

 AdaBoost IDS to detect Zero Day attacks

and reduce false positives

MSc Research Project

MSc Cyber Security

Benetto George

X21124485

School of Computing

National College of Ireland

Supervisor: Imran Khan

2

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Benetto George

Student ID:

X21124485

Programme:

MSc Cyber Security

Year:

2022 - 2023

Module:

MSc Research Project

Supervisor:

Imran Khan

Submission
Due Date:

15-12-22

Project Title:

AdaBoost IDS to detect Zero Day Attacks and reduce false

positives

Word Count:

25

……………………………………… Page

Count……6027……………………………………….……..

I hereby certify that the information contained in this (my submission) is information pertaining to

research I conducted for this project. All information other than my own contribution will be fully

referenced and listed in the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to use the
Referencing Standard specified in the report template. To use other author's written or electronic work

is illegal (plagiarism) and may result in disciplinary action.

Signature:

Benetto George

……

Date:

14-12-2022
……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed into the
assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

3

 AdaBoost IDS to detect zero-day attacks and to reduce

False Positive rates

Benetto George
21124485

MSc in Cybersecurity

National College of Ireland

Abstract

Zero-day attacks are becoming more frequent nowadays. It is defined as when an attacker

takes over a software or application with an exploit known to the developer, but the patch for the

same is not available; the developer has zero days to fix it, hence it is called zero-day attack.

Preventing such an attack is extremely crucial for organizations. The present-day methods use

an IDS (Intrusion Detection System) to detect such an attack. They are efficient in doing the

same but produce high rate of false positives which wastes a lot of time because a non-attack is

labelled as an attack. Therefore, accurate and fast IDS(s) are needed, which in turn saves time in

detecting them. It also makes the company safe and ensures that the necessary steps are taken

immediately to remedy it. This paper proposes a novel approach in detecting zero-day attacks

and reducing the false positive rates with an AdaBoost IDS.

Keywords: AdaBoost algorithm, Zero-Day attack, Feature Selection, Accuracy, False

Positive rate

1 Introduction

In recent years, the number of cyber-attacks has increased dramatically. Zero-day attacks are the most

damaging of these. It takes months, often years, to find and fix flaws in them. The term "zero-day attack"

refers to the idea that there are “zero-days" to fix the vulnerability because the developer just noticed the

attack. These can take the form of botnet attacks, SSH brute force attacks, DOS, DDOS, intrusions, SQL

injection, and many more. All of these are designed to slow down your network, extract sensitive data from

your system, and commit data or money theft. These attacks can exploit vulnerabilities in operating systems,

office programs, web browsers, and open-source systems, indicating that neither individuals nor businesses

are truly immune from these threats. The most important of these, like Stuxnet, can jeopardize the weaknesses

of Microsoft software and Iran's nuclear program .

4

Signature-based models are known to be fast and have high detection rates, but only known patterns can be

found. Anomaly detection was performed using supervised learning techniques such as ANN, SVM, RNN,

and decision trees, and unsupervised deep learning techniques such as the ZDAR system and autoencoder

models. There is a significant percentage of false positives for unknown attack types, but a reasonable success

rate for known attack types (Pitre et al., 2022).

Both false positives and false negatives have a negative impact on cyber security. False negatives endanger

your system and expose it to malware when an attack is reported as non-attack. Newly introduced deep

learning models have historically shown low false-negative rates. False positives, where non-attacks are

misclassified as attacks, remain a challenge for this sector. This is problematic because it requires ongoing

human involvement to ensure that the branded attack is an attack. Enterprises are forced to spend time and

money on it, preventing the system from running at its fastest speed. Increased speed demands from both

users and businesses are a challenge for the bulkier IDS models that have these issues (Pitre et al., 2022) .

The aim of this paper is to implement an AdaBoost IDS to effectively detect zero-day attacks while also

minimizing the false positive rates. To achieve this, multiple models, feature selection techniques, weight

adjustments, and several fine-tuning are used to minimize false positive attack detection rates while

maintaining significant speed and false positive rates.

Research Question:

How effective is the AdaBoost algorithm in detecting zero-day attacks?

The current traditional intrusion detection systems are efficient but produce high rate of false positives.

According to the researches performed (Moustafa et al., 2019; Rana and Sung, 2020; Tang et al., 2020), using

AdaBoost algorithm in an IDS has been found to be highly efficient in detecting network intrusions because

boosting method was able to drastically decrease the error rates. The aforementioned papers motivated me to

use AdaBoost in my project rather than a machine learning algorithm that uses a single classifier as they

show that the usage of AdaBoost algorithm in detecting cyber-attacks exhibit high accuracy and low false

positive rates.

