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ABSTRACT OF THE DISSERTATION

Correlation functions in integrable quantum

field theory

by Benjamin Doyon

Dissertation Director: Professor Sergei Lukyanov

The general aim of this work is to understand and develop methods for studying
correlation functions in integrable quantum field theory, and to verify in particular
cases expected general principles. Two models are considered: the SU(2)-Thirring
model and the Ising model on a two-dimensional space of constant negative cur-
vature. The former is a model describing the low-energy behavior of electrons in a
Mott insulator. Two-point correlation functions of Fermi fields are studied at all
distances using a form-factor expansion and conformal perturbation theory. The
validity of both methods is verified by observing an agreement at intermediate
distance scales. The latter model is a paradigm for understanding the effects of
space curvature on critical behaviors. The magnetization and the two-point cor-
relation functions of spin fields are evaluated exactly, generalizing methods valid
on flat space. From these results, the thermodynamical properties of the model
are analyzed. Technically, the results provide solutions to the connection problem

of particular Painlevé VI equations.
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General introduction

One of the most widely used tools of modern theoretical physics is relativistic
quantum field theory. Its power comes from the principle of universality: a given
model of quantum field theory describes the large distance physics of many sys-
tems with very different microscopic descriptions. Its popularity is also due to
its wide applicability: quantum field theory can be used to describe fundamental
particles, electronic excitations in materials or thermal fluctuations in statistical
systems with many degrees of freedom. The different concepts appearing natu-

rally from each application give new insight into quantum field theory.

However, it is often hard to obtain numerically accurate results from a model
of quantum field theory, and sometimes even to deduce the physically relevant
low-energy degrees of freedom. Moreover, as mathematical constructions, most
models of relativistic quantum field theory are in fact not well defined. Notable
exceptions for these two difficulties are models of two-dimensional quantum field
theory with conformal invariance, and models of free relativistic particles. Often
only from these exceptions, from perturbative calculations and from physically
sound arguments, the properties of more complicated models are analyzed. In
fact, the general structure of quantum field theory is essentially inferred from
this: the space of states, properties of local fields or the analytical structure of

correlation functions.

But a special class of models, two-dimensional integrable models, offers exam-
ples in which it is possible to evaluate exactly some quantities, for instance the
scattering matrix, matrix elements of local fields, and in some cases the correlation

functions. The main characteristic of models in this class is that they admit an



infinite number of conservation laws preventing particle production in scattering
processes. Many integrable models have direct applications in condensed matter
physics and in statistical mechanics. For instance, two such models which will
be studied in this work are the SU(2)-Thirring model, which is a model for the
low-energy properties of one-dimensional Mott insulators, and the Ising model, a
paradigm for a class of critical behaviors of statistical systems. Some more recent
results of integrable quantum field theory are also of interest in string theory.
But a deeper reason to study integrable models is to verify expected properties
of quantum field theory, to uncover new structures and to develop an intuition
for more complicated and more realistic (generally non-integrable) interacting

models.

1 Correlation functions

Roughly speaking, a model of quantum field theory is described by a set of states
forming a Hilbert space; a set of operator valued distributions acting on the
Hilbert space; and a Hamiltonian, a particular operator generating time transla-
tions, whose spectrum is bounded from below by the vacuum state. In general,
one is given a microscopic description of a model: a Hamiltonian, for instance,
expressed in terms of local, microscopic degrees of freedom. The problem is to
find useful information from this dynamics: the set of particles and their masses
(or the fundamental excitations, eigenstates of the Hamiltonian), the scattering

amplitudes, and the correlation functions of local fields.

The objects in a model of quantum field theory that encode most directly all
physical information are the correlation functions of local fields. In principle, all
quantities of interest in a model can be obtained, in more or less simple ways,
from the knowledge of correlation functions. The main problem in the study of

a model of quantum field theory can then be seen as the reconstruction of its



correlation functions.

Of course, for some purposes it is not necessary to know about the correlation
functions of local fields. Many useful physical quantities can be calculated directly
from the knowledge of the fundamental excitations. For instance, the free energy
is related to the set of eigenvalues of the Hamiltonian, and the thermodynamics

of the model can be deduced from it.

However, physical quantities that are related to the dynamics of the physical
constituents of the model or to the response of the model to external perturbations
require more direct knowledge about the local fields and their correlation func-
tions. For instance, from the fermion two-point function in the SU(2)-Thirring
model, one finds the spectral density, which tells about the probability for an elec-
tron to create a fundamental excitation, or the probability for an excited state
to emit an electron. The spectral density can be measured experimentally, and
in fact, of interest to the present work, is an important part of characterizing a
material as a one-dimensional metal or insulator. In the statistical mechanics in-
terpretation, correlation functions are related to linear responses to applied local
external fields (and to susceptibilities if the field is extended on the whole sam-
ple). The measurement of linear responses is one of the main ways of studying a

material.

