} has value 4/3 for a spherical particle, and $\pi / 2$ for a cylindrical particle

3-8

The imput to the Thermodynamics program includes the values of $\dot{q}_{F M}$ for all the times needed by the computer program and the value T_{0} of T at the initial time t_{0}. At each time t_{n}, the derivative $\frac{d T}{d t}$ is calculated by Equation $3-26$, and the value T for the next time is obtained by integration of this derivative.

A subroutine has been added to the thermodynamics program to compute I_{L} as follows: at each time t_{n}, the absolute temperature T_{n} of the particle (in ${ }^{O_{R}}$) is converted to a value t_{n} in ${ }^{\circ} \mathrm{C}$ from which $\frac{1}{\gamma_{n}}$ is computed from Equation 3-23 or 3-24, by simple change of sign in the exponent. If $I_{L(n-1)}$ is the value of the integral I_{L} up to the preceding time t_{n-1}, the corresponding value of τ_{n}, the value $I_{L n}$ of I_{L} at time t_{n} is computed, according to the trapezoidal rule of integration, by

$$
\begin{equation*}
I_{\mathrm{Ln}}=\mathrm{I}_{\mathrm{L}(\mathrm{n}-1)}+\left(\frac{\mathrm{t}_{\mathrm{n}}-\mathrm{t}_{\mathrm{n}-1}}{2}\right)\left(\frac{1}{T_{\mathrm{n}}}+\frac{1}{T_{\mathrm{n}-1}}\right) \tag{3-27}
\end{equation*}
$$

The value of $I_{L_{n}}$ for the last value of t_{n} processed by the thermodynamics program represents the lethality integral I_{L}.

3.7 PARAMETERS AFFECTING I_{L}

In the preliminary investigation reported here, the particles were assumed to be spherical. It is shown in Reference 3-8 that the temperatures obtained with cylindrical particles, with the end effects neglected, are slightly higher than those obtained with spherical particles and hence produce slightly higher lethality integrals. Consideration of spherical particles is then favorable to survival of the particle.

The particles have been assumed to have a temperature of $500^{\circ} \mathrm{R}$ at the start of the entry trajectory, the altitude h_{0} of which has been maintained at the constant value of $\mathbf{7 2 1 , 0 0 0}$ feet (entry altitude).

The VM3 atmosphere has been selected because it is less dense than the VM8 atmosphere and hence provides conservative estimates for particle survival.

The solar absorptivity α has been maintained to 1 (that is, the particle has been assumed to be in daytime entry and to absorb all the solar energy it receives).

The particle specific heat capacity C_{P} has been maintained equal to $0.2 \mathrm{Btu} / \mathrm{lb}-{ }^{\circ} \mathrm{R}$. A constant drag coefficient c_{D} equal to 2 has been used.

The particles have been assumed to have a constant density equal to $68.6 \mathrm{lb} / \mathrm{ft}^{3}$ or 2.132 slugs $/ \mathrm{ft}^{3}$.

We have varied only four parameters:
a. The ballistic coefficient

$$
\begin{equation*}
\beta=\frac{M}{c_{D}{ }^{A}} \tag{3-28}
\end{equation*}
$$

where M is the particle mass (in slugs) and A the area (in ft^{2}) of the particle section. The ballistic coefficient β is related to the particle radius (in feet) by

$$
\begin{equation*}
\beta=\frac{M}{c_{D} A}=\frac{\frac{4}{3} \pi r^{3} \rho}{c_{D} \cdot \pi_{r}{ }^{2}}=\frac{4}{3} \frac{\rho}{c_{D}} r \tag{3-29}
\end{equation*}
$$

hence

$$
\begin{equation*}
r=\frac{3}{4} \frac{C_{D}}{\rho} \beta \tag{3-30}
\end{equation*}
$$

Since q_{D} and ρ have been maintained constant, r was determined by the value of β. Specifically, the three sets oi values of β and r we have used are:
$\beta \quad 4.0 \times 10^{-5}$
2.2×10^{-4}
4.0×10^{-4}
slugs/ft ${ }^{2}$
r
2.81×10^{-5}
1.55×10^{-4}
2.81×10^{-4} feet

These values are in agreement with those of Table 4-1 of Reference 3-8.
b. Five values of the entry angle γ_{E} (angle of the trajectory with the local horizontal at entry, counted positive downward) have been used:

> 5 degrees, 10 degrees, 20 degrees, 45 degrees, 90 degrees (downward vertical)
c. Five values of the entry velocity, V_{E} have been used:

$$
11306,15000,19000,22500,26000 \mathrm{ft} / \mathrm{sec}
$$

d. Nine values of the particle emissivity ϵ have been used:

$$
0.1 \text { to } 0.9 \text { by } 0.1 \text { increment }
$$

The lethality integral I_{L} is a monotonic function of some of these parameters. Specifically:

$$
\begin{array}{ll}
I_{L} \text { increases when the entry temperature } T_{O} & \text { increases } \\
I_{L} \text { increases when the solar absorptivity } \alpha & \text { increases } \\
I_{L} \text { increases when the ballistic coefficient } \beta & \text { increases } \\
I_{L} \text { increases when the entry velocity, } V_{E} & \text { increases } \\
I_{L} \text { decreases when the emissivity } \epsilon & \text { increases } \\
I_{L} \text { decreases when the specific heat capacity }\left(C_{P}\right) \text { increases }
\end{array}
$$

The variation of I_{L} with the entry angle γ_{E} could not be predicted. Effectively, as shown in Figure 3-2, when γ_{E} increases, the maximum temperature increases, but the duration of the temperature history which significantly contributes to I_{L} decreases.

3. 8 COMPUTER RUNS FOR DETERMINING IL

A total of 75 trajectories was reauired to represent all the possible combinations of three values of β, five values of $\gamma_{E^{\prime}}$, and five values of $V_{E^{*}}$. If all the nine possible values of emissivity, ϵ, had been used for each trajectory, 675 computer runs would have been necessary. The resulting computer time and manpower necessary to prepare all the input for the computer runs would have been prohibitively high. Furthermore, a large number of values of I_{L} would have been outside the range of interest.

Figure 3-2. Temperature Histories

Consequently, computer runs were specified by small batches of 10 to 16 . No batch was specified until the results of the preceding batch had been obtained and analyzed. In that manner, more educated guesses could be made as additional results became available.

Table 3-2 shows a synopsis of all the computer runs which were made and for which the lethality integral I_{L} was calculated.

A total of less than 150 computer runs was made, that is, about one-fifth of the number 675 of possible combinations of the four variables.

3-13

3.9 VARIATION OF IL WITH EMISSIVITY ϵ. INTERMEDIATE VARIABLE $\epsilon 2$

As it can be shown in Table $3-2$, I_{L} varies quite nonlincarly with ϵ. It was then natural to plot $\log \mathrm{I}_{\mathrm{L}}$ as function of I_{L}.

Figure 3-3 shows a few of the curves which were plotted for $\beta=2.2 \times 10^{-4} \mathrm{slug} / \mathrm{ft}^{2}$. It can be seen that for I_{L} between 0.01 and 0.3 (range close to the range of interest 0 to 0.333), the various curves can be approximated by straight lines.

We could then define these straight lines by two parameters. We selected the value ϵ_{1} of the emissivity for I_{L} equal to 0.3 and the value ϵ_{2} of the emissivity for I_{L} equal to 0.01 .

In order to determine the envelope of these straight lines, ϵ_{2} was plotted as function of ϵ_{1}. Figure 3-4 shows the result: a straight line passing through the origin.