5

2 Literature Review

The related works have been categorized into the following domains:

2.1 Signature-Based Intrusion Detection Systems

Despite being an outdated paradigm, signature-based detection remains widely used because it can quickly

and accurately identify known attacks. The paper (Holm, 2014) examines the usefulness of signature-based

detection systems to identify current known and unidentified attacks.

The paper (Kumar and Sinha, 2021) has suggested signature extraction (HVA) for both high-volume attacks

(LVA) and low-volume attacks. They also used flash detectors to reduce the number of false alarms. On the

other hand, new zero-day attacks are difficult to intercept with signature-based detection systems and

therefore require the incorporation of deep learning and machine learning modules.

2.2 Ensemble Learning based intrusion detection systems

Ensemble learning is an approach like machine learning which can give a much better outcome. AbaBoost is

a boosting technique. Boosting is a method of merging distinctive low accuracy model which create high

accuracy model. Adaboost is an ensemble learning algorithm which boosts the performance of any machine

learning algorithm, has low generalization error and it can work with a broad range of classifiers since it is

very easy to implement.

The AdaBoost Ensemble Network Intrusion Detection System (NIDS) (Moustafa et al., 2019) was built and

analysed in a study using Decision Tree (DT), Naive Bayes (NB), and Artificial Neural Network (ANN)

algorithms. This system can identify IoT attacks related to the application layer. This ensemble model was

built using the NIMS botnet dataset and the UNSW-NB15 botnet dataset. Their research shows that the

proposed model has an accuracy of 99.54% in detecting attacks on the UNSW-NB15 dataset and an accuracy

of 98.29% in detecting attacks on the NIMS botnet dataset.

In a paper (Rana and Sung, 2020) , various approaches to ensemble learning have been explored, such as

stacking, boosting, bagging and blending. In this study, I found that the boosting method could effectively

eliminate the majority of significant errors by distinguishing between strong and weak learners.

There is a paper (Tang et al., 2020) that proposes a feature-rich AdaBoost system for identifying low-rate

denial-of-service (LDoS) attacks. Network traffic was recorded at specified intervals and the resulting

samples were evaluated using various statistical methods. Correlation values between features and class

labels were obtained to select the best feature set. AdaBoost ensemble models were created using the best

properties. They evaluated the performance of the model using the NS2 simulator and testbench, and the

attack detection accuracy was 94.05% and 97.06%, respectively.

6

The paper (Shahraki et al., 2020) uses well-known intrusion detection datasets such as KDDCUP99, NSL-

KDD, CICIDS2017, UNSW-NB15 and TRAAbID to perform a comparative analysis of different AdaBoost

methods such as Real Adaboost, Gentle Adaboost and Modest Adaboost. In this study, the authors found that

the Real AdaBoost and Gentle AdaBoost algorithms outperform the Modest AdaBoost method. However,

the Modest AdaBoost algorithm was faster than the other AdaBoost algorithms.

To protect IoT networks (Anitha and Arockiam, 2021) from version number attacks, DIS flooding attacks,

and DAO attacks, this study uses the AdaBoost ensemble model to create an ensemble IDS named Ada-IDS.

It is then installed on the border router. The results show that the Ada-IDS ensemble model accurately

detected these three types of attacks with an alert rate of 99.6%. Therefore, it works as an anomaly-based

intrusion system.

The paper (Pallippattu Mathai, 2021) explains the malware detection capability of AdaBoost on Android

data.

To identify botnet attacks in connected cars, the study (Rehman Javed et al., 2022) proposed an AdaBoost

ensemble classifier. The AdaBoost approach used a decision tree algorithm as the base estimator and set the

cluster size to 100. Compared to decision trees, probabilistic neural networks, and sequential minimum

optimization, the AdaBoost classifier performed better. Their research showed that the AdaBoost classifier

outperformed previous models, showing a true positive rate of 99.7% and an accuracy of 99.1%.

2.3 Machine Learning based intrusion detection systems

The paper (Heba et al., 2010) uses SVM for anomalous-based intrusion detection systems due to its

robustness. But, this implementation does not constitute an efficient intrusion detection system.

The paper (Farnaaz and Jabbar, 2016) implements a Random Forest Classifier IDS to overcome overfitting.

The research was only based on four types of attacks.

By developing a three-phase model, the paper (Goeschel, 2016) takes an innovative approach to reducing

false alarms and increasing overall accuracy. The first phase uses the SVM classifier, the second phase uses

the decision tree, and the third phase uses naive bayes. The combination of these three classifiers greatly

improves the accuracy of IDS.

