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 AdaBoost IDS to detect zero-day attacks and to reduce 

False Positive rates 

Benetto George  
21124485 

MSc in Cybersecurity 

National College of Ireland 

 

Abstract 

Zero-day attacks are becoming more frequent nowadays. It is defined as when an attacker 

takes over a software or application with an exploit known to the developer, but the patch for the 

same is not available; the developer has zero days to fix it, hence it is called zero-day attack. 

Preventing such an attack is extremely crucial for organizations. The present-day methods use 

an IDS (Intrusion Detection System) to detect such an attack. They are efficient in doing the 

same but produce high rate of false positives which wastes a lot of time because a non-attack is 

labelled as an attack. Therefore, accurate and fast IDS(s) are needed, which in turn saves time in 

detecting them. It also makes the company safe and ensures that the necessary steps are taken 

immediately to remedy it. This paper proposes a novel approach in detecting zero-day attacks 

and reducing the false positive rates with an AdaBoost IDS. 

 

Keywords: AdaBoost algorithm, Zero-Day attack, Feature Selection, Accuracy, False 

Positive rate 

 

1  Introduction 

 

In recent years, the number of cyber-attacks has increased dramatically. Zero-day attacks are the most 

damaging of these. It takes months, often years, to find and fix flaws in them. The term "zero-day attack" 

refers to the idea that there are “zero-days" to fix the vulnerability because the developer just noticed the 

attack. These can take the form of botnet attacks, SSH brute force attacks, DOS, DDOS, intrusions, SQL 

injection, and many more. All of these are designed to slow down your network, extract sensitive data from 

your system, and commit data or money theft. These attacks can exploit vulnerabilities in operating systems, 

office programs, web browsers, and open-source systems, indicating that neither individuals nor businesses 

are truly immune from these threats. The most important of these, like Stuxnet, can jeopardize the weaknesses 

of Microsoft software  and Iran's nuclear program .  
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Signature-based models are known to be fast and have high detection rates, but only known patterns can be 

found. Anomaly detection was performed using supervised learning techniques such as ANN, SVM, RNN, 

and decision trees, and unsupervised deep learning techniques such as the ZDAR system and autoencoder 

models. There is a significant percentage of false positives for unknown attack types, but a reasonable success 

rate for known attack types (Pitre et al., 2022). 

Both false positives and false negatives have a negative impact on cyber security. False negatives endanger 

your system and expose it to malware when an attack is reported as non-attack. Newly introduced deep 

learning models have historically shown low false-negative rates. False positives, where non-attacks are 

misclassified as attacks, remain a challenge for this sector. This is problematic because it requires ongoing 

human involvement to ensure that the branded attack is an attack. Enterprises are forced to spend time and 

money on it, preventing the system from running at its fastest speed. Increased speed demands from both 

users and businesses are a challenge for the bulkier IDS models that have these issues (Pitre et al., 2022) . 

The aim of this paper is to implement an AdaBoost IDS  to effectively detect zero-day attacks while also 

minimizing the false positive rates. To achieve this, multiple models, feature selection techniques, weight 

adjustments, and several fine-tuning are used to minimize false positive attack detection rates while 

maintaining significant speed and false positive rates. 

 

Research Question: 

How effective is the AdaBoost algorithm in detecting zero-day attacks? 

The current traditional intrusion detection systems are efficient but produce high rate of false positives. 

According to the researches performed (Moustafa et al., 2019; Rana and Sung, 2020; Tang et al., 2020), using 

AdaBoost algorithm in an IDS has been found to be highly efficient in detecting network intrusions because 

boosting method was able to drastically decrease the error rates. The aforementioned papers motivated me to 

use AdaBoost in my project rather than a machine learning algorithm that uses a single classifier as they 

show that the  usage of AdaBoost algorithm in detecting cyber-attacks exhibit high accuracy and low false 

positive rates. 
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2  Literature Review 

The related works have been categorized into the following domains: 

2.1  Signature-Based Intrusion Detection Systems 

Despite being an outdated paradigm, signature-based detection remains widely used because it can quickly 

and accurately identify known attacks. The paper (Holm, 2014) examines the usefulness of  signature-based 

detection systems to identify current known and unidentified attacks.  