This indicated that all the straight lines passed through a point of the $\log I_{L}$ axis, that is,

Figure 3-3. Variation of I_{L} with \in having for coordinates in Figure 3-3.

$$
\begin{equation*}
\epsilon=0 \quad \log I_{L O}=c \tag{3-31}
\end{equation*}
$$

Effectively, the equation of any of the straight lines is

$$
\begin{equation*}
\log \mathrm{I}_{\mathrm{L}}=\mathrm{a} \epsilon+\mathrm{c} \tag{3-32}
\end{equation*}
$$

Expressing that the line goes through the points $\left(\epsilon_{1}, \log 0.3\right)$ and $\left(\epsilon_{2}, \log 0.01\right)$ yields the equations

Figure 3-4. Variation of ϵ_{2} with ϵ_{1}

From Figure 3-4, we obtained

$$
\begin{equation*}
\epsilon_{2}=1.38235 \epsilon_{1} \tag{3-35}
\end{equation*}
$$

Hence

$$
\begin{align*}
& a \epsilon_{1}=-0.52288-c \tag{3-36}\\
& a \epsilon_{2}=-2 \quad-c \tag{3-37}
\end{align*}
$$

and

$$
\begin{equation*}
1.38235=\frac{\epsilon_{2}}{\epsilon_{1}}=\frac{2 \epsilon_{2}}{2 \epsilon_{1}}=\frac{-2-c}{-0.52288-c} \tag{3-38}
\end{equation*}
$$

Solution of Equation 3-38 yields

$$
\begin{equation*}
c=3.340=\text { constant } \tag{3-39}
\end{equation*}
$$

Since all the straight lines of Figure 3-4 passed through the same point defined by Equations 3-31 and 3-39, each straight line could be defined by a single parameter. We selected $\epsilon_{2^{\circ}}$

Elimination of a between Equations 3-32 and 3-34 yields

$$
\begin{equation*}
\log I_{L}=c-\frac{(c+2) \epsilon}{\epsilon_{2}} \tag{3-40}
\end{equation*}
$$

or

$$
\begin{equation*}
\epsilon_{2}=\frac{(c+2) \epsilon}{c-\log I_{L}} \tag{3-41}
\end{equation*}
$$

For each data point (combination $\beta, \gamma_{E}, V_{E}, \epsilon$, and corresponding I_{L} obtained by computer run) it is possible to compute ϵ_{2} by Equation 3-41.

The problem was then to express ϵ_{2} as function of the three remaining variables β, γ_{E} and \mathbf{V}_{E}.

The maximum value of ϵ_{2} of interest is obtained for $\epsilon=0.9$ and $I_{L}=1 / 3$ and is 1.244 with the value of Equation 3-39 used for c.

3.10 VARIATION OF ε_{2} WITH BALLISTIC COEFFICIENT β

Figure 3-5 shows a fow of the plots of ϵ_{2} as function of β. (Figure $3-5$ is for $V_{E}=11306$ ft/sec only). It was found that every time we had data for the three values of β and a value of ϵ_{2} not exceeding 1.244 , the three points belonging to the case combination $\left(\gamma_{\mathbb{2}}, V_{\mathbb{E}}\right)$ were on a straight line.

In other words, within the range of values for β that we have used, ϵ_{2} was a linear function of β.

3.11 VARIATION OF ϵ_{2} WITH ENTRY ANGLE ($\gamma_{\text {E }}$)

It was found that ϵ_{2} was not a linear function of γ_{E}, but was a linear function of $\left(900-\gamma_{\mathrm{E}}\right)^{2}$. This can be shown for instance, in Figure 3-6, which represents curves obtained with $\beta=4 \times 10^{-5}$ slug $/ \mathrm{ft}^{2}$.

This quadratic form of the function, with symmetry with respect to 90 degrees, can easily be understood: the entry angles $90-\alpha$ and $90+\alpha$ define two trajectories symmetrical with respect to the downward vertical.

3.12 VARIATION OF ϵ_{2} WITH ENTRY VELOCITY (V_{E})

It was found that ϵ_{2} could be represented by a linear function of the cube of the entry velocity V_{E}. This can be shown, for imstance, in Figure 3-7, which represents curves obtained with $\beta=4 \times 10^{-5} \mathrm{shg} / \mathrm{ft}^{2}$.

It seems interestirg to compare this dopendence of I_{L} on $\mathrm{V}_{\mathbf{E}}{ }^{3}$ with the dependence of $\dot{q}_{\text {FM }}$ on $\mathrm{v}^{\mathbf{3}}$ as shown in Equation 3-25.

Figure 3-5. Variation of ϵ_{2} with β

Figure 3-6. Variation of ϵ_{2} with $\boldsymbol{\gamma}_{\mathbf{E}}$

For convenience, the functions β, $\left(90-\gamma_{E}\right)^{2}$, and $V_{E}{ }^{\text {s }}$ have been scaled and replaced by

$$
\begin{align*}
& \bar{\beta}=10^{4} \beta \quad \bar{\gamma}=\left(\frac{90-\gamma_{E}}{100}\right)^{2} \\
& \overline{\mathrm{~V}}=\left(\frac{\mathrm{V}_{\mathrm{E}}}{10^{4}}\right)^{33} \tag{3-42}
\end{align*}
$$

Since ϵ_{2} is a linear function of $\bar{\beta}, \bar{\gamma}, \overline{\mathrm{r}}$. it can be represented by a suis.a of ter ms of the form

Figure 3-7. Variatic 1 of ϵ_{2} With V_{E}
in which the exponents i, j, k can take

$$
\bar{\beta}^{\mathbf{i}} \bar{\gamma}^{j} \overline{\mathrm{~V}}^{\mathrm{k}}
$$

values 0 or 1 . Hence ϵ_{2} can be approximated by a sum $\epsilon_{2 c}$ of eight such terms. Specifically

$$
\begin{align*}
\epsilon_{2} \cong \epsilon_{2 c} & =a_{1}+a_{2} \bar{\beta}+a_{3} \bar{\gamma}+a_{4} \bar{v}+a_{5} \bar{\beta} \bar{\gamma} \\
& +a_{6} \bar{\gamma} \bar{v}+a_{7} \overline{\mathrm{v}} \bar{\beta}+a_{8} \bar{\beta} \bar{\gamma} \overline{\mathrm{v}} \tag{3-43}
\end{align*}
$$

For each data point $\bar{\beta}, \bar{\gamma}, \overline{\mathrm{v}}$ can be calculated by Equation 3-42 and ϵ_{2} by Equation 3-41. We can then obtain the coefficients of the linear combination (3-43) of known functions, for instance, by least square fit.

We have assigned a weight (1 or 0) to each data point. This has permitted us to make basically all the same calculations on all data points, but to eliminate from the least square fit the data points which did not agree closely enough with the calculated fit. In that manner, we processed 119 data points, but considered only 63 data points for determining the least square fit. The other 56 points had values of I_{L} larger than 0.333 and hence corresponded
to complete kill (survival ratios f smaller than 10^{-4}). For these values of f smaller than 10^{-4}, the exact value of f was of no nterest, as long as it was smaller than 10^{-4}. We gave a weight of zero to only 3 of the basic 63 data points.