Detecting zero-day attacks using various supervised machine learning models has been the subject of

extensive research. To train the model, the paper (Zhou and Pezaros, 2019) implements six machine learning

classification models: Random Forest Classifier, Gauss Naive Bayes Classifier, Decision Tree Classifier,

Multilayer Perceptron (MLP) Classifier, K-Nearest Neighbor (KNN) Classifier, and Quadratic discriminant

7

analysis classifier. Tests have shown that the Decision Tree classifier provides the most accurate results for

most attack types.

In a paper by Pitre (Pitre et al., 2022) provided a way to combat zero-day attacks and reduce false positive

rates by combining feature selection techniques and fine-tuning datasets dedicated to false positive detection.

These techniques were repeatedly tested with different optimizers and models and the results were compared.

The study achieved 95.1% accuracy after fine tuning on the positives from Stage 1 of the experiment. This

approach motivated me to pursue the two stage model to reduce the false positive rate.

2.4 Deep learning based intrusion detection systems

With the sophistication of threats, people are now using deep learning to detect intrusions.

Papers (Kwon et al., 2018) and (Kim et al., 2020) used a CNN model for classification. The first used three

different internal CNN depths and concluded that the depth had little or no effect on the results. In the second

study, they implemented a CNN model to identify DoS attacks and evaluated their effectiveness by

comparing their performance to the RNN model.

The paper (Soltani et al., 2021) compared four deep novelty-based classifiers (DOC, DOC ++, OpenMax,

autoSVM) and found that DOC ++ provided the most promising results. Thanks to this method, they were

able to classify unidentified attacks.

2.5 Feature selection in intrusion detection systems

Due to the large number of features in most attack datasets, feature selection has become an important

component of attack detection systems as it improves classification during dataset training by choosing a

subset of relevant features.

The paper (Akashdeep et al., 2017) performs feature ranking using correlation and information gain

algorithms. The correct feature subset is then selected based on this ranking.

A research (Pallaprolu et al., 2017) identifies the most distinctive features of the dataset by using the

minimum redundancy maximum relevance (MRMR) feature selection technique on the Apache Spark

platform. The drawback is that the research depends on the result of a single classifier which decreases the

accuracy.

The paper (Research Scholar, School of Computer Science and Engineering, Vellore Institute of Technology,

Vellore, Tamilnadu, India. et al., 2019), combines ExtraTreesClassifier, Percentile, and KBest, which are

feature selection methods. With feature selection, the model is much more accurate than it would be without

it.

8

The paper (Lin et al., 2021) implements k-fold(k=10) cross validation to achieve the automatic selection of

the ideal parameters and number of features, and it then employs three well-known feature selection metrics

simultaneously: mutual information, chi-squared, and ANOVA F value.

Therefore, feature selection is essential to the intrusion detection system training process.

3 Research Methodology

The below figure shows the components of the system and proposed flow.

Figure 1: Proposed Flow of the System

A summary of the steps are explained below:

A. Training Stage

1. Dataset: A standard dataset which is called IDS 2018 Intrusion CSVs (CSE-CIC-IDS2018) dataset

of the day 02-15-2018 is used. The dataset is taken from Kaggle, which is a publicly available

platform to download various datasets (“IDS 2018 Intrusion CSVs (CSE-CIC-IDS2018),” n.d.).

2. Preprocessing: The dataset is preprocessed which involves removing unwanted columns, removing

columns that contain only zeroes and removing infinite values.

9

3. Feature Selection: This is one of the most important processes in a training algorithm, as it allows

you to choose the features from the dataset that best fit your model. Choosing a single feature can

cause the model to be biased towards a particular feature and reduce accuracy. I tested three Ensemble

feature selection techniques by searching the Ensemble algorithms that are suited for IDS(s) from

the paper (Venkatarathinam et al., 2018), which, upon searching the internet were Chi square,

Ensemble Extremely Randomized Trees classifier and Exhaustive Feature Selection. Chi square

method was found to be the most effective and this was used in this project.

4. Load AdaBoost Classifier and training: The dataset with selected features is then trained with

AdaBoost classifier.

5. Finetune on the positives: After testing a small portion of the dataset, a confusion matrix containing

the false positive rate, true positive rate, false negative rate, and true negative rate is obtained. Since

I need to reduce the false positive rate, a subset of the dataset is created consisting of the positives

(TP and FP) from the original test.