Hence the study of correlation functions is of great interest. Since integrability
gives stringent constraints, it is worth developing its consequences on correlation

functions.

ii  On-shell structure of massive integrable models

In integrable models of two-dimensional quantum field theory, the full “on-shell”
description is often available (albeit sometimes conjecturally): the spectrum of

particles and the scattering matrix (for reviews, see [100, 35]). In general, such



an on-shell description should completely define a model (integrable or not), and
in principle, all local fields can be identified and their correlation functions calcu-
lated. However, it is very nontrivial to obtain correlation functions of local fields
from the on-shell description. In integrable models, there is a way of obtaining
matrix elements of local fields in the basis of asymptotic states, or “form factors”
[123, 72, 118]. From these matrix elements, one can obtain the full long-distance
expansion of correlation functions. There is then a programme of reconstruct-
ing correlation functions from their long-distance expansion given by the form
factors. It turns out that this programme often leads to a numerically accurate
description of correlation functions up to quite short distances [133, 144, 1, 8].
But it is in general not possible to re-sum this long distance expansion in order to
have close expressions, and it is not clear, from general principles, how efficiently
an approximation by a finite sum describes correlation functions at short distance
scales. In the rest of this section, I will explain the main results concerning the

on-shell structure of massive integrable models.

Asymptotic states and scattering matrix

In massive quantum field theory on a space of infinite volume, there is a con-
venient basis for the Hilbert space: the set of asymptotic states (see, for instance,
[127]). An intuitive picture of asymptotic states can be obtained as follows. As-
sume that at any finite time from the time of the “experimentation,” during which
particles interact, the particles involved are separated by finite distances. Hence
in the infinite past or in the infinite future, they are whether infinitely separated,
or some may stay at finite distances forever, forming bound states. Bound states
can in turn be seen as particles of their own, so that in the infinite past or in
the infinite future, one can consider that the particles are all infinitely separated;

since interactions are local, they propagate freely. By definition, an asymptotic



state is such that in the infinite past (in-states), or in the infinite future (out-
states), one finds a state with a well-defined set of particles infinitely separated,
propagating freely at fixed rapidities’. This is an eigenstate of the Hamiltonian,
since it has a well-defined energy. Since at finite time all particles should come
close to each other, in the infinite past they are ordered in space from left to right
by decreasing values of their rapidity, and in the infinite future they are in oppo-
site order; this is what characterizes in- and out-states. Note that if one finds a
state with a definite number of particles at definite rapidities in the infinite past,
then in the infinite future one generically finds a superposition of such states.
Of course, if particles have definite momenta, they cannot have definite po-
sitions; this intuitive picture must be made more precise. This can be done by
constructing space-ordered wave packets around definite momenta, and by taking
the limit of infinite wave-packet extent and infinite separation between the cen-
tral positions of the wave packets. For every particle of mass M, there is a (not
necessarily unique) local fields W(z,¢) that creates this particle. This field has
the quantum numbers of the particle and the Fourier transform of its two-point
correlation function (V(z,t)W(0,0)) = (vac|T (V(z,t)¥(0,0)) |vac) has a pole,
as function of the squared two-momentum p?, at the position of the square of
the mass of the particle M?, and no other poles at lower values of p* (in super-
renormalizable models, it can be uniquely determined by requiring in addition
that it has the lowest scaling dimension). This means that correlation functions
involving this field satisfy the Klein-Gordon equation (or the Dirac equation, or
the appropriate equation for particles transforming under higher spin representa-

tions of the Lorentz group) asymptotically at large space-like distance:
(M? —O)(U(z,t)---) =0 (e_Mlvl"LtZ)) as 22 —1* = o0

where M’ is the lowest mass, greater than M, of a state created by this field, and

IBecause this is the case of interest in this dissertation, T consider models in one space
dimension.



- represents fields at other fixed positions. Consider the operators

A(Q)(m’om) = lim lim [ dx(fo(x,1)0.¥(x,t) — Orfo(x,t)V(x, 1)) (ii.1)

L—oco t—Foo
with

(x — tanh(@)t)2
12 ’

Jo(z,t) =exp [iM cosh(#)t — i M sinh(6) z —

as well as their hermitian conjugate AT(6)(°%) The operators A(8)™), At(9)()
satisfy canonical (anti-)commutation relations, for instance [A(8)0™), AT(6")()] =
478(0 — 0'), and similarly for the operators A(8)©%), At(#)“), They are also
eigenoperators of the Hamiltonian, [H, A(8)(°4)] = M cosh(8) AT(#)°u) . Sim-
ilar operators can be defined for all particles of the theory, and operators corre-
sponding to different particle types commute with each other. The Hilbert space
is the Fock space over the algebra of all such in-operators, which is isomorphic
to the Fock space over the algebra of all out-operators.