The paper (Kumar and Sinha, 2021) has suggested signature extraction (HVA) for both high-volume attacks 

(LVA) and low-volume attacks. They also used flash detectors to reduce the number of false alarms. On the 

other hand, new zero-day attacks are difficult to intercept with signature-based detection systems and 

therefore require the incorporation of deep learning and machine learning modules. 

 

2.2   Ensemble Learning based intrusion detection systems 

Ensemble learning is an approach like machine learning which can give a much better outcome. AbaBoost is 

a boosting technique. Boosting is a method of merging distinctive low accuracy model which create high 

accuracy model. Adaboost is an ensemble learning algorithm which boosts the performance of any machine 

learning algorithm, has low generalization error and it can work with a broad range of classifiers since it is 

very easy to implement. 

The AdaBoost Ensemble Network Intrusion Detection System (NIDS) (Moustafa et al., 2019) was built and 

analysed in a study using Decision Tree (DT), Naive Bayes (NB), and Artificial Neural Network (ANN) 

algorithms. This system can identify IoT attacks related to the application layer. This ensemble model was 

built using the NIMS botnet dataset and the UNSW-NB15 botnet dataset. Their research shows that the 

proposed model has an accuracy of 99.54% in detecting attacks on the UNSW-NB15 dataset and an accuracy 

of 98.29% in detecting attacks on the NIMS botnet dataset. 

In a paper (Rana and Sung, 2020) , various approaches to ensemble learning have been explored, such as 

stacking, boosting, bagging and blending. In this study, I found that the boosting method could effectively 

eliminate the majority of significant errors by distinguishing between strong and weak learners. 

There is a paper (Tang et al., 2020) that proposes a feature-rich AdaBoost system for identifying low-rate 

denial-of-service (LDoS) attacks. Network traffic was recorded at specified intervals and the resulting 

samples were evaluated using various statistical methods. Correlation values between features and class 

labels were obtained to select the best feature set. AdaBoost ensemble models were created using the best 

properties. They evaluated the performance of the model using the NS2 simulator and testbench, and the 

attack detection accuracy was 94.05% and 97.06%, respectively. 
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The paper (Shahraki et al., 2020) uses well-known intrusion detection datasets such as KDDCUP99, NSL-

KDD, CICIDS2017, UNSW-NB15 and TRAAbID to perform a comparative analysis of different AdaBoost 

methods such as Real Adaboost, Gentle Adaboost and Modest Adaboost. In this study, the authors found that 

the Real AdaBoost and Gentle AdaBoost algorithms outperform the Modest AdaBoost method. However, 

the Modest AdaBoost algorithm was faster than the other AdaBoost algorithms.  

To protect IoT networks (Anitha and Arockiam, 2021) from version number attacks, DIS flooding attacks, 

and DAO attacks, this study uses the AdaBoost ensemble model to create an ensemble IDS named Ada-IDS. 

It is then installed on the border router. The results show that the Ada-IDS ensemble model accurately 

detected these three types of attacks with an alert rate of 99.6%. Therefore, it works as an anomaly-based 

intrusion system. 

The paper (Pallippattu Mathai, 2021) explains the malware detection capability of AdaBoost on Android 

data. 

To identify botnet attacks in connected cars, the study (Rehman Javed et al., 2022)  proposed an AdaBoost 

ensemble classifier. The AdaBoost approach used a decision tree algorithm as the base estimator and set the 

cluster size to 100. Compared to decision trees, probabilistic neural networks, and sequential minimum 

optimization, the AdaBoost classifier performed better. Their research showed that the AdaBoost classifier 

outperformed previous models, showing a true positive rate of 99.7% and an accuracy of 99.1%. 

 

2.3  Machine Learning based intrusion detection systems 

The paper (Heba et al., 2010) uses SVM  for anomalous-based intrusion detection systems due to its 

robustness. But, this implementation does not constitute an efficient intrusion detection system. 

The paper (Farnaaz and Jabbar, 2016) implements a Random Forest Classifier IDS to overcome overfitting. 