An iterative process, operating on the value c, was used to improve the accuracy of the fit. The procedure can be explained as follows:

For a given value of c (the first value was 3.340), ϵ_{2} can be computed for each data point by Equation 3-41 and the values $\bar{\beta}, \bar{\gamma}, \overline{\mathrm{V}}$ by (3-42). After all the data points have been processed, the coefficients a_{1} to a_{8} of Equation $3-43$ are obtained by the classical weighted least square method. Then for each data point a computed value $\epsilon_{2 c}$ is obtained by Equation $3-43$, a corresponding computed lethality integral I_{LC} is obtained, according to Equation 3-40 by

$$
\begin{equation*}
\log I_{L C}=c-\frac{(c+2) \epsilon}{\epsilon_{2 c}} \tag{3-44}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathrm{I}_{\mathrm{LC}}=10^{\log \mathrm{I}_{\mathrm{LC}}} \tag{3-45}
\end{equation*}
$$

The corresponding computed survival ratio f_{c} is obtained according to Equation 3-9 by

$$
\begin{equation*}
f_{c}=10^{-12 I_{L C}} \tag{3-46}
\end{equation*}
$$

For each data point, the residual

$$
\begin{equation*}
\Delta \mathbf{I}_{\mathbf{L}}=\mathrm{I}_{\mathbf{L}}-\mathrm{I}_{\mathbf{L C}} \tag{3-47}
\end{equation*}
$$

difference between the ture value I_{L} and the computed value $I_{L C}$ is calculated. The ratio between the true survival ratio (f) and the computed survival ratio (f_{c}) is related to this residual by

$$
\begin{equation*}
\frac{\mathrm{f}}{\mathbf{f}_{\mathrm{c}}}=10^{-12 \Delta \mathrm{I}_{\mathrm{L}}} \tag{3-48}
\end{equation*}
$$

A weighted root mean square value of the residual $\Delta \mathrm{I}_{\mathrm{L}}$ is obtained for all the N data points by

$$
\begin{equation*}
\text { RMS }=\sqrt{\frac{\sum_{n=1}^{N} W_{n} \Delta I_{L}^{2}}{\sum_{n=1}^{N} W_{n}}} \tag{3-49}
\end{equation*}
$$

W_{n} being the weight assigned to the daa point of sequential order (n).

The process is repeated for various values of (c) until, by trial and error, a practical minimum value is obtained for RMS. Figure 3-8 summarizes the results.

The minimum RMS was obtained with

$$
\begin{equation*}
c=2.87 \tag{3-50}
\end{equation*}
$$

and had for value

$$
\mathrm{RMS}=0.02047
$$

corresponding to a "root mean square" ratio $\frac{f}{f_{c}}$ equal to 1.75 .

Figure 3-8. Variation of RMS With c

Table 3-3 shows the results of the calculations on each of the 119 data points with the value 2.87 for c. In that table the first eight numbers are the coefficients a_{1} to a_{8} of Equation 3-43. The last line shows the numerator and denominator of the fraction in Equation 3-49 and the RMS.

'REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR.

~ © ்

Figure 3-9 permits a quick evaluation of the quality of the functionalization of I_{L}. The abscissa scales represent the computed lethality integral, I_{LC}, (on logarithmic scale), and its corresponding computed survival ratio f_{c} given by Equation 3-46. The ordinate scales represent the residuals $\Delta \mathrm{I}_{\mathrm{L}}$ given by Equation 3-47, in linear scale, and the corresponding ratio $\frac{\mathbf{f}}{\mathrm{fc}}$ of true survival ratio to computed survival ratio given by Equation 3-48.

Figure 3-9. Evaluation of Functionalization

The locus of the points corresponding to f_{c} equal to 0.0001 is the vertical straight line. The lcsus of the points corresponding to f equal to 0.0001 is the curved line. For all the points which are simultaneously to the right of these two lines, the true kill as well as the computed kill are complete.

The two horizontal lines correspond to ratio $\frac{f}{f_{c}}$ equal to $\frac{1}{2}$ and 2. These lines define the bounds for all the points for which the true survival ratio f is within a factor 2 of the computed survival ratio f_{c}.

It can be readily seen from Figure $3-9$ that most of the data points having survival ratio larger than 10^{-4} are within this band, that is, within this factor of 2 of the computed survival ratio. The few points which are not within the band would, however, almost all fall within a band having a factor of 4 from the computed survival ratio (f_{c}).

Since this was only a preliminary investigation, no special investigation was made of the few data points which were not within this band defined by a mayimum factor of 4 between f_{c} and f .

3.14 CHANGES IN PARAMETERS

This preliminary investigation was conducted mainly to determine a procedure for functionalizing the lethality integral I_{L}. Since then, the foilowing cianges in the values or ranges of some parameters have appeared desirable:
a. The range of ballistic coefficient, β, should cover from 4×10^{-6} to 4×10^{-3} slug/ ft^{2}.
b. The entry altitude, h_{0}, should be much higher than the 721,000 feet we have used. A value of $2,000,000$ feet seems to be satisfactory for the range of ballistic coefficients considered in item a, above.
c. The range of entry angles, γ_{E}, should be extended. Viability of particles entering Mars atmosphere at a very small angle is of concern for the quarantine study.
d. The solar absorptivity, α, should be varied to simulate nighttime as well as daytime entry into Mars atmosphere and to take into account experimental values of α which are much smaller than 1.
e. While an initial (equilibrium) temperature of $500^{\circ} \mathrm{R}$ is reasonable for daytime entry, a lower initial temperature $\left(183^{\circ} \mathrm{R}\right.$, for instance) should be used for nighttime entry.

The influence of these parameters and of these changes in parameter rangis is being investigated.

3.15 ORGANISMS CARRIED BY NONVIABLE PARTICLES

If we assume that, during all the entry trajectory, the microorganism attains the same temperature as the nonviable particle which carries it, the integral (I_{L}) can be computed for the particulate carricr (with its own solar absorptivity and its own emissivity) and inferences drawn or implied as to its effect on the microorganism.

Results are summarized in Table 3-4.

Table 3-4. I_{L} for Nonviable Particles in Full Sun

Material		$\gamma_{E}=5^{\circ}$		$\gamma_{E}=45^{\circ}$		$\gamma_{E}=90^{\circ}$	
		4×10^{-5}	4×10^{-4}	4×10^{-5}	4×10^{-4}	4×10^{-5}	4×10^{-4}
Aluminum	11306	0.0006	14.11	0.0111	29.80	0.0438	26.28
	15000	0.0012		2.034		2.856	
Fuzed Silica	11306	0.0000	36. 94	0.0315	42.16	0.1824	47.67
	15000	0.0014		4.409		5.448	
Haynes-25	11306	0.0000	9.49	0.0986	27.14	0.5332	26.9
	15000	0.0010		3.128		4.047	
Magnesium	11306	0.0001	28. 54	0.0147	36.82	0.0518	38.89
	15000	0.0022		2.791		3.651	
Epoxy Glass	11306	5.46	125.20	5.71	68.41	4.66	75.86
	15000						

For comparing Table 3-4 and Table 3-2, we can consider an equivalent emissivity, ϵ, giving in Table 3-2 the same I_{L} as in Table 3-4 for the same combination (β, γ_{E}, V_{E}).

It can be seen that an equivalent emissivity, ϵQ, (between 0.1 and 0.3) can be defined for each of the first four materials. The equivalent emissivity increases with the entry angle γ_{E} : the materials seem to be less sensitive to the change in entry angle than the microorganism.

The conclusion would then be that any organism carried by the epoxy glass would receive a heat treatment which would kill it.

3.16 REFERENCES

3-1 Martin, M. A., "Voyager Mars Planetary Quarantine: Thermal Kill of Bacteria During Mars Entry," GE (INSD) Report VOY-C2-TM2, Octcber 1966.

3-2 Ball, C. O., and Olson, F. C. W., "Sterilization in Food Industry, "McGıaw-Hill Book Company, New York, N. Y., 1957, page 292.

3-3 Bruch, C. W., Koesterer, M. G., and Bruch, M. K., "Dry-Heat Sterilization: Its Development and Application to Components of Exobiological Space Probes, " Developments in Industrial Microbiology, American Institute of Biological Sciences, Washington, D. C., 1963, Volume 4, pages 334-342.