Hence, there are two bases of eigenstates of the Hamiltonian H parametrized
by a set of rapidities §;, with eigenvalues given by the sum of the associated

energies:
H|Aa1 (01) T Aa n zn out — Z M cosh Hk |Aa1( ) T Aan(en)>in,out

where A, represents a particle, and the index a labels the various types of parti-
cles, characterized by their masses M, and by possible other quantum numbers.
The overlaps between in-states and out-states form the scattering matrix, or S-
maftrix.

In fact, the physical scattering matrix also depends on the impact parameters
of the scattering. In our construction of the asymptotic states, we have specified
the impact parameters of the scattering by making all particles “collide at one
point” under an extrapolation of their free trajectories. We could have defined the

operators A(#)°%) by shifting slightly the central positions of the wave packets



in order to have different impact parameters; some particles could “collide first”
in an extrapolation of the free trajectories. Any choice leads to a different but
legitimate basis of the Hilbert space, and the overlap between the associated
in-states and out-states form the scattering matrix for physical scattering with
different impact parameters.

In addition to the energy operator, the momentum operator is also diagonal
in the basis of asymptotic states. In integrable quantum field theory, energy and
momentum conservation laws are part of an infinite family of local conservation
laws in involution. These conservation laws can be described as “deformation of
free laws” [83], in the sense that when applied to states where the particles are very
far apart from each other at the infinite past or future, they are conservation laws
of the free propagation of these particles. For free propagation, there is a set of
conservation laws such that the action on a state can be taken as the sum of terms
formed by taking, for each particle, any integral power of its momentum (the same
for all particles) times any integral power of its energy. It is conservation laws
in this set that are deformed in interacting integrable models to form an infinite
commuting family. It is convenient to organize conservation laws in this set by
representing them by eigenoperators of the boost generator. A conservation law
of spin s acts as follows on asymptotic in- and out-states:

QolAws (01) -+ Au(0)imout = Y ME) exp(Or8)[ Au, (1) -+ A (0)in,out -

. (ii.2)
In fact, this form of the eigenvalues is a consequence of relativistic covariance and
of the locality of the conserved charges. The infinite set of spins s for which there
are local conserved charges and the one-particle eigenvalues M) are important
characteristics of an integrable model. Along with the fact that d@Q,/dt = 0, the
equations above imply that the number of particles, in a given scattering process,
sharing the same set of one-particle eigenvalues {Més)} remains unchanged after

scattering, and that the final set of rapidities of these particles is the same as the



initial one. That is, the scattering is purely elastic [5, 46, 107, 83].

It turns out that these properties of scattering processes along with the ex-
istence of an infinite number of local conservation laws constrain the scattering
matrix enough to make it “factorizable” [83, 135, 139, 115]. That is, multi-particle
S-matrix elements can be expressed in terms of two-particle S-matrix elements,
and the scattering matrix does not depend on impact parameters. This is the
one-dimensional counterpart of the Coleman-Mandula theorem [28], according
to which the existence of at least one additional (Lie-algebraic) local conserved
charge of spin higher than one in a model in more than one space dimension

implies that the scattering matrix must be trivial.

The features of the factorization in one dimension can be made plausible by
the following argument [115]. First, consider acting with an exponentiation of
a conserved quantity of higher spin on an operator A(#)(") defined as in (ii.1)
without taking the limit { — —oo (but at large negative time ¢). After taking
the limit { — —oc on the resulting operator, this results in a wave packet with
a slightly shifted central position, the shifting depending on the rapidity 6. 1t is
possible, by this procedure, to make a multi-particle state where each wave packet
has a central position independently shifted. That is, the conserved charges of
higher spins generate in this way changes in the impact parameters. Of course,
the action of a conserved quantity on a state at time ¢ is independent of the time,
so that these shifted multi-particle states are just the same asymptotic states as
defined above: asymptotic states corresponding to different impact parameters
are proportional to each other. If the central positions of wave packets are shifted
enough by this process, as time evolves there will be a well-defined first sub-
process occurring, in which only two wave packets enter in collision while the
others propagate freely. Since no particle is created or destroyed in two-particle
scattering processes and (here only by energy and momentum conservation) the

set of rapidities is preserved, there is still a well-defined rapidity configuration



after the collision. The argument can be repeated until all wave packets have
inverted their order. Since in one space dimension particles propagate on a line,
the full scattering process will then be a successions of all necessary two-particle
scattering sub-processes separated by free propagations. This immediately leads
to the factorization property of the S-matrix?.