6. Save trained model: The dataset subset is then again trained with AdaBoost classifier, and a final

confusion matrix is generated with the reduced false positive rate. This trained model is then saved

for future prediction.

B. Prediction stage

1. Input data: The trained model is loaded. The parameters are inputted by the user.

2. Preprocessing: The inputted details are converted to a dictionary which is in turn converted to a

data frame.

3. Load trained model and prediction: The data frame is loaded to the model for prediction.

4. Output: The output which can be Malicious or Benign is viewed.

4 Design Specification

The algorithm I used in my implementation, called Adaboost, was developed by Yoav Freund and Robert

Schapire in 1996 and uses a boosting technique. This is also an iterative ensemble method. The AdaBoost

classifier combines many ineffective classifiers to create a strong classifier with a high level of accuracy. To

better predict new observations, classifier weights are set and data samples are trained in separate iterations.

For the Adaboost algorithm to work, two requirements must be met:

10

First, the classifier has to be interactively trained on different weighted training samples. Each training trial

should then aim to minimize the training error to produce the best possible fit for the instance. Working of

AdaBoost algorithm is as follows:1

1. AdaBoost initially chooses a training subset at random.

2. An AdaBoost machine learning model is iteratively trained by choosing a training set based on the

accuracy of previous training.

3. It gives more weight to misclassified observations, so they are more likely to be classified correctly

in the next round.

4. In addition, weights are assigned according to the accuracy of the trained classifier at each iteration.

More weight is given to more accurate classifiers.

5. This process is repeated until the entire training set is completely filled or the specified maximum

number of estimators is reached.

6. Vote for all the learning algorithms you have created to classify them.

Weak learners are integrated in the AdaBoost ensemble strategy to increase accuracy, which is accomplished

repeatedly by addressing the faults of the weak classifier.

Figure 2: AdaBoost Classifier

1 https://www.datacamp.com/tutorial/adaboost-classifier-python

Original

Dataset, D1

Model – 1

(Iteration 1)

Predictions on

same training

data D1

Updated Weighted

Training Dataset, D2

Model – 2 (Iteration 2)

Predictions on Weighted

Data, D2

Updated Weighted

Training Dataset, D3

Model – 3 (Iteration 3)

Predictions on Weighted

Data, D3

11

4.1 System Specifications

The experiment was performed on a desktop with Windows 11 which had Python, Visual Studio and

Anaconda software installed.

Desktop Specification:

• Processor: Intel i5 11th Gen

• 16 GB DDR4 RAM

• 512 GB SSD storage

To perform the data cleansing operations such as reading the dataset and removing infinite values, I used

Python’s data science libraries Pandas and NumPy.

Software used:

• Windows 11 64-bit

• Python 3.10.5

• Microsoft Visual Studio Code v1.73.1

 5 Implementation

5.1 Environment Setup

The project is written in Python programming language. Anaconda software is used to create the

environment for machine learning and Visual Studio Code is used to run the code.

5.2 Dataset Description

The dataset is taken from Kaggle2 which is a publicly available platform to download various datasets. It is

downloaded in CSV format in which it consists of 80 columns, each of which is an IDS logging system entry.

The important features in the dataset are Dst Port, Protocol, Flow Duration, Tot Fwd Pkts, Tot Bwd Pkts and

Label.

2 https://www.kaggle.com/datasets/solarmainframe/ids-intrusion-csv

12

5.3 Package Installation

Here in this project, Anaconda software is also used, which is a distribution for Python programming

languages for data science. It simplifies package management and deployment. An environment, named

“ml_env” is created. It consists of the necessary machine learning python libraries that are custom installed

which in turn help to run the whole code. A small number of libraries that are present in the environment are:

• Numpy: Used for array operations

• Sklearn: Used for selection of features and for train-test splitting

• Pandas: Used to read the dataset

• Matplotlib: Is used for data visualization

5.4 Training Stage

5.4.1 Dataset Preprocessing

This is the first step that is done in the training stage. The dataset is read and then number of occurrences of

“Label”, number of Malicious and Benign entries is counted. The column entries which consists of attacks

in the dataset which are “DoS attacks-Slowloris”, “DoS attacks-GoldenEye” are replaced with the value

“Malicious”. An unwanted column named “Timestamp” is removed, because it is not a numeric value. Then,

cleaning of the data is done by removing columns that contain only zeroes, unwanted columns, null values;

which are specified as NaN(Not A Number) in python and infinite values using Numpy and Pandas libraries.