The research was only based on four types of attacks. 

By developing a three-phase model, the paper (Goeschel, 2016) takes an innovative approach to reducing 

false alarms and increasing overall accuracy. The first phase uses the SVM classifier, the second phase uses 

the decision tree, and the third phase uses naive bayes. The combination of these three classifiers greatly 

improves the accuracy of IDS. 

Detecting zero-day attacks using various supervised machine learning models  has been the subject of 

extensive research. To train the model, the paper (Zhou and Pezaros, 2019) implements six machine learning 

classification models: Random Forest Classifier, Gauss Naive Bayes Classifier, Decision Tree Classifier, 

Multilayer Perceptron (MLP) Classifier, K-Nearest Neighbor (KNN)  Classifier, and Quadratic discriminant 
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analysis classifier. Tests have shown that the Decision Tree classifier provides the most accurate results for 

most attack types. 

In a paper by Pitre (Pitre et al., 2022) provided a way to combat zero-day attacks and reduce false positive 

rates by combining feature selection techniques and fine-tuning datasets dedicated to false positive detection. 

These techniques were repeatedly tested with different optimizers and models and the results were compared. 

The study achieved 95.1% accuracy after fine tuning on the positives from Stage 1 of the experiment. This 

approach motivated me to pursue the two stage model to reduce the false positive rate. 

2.4  Deep learning based intrusion detection systems 

With the sophistication of threats, people are now using deep learning  to detect intrusions.  

Papers (Kwon et al., 2018) and (Kim et al., 2020) used a CNN model for classification. The first used three 

different internal CNN depths and concluded that the depth had little or no effect on the results. In the second 

study, they implemented a CNN model to identify DoS attacks and evaluated their effectiveness by 

comparing their performance to the RNN model.  

 

The paper (Soltani et al., 2021) compared four deep novelty-based classifiers (DOC, DOC ++, OpenMax, 

autoSVM) and found that DOC ++ provided the most promising results. Thanks to this method, they were 

able to classify unidentified attacks. 

2.5  Feature selection in intrusion detection systems 

Due to the large number of features in most attack datasets, feature selection has become an important 

component of attack detection systems as it improves classification during dataset training by choosing a 

subset of relevant features. 

The paper (Akashdeep et al., 2017) performs feature ranking using  correlation and information gain 

algorithms. The correct feature subset is then selected based on this ranking. 

A research (Pallaprolu et al., 2017)  identifies the most distinctive features of the dataset by using the 

minimum redundancy maximum relevance (MRMR) feature selection technique on the Apache Spark 

platform. The drawback is that the research depends on the result of a single classifier which decreases the 

accuracy. 

The paper (Research Scholar, School of Computer Science and Engineering, Vellore Institute of Technology, 

Vellore, Tamilnadu, India. et al., 2019), combines ExtraTreesClassifier, Percentile, and KBest, which are 

feature selection methods. With feature selection, the model is much more accurate than it would be without 

it. 
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The paper (Lin et al., 2021) implements k-fold(k=10) cross validation to achieve the automatic selection of 

the ideal parameters and number of features, and it then employs three well-known feature selection metrics 

simultaneously: mutual information, chi-squared, and ANOVA F value. 

Therefore, feature selection is essential to the intrusion detection system training process. 

 

3  Research Methodology 

The below figure shows the components of the system and proposed flow. 

 

Figure 1: Proposed Flow of the System 

 

 

A summary of the steps are explained below: 

A. Training Stage 

1. Dataset: A standard dataset which is called IDS 2018 Intrusion CSVs (CSE-CIC-IDS2018) dataset 

of the day 02-15-2018 is used. The dataset is taken from Kaggle, which is a publicly available 

platform to download various datasets (“IDS 2018 Intrusion CSVs (CSE-CIC-IDS2018),” n.d.). 