If the in-state has particles with rapidities 6,,...,6, with §; > --- > 6, the
two-particle scattering processes will involve couples 8;, 8, for all 3 < k. Taking
the shifting of central positions of wave packets in different ways, the two-particle
scattering processes will occur in different orders. Any order may occur, and
for any order one should obtain the same multi-particle scattering. Hence the
two-particle S-matrix must satisfy some relations, and it turns out that it is
sufficient to ask for consistency of the three-particle scattering. The resulting
cubic relations are the so-called Yang-Baxter equations (with implied summation

over repeated indices):

SP2 (0,—05) 55100 (01— 05) 5,75 (0,—03) = S0252 (0,—05) 5005 (0,—03) S5 72 (01 —02) .

a1,a2 b1,a3 a2,a3 ay,bs

The two-particle S-matrix is defined by

| Aay (01) Aay (02))in = S22 (01 — 02)] Ay, (01) As, (02)out

for 6; > 0.

In fact, it is possible to show that the S-matrix is purely elastic and that it
factorizes into two-particle S-matrices solely from the presence of {wo non-trivial
conserved charges of spin higher than one® [105].

The factorization properties of the S-matrix can be implemented by identify-

ing the in and out bases for the Hilbert space with two bases for the universal

?Note that in higher dimensions, independence of the scattering matrix from the impact
parameters implies that the scattering must be trivial — this is the essence of the Coleman-
Mandula theorem.

3The argument involves using these conserved charges for shifting the central positions of
wave packets, as above, as well as a “macro-causality” principle.



enveloping algebra of Zamolodchikov’s algebra [139], generated by elements A,(9)

with exchange relations

Auy (01) Aoy (02) = 553723 (01 — 02) As, (02) As, (61) -

a1,a2

One identifies the in-basis as the basis formed by products of elements A,(6) with
rapidities in decreasing order from left to right, and the out-basis as the basis
formed by similar products with rapidities in increasing order. Associativity of
this algebra gives the Yang-Baxter equations®.

In addition to the Yang-Baxter equations, the two-particle S-matrix must also
satisfy some fundamental conditions (here we consider models invariant under

charge conjugation) [43, 139]:

Real analyticity: (Shrbz () = Shrbz (g

ay,an a1,a2
. o by b c1,¢ __ fc1 feo .
Unitarity: Sal2 (0) Sy 2 (—0) = gt 652 ;
. . c,b
Crossing symmetry: S}% (im — 0) = C,, S7.2(0)C*™

C is the charge conjugation matrix, with C, ;C*¢ = §¢ ;
Analytic structure:  the function 521’7222 (0) is analytic in the strip 0 < Sm § <

M2—M12—M22>

7 except for poles at positions § = 7 arccos ( ST

corresponding to particles of mass M formed by bound
states of particles of masses M; and M;. The residues
at these poles are related to the probability amplitude
for producing the bound states.
Real analyticity, crossing symmetry and the analytic structure are consequences
of general principles of quantum field theory, whereas unitarity as written above

uses also the absence of particle production, since only the two-particle S-matrix

“There are actual operators A,(f) satisfying these algebra relations, and their hermitian
conjugate Al (6) satisfying conjugate relations, that act on the Hilbert space. With appropriate
exchange relations involving products of A, (61) with Al_(6,) [47], they are creation and an-
nihilation operators for asymptotic states. The algebra generated by the operators A4(f) and
their hermitian conjugates is called the Zamolodchikov-Faddeev algebra. The Hilbert space can
be seen as the Fock space over this algebra.



is involved. Note that the unitarity equation above is in fact consequence of the
usual unitarity along with parity-time reversal (PT) symmetry (which is present
since we consider relativistic models (CPT-invariant) with charge conjugation (C)

symmetry) and real analyticity.

The presence of bound states identified as asymptotic particles already in the
spectrum of the theory leads, by arguments similar to those leading to factorized
scattering, to a set of additional constraints on the analytic properties of the
S-matrix, on the masses of the particles, on the infinite set of spins s of the
conserved charges @5 defined in (ii.2) and their eigenvalues (some are considered
in the early works [114, 70, 71], a more extensive discussion can be found in
[134], and the review [100] gives a nice treatment). These constraints are called

“bootstrap equations.”

The programme of reconstructing the two-particle S-matrix (hence all S-
matrices by factorization) as well as the set of particles from the properties of the
S-matrix above, from internal symmetries of a model and from bootstrap equa-
tions has now been carried out in several models (see for instance [101, 25, 136]
and the reviews cited above). Note however that identifying a given S-matrix,
solution to these conditions, with that of a theory with a known local dynamical
description (for instance, with a known local Hamiltonian) is usually not a trivial
task. One must often rely on conjectures and on approximative methods to make

such an identification.