A new data frame from row 5000 to 800000 is created to have a balance between Benign and Malicious

Entries. Data division is done in which it is split into an Independent variable and a Dependent variable. The

Dependent variable (model output) is taken as “Label”(y) and Independent variable (model input) is taken as

all the features excluding label(x).

13

Figure 3: Dataset Preprocessing

5.4.2 Feature Selection

The next step is Feature Selection which is important to train the model efficiently. This is done by removing

unwanted features and only selecting those features which have high feature scores. This process increases

the precision and reduces the training time of the model.

The method used for the same is SelectKBest chi2 method, in which, the 16 best features out of the total 66

are selected in descending order of score. These features along with the important features mentioned in a

previous section are used to create a new dataset.

The methods Ensemble Extremely Randomized Trees Classifier and Ensemble Exhaustive feature selection

was also tried out. The first method did not give uniform scores for the features and the second method did

not work even after multiple tries of running the code.

After this, y_final is taken as model output which consists of only “Label” and x_final is taken as model input

without the “Label” parameter but including the 20 features.

14

Figure 2:Feature Selection using chi2

Figure 4: Scores of Extremely Randomized Trees Classifier

5.4.3 Train-Test Splitting 1

When a machine learning algorithm is used to predict data that was not used to train the model, its

performance is estimated using the training test split method. This is a quick and easy process whose results

allow us to compare the effectiveness of machine learning algorithms for specific predictive modeling

15

problems. The train-test-split approach is appropriate when you need to quickly evaluate model performance,

when models are expensive to train, or when you need very large datasets.

Here in my project, x_final and y_final is given as input and test_size is taken as 0.4 which means that 40%

of the dataset is taken for testing and 60% is for training. x_train and y_train is the training dataset and x_test

and y_test is the testing dataset. The testing dataset consists of Malicious and Benign entries.

Figure 5:Train-test split 1

5.4.4 AdaBoost Classifier

The AdaBoost classifier is loaded and has attributes with values n_estimators=50 which is number of weak

learners to train iteratively, the weak learner used here is DecisionTreeClassifier. It is the default weak

learner.

x_train and y_train is passed as input to train the AdaBoost model. x_test is used to evaluate the model and

the resulting output y_pred is the predicted value of the model, i.e., whether it is Malicious or Benign.

A confusion matrix is then plotted to evaluate the performance of the machine learning model. It takes the

model predicted output which is y_pred and the original dataset’s testing dataset, i.e., y_test as inputs.

The all positives consists of True positives and False positives. If y_test predicts correctly, that entry is added

to the list TP_indexes, else it is added to FP_indexes.

16

 Negative Positive

Negative TN FP

Positive FN TP

Figure 6: Confusion Matrix

One of the main aim in this project is to reduce the false positive rates. Therefore, to do that, the true positive

and false positive lists are merged and converted into a single dataset, which is a fine tuned dataset. y_get is

the model output with only “Label” column in it and x_get is the model input excluding the “Label”

parameter.

Similarly, train-test splitting is done again by giving the above two variables as input.

Figure 7:Train-test split 2

The AdaBoost classifier is again loaded and trained and then a second confusion matrix is plotted with the

reduced false positive rate. The accuracy is also calculated using the fine tuned dataset’s testing set (y_test1)

and the AdaBoost model’s second round of predicted output (y_pred1).

Finally, the trained model is saved for future prediction.

5.5 Prediction Stage

The saved model is loaded using joblib function. An empty list called Info and a list called Parameters is also

created which contains the 20 features. The user enters the data of the corresponding features. Each entry is

appended to the “info” list. The two lists are converted to a Dictionary and then converted to a Dataframe

named my_data using Pandas library. The Dataframe is then loaded to the model to make the prediction,

which will be two values, Malicious or Benign and the output variable is called my_pred. The result can be

Predicted

Actual

17

viewed in the command prompt and also in the Graphical User Interface (GUI). To add the data shown below

and in the GUI, there is a text file called Test.txt with the values of the 20 features.

Figure 8: Entries which shows result as Benign

18

Figure 9: Entries that show result as Malicious

6 Evaluation

The AdaBoost model has been implemented and two confusion matrices have been obtained. The first one is

with the original dataset and the second one is with the fine tuned dataset to reduce the false positives. To

evaluate the performance of the model, the accuracy metric is also calculated. For calculating the same. The

below terms need to be first understood:

• True Positive (TP): A TP stands for the precise designation of an attack packet as an attack.

• True Negative (TN): Correct classification of normal packets as normal is provided by the TN.

• False Negative (FN): FN serves as an example of an attack packet misclassified as normal. Increasing

this value affects confidentiality and availability, two major security concerns.