3-4 Hobby, G. L., "Review of the NASA-JPL Spacecraft Sterilization Program, " Appendix III of Chapter 10, In a Review of Space Research, Publication No. 1079 of the National Academy of Sciences, National Research Council, Washington, D. C., pages 10-34.

3-5 Koesterer, M. G., "Thermal Death Studies on Microbial Spores and Some Considerations for the Sterilization of Spacecraft Components, "Developments in Industrial Microbiology, American Institute of Biological Sciences, Washington, D. C., 1964, Volume 6, pages 268-276.

3-6 Decker, H. M., Citek, F. J., Harstad, J. B., Gross, N. H., and Piper, F. J. , 1954, "Time Temperature Studies of Spore Penetration Through an Electric Air Sterilizer," Applied Microbiology. 2(1):33-36.

3-7 Koesterer, M., "Temperature Effects," Section 3، Task 2 - Planetary Quarantine, Second Bi-Monthly Report, pages 3-14.

3-8 Parker, J., Beerger, N., and Burrows, G., Voyager Mars Quarantine - Particle Burnup, GE (MSD) Report VOY-C2-TR4, 15 September 1966.

3.17 ACKNOWLEDGEMENTS

It is indeed a pleasure to acknowledge the contributions of the following persons to this investigation: J. Parker, who, with D. Florence, provided background information on h!s previous work, and by his knowledge helped considerably in the selection of the parameters, and, with N. Beerger, provided all the necessary computer rums as well as data on nonviable particles; C. Bursey, who made all the trajectory runs needed and, with D. Korenstein, pointed out the aerodynamic considerations which had to be taken into account; and M. Koesterer, who established the curve of thermal resistance of dry spores and explained how the curve was established. My thanks go also to Miss P. McManus who computed the lethality integral on the Desk Side Computer before P. Friend added an ad hoc subroutine to his thermodynamics computer program.

SECTION 4

SENSITIVITY STUDIES

by
E. Berger
R. Wolfson
4 SENSITIVITY STUDIES 4-1
4.1 Introduction 4-1
4. 2 Loose Particles 4-2
4.3 Attitude Control Gas 4-11
4.4 Acknowledgements 4-13
LIS'I OF ILLUSTRATIONS
Figure Page
4-1 Planetary Quarantine Task Simplified Work ${ }^{\prime \prime}$ " Diagram 4-1
4-2 Detailed Computational Flow Diagram 4-3
4-3 Combination of Contamination Sources 4-5
4-4 Cumulative Probability of Viable Organisms 4-5
4-5 Probability Density Function of Loose Particles 4-6
4-6 Fraction of Viable Organisms on Particles of Different Sizes 4-7
4-7 Ejection Velocities 4-8
4-8 Probability of Entry for Various Time Intervals 4-9
4~9 Cumulative Probability of Viable Organisms 4-10
4-10 Initial Number of Viable Organisms in Attitude Control Gas System 4-11
4-11 Attitude Control Gas Use Profile 4-12
4-12 Size Distribution 4-12
4-13 Velocity Distribution 4-12
4-1; Start Analysis 4-13
4-15 Analysis Continued 4-13
4-16 Analysis Continued 4-13
4-17 Analysis Continued 4-13

SECTION 4

SENSITIVITY STUDIES

4.1 INTRODUCTION

The sensitivity studies involve the exercising of the basic math model with inputs froin the basic studies as specifically applied to the Veyager mission and hardware. The initial cases shown are primarily designed to illustrate the process for working through the analysis and showing how the sensitivity of the contamination probability varics with different input parameters. In many cases the input parameters used have been essentially educated guesses. The continuing work in this area will use better and better input data, but these early studies serve to illustrate the areas which are important and require more careful analysis as the study proceeds.

Figure 4-1 is a simplified work flow diagram and illustrates how the sensitivity studies are related to the Quarantine Task.

Figure 4-1. Planetary Quarantine Task Eimplified Work Flow Diagram

The math model format, as illustrated in Figure 4-1, shows how the various sources of contamination are to be analyzed. The basic kill mechanisms are associated with columns. Each column either requires the development of input or operation on a particular portion of the math model.

Figure 4-2 is a detailed computational flow diagram. This flow is for loose particles, micrometeoroid ejecta, and gaseous emissions, either cold or hot. In this figure rectangles give the output from or input to each column, and six-sided boxes tell what computer program is to be used.

Figure 4-3 illustrates how each of the contamination sources will be combined to give the probabilities of viable organisms reaching and growing on the planet.

A few sources have been partially evaluated in a preliminary manner. None of the cases studied include all of the kill methods. The assumptions used will be stated with the results. Caution should be used in generalizing from the results presented. The assumptions must always be kept in mind.

4.2 LOOSE PARTICLES

Preliminary results on loose particles are given in this section. The initial loading on the spacecraft was assun ed as shown as curve (A) in Figure 4-4. Figure 4-4 shows the cumudative probability distribution function, whereas most of the other figures in this section are probability density junctions. From basic data, VOY-C2-TM3, the total number of loose particles was estimated; then, with distribution of sizes, obtained by the same experimental investigation and modified to account for the lack of data below 150 microns, an estimate was made of the fraction of the total viable organisms on the particles and was found to be 0.001 . This then gave the distribution labled (B) in Figure 4-4 viable organisms on loose particles.

Folgont framby

Foldoat Frame 3

Figure 4-2. Detailed Computational
Flow Diagram
Foldoat FRAME 4
4-3/4

Figure 4-5 gives the distribution of particle diameters used in the loose particle investigation. An average weight per cubic foot of 68.6 was then assigned for the loose particles. Then, assuming a spherical relationship between diameter and surface area, the probability density

Figure 4-3. Combination of Contamination Sources
function of surface area was obtained by the use of program "HEX." Then, assuming that viable organisms were distributed in direct proportion to the surface area of the particle and that a loose particle below π square microns would not carry an organism (fince particles below this size approach the size of a microorganism), we obtained the fraction of viable organisms on each range of surface area. This is an important step because the ballistic characteristic of each range oi surface area is different and, to obtain a good estimate of the viable organisms surviving, these ballistic effects must be considered.

Figure 4-4. Cumulative Probability of Viable Organisms

Figure 4-5. Probability Density Function of Loose Particles

Figure 4-6 gives the fraction of viable organisms on each surface area range considered. This assignment is accomplished with a program called "CONCOF." With the fraction of viable organisms assigned to each range of surface area and using the distribution of total viable organisms assigned to loose particles, a distribution of total viable organisms on each size is obtained.

The next step in the analysis of loose particles is to investigate both ejection prior to orbit insertion and ejection during the Mars orbiting phase. The analysis is only shown for those particles ejected during orbit. The number of loose particles carrying viable organisms has not been decreased by those leaving prior to reaching orbit insertion; this effect is subject to the micrometeoroid environment and will be investigated later. For now it is assumed that all locse particles come off in orbit and at the first apoapsis after insertion so that they will have a favorable time to decay from orbit to the planet.