2.  Preprocessing: The dataset is preprocessed which involves removing unwanted columns, removing 

columns that contain only zeroes and removing infinite values. 
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3. Feature Selection: This is one of the most important processes in a training algorithm, as it allows 

you to choose the features from the dataset that best fit your model. Choosing a single feature can 

cause the model to be biased towards a particular feature and reduce accuracy. I tested three Ensemble 

feature selection techniques by searching the  Ensemble algorithms that are suited for IDS(s) from 

the paper (Venkatarathinam et al., 2018), which, upon searching the internet were Chi square, 

Ensemble Extremely Randomized Trees classifier and Exhaustive Feature Selection. Chi square 

method was found to be the most effective and this was used in this project.  

4. Load AdaBoost Classifier and training: The dataset with selected features is then trained with 

AdaBoost classifier.  

5. Finetune on the positives: After testing a small portion of the dataset, a confusion matrix containing 

the false positive rate, true positive rate, false negative rate, and true negative rate is obtained. Since 

I need to reduce the false positive rate, a subset of the dataset is created consisting of the positives 

(TP and FP) from the original test. 

6. Save trained model: The dataset subset is then again trained with AdaBoost classifier, and a final 

confusion matrix is generated with the reduced false positive rate. This trained model is then saved 

for future prediction. 

 

B.  Prediction stage 

1.  Input data: The trained model is loaded. The parameters are inputted by the user. 

2.  Preprocessing: The inputted details are converted to a dictionary which is in turn converted to a        

data frame. 

3.  Load trained model and prediction: The data frame is loaded to the model for prediction. 

4.  Output: The output which can be Malicious or Benign is viewed. 

 

4  Design Specification 

The algorithm I used in my implementation, called Adaboost, was developed by Yoav Freund and Robert 

Schapire in 1996 and uses a boosting technique. This is also an iterative ensemble method. The AdaBoost 

classifier combines many ineffective classifiers to create a strong classifier with a high level of accuracy. To 

better predict new observations, classifier weights are set and data samples are trained in separate iterations. 

For the Adaboost algorithm to work, two requirements must be met: 
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First, the classifier has to be interactively trained on different weighted training samples. Each training trial 

should then aim to minimize the training error to produce the best possible fit for the instance. Working of 

AdaBoost algorithm is as follows:1 

1. AdaBoost initially chooses a training subset at random. 

2. An AdaBoost machine learning model is iteratively trained by choosing a training set based on the 

accuracy of previous training. 

3. It gives more weight to misclassified observations, so they are more likely to be classified correctly 

in the next round. 

4. In addition, weights are assigned according to the accuracy of the trained classifier at each iteration. 

More weight is given to more accurate classifiers. 

5. This process is repeated until the entire training set is completely filled or the specified maximum 

number of estimators is reached. 

6. Vote for all the learning algorithms you have created to classify them. 

 

Weak learners are integrated in the AdaBoost ensemble strategy to increase accuracy, which is accomplished 

repeatedly by addressing the faults of the weak classifier. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: AdaBoost Classifier 

 

 

 

1 https://www.datacamp.com/tutorial/adaboost-classifier-python 
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4.1  System Specifications 

The experiment was performed on a desktop with Windows 11 which had Python, Visual Studio and 

Anaconda software installed. 

Desktop Specification: 

• Processor: Intel i5 11th Gen 

• 16 GB DDR4 RAM 

• 512 GB SSD storage 

 

To perform the data cleansing operations such as reading the dataset and removing infinite values, I used 

Python’s data science libraries Pandas and NumPy. 

 

Software used: 

• Windows 11 64-bit 

• Python 3.10.5 

• Microsoft Visual Studio Code v1.73.1 

 

 5  Implementation 

5.1  Environment Setup 

 

The project is written in Python programming language. Anaconda software is used to create the 

environment for machine learning and Visual Studio Code is used to run the code. 

 

 

5.2  Dataset Description 

The dataset is taken from Kaggle2 which is a publicly available platform to download various datasets. It is 

downloaded in CSV format in which it consists of 80 columns, each of which is an IDS logging system entry. 

The important features in the dataset are Dst Port, Protocol, Flow Duration, Tot Fwd Pkts, Tot Bwd Pkts and 

Label. 