The spectrum of particles can sometimes be obtained from semiclassical cal-
culations, which turn out to be exact in integrable models [32, 81, 93, 94], and
the spectrum and S-matrix can also sometimes be explicitly calculated from exact

Bethe ansatz solutions [9, 3, 78, 4] or from the related quantum inverse scattering

method [117] (see also the book [79]).

Local fields and form factors



In principle, the knowledge of the full on-shell structure of a model should be
enough to determine all local fields and their correlation functions. The relation
between the on-shell structure and local fields, however, is usually very nontrivial.
In integrable models, there is a way to explicitly exhibit this relation. Consider
particular matrix elements, in the asymptotic state basis, of a local operator O(z)

at the point z = 0 (say):

(vac|O(0)|Ag, (61) -+ - Aa, (0,))in (ii.3)

These matrix elements are the form factors of the local operator O. Using crossing
symmetry and the scattering matrix, it is possible to express all matrix elements
of O(0) between asymptotic out- and in-states in terms of the form factors, hence
to completely describe the local operator once its form factors are known.

In many integrable models, the data of the factorized scattering theory is

sufficient to reconstruct form factors. Consider a tensor-valued function

Fal,...,an(glv cee 70’ﬂ)

which equals the form factor (ii.3) when all 6,’s are real and ordered as 6; >

- > 6,. This function can be analytically continued to complex values of
0;’s. The reconstruction of the form factors is based on constructing the func-
tion F,,  a,(01,...,0,) from its expected properties on the complex 6;-planes,
properties that are essentially consequences of factorized scattering.

In [72] (see also [137]), direct consequences of factorized scattering were con-
sidered, in addition to consequences of general principle of quantum field theory,
in order to express a set of axioms on form factors and to find some exact form
factors in the sine-Gordon model solely from the knowledge of the two-particle
scattering matrix. However, the method did not allow to calculate form factors

with more than three particles.

In classical integrable field theory, the Gelfand-Levitan-Marchenko (GLM)



equations allow to express local classical fields in terms of the action-angle vari-
ables (the “scattering data” of the inverse scattering method), generalizing the
inverse Fourier transform expression of free models. The quantum version of GLM
equations was found in Ref. [31], giving the local fields in terms of creation and
annihilation operators for asymptotic particles. Breather and soliton form factors
were calculated in the sine-Gordon model [119, 120] using this method. Based
on an analysis of the quantum GLM equations, it was shown in Ref. [76, 77],
in different models, that an operator O(z) is local provided that its (analytically
continued) form factors satisfy a set of axioms. Currently the most powerful pro-
gramme, for general integrable models, is then to reconstruct form factors from
properties that ensure that the associated field is local [118]; this does not involve
explicitly quantum GLM equations.

These properties of form factors ensuring locality are expressed in the following

axioms:

1. The function F,,  4,(01,...,0,) is analytic in the variables 6; — 6, inside

the strip 0 < Sm (0; — ;) < 27 except for simple poles.
2. From relativistic invariance, the function I satisfies the relation
Foian(0 40,0, +0)=eF, . (01,...,0,)
where s is the spin of the operator O.

3. The function F' satisfies the symmetry property (generalized Watson’s the-

orem)

Fal,...,an(alv ety Hn) =

b bry1
S%akil(ek = Or1) Fap s bpresan (O1s ooy Opg1, Oy, 00)

4. The function F' satisfies the locality property

Fal,...,an_l,an(ela e 79n—17 en —I' 27”) = GQWiW(O7\D)Fan,a1,...,an_l (ena 917 ey en—l)



where w(O, W) is the mutual locality index for the operator O and the
elementary field ¥ associated to the particle labelled by a,. The mutual
locality index between two fields is the phase gained in correlation functions
when one of the fields is brought around the other field counterclockwise

back to its initial position.

5. As a function of 6, the function F' has simple poles (kinematic poles) at

the points 0, =0, +im, j=1,...,n — 1, with the following residues:

Z’Fah.“’an(al, .. 70n) ~
Sat - ST S (B — 0;)S0%20% (002 — 0) -+ Sorh_ (B — 05) —

Aj—1 " Aj41,05 Aj42,C5 An—1,C

e?rle\IJ 5bn 1, 5bj+1Sz,],] 1(9 _0 )SL] 1,bj— 2(0 _0 ) Sbj,bl(e _91)}

An—1 ayj41 Q5,251 Cys@j—2 C3,a1
Fb S FIN (‘917" 0]?"'70n—1) N
X Cfar17 15ee49099..90n—1 (11‘4)
0, —0; —ir

where hats mean omissions. There are other poles corresponding to bound

o . M2—MZ2-M?
states of mass M at the positions 8, —0; = ¢ arccos (W) €¢[0, 7).