Figure 4－6．Fraction of Viable Organisms on Particles of Different Sizes

Under these assumptions，which are conservative，the analysis of orbit mechanics was performed for loose particles．Six orbits and two atmospheres were investigated．

Table 4－1 is a summary of the orbits and atmospheres investigated．All of the loose particles are assumed ejected at apoapsis which gives the largest decrease in periapsis altitude．The atmospheres are indicative of the expected variation in the VM－3 atmosphere as a function of solar heating of the planet．Atmosphere 1 is the night model；atmosphere 2 is the daylight model．Both models are less dense than the recent atmosphere adopted by JPL；consequently，more conservative from the quarantine viewpoint．

Table 4-1. Orbits and Atmospheres Investigated

Orbit	Atmosphere
1. $1000 \times 10,000 \mathrm{~km}$	VM-3 Atmos. Extended by Vachon
2. $500 \times 10,000 \mathrm{~km}$	1 for 0400 hours (min density)
3. $200 \times 10,000 \mathrm{~km}$	2 for 1400 hours (max density)
4. $1000 \times 20,000 \mathrm{~km}$	
5. $500 \times 20,000 \mathrm{~km}$	
6. $200 \times 10,000 \mathrm{~km}$	

Various ejection velocities and angles of leaving the spacecraft were assumed. The angles were assumed uniform over 4π steradians, and the velocity increment was that shown in Figure 4-7. These velocities are to be representative of loose particles drifting off of the spacecraft.

Programs DELP1, DELP2, and TIME1 were run to obtain the distribution of time to entry. Figure 4-8 gives the distribution for the six orbits and two atmospheres. Since atmosphere 1 is more conservative than the official JPL atmosphere, it is the one which was used in the investigation. Notice, however, that both orbit and atmosphere have significant

Figure 4-7. Ejection Velocities effects. Notice also that only one-half of the loose particles have a chance of gettin y to the planet no matter what the orbit or atmosphere. This effect is due to the assumption of unifrom angles of ejection; that is, one half of the particles leave at the wrong angles. This effect may be removed when solar pressure is included in the analysis. From Figure 4-8a it is seen that the probability of a particle reaching the planet prior to 30 years is 0.00121 , for orbit type 1 and atmosphere 1.

```
4-8
```


Based on orbit 1 and atmosphere 1, programs $M / C_{D} A$ and MCED were used to obtain the distribution of surviving sizes which enter within 30 years; this distribution was then used as an input to Program LID, which calculates the probability of surviving entry heating. The probability calculated was 0.1722 .

The probabilitics of surviving entry heating and entering prior to 30 years are then used on the distribution of total viable organisms on each sizc. The effect of U.V. ' ill and die-off are also assigned. The next result is then obtained by combining each size with its probability of occurrence. Figure 4-9, shown as a cumulative distribution function as was Figure 4-4, gives the preliminary estimate of this process using a probability of entering 0.00121 , a probability of surviving heating of 0.1722 , a probability of surviving $\mathrm{U} . \mathrm{V}$. of 0.1 , and a probability of growth and spreading of 0.01 .

Figure 4-9. Cumulative Probability of Viable Organisms

When the final analysis is conducted, U.V. kill will be entered as a function of particle size If the particle is 10 microns or smaller, kill will be assigned so that the viable organisms will have a high probability of being killed. The estimate of 0.1 is a "guesstimate" of the effects of U.V. The 0.01 growth and spreading probability is based on a recommendation presented to the last COSPAR meeting by Dr. C.W. Craven and J.O. Light of JPL.

The $u: i$ in this section should be considered only as an example of the computational procedures and the way in which the quarantine problem can be studied. The actual data should not be used since the input data in many areas were guesstimates, and, in particular, the range of $\mathrm{M} / \mathrm{C}_{\mathrm{D}} \mathrm{A}$ values under consideration is currently being reviser.

4.3 ATTITUDE CONTROL GAS

Figure 4-10 gives the initial nu' er of viable organisms in the attitude control gas system. This initial number of viable organisms is assumed ejected in proportion to the usage rate of the attitude control gas as illustrated in Figure 4-1].

Figure 4-10. Initial Number of Viable Organisms in Attitude Control Gas System

Figures 4-12 and 4-13 give the parameters associated with the size distribution, drag parameter (M/C D_{D}), velocity, and ejection angles.

An analysis was conducted for a period of 1 day, 5 days before heliocentric encounter. An aim point based on the GE Task B study and a type I trajectory was assumed. The resulting probability of being on an impact trajectory was obtained as 0.00153. Figures 4-14 and 4-15 illustrate the results of applying first the fraction ejected and then the probability of being on an impact trajectory.

APPROKIMATE RATE
(A) INITIAL STABILIZATION

6.5 LB

(B) MANEUVERS - MIDCOURSE, ORBIT ADJUST, INSERTION ETC.
1.7 LB/MANEUVER
(C) REACQUISITION MANEUVER
0.35 LB/MANEUVER
(D) LIMIT CYCLE
0.25 LB/MONTH
(E) GRAVITY GRADIENT
0.14 LE/MONTH
52.0 LB
(F) RESERVE

Figure 4-11. Attitude Control Gas Use Profile

Figure 4-12. Size Distribution

Figure 4-13. Velocity Distribution

one day - sth day aefore encounter HELIOCENTPIC CASE

Figure 4-14. Start Ana','sis

Figure 4-15. Analysis Continued

Figure 4-16 and 4-17 illustrate the results of the viable organisms surviving entry, U.V. kill and die-off (assumed to be 0.1), and growth and contamination (assumed to be 0.01).

Newly revised estimates of the M / C_{D} A range required use of the entry heating program outside its original design range for this study. The range of accuracy of this program is currently being extended.

Figure 4-16. Analysis Continued

Figure 4-17. Analysis Continued

4.4 ACKNOWLEDGEMENTS

This is to acknowledge the assistance of Mr. D. Higley in operating the Desk Side Computer System and in reducing the computer output data for these sensitivity studies.

APPENDIX A
PROGRAM SOURCE LISTING

29/91/L
I DISVG

 gam fnrmatc ${ }^{\prime \prime} 1$
$n \rightarrow n$
FORMATC

WAIT.
RFANY.
ana?m
anaina
aram 40 .
manca
 anara
najaa
$\frac{E}{E}$

$\stackrel{G}{N}$

$\frac{c}{\frac{c}{e}}$
$\frac{5}{8} \frac{0}{N}$

$E \in$
E
E
E
E

s
N
E
E

E
N
N
N
E

$s e$
4
0
5
5

So

E
$\stackrel{E}{6}$

N

E
E_{6}
E
E
E
E

2araver jnem

DO 220 $K=1$, NBM
SP=GIN(K+1)-CIN(K) \quad CALL LOAD(SP,PRO(K), GIN(K), (GIN(K+1),NST, Fi,GTP)
DO 23M $L=1$, NTM

PRINT sana, ri(I)
RF.AD:THET, PSI

©

SP=GIN(K+1)-TIN(K)
CALL LOAN(SP,PR
Dn 33a $L=1, N T M 1$
PПUT $(L)=P \cap U T(L)+$ GTP $(L) * G P(1-1)$
GIN $(2)=G(1) *$ THET
$\operatorname{GIN}(3)=G(1)$
$\operatorname{PRO}(1)=P S I$
$\operatorname{PRO}(n)=1--P S I$

$\stackrel{E}{E}$
410
※
E
©

SURROUTINF LOAD（SP，TPR，ZL，TH，M，Z，RP）

OIMENSION $Z(1), R P(1)$
IF（SP）1日G， 8 ． 2 Pa IF（SP）1日a．8G．2の
D $\quad 3 a J L=2, M$
$1 F(Z(J)-2 L) 3 a, 3 a, 25$
25 ZLOW＝ 2.
CONTINIE
4A CONTINUE
DN 6A $J=J$ TEMP＝M
IF $Z(J)-Z H) 5 A=45,45$
45 JSAVE＝J
ZHIGH $=Z H$
GO TO 79
$Z H I G H=2(J)$