 

 

2 https://www.kaggle.com/datasets/solarmainframe/ids-intrusion-csv 
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5.3  Package Installation 

Here in this project, Anaconda software is also used, which is a distribution for Python programming 

languages for data science. It simplifies package management and deployment. An environment, named 

“ml_env” is created. It consists of the necessary machine learning python libraries that are custom installed 

which in turn help to run the whole code. A small number of libraries that are present in the environment are: 

• Numpy: Used for array operations 

• Sklearn: Used for selection of features and for train-test splitting 

• Pandas: Used to read the dataset 

• Matplotlib: Is used for data visualization 

 

5.4   Training Stage 

5.4.1 Dataset Preprocessing 

 

This is the first step that is done in the training stage. The dataset is read and then number of occurrences of 

“Label”, number of Malicious and Benign entries is counted. The column entries which consists of attacks 

in the dataset which are “DoS attacks-Slowloris”, “DoS attacks-GoldenEye” are replaced with the value 

“Malicious”. An unwanted column named “Timestamp” is removed, because it is not a numeric value. Then, 

cleaning of the data is done by removing columns that contain only zeroes, unwanted columns, null values; 

which are specified as NaN(Not A Number) in python and infinite values using Numpy and Pandas libraries. 

A new data frame from row 5000 to 800000 is created to have a balance between Benign and Malicious 

Entries. Data division is done in which it is split into an Independent variable and a Dependent variable. The 

Dependent variable (model output) is taken as “Label”(y) and Independent variable (model input) is taken as 

all the features excluding label(x). 



 

 

 

13 

 

Figure 3: Dataset Preprocessing 

 

 

 

 

5.4.2  Feature Selection 

 

The next step is Feature Selection which is important to train the model efficiently. This is done by removing 

unwanted features and only selecting those features which have high feature scores. This process increases 

the precision and reduces the training time of the model. 

The method used for the same is SelectKBest chi2 method, in which, the 16 best features out of the total 66 

are selected in descending order of score. These features along with the important features mentioned in a 

previous section are used to create a new dataset. 

The methods Ensemble Extremely Randomized Trees Classifier and Ensemble Exhaustive feature selection 

was also tried out. The first method did not give uniform scores for the features and the second method did 

not work even after multiple tries of running the code. 

After this, y_final is taken as model output which consists of only “Label” and x_final is taken as model input 

without the “Label” parameter but including the 20 features. 
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Figure 2:Feature Selection using chi2 

 

 

Figure 4: Scores of Extremely Randomized Trees Classifier 

 

 

5.4.3  Train-Test Splitting 1 

When a machine learning algorithm is used to predict data that was not used to train the model, its 

performance is estimated using the training test split method. This is a quick and easy process whose results 

allow us to compare the effectiveness of machine learning algorithms for specific predictive modeling 
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problems. The train-test-split approach is appropriate when you need to quickly evaluate model performance, 

when models are expensive to train, or when you need very large datasets. 

Here in my project, x_final and y_final is given as input and test_size is taken as 0.4 which means that 40% 

of the dataset is taken for testing and 60% is for training. x_train and y_train is the training dataset and x_test 

and y_test is the testing dataset. The testing dataset consists of Malicious and Benign entries. 

 

 

Figure 5:Train-test split 1 

 

 

5.4.4 AdaBoost Classifier 

The AdaBoost classifier is loaded and has attributes with values n_estimators=50 which is number of weak 

learners to train iteratively, the weak learner used here is DecisionTreeClassifier. It is the default weak 

learner. 

  

x_train and y_train is passed as input to train the AdaBoost model. x_test is used to evaluate the model and 

the resulting output y_pred is the predicted value of the model, i.e., whether it is Malicious or Benign. 

 

A confusion matrix is then plotted to evaluate the performance of the machine learning model. It takes the 

model predicted output which is y_pred and the original dataset’s testing dataset, i.e., y_test as inputs. 

The all positives consists of True positives and False positives. If y_test predicts correctly, that entry is added 

to the list TP_indexes, else it is added to FP_indexes. 
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 Negative Positive 

Negative TN FP 

Positive FN TP 

Figure 6: Confusion Matrix 

 

One of the main aim in this project is to reduce the false positive rates. Therefore, to do that, the true positive 

and false positive lists are merged and converted into a single dataset, which is a fine tuned dataset. y_get is 

the model output with only “Label” column in it and x_get is the model input excluding the “Label” 

parameter. 