Axioms 4 and 5 are the main additions compared to the early attempt of Ref.
[72]. The locality property, axiom 4, is the most nontrivial axiom coming from
the analysis based on quantum GLM equations, and has not been shown from
first principles of quantum field theory. The kinematic pole condition, axiom
5, is the axiom allowing the reconstruction of all form factors by “bootstrap”
methods. Note that the form factors may have additional poles corresponding to
bound states created by the operator considered. Bootstrap equations relate the
residues at such poles with other form factors. It is believed that the space of
local fields of an integrable model can be identified with the space of solutions to
the form factor axioms along with bootstrap equations [26, 82, 89]
Reconstructing form factors from these axioms allow one to write long-distance
expansions for correlation functions, by inserting between operators the resolution

of the identity on the in-basis (say). For instance, the two-point function of fields



at a space-like Minowsky interval r = /2% — {2 is given by

<O( Z Z / (27{_ L >=; M cosh(f;) %

n=0ay,...,an

X (vac|O(0)[Aa, (01) -+ - Auy (0n))in in(Aay (1) - - Aa,y(6,)|O(0)]vac) .

All integrals are nonsingular and convergent. The series is expected to be con-
vergent as well.

The axioms for form factors were solved in various works for different operators
in different models (see, for instance, the review [100]). In particular, a scheme
of solution was proposed in [89, 18] and used in [90, 92] in order to find integral
expressions for form factors of exponential fields and of topologically charged
fields in the sine-Gordon model (whose Euclidean action is given in (2.3.4)), as
well as the related form factors of the Fermi fields in the SU(2)-Thirring model
(2.2.8). In the first part of this dissertation, they are evaluated in order to describe
the long-distance behaviors of the two-point function of the Fermi fields in the
SU(2)-Thirring model.

In the second part of this dissertation, the concept of form factor is generalized
in a natural way to the situation of a model on a maximally symmetric infinite-
volume curved space. Form factors of interacting fields in a free fermion theory on
such a space are evaluated using a property similar to the locality property in point
4 above, and using relations between analyticity properties and the spectrum of

the theory in a fashion similar to that in the axioms above.

iii Conformal field theory and conformal perturbation the-

ory

By analogy to the on-shell description, one can completely specify a model of
quantum field theory by a “local” description. That is, one gives a set of local

fields O,(x) with their vacuum expectation values (O,(z)) and a (consistent)



operator product algebra, where a product of two fields is written as an infinite

sum of local fields of increasing dimension [128, 108]:
Ol 1)04(0) =, Cop(w:1)O:(0) .

The space-time dependent coefficients C§7b(x, t) are called the structure functions.
Since the dimension of fields is bounded from below, the sum is singly-infinite. By
dimensional analysis and the assumption of scale invariance at short distances,

this provides a short-distance expansion for two-point correlation functions.

In some two-dimensional models with conformal invariance, the space of local
fields and their operator product expansions can be specified completely. Confor-
mally invariant models are most adequately studied using the local description,
where conformal invariance dictates a wide and stringent structure. The conse-
quences of conformal invariance on quantum field theory models in any number
of dimensions were developed in [109]; in two dimensions, see for instance the

seminal paper [10], the collection of articles [65] and the textbook [34].

Conformal symmetry in two dimensions is an infinite-dimensional symmetry
corresponding to invariance under local scale transformations and generating the
Virasoro algebra [124, 57] (the relation between conformal invariance and the Vi-
rasoro algebra was considered in [49] in the context of the Thirring model, and is
explained most clearly and in full generality in [10]). It is always present whenever
there is global scale, rotation and translation invariance. The space of states on
closed lines is then a lowest-weight module for the Virasoro algebra, and for other
symmetry algebras if other symmetries are present. The requirement of unitarity
(when desired) [55, 56] and the requirement of modular invariance [23], essentially
invariance under the choice of a time direction, fix the possible modules, so that
the space of states can be determined. The space of states on closed lines is iso-

morphic to the space of local fields, hence local fields are completely determined.



Local fields split into left-moving and right-moving factors: their correlation func-
tions are, in general, finite sums of products of holomorphic and anti-holomorphic
functions, the “conformal blocks.” Conformal blocks can be seen as correlation
functions of left-moving and of right-moving “semi-local” fields, that is, fields for
which correlation functions have nontrivial monodromy properties. In so-called
minimal models [10], which correspond to particular choices of the central charge
of the Virasoro algebra and of the lowest weights, conformal blocks satisfy linear
differential equations coming from the reducibility of Verma modules for the Vi-
rasoro algebra. From these differential equations, conformal blocks can be fixed

exactly; in particular, the operator product expansions are determined.