ZLOW＝Z
CONTINIIE
$\operatorname{RP}(J S A \cup E-1)=R P(J S A V E-1)+((Z H I S H-Z L \cap W) / S P) * T P R$
RO TO 19Ω
Dn 9 a $J=2, M$
IF
$1 F(Z L-Z(J-1)) 85, R 2, R 5$
$R P(J-1)=R P(J-1)+T P R$

GOTO 10B
IF（ZL－Z（J））8P．9月．90
CONTINUE
$\operatorname{RP}(M-1)=$
JSAVEIM
$=R P(M-1)+T P R$ RETURN
END
SUBROUSTINE RCONT（TR，FI，GR，NG，PROR） DIMENSION G（
XMU＝TR＊TSNG）

G1＝（H（1）－XM11－5）／SIGMA
CPE（G（2）－XM（1＋．5）／SIGMA
ANS $(1)=H A D(G 1, R P)$

0

sLIST

SIGMA＝SORTF（XMU＊（1－TR）
IF（NG－2）SA，Sa，IBa
ISIGMA
IF
$G 1=\left(G_{i}(1)-X M 11-5\right) / S 1 G M A$
$G P=\left(G_{C}(2)-X M(1+.5) / S 1\right.$ GMA
 GO TO 190
s

155 IF（I－NG）：65， 169,1 Ga
169 G1＝（f（I－1）－XM（1）／SIGMA
GP＝（f（I）－XMU＋5）／SIGMA fn $T \cap 179$
$G 1=(f i(I-1)-X M(1) / S I f M A$
G1＝（G（I－1）－XMU）／SIAMA
G2＝（G（I）－XM（1）／SIGMA
G2＝（G（I）－XM（1）／SI GMA
ANS $(1-1)=K A D(R 1-f 2)$

TMP＝0．

RETURN

に
© © RE．TUR
END
FINCT

TEMP $=X_{1} /$ TEMP
$U 1=X 2 /$ TEMP
$U Z=$

$$
\begin{aligned}
& \text { XP }=\text { SITNF } 13.9, X P \\
& \text { TFMP }=1, A 142136 \\
& U 1=X 1 / T F M P
\end{aligned}
$$

IF（U1）6a，7a，5a
IF（11）7a，7a，8a
IF（UP）8a，7a，7a
HAN $=.5 *(E R R(A R S F(U 2)) * S I G N F(1 ., U P)-F R R(A R S F(11))$ －SITN
 1 SITNF（I．．OUR） RETURN
END

$$
\begin{aligned}
& \text { FIINGENSION } A(25), R(3 a) \\
& \text { ME8. } 4 \\
& \begin{array}{l}
A(3)=\operatorname{ARAB57ARR3797E-13} \\
A(A)=919 K 41 R 1773 R R E-13
\end{array} \\
& A(5)=- \text { QA日 } 1244 \text { P } 1569 \triangle F-1.3 \\
& A(6)=- \text { ब§a91の19419日SE-13 } \\
& \begin{array}{l}
A(7)=- \text { anal } 796 \text { ? } 1 \text { YR35E }-13 \\
A(R)=\text { anHal } 39836786 E-13
\end{array} \\
& \text { A(9) = } \quad 164789417 E-13 \\
& \begin{array}{ll}
A(19)= & \text { 39AR9PR7E-13 } \\
A(11)=- & \text { बGR9314SE-13 } \\
A(1 P)=- & \text { G37A7R9RE-13 } \\
A(13)=- & \text { ब1P9R81RE-13 }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { (エARSF(W) } \\
\text { F(ARSF }(x)-. a 1) 19 a, 11 a, 11 a \\
\text { XERR }=2 . a /(3.9 * 1.77245385) * x
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 듣 } \\
& \begin{array}{l}
\text { CERR }=2.9 /(3.9 * 1.77245385) * x *(3 . a-x * * ?) \\
\text { TO } 14 a
\end{array} \\
& \text { (1) } \begin{array}{l}
\text { 12a } \\
I
\end{array} \\
& \text { D } 139 I=1, M \\
& \begin{array}{l}
M 1=(M+1)-1 \\
B(M 1)=2-A * 2 * B(M 1+1)-R(M 1+2)+A(M 1+1)
\end{array} \\
& \text { CONTINUE } \\
& =-7(2)+2 * B(1)+5 * A(1) \quad \text { (EXPF }(-(X * * ?))) * F \\
& \begin{array}{l}
\text { XERR=1.-(1./1.77R45385)*(EXP } \\
\text { IF(ABSF(X)-. Qi) } 149,15 Q, 15 A
\end{array} \\
& \text { A/1-772.45385) } *(E X P F(-(X * * P))) * F \\
& \text { E © E © E E E E E E E E O }
\end{aligned}
$$

 rkint 1 bub

Daroper tixing 2 A-
BINOM X
1/13/67

c

20800um 1

- $\quad \infty$
\checkmark
- - の
0^{2}

bめ゙いい ものG16
16020 0 e630 Ever40 60．65C． Њれもあも 66E78 がいました 6abig 0 60160 \＆6116 EK113 ロヒ1く6 v6136 6：1146 00156 62， 166 6617k E6186 E619k 66206 もジく1も少を的 ましたく36 E © 4E： GUC5E 6026E 6と2\％ とEC8G 66296 GE3bE 6ヒ31k 06326 6e336 66340 66356 0k360 6と376 60366 0639 Eも400 64410 60420 60430 00446 00．050 0646k 68476 ce486 0649も 00500 00510 06526 66530 06546
1/13/67
Cunoun 人(1E()),r(1E6),z(106),NT(106),M
rrinvi zebbk
2GEC ROLNAT("1 FRUGKAN TO LDAD FFOBASILITIES")
FRINT 2020
2026 FONMAT("GNUMBER, OUTPUT GאIDD VALUES")
1 KEAL:M, (Z(I), I= I,M)
risiv: 2k40

```