Similarly, train-test splitting is done again by giving the above two variables as input. 

 

Figure 7:Train-test split 2 

 

The AdaBoost classifier is again loaded and trained and then a second confusion matrix is plotted with the 

reduced false positive rate. The accuracy is also calculated using the fine tuned dataset’s testing set (y_test1) 

and the AdaBoost model’s  second round of predicted output (y_pred1). 

Finally, the trained model is saved for future prediction. 

 

5.5  Prediction Stage 

The saved model is loaded using joblib function. An empty list called Info and a list called Parameters is also 

created which contains the 20 features. The user enters the data of the corresponding features. Each entry is 

appended to the “info” list. The two lists are converted to a Dictionary and then converted to a Dataframe 

named my_data using Pandas library. The Dataframe is then loaded to the model to make the prediction, 

which will be two values, Malicious or Benign and the output variable is called my_pred. The result can be 

Predicted 

Actual 
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viewed in the command prompt and also in the Graphical User Interface (GUI). To add the data shown below 

and in the GUI, there is a text file called Test.txt with the values of the 20 features. 

 

 

Figure 8: Entries which shows result as Benign 
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Figure 9: Entries that show result as Malicious 

 

 

6  Evaluation 

The AdaBoost model has been implemented and two confusion matrices have been obtained. The first one is 

with the original dataset and the second one is with the fine tuned dataset to reduce the false positives. To 

evaluate the performance of the model, the accuracy metric is also calculated. For calculating the same. The 

below terms need to be first understood: 

• True Positive (TP):  A TP stands for the precise designation of an attack packet as an attack. 

• True Negative (TN):  Correct classification of normal packets as normal is provided by the TN. 

• False Negative (FN):  FN serves as an example of an attack packet misclassified as normal. Increasing 

this value affects confidentiality and availability, two major security concerns. 

• False Positive (FP):  FP stands for an incorrect classification, which marks normal packets as attacks. 

• Accuracy:  Divide the total number of accurate predictions by the total number of predictions to 

determine the proposed model's accuracy. 

 

Accuracy= (TP+TN) / (TP+TN+FP+FN) 
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6.1 Case Study 1: Confusion Matrix with original dataset 

 

The first Confusion Matrix is plotted with the AdaBoost model’s predicted y_pred and the testing dataset 

y_test. The values in the four blocks of the below confusion matrix add up to the number of rows in the 

first testing set of the first iteration of the train test split, which is, 318000 packets. Out of these packets, 

298907 Benign packets were correctly classified as Benign (TN). The 166 benign packets were 

incorrectly classified as Malicious (FP). The 163 Malicious packets were incorrectly classified as Benign 

(FN). The remaining 18764 malicious packets were correctly classified as Malicious (TP).  

 

Figure 10: Confusion Matrix 1 

  

6.2 Case Study 2: Confusion Matrix with fine-tuned dataset 

The second confusion matrix is plotted with the AdaBoost model’s y_pred1 and the fine-tuned dataset’s 

testing set y_test1. The values in the below confusion matrix add up to the number of rows in the testing 

set of the second iteration of the train test split, which is, 7572 packets. Out of these packets, 7500 Benign 

packets were correctly classified as Benign. No benign packets were incorrectly classified as Malicious. 
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The 39 Malicious packets were incorrectly classified as Benign. The remaining 33 malicious packets 

were correctly classified as Malicious. 

From the above results, it is found that the False Positive rate has decreased to 0 compared to the initial 

rate in the first matrix, thereby achieving the outcome which was proposed in this project. 

 

Figure 11: Confusion Matrix 2 

 

The accuracy was also calculated for the model, which is 99.5%. The same is shown below: 

 

 

Figure 12: Accuracy of the model 

 

The train_test_split function has a default attribute called “shuffle”. It randomly shuffles the amount of rows 

in the training and testing sets, and the number of Malicious and Benign entries in the Testing Dataset. As 

said before, the testing set contains Malicious and Benign entries. Due to the random shuffling, the accuracy 

and false positive rate therefore may vary by a small margin. The same is shown below: 
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Figure 13: Confusion matrix in 2nd experiment after stage 1 
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Figure 14: Confusion matrix in 2nd experiment after stage 2 

 

 

Figure 15: Accuracy 2 

 

The above figure shows the accuracy of the model after performing the experiment.  