The application of conformal field theory to the study of two-dimensional sta-
tistical models (see, for instance, [21]) gives the exact critical behaviors of many
universality classes of second order phase transitions, since the main characteris-
tics of such transitions is the disappearance of a length scale. Conformal field the-
ory also has deep connections with the mathematical study of infinite-dimensional
Lie algebras and their representations. In this context, an axiomatic formulation
that embodies the main characteristics of conformal field theory, paralleling the
axiomatic formulation of quantum field theory, is fruitfully used: the theory of
vertex operator algebras. I present an introduction to this theory in Appendix C,
along with a short description of results I obtained with my collaborators in this

context.

An application of conformal field theory that will play an important role in
this work is in the study of the short distance behavior of correlation functions
in massive models, or off-critical models. Since at short distances the mass scale
does not play an important role, the short distance asymptotic behavior of cor-
relation functions is described by conformal field theory. A massive model can
then be viewed as a conformal model perturbed by a relevant operator. Then,

the structure functions in models with a scale can be evaluated perturbatively



in their dimensionful perturbation parameters from structure functions in con-
formally invariant models. By dimensional analysis, this description is a short

distance expansion for the structure functions.

This method, called conformal perturbation theory, is a powerful alternative
to the usual perturbation theory about a free model. In addition, it is very
rewarding for the construction and classification of integrable models to describe
them by perturbed conformal field theory [134]. The structure functions are in
fact expected to be entire functions of the dimensionful parameters of the model,
and all non-analyticity in these parameters is encoded into the one-point functions
of local operators [116]. Note that it is in fact a very nontrivial task to evaluate
one-point functions exactly in interacting models, and even in integrable models
there are no known systematic ways of doing this®. In the rest of this section, I
will describe the main ideas for the perturbative evaluation of structure functions

as exposed in Ref. [144] (see also [60])

Conformal perturbation theory for structure functions

For illustration, consider a super-renormalizable theory defined as a conformal

field theory with formal (Euclidean) action Acpr perturbed by a relevant operator
p(e):
A=Acrr+ g /de o(z) . (iii.1)

In perturbation theory, one expands, inside correlation functions evaluated in the
conformal field theory, the exponential of minus the interacting part of the action
in powers of the coupling g. The problem with perturbing about a conformal
field theory is that the resulting integrals generically have infrared divergences.
Hence, consider putting the theory on a finite circular surface of radius R with

center at the position = 0 in the plane (correlation functions in this theory will

5Some recent conjectures [91, 48] give exact expressions for vacuum expectation values in
the sine-Gordon model, for instance.



be denoted (- ->§R)).
In the conformal field theory described by Acpr, choose a basis of fields @a
and form their dual O under the inner product obtained by putting one field at

the position x = 0 in the plane and another field at infinity:

(O*(22)O4(0))crr = by -

In the theory (iii.1), fields O, will need, in general, ultraviolet regularization;

denote the regularized fields by O,, with O, = O, + O(g). Then, the matrix
(07 (00)05(0))4

has a well-defined perturbative expansion in ¢g. In particular, we can define fields
O?R) by adding to O® a perturbative series in ¢ with finite field-dependent and

R-dependent coefficients, in such a way that
(Ofry(00)O4(0)){) = 65 . (iii.2)

Consider the operator product expansion of a field ®(z) with itself, and sup-
pose for simplicity that the field does not renormalize in the theory (iii.1). This
operator product expansion can be expressed in terms of the renormalized fields

O,(z), and has the form
B(2)(0) = Y Cga(2)04(0) .

We are interested in a perturbative expansion for the structure functions C§g(z).

Formally, the structure functions can be written
Cao(e) = (Ofp)(00)®(x)@(0))5 .

Since the field ®(z) does not renormalize, this expression has a well-defined per-
turbative expansion in g. The assertion is that every coefficients in this expansion
have a finite limit as R — oo, and in fact are independent of R. That is, the struc-

ture functions do not see the boundary, and are purely local objects.



This assertion can be illustrated to first order in g. First, note that we can

write

. (R) .
Ofn(o0) = 0%(0) 49 [ e (0%(0)6(2)Ou(0))crr O'(o0) + Ole?)

vV

where the symbol fé];) means that we must take the integral in the region |z| < R
with an ultraviolet cutofl, say |z| > ¢, that we must subtract appropriate R-
independent divergent terms in ¢ and that we must take the limit ¢ — 0. Then,

to first order in g, we have
. (R) .
Coolz) = <Oa(00)q’($)q’(0)>cFT—9/ d*y (O"(20)b(y)®(z)@(0))crr

+ 92/ d*y (0% (o0)(y)On(0))crr (O (00)@(2)(0))crr -

On the first line, the symbol f(R) means that the integral is performed in the
region |y| < R. On the second line, using completeness of the set of operators
O, and performing the integral in the region |z| < |y| < R (evaluating the
correlation functions by operator product expansions convergent in the region
|z| < |y| < R), we obtain exactly the negative of the result of the integral on
the first line evaluated in the region |z| < |y| < R. The rest of the integrals is
independent of R, since subtractions in fl(]@) are R-independent. Hence the full
structure function to first order is indeed R-independent.