```

 #C: B: CL, ZH,TFK
 Cf:LL ADUEG(GL, (H,TH|)
 rFivT EG6E
 EOGE FONHEI("(, NESLLTING FKOEABILITIES")
Mル1=.シー1
ralNi:(\operatorname{Rr(1),I=1,Nm1)}
ralive 1bvu
10\&% FOn\iAT (1HI)
G0 10 %
EN(N
SLE|:OUTINE: ADLER(ZL,ZH, TF!K)
CUM,iUN 人(106),Y(100),Z(160),RF(100),N
LO 10 1=2.m
16 mj(I-1)=6.
Sir=Cn-\angleL
1F(St)15,86,26
15 rklivi 1506
1Svk FUnarif("b LNTEAVAL NEGAIIVE")
GO 10 2\&\&
2i. UU゙ 3\dot{4}JL=2,湆
1F(L(JL)-\angleL) 36, 3k,25
25 \angleLU!=ZL
JTENF=JL
GO TO 40
36 Cuivilnue
46 CONTINUE
DO 6E J=JTEMFOM
IF(C(J)-ZH)56,45,45
45 JSAVE=J
CHI GH=ZH
G0 10%
5k <alGH=\angle(J)
KH(J-1)=RH(J-1) +((ZHIGH-ZLOW)/SP)*TPR
ZLO!,|=Z(J)
60 CüivIINLiE
7b кj((JSAVE-1)=KH(JSAVE-1)+((ZHIGH-ZLOW)/SP)*TPK
GO 10 10E
80 10.96 J=2,i4
IF(CL-L(J-1))85,82,85
82 к人(J-1)=1人(J-1)+Tど
00 TO 100
\measuredangle5 IF(ZL-Z(J))82.90.90
90 CUNTINUE
KF(M-1) =KP(M-1) +THR
100 CONTINUE
12E CONTINUE
200 KETUFN
END

```
KEAL:II 1 ITT
\(A(1)=A(2)=A(3)=A(4)=600\).
\(A(1)=A(2\)
\(B(1)=6\).
\(B(2)=66660\)
\(B(2)=66666.67\)
\(b(3)=51333.33\)
\(s(4)=46285 \cdot 71\)
\(C(1)=-61961519 \mathrm{E}\)
\(C(3)=8 \cdot 6954 B 1 E-8\)
\(C(4)=-1 \cdot 711693 E-10\)
\(Y_{1 A E}\left(A_{N}=-.1833621\right.\)
(0) 1098
\(C(1)=-6157079\)
\(C(2)=-2.496592 \mathrm{E}-5\)
\(c(3)=5.334866 E-8\)
\(\mathrm{C}(4)=-1.316223\)

\(r A=1\) vbl
6010146
\(H A=100060\).
\(\mathrm{r} A=56 \mathrm{E}^{\circ} \mathrm{C}\)
(i) 20
93 nA \(=10666\).

94 н \(A=26\) UGBE.
\(95 \mathrm{HA}=20 \mathrm{ELE}\).
\[
\begin{aligned}
& \begin{array}{l}
A=5 \varepsilon 6 . \\
\epsilon O \\
\hline 0
\end{array} 00
\end{aligned}
\]

PEKIAFSIS(KM)",
FKINI I SQG
REALE:MO(136



16i6 FUrMAI("NLMEER, JEKIAYSIS VALLES")
106 PKINT 998
996 FOKinAI ("
Aroatsis(xin) mant: hapr
TIME 1



 EnD:N2. 46


\(M T=M\)
\(M T=A T-1\)
5 MT=, it-1 \(, 6,7\)
\(61 F(M T-1\)
\(7 \mathrm{JNH}=\mathrm{MT}\)
SLIBKOUTLNE MLLPY(NIMI,N2MI,M,JSAVE,HA) COMMON K \((166), Y(106)=Z(160), F(166), H P(100), R P(100)\) W \(101=2, H\)
\(k+(1-1)=\theta\).


\(\angle \mathrm{CH} 1 \mathrm{Gr}=\angle \mathrm{H}\)
W \(M(N=\angle(J)\) \(K F(J-1)=K P(\)
CUNISNUE
GU IU 16E
100
\(1+(\angle L-2(J-1)) 85,82,85\)
KH \((J-1)=K F(J-1)+T\) FK
JSAVE \(J\)
GO TO
IF（ \(4-2(U)) 82.90 .9 E\)
90 CONTINUE
KR（M－1）\(=K 民(M-1)+T P K\)
JSAVE \(=M\)
JSAVE＝M
Dintinue
FUNCTION TOHR（Z2）
CUMMON \(X(10 \theta), Y(100), Z(106), \operatorname{H}(10 \theta), \operatorname{HP}(106)\), KP（100） COMMON \(A(2 \theta), B(2 \theta), C(2 \theta), N N\), YMEAN
DIMENSION POL \((2 \theta)\)


\section*{\[
\begin{aligned}
& \text { Po } \\
& D \\
& 2
\end{aligned}
\] \\ \\ \begin{tabular}{l}
0 \\
2 \\
\hline
\end{tabular}} \\ \\ \begin{tabular}{l}
0 \\
2 \\
\hline
\end{tabular}}

sacour min る

HELHO2
\(1 / 13 / 67\)

zarown mina


\section*{}

00000
00010
00030 ดの日 40
CDOSO 00060 00070 00110 00120
0日13品 0 OE140 00150 98160 00170 00180 08190 00200 00210 00220 00230 00240 00250 00260 09270 06280 00290 00300 00310 00320 69336 20340 00350 00360 00370 P9380 6039 8 09400
```