This section concludes that the accuracy of the model varies between 99.3% to 99.5%. This happens because 

of an attribute value called “shuffle = True”. It may go even lower but the same was not achieved even after 

multiple attempts of running the code. 

 

7  Discussion 

An IDS to detect Zero Day attacks and to reduce their false positive rate has been done using different 

methods. There were two important papers in which I researched on the topic and both of them exhibit less 

accuracy compared to my accuracy of 99.5%. 
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Research Paper Accuracy Obtained My Proposed method’s 

accuracy 

(Kumar and Sinha, 2021) 91.33% 99.5% 

(Pitre et al., 2022) 95.1% 99.5% 

 

The former paper did not use any feature selection technique. Hence, that may be the case of the accuracy 

difference compared to my approach. 

The accuracy obtained for this project varies between 99.3% and 99.5% after many attempts in running the 

project. The said accuracy obtained is mainly dependent on the dataset used. If another dataset is used, the 

said accuracy may not be this good. Another factor is the usage of another feature selection algorithm other 

than chi2 which is used in this project. I have tested using two other feature selection algorithms as mentioned 

earlier in the “Feature Selection” section namely Ensemble Extremely Randomized Trees Classifier and 

Ensemble Exhaustive feature selection. The first one did not give uniform scores for the important features, 

which if implemented using the same, will have low accuracy compared to this as feature selection plays an 

important part in determining the accuracy of the model. The second algorithm did not run even after multiple 

attempts. The final factor is if another machine learning algorithm other than an ensemble machine learning 

algorithm is used, as AdaBoost algorithm used IDS(s) exhibit high accuracy and the algorithm combines 

many ineffective classifiers to create a strong classifier with a high level of accuracy. The papers mentioned 

in the literature review (Anitha and Arockiam, 2021; Moustafa et al., 2019; Rehman Javed et al., 2022) also 

support the high accuracy capability of AdaBoost algorithm. 

Another aspect of this project is that this work focuses on Intrusion Detection, not Prevention. Which means 

that it is only able tell whether a packet is Malicious or Benign, and not the types of Malicious attacks detected 

for example like Malware, Spyware, Adware and so on. This is also a limitation. The dataset has only two 

classes for that Malicious and Benign, which make it a Binary Classification in Machine Learning. If the 

dataset consisted of types of attacks or Malware classes other than the two classifications for the packet, it 

will be a Multi Class classification. This will in turn make learning for the machine learning model with 

AdaBoost a bit harder and thereby reducing the accuracy. 

 

8  Conclusion and Future Work 

The paper focuses on detecting Zero day attacks and to reduce the false positive rates with the help of an 

ensemble machine learning approach called AdaBoost. With the help of chi2 feature selection technique, 16 

features were extracted out of the 66 features from the original dataset. The proposed model is trained with 
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AdaBoost model and a confusion matrix was obtained. In order to reduce the false positives, the dataset was 

finetuned by merging the True Positive and False Positive indexes, which was then converted to a dataset for 

generating a second Confusion matrix. This matrix showed that the model had no false positive rate. The 

accuracy obtained using this technique is 99.5%, which is satisfactory compared to other technologies out 

there, and also makes AdaBoost a very efficient algorithm to detect zero day attacks. 

For future work, since this model only does Intrusion Detection, using another dataset that has the type of 

intrusion such as whether it is a malware, spyware, adware and so on is possible. And also, usage of another 

ensemble machine learning approach such as XGBoost is also possible. 

 

9  Link to full artefact 

I am attaching a OneDrive link below to the artefact as my ZIP file had a size of 2.29GB, which cannot be 

uploaded on moodle. I have anyway submitted the code part of the project in a zip file on Moodle. 

 OneDrive Link: IDS_FULLCODE.zip 
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