• False Positive (FP): FP stands for an incorrect classification, which marks normal packets as attacks.

• Accuracy: Divide the total number of accurate predictions by the total number of predictions to

determine the proposed model's accuracy.

Accuracy= (TP+TN) / (TP+TN+FP+FN)

19

6.1 Case Study 1: Confusion Matrix with original dataset

The first Confusion Matrix is plotted with the AdaBoost model’s predicted y_pred and the testing dataset

y_test. The values in the four blocks of the below confusion matrix add up to the number of rows in the

first testing set of the first iteration of the train test split, which is, 318000 packets. Out of these packets,

298907 Benign packets were correctly classified as Benign (TN). The 166 benign packets were

incorrectly classified as Malicious (FP). The 163 Malicious packets were incorrectly classified as Benign

(FN). The remaining 18764 malicious packets were correctly classified as Malicious (TP).

Figure 10: Confusion Matrix 1

6.2 Case Study 2: Confusion Matrix with fine-tuned dataset

The second confusion matrix is plotted with the AdaBoost model’s y_pred1 and the fine-tuned dataset’s

testing set y_test1. The values in the below confusion matrix add up to the number of rows in the testing

set of the second iteration of the train test split, which is, 7572 packets. Out of these packets, 7500 Benign

packets were correctly classified as Benign. No benign packets were incorrectly classified as Malicious.

20

The 39 Malicious packets were incorrectly classified as Benign. The remaining 33 malicious packets

were correctly classified as Malicious.

From the above results, it is found that the False Positive rate has decreased to 0 compared to the initial

rate in the first matrix, thereby achieving the outcome which was proposed in this project.

Figure 11: Confusion Matrix 2

The accuracy was also calculated for the model, which is 99.5%. The same is shown below:

Figure 12: Accuracy of the model

The train_test_split function has a default attribute called “shuffle”. It randomly shuffles the amount of rows

in the training and testing sets, and the number of Malicious and Benign entries in the Testing Dataset. As

said before, the testing set contains Malicious and Benign entries. Due to the random shuffling, the accuracy

and false positive rate therefore may vary by a small margin. The same is shown below:

21

Figure 13: Confusion matrix in 2nd experiment after stage 1

22

Figure 14: Confusion matrix in 2nd experiment after stage 2

Figure 15: Accuracy 2

The above figure shows the accuracy of the model after performing the experiment.

This section concludes that the accuracy of the model varies between 99.3% to 99.5%. This happens because

of an attribute value called “shuffle = True”. It may go even lower but the same was not achieved even after

multiple attempts of running the code.

7 Discussion

An IDS to detect Zero Day attacks and to reduce their false positive rate has been done using different

methods. There were two important papers in which I researched on the topic and both of them exhibit less

accuracy compared to my accuracy of 99.5%.

23

Research Paper Accuracy Obtained My Proposed method’s

accuracy

(Kumar and Sinha, 2021) 91.33% 99.5%

(Pitre et al., 2022) 95.1% 99.5%

The former paper did not use any feature selection technique. Hence, that may be the case of the accuracy

difference compared to my approach.

The accuracy obtained for this project varies between 99.3% and 99.5% after many attempts in running the

project. The said accuracy obtained is mainly dependent on the dataset used. If another dataset is used, the

said accuracy may not be this good. Another factor is the usage of another feature selection algorithm other

than chi2 which is used in this project. I have tested using two other feature selection algorithms as mentioned

earlier in the “Feature Selection” section namely Ensemble Extremely Randomized Trees Classifier and

Ensemble Exhaustive feature selection. The first one did not give uniform scores for the important features,

which if implemented using the same, will have low accuracy compared to this as feature selection plays an

important part in determining the accuracy of the model. The second algorithm did not run even after multiple

attempts. The final factor is if another machine learning algorithm other than an ensemble machine learning

algorithm is used, as AdaBoost algorithm used IDS(s) exhibit high accuracy and the algorithm combines

many ineffective classifiers to create a strong classifier with a high level of accuracy. The papers mentioned

in the literature review (Anitha and Arockiam, 2021; Moustafa et al., 2019; Rehman Javed et al., 2022) also

support the high accuracy capability of AdaBoost algorithm.

Another aspect of this project is that this work focuses on Intrusion Detection, not Prevention. Which means

that it is only able tell whether a packet is Malicious or Benign, and not the types of Malicious attacks detected

for example like Malware, Spyware, Adware and so on. This is also a limitation. The dataset has only two

classes for that Malicious and Benign, which make it a Binary Classification in Machine Learning. If the

dataset consisted of types of attacks or Malware classes other than the two classifications for the packet, it

will be a Multi Class classification. This will in turn make learning for the machine learning model with

AdaBoost a bit harder and thereby reducing the accuracy.