 COMMON PMARG(100), PTOP(100)
 COMMON INT(100)
 1 PRINT 10RO
 READ:NMAX,MMAX,T, SLIM
 READ:(PTOP(I),I = 1,MMAX)
 READ:(INT(I),I=1,MMAX)
 NMAXP=NMAX+1
 DO 15 I = 1, MMAX
 15 PTOP(I)=PTOP(I)/SUM
 DO 20 I=1,NMAXP
 20 PMARG(I) = 0.
 RAT=T/(1.-T)
 DO 4ด K=1,MMAX
 N=1NT(K)
 FN=N
 X=0.
 PR=(1--T)**N
 PMARG(1) = PM ARG(1) +PR* PTOP(K)
 25 IF(X-FN) 30, 40,30
 30 PR=PR*(FN-X)*RAT/(X+1.)
 X=X+1.
 NX=X+1
 PMARG(NX) = PMARG(NX) +PR*PTOP(K)
 GO TO 25
 4A CONTINUE
 PRINT 1000
 1000 FORMAT(1H1)
SS=.2.
DO 50 I=1,NMAXP
NI=1-1
PRINT\&NI, PMARG(I)
SS= SS+PMARG(I)
50 CONTINUE
PRINT 1000
PRINT:SS
60 T0 1
END

```

\section*{KLIST}
anabo 00010 аดดอ刀 0ดに30 の日の4の 00050 nलの6a 00070 คロロロ～ 00090 00190 90110 00120 01130 00140 0日 156 のの160 00170 00180 00190 00200 00210 00220 00230 аの24 4 00250 00260 00270 00280 00290 003のด 00310 00320 0033 ค 00340 ดค350 ดด36？ 00370 ค0380 0．390 09490 00410 00415 00420 01430 00440 00450
DLE PRORRAM NAME--HELINA
WAIT. HELIO 3
1/16/67



\footnotetext{





CONTINMF
CONTINIF
CONTINIF.




\section*{RFTIRR:
FNH}

}

:
DELP 1
\(1 / 16 / 67\)



\[
\begin{aligned}
& \begin{array}{l}
15 \text { HKSNT } 1500 \\
1500 \text { FGisinit "INVIERVAL NEGAIIVE") }
\end{array}
\end{aligned}
\]
\(\operatorname{LF}(\angle(J)=\angle 14) 56,453.45\)
ubticeu
to iv \(\%\)
\(\angle L U:=\angle(J)\)
い厂(J) ver
(a) \(10 \quad \mathrm{E}=2, M\)
\(\begin{aligned} & \text { CuNTHNLE } \\ & \text { KP(M-1) }\end{aligned}\)
JSAVE=..
cuntinue
KEND
\(\begin{aligned} & \text { ENU } \\ & \text { function ruve } \\ & \text { COL }\end{aligned}\)
\(\angle \angle=(\angle L-90 \cdot) / 16\) ．
\(\begin{aligned} \quad J=J-1 \\ G=C * F J * \angle C\end{aligned}\)
\(\begin{aligned} & \text { RDV }=\text { ROV }+A(J) * \operatorname{CosF}(G)+B(J) * S I N F(G) \\ & \text { NETUNN }\end{aligned}\)
畜



DELP2
\(1 / 16 / 67\)


HAIT.
READY.
ancomens Pruate \(\int\)


READY.
HELIO1
\(1 / 16 / 67\)

999 FORMATS "' DAYS TO IMPACT, ORBIT TYPE, TPR MARS \({ }^{\circ}\) ")
1000 FORMAT (: HELIOCENTRIC ORBI T PROBABILITY PROGRAY") FORMAT(" HELIOCENTRIC ORBI T PROBABILITY PROGRAY")
READ: TIME,NTYPE,TP, RRP
CALL CUFIT(TIME,NTYPE,C1,C2,C3,C4) CALL CUFI T(TIME,NTYPE, C1, C2, C3, C4)

COMMON DUMMY(78)
COMMON X1(100) \(\times 2(100), \times 3(100), \times 4(100), 2(100)\)
COMMON X1(100), X2(1P0), X3(100), X4(100), \(2(100)\)
COMMON Pi(100), P2(100), P3(100), P4(100), RP(100)
NIMI=N1-

996 PRINT 996 NUMBER, NORMAL VELOCITY VALUES'")
READ:N2, (X2(1), \(1=1\), N2)
PRINT \({ }^{1010}\) ( \({ }^{10}\) RORMAL PROBABILITIES")
N2M \(1=N 2-1\)
READ: (P2(1), \(1=1, N_{2 M 1)}\)
PRINT 1015
RERMATC " N(MBER, M/CDA
READ:N \(3,(x 3(I), I=1, N 3)\)
REAM \(=N 3-1\)
N 3M
PRINT 1020
READ: (P3K1
READ.N40
5 MT=MT-1
\(1 F(R P(M T)) 6,6,7\)
\(6{ }^{1}(F(M T-1) 7,7,5\)
\(7 M 1=M T\)
\(T=0\).

DO \(10 I=1, J M I\)
\(T=T+R P(I)\)
PRINT 1060
8
0
0
0
0
2
0
0
0
1060 FORMATTOIN-PLANE MISS DI STANCE PROBABILITIES")
PRINT:(RP(I)-I=1,





\begin{tabular}{llll}
\(\bullet\) & 0 & 0 & 0 \\
\hline & 0 & 0 \\
\hline
\end{tabular}
©

\section*{
}

\section*{666 INIXd
\(0 B 01\) INIZd}

\(80 \forall 38\)
\(\forall=\mathrm{NN}\)
\begin{tabular}{l} 
a \\
a \\
- \\
\hline
\end{tabular}


sLIS.

\section*{}

monysymat


JTEMP,M
ZM)SEAS. 45

\section*{P(J-1 )+((ZKIGH-ZLOW)/SP)*TPR}

FUNCTION TOPH(ZZ:
COMMON \(X(16 \theta), Y(10 \theta), Z(10 \theta), P(10 \theta), P P(10 \theta)=R P(10 \theta)\) COMMON A(2G), B(2@),C(2G),NN, YMEAN DIMENSION POL(26) \(P O L(1)=1 \cdot\)
\(P O L(2)=Z Z-A(1)\)
DO 29 I \(I=3\), MM
POL(1) \(=2 Z * P O L(I-1)-A(1-1) * P O L(I-1)-B(I-1) * P O L(I-2)\)
TOPH=YMEAN
DO 2S K=1.
昜

\section*{ \\ }
aimour sixici 3

REA
AGRID 1/16/67
SLIST
00000 C 234567
00010 C GRID - ROUTINE TO CALCULATE NEW PROB. TO FIT NORMAL GRID 00020 FUNCTION GRID (M,PROB, Q, A, B)
00030 DIMENSION Q(1), PROB(1)
00040
GRID \(=0\).
DO \(10 \quad I=1, M\)
\(\operatorname{LF}(\theta(I)-A) 10,10,5\)
5 IS \(=1\)
GO TO 20
10 CONTINUE
20 ATEMP \(=A\)
DO \(50 \mathrm{~K}=1 \mathrm{~S}, \mathrm{M}\)
IF \((Q(K)-B) 25,25,23\)
\(23 K T=K\)
GO TO 100
25 GRID \(=\operatorname{GRID}+((\theta(K)-A T E M P) /(\theta(K)-\theta(K-1))) * P R O B(K-1)\) ATEMP \(=\) Q(K)
50 CONTINUE
60 GO TO 500
\(100 \operatorname{GRID}=\operatorname{GRID}+((B-A T E M P) /(Q(K T)-Q(K T-1))) * P R O B(K T-1)\)
500 RETURN END
00210
00220 C 234567
00230 C MAR - ROUTINE TO CALCULATE MARGINAL PROBABILITIES
00240 00250 00260 00270 00280 00290 00360 0310 00320 00330 00340 00350 00360 00370 00380 00390 00400 06410 00420 00430 00440 SUBROUTINE MAR(MMAX,T,PTOP, INT,PMARG) DIMENSION PTOP(1), INT (1), PMARG(1)
NMAXP \(=101\)
DO 20 I=1, NMAXP
20 PMARG(I) \(=0.0\)
RAT \(=T /(1--T)\)
DO \(40 \mathrm{~K}=1\), MMAX
\(N=I N T(K)\)
\(F N=N\)
\(X=0.0\)
\(P R=(1 .-T) * * N\)
PMARG(1) \(=\) PMARG(1)+PR*PTOP(K)
25 IF (X-FN) \(30,40,30\)
\(30 \mathrm{PR}=P R *(F N-X) * R A T /(X+1\).
\(X=X+1\).
\(N X=X+1\)
PMARG(NX) \(=\) PMARG(NX) + PR*PTOP(K) GO TO 25
40 CONTINUE RETURN END
\({ }_{\text {LIMIT }}^{\text {LIC/67 }}\)



RINT：
GO TU 1
ENL
C＊＊＊＊＊＊＊＊＊＊＊r＊＊＊＊＊＊t




GO \(70 \quad 46\)
30 CONT INLIT
4E CUNTLNLE

45 JSAVE＝J
HIGr＝2H
\(\angle H I(G H=Y(J)\)
\(K H(J-1)=K H(J-1)+((\angle H I G H-\angle L O H) / S K) * T P K\)
CONTINUE
66 CONILNUE
70 KP（JSAVE－1）\(=K+(J S A V E-1)+((\angle H I G r-(L O W) / S P) * 7 r K\)
GU 101 be
W \(90 J=2 a m\)
\(f(\angle L-Y(J-1)\)
HF \((\angle L-Y(J-1)) 85,82,85\)
Hf \((J-1)=k P(J-1)+\) TrK
JSAVE＝J
JSAVE＝J
GO \(10 \quad 1\) W6
LF \(\angle L-Y(J)\)

CUNT1N（
hr（N－1）
REI IK
E．VD
先
が


3
0
0
3
3
3
argace
6716
720
333




\(\stackrel{\text { 骨 }}{\stackrel{\varrho}{\ominus}}\)


ingrainamand
```

COMMON $X(1 \theta \theta), Y(1 \theta \theta), Z(1 \theta Q), P(1 Q \theta), P P(10 \theta), R P(10 \theta)$

```


\footnotetext{
slis.

}


2oreverymin


\begin{abstract}
DELP
\(1 / 16 / 67\)

\(\stackrel{0}{\circ} \mathrm{E}\)
ペ
\(\stackrel{n}{0}\)
©
N
尽
\(\stackrel{\otimes}{8}\)
1060
\(\stackrel{0}{0}\)
븡
COMMON \(A(2 日), B(2 \theta), N N, C\)
\(D O 10 \quad 1=2, M\)
\end{abstract}




P0roorsyang 2
COMBI
＊＊＊＊＊FROGRAM TO FIND PROBABILITY OF COMBINATIONS＊＊＊＊＊＊＊

COMMON X（100），Y（100），Z（100），P（100），PP（100），RP（100）
PRINT 1086
PRINT 1062
PRINT 1604
FORMATC
Ge TO 2
SUBROUTINE ADDER（NIM1，N2M1，M，JSAVE，ICDDE）



\section*{0 \\ 00808 \\ enele}
N
In
蝹䍖：
\(0-6\)

PRINT 1666
READ：ICOD
\({ }^{\text {© }}\)
\％

\section*{？}
－・ロ
80

sarocur mind




SPHERE
\(1 / 26 / 67\)


Yanise
SIIRROITINF HORNY (INITR, JNIITS, Y, \(\cap, r, Z\) )


 GEEEGEEEEEEEEEEEGEEEGEEEGEEGEEGEGEEEGEG
```