8 Conclusion and Future Work

The paper focuses on detecting Zero day attacks and to reduce the false positive rates with the help of an

ensemble machine learning approach called AdaBoost. With the help of chi2 feature selection technique, 16

features were extracted out of the 66 features from the original dataset. The proposed model is trained with

24

AdaBoost model and a confusion matrix was obtained. In order to reduce the false positives, the dataset was

finetuned by merging the True Positive and False Positive indexes, which was then converted to a dataset for

generating a second Confusion matrix. This matrix showed that the model had no false positive rate. The

accuracy obtained using this technique is 99.5%, which is satisfactory compared to other technologies out

there, and also makes AdaBoost a very efficient algorithm to detect zero day attacks.

For future work, since this model only does Intrusion Detection, using another dataset that has the type of

intrusion such as whether it is a malware, spyware, adware and so on is possible. And also, usage of another

ensemble machine learning approach such as XGBoost is also possible.

9 Link to full artefact

I am attaching a OneDrive link below to the artefact as my ZIP file had a size of 2.29GB, which cannot be

uploaded on moodle. I have anyway submitted the code part of the project in a zip file on Moodle.

 OneDrive Link: IDS_FULLCODE.zip

9 References

Akashdeep, Manzoor, I., Kumar, N., 2017. A feature reduced intrusion detection system using ANN

classifier. Expert Syst. Appl. 88, 249–257. https://doi.org/10.1016/j.eswa.2017.07.005

Anitha, D., Arockiam, L., 2021. Ada-IDS: AdaBoost Intrusion Detection System for ICMPv6 based

Attacks in Internet of Things. Int. J. Adv. Comput. Sci. Appl. 12, 499–506.

https://doi.org/10.14569/IJACSA.2021.0121156

Farnaaz, N., Jabbar, M.A., 2016. Random Forest Modeling for Network Intrusion Detection System.

Procedia Comput. Sci., Twelfth International Conference on Communication Networks, ICCN

2016, August 19– 21, 2016, Bangalore, India Twelfth International Conference on Data Mining and

Warehousing, ICDMW 2016, August 19-21, 2016, Bangalore, India Twelfth International

Conference on Image and Signal Processing, ICISP 2016, August 19-21, 2016, Bangalore, India 89,

213–217. https://doi.org/10.1016/j.procs.2016.06.047

Goeschel, K., 2016. Reducing false positives in intrusion detection systems using data-mining techniques

utilizing support vector machines, decision trees, and naive Bayes for off-line analysis, in:

SoutheastCon 2016. Presented at the SoutheastCon 2016, pp. 1–6.

https://doi.org/10.1109/SECON.2016.7506774

Heba, F.E., Darwish, A., Hassanien, A.E., Abraham, A., 2010. Principle components analysis and Support

Vector Machine based Intrusion Detection System, in: 2010 10th International Conference on

Intelligent Systems Design and Applications. Presented at the 2010 10th International Conference

on Intelligent Systems Design and Applications, pp. 363–367.

https://doi.org/10.1109/ISDA.2010.5687239

Holm, H., 2014. Signature Based Intrusion Detection for Zero-Day Attacks: (Not) A Closed Chapter? 2014

47th Hawaii Int. Conf. Syst. Sci. Syst. Sci. HICSS 2014 47th Hawaii Int. Conf. Syst. Sci. HICSS

2013 46th Hawaii Int. Conf. On 4895–4904. https://doi.org/10.1109/HICSS.2014.600

IDS 2018 Intrusion CSVs (CSE-CIC-IDS2018) [WWW Document], n.d. URL

https://www.kaggle.com/datasets/solarmainframe/ids-intrusion-csv (accessed 11.26.22).

https://studentncirl-my.sharepoint.com/:u:/g/personal/x21124485_student_ncirl_ie/EZf7dtw3mz1FgSrr-YQbgqYBN8Hth5-XiDAEW_5uO0kc7A?e=LDs0as

25

Kim, Jiyeon, Kim, Jiwon, Kim, H., Shim, M., Choi, E., 2020. CNN-Based Network Intrusion Detection

against Denial-of-Service Attacks. Electronics 9, 916. https://doi.org/10.3390/electronics9060916

Kumar, V., Sinha, D., 2021. A robust intelligent zero-day cyber-attack detection technique. Complex Intell.

Syst. 7, 2211–2234. https://doi.org/10.1007/s40747-021-00396-9

Kwon, D., Natarajan, K., Suh, S., Kim, H., Kim, J., 2018. An Empirical Study on Network Anomaly

Detection Using Convolutional Neural Networks. pp. 1595–1598.

https://doi.org/10.1109/ICDCS.2018.00178

Lin, C., Li, A., Jiang, R., 2021. Automatic Feature Selection and Ensemble Classifier for Intrusion

Detection. J. Phys. Conf. Ser. 1856, 012067. https://doi.org/10.1088/1742-6596/1856/1/012067

Moustafa, N., Turnbull, B., Choo, K.-K.R., 2019. An Ensemble Intrusion Detection Technique Based on

Proposed Statistical Flow Features for Protecting Network Traffic of Internet of Things. IEEE

Internet Things J. 6, 4815–4830. https://doi.org/10.1109/JIOT.2018.2871719

Pallaprolu, S.C., Sankineni, R., Thevar, M., Karabatis, G., Wang, J., 2017. Zero-Day Attack Identification

in Streaming Data Using Semantics and Spark, in: 2017 IEEE International Congress on Big Data

(BigData Congress). Presented at the 2017 IEEE International Congress on Big Data (BigData

Congress), pp. 121–128. https://doi.org/10.1109/BigDataCongress.2017.25

Pallippattu Mathai, L., 2021. Malware Detection on Android using Adaboost Algorithm (masters). Dublin,

National College of Ireland.

Pitre, P., Gandhi, A., Konde, V., Adhao, R., Pachghare, V., 2022. An Intrusion Detection System for Zero-

Day Attacks to Reduce False Positive Rates, in: 2022 International Conference for Advancement in

Technology (ICONAT). Presented at the 2022 International Conference for Advancement in

Technology (ICONAT), pp. 1–6. https://doi.org/10.1109/ICONAT53423.2022.9726105

Rana, Md.S., Sung, A.H., 2020. Evaluation of Advanced Ensemble Learning Techniques for Android

Malware Detection. Vietnam J. Comput. Sci. 07, 145–159.

https://doi.org/10.1142/S2196888820500086

Rehman Javed, A., Jalil, Z., Atif Moqurrab, S., Abbas, S., Liu, X., 2022. Ensemble Adaboost classifier for

accurate and fast detection of botnet attacks in connected vehicles. Trans. Emerg. Telecommun.

Technol. 33, e4088. https://doi.org/10.1002/ett.4088

Research Scholar, School of Computer Science and Engineering, Vellore Institute of Technology, Vellore,

Tamilnadu, India., Latha, P.H., Mohanasundaram, R., Associate Professor, School of Computer

Science and Engineering, Vellore Institute of Technology, Vellore, Tamilnadu, India., 2019. A New

Hybrid Strategy for Malware Detection Classification with Multiple Feature Selection Methods and

Ensemble Learning Methods. Int. J. Eng. Adv. Technol. 9, 4013–4018.

https://doi.org/10.35940/ijeat.B4666.129219

Shahraki, A., Abbasi, M., Haugen, Ø., 2020. Boosting algorithms for network intrusion detection: A

comparative evaluation of Real AdaBoost, Gentle AdaBoost and Modest AdaBoost. Eng. Appl.

Artif. Intell. 94, 103770. https://doi.org/10.1016/j.engappai.2020.103770

Soltani, M., Ousat, B., Jafari Siavoshani, M., Jahangir, A., 2021. An Adaptable Deep Learning-Based

Intrusion Detection System to Zero-Day Attacks.

Tang, D., Tang, L., Dai, R., Chen, J., Li, X., Rodrigues, J.J.P.C., 2020. MF-Adaboost: LDoS attack

detection based on multi-features and improved Adaboost. Future Gener. Comput. Syst. 106, 347–

359. https://doi.org/10.1016/j.future.2019.12.034

Venkatarathinam, R., Raj, V.C., George, G., 2018. EEOFSA: An Embedded Ensemble Optimal Feature

Selection Algorithm for Building Efficient Intrusion Detection System [WWW Document]. URL

https://www.semanticscholar.org/paper/EEOFSA%3A-An-Embedded-Ensemble-Optimal-Feature-

for-Venkatarathinam-Raj/ea7dcea4a2ccbadc5c414aa85a4e80133d804ad3 (accessed 7.29.22).

Zhou, Q., Pezaros, D., 2019. Evaluation of Machine Learning Classifiers for Zero-Day Intrusion Detection

-- An Analysis on CIC-AWS-2018 dataset.