The integral on the second line cannot be evaluated in the region |y| < |z
using completeness of the operators O,. Rather, we must evaluate each factor in
each term of the sum over b independently using the operator product expansions
of the operators involved and the appropriate subtractions. Then we must sum
over b. Evaluating the integral on the first line in the region |y| < |z|, one gener-
ically finds a nonzero value for the sum of the integrals on both lines evaluated
in the region |y| < |z| at order g.

It is a simple matter to observe that the integral on the second line can be

made to vanish as R — oo by formally increasing the dimension of the operator



0. Indeed, the factor fl%,) d*y <(’~)“(oo)qb(y)(’~)b(())>0FT can only depend on R, so
it must be a power of R times a pure number, and this power can be made to be
negative for all b’s by choosing the dimension of the operator @* high enough.
Hence, the full first-order correction to the structure function can be obtained
solely from the integral on the first line in the limit R — oo, by analytically
continuing in the dimension of the operator O from a convergent region to the

“physical” region (this procedure being the meaning of the prime on the integral

below):

Cso(2) = (0(00)@(2)9(0))crr — 9// d*y (0" (00)d(y) ()@ (0))crr -

This is valid as long as the infrared divergences are power law divergences.

Note that the identity operator 1 is self-dual under (iii.2). From this, one can
see that usual perturbation theory about a scale invariant point gives in fact only
the perturbative expansion for the structure function associated to the identity
operator Cgq4(x). This formulation of conformal perturbation theory will be used
in Part 1T of this dissertation in order to obtain the short distance expansion of

the two-point function of topologically charged fields in the sine-Gordon model.

Conformal perturbation theory will also be used in Part II in the Ising field
theory on a negatively curved space; the curvature will provide an explicit infrared
cutoff. This is a particular infrared cutoff, different from the one considered
above: it does not put an actual boundary, but modifies the bulk theory. Hence
the structure functions are modified by this cutoff. However, they still satisfy a
nontrivial requirement. Denote by R the infrared length scale introduced by this
cutoff. Then every coefficient in an expansion of the structure function in the
perturbation parameters should independently have a well-defined limit R — oo.
This requirement will be used in Section 5.7 in order to derive appropriate initial
conditions for the solution to the Painlevé VI equation which determines two-

point functions of spin fields in the Ising field theory.



iv  Free fermion models

Lastly, in models admitting a free-fermion description (that is, models where the
on-shell description is that of free particles with scattering matrix -1), much more
information can be obtained concerning correlation functions. The interest is usu-
ally in particular “interacting” fields, called twist fields (or sometimes “disorder
fields™) [69, 53]. They are generically not local with respect to the fundamental
free Fermi fields, but are self-local and local with respect to the Hamiltonian den-
sity. They usually represent the scaling limit of local degrees of freedom in some
genuinely interacting underlying model scaling to the free fermion quantum field
theory. Twist fields are in fact present in any model (which might be described
in terms of possibly interacting fermionic of bosonic “fundamental” local degrees
of freedom) which possess a global internal symmetry: for every element of a
symmetry group of the model, there is an associated twist field.

Let me now describe in complete generality a twist field o, associated to an
element ¢ of a symmetry group. It is essentially defined by the fact that when
any other local field, inside a correlation function, is brought around the twist
field counterclockwise back to its initial position, it is transformed according to
the element ¢ of the symmetry group. Since the transformation ¢ is that of a
symmetry group, this insures that the twist field is local with respect to the
Hamiltonian density (hence it is a field of the theory).

From this property, we can obtain a path integral definition of twist fields. A
correlation function containing a twist field o,(z) at a point z is defined by the
path integral over field configurations with monodromy conditions according to

which the fundamental field is affected by ¢ counterclockwise around the point z:

(0,(x) ) = DW] = . (iv.1)

/P—>§\IJ around z
with obvious definitions when more than one twist fields are present. In order for

the fundamental field to be defined on the plane, where the integration is taken



in the action S[¥], we must chose a cut, starting at = (in massive models, this
cut can be taken to end at infinity, otherwise it should end at the position of a
conjugate twist field o,-1), across which the fundamental field is discontinuous.
The correlation function as defined above is independent of the shape of this cut,
apart from transformations of fields by the element ¢ when the cut is brought
through them. Indeed, consider a set of field configurations where the cut is
taken on a path Cy. It is related in a simple way to the set of field configurations
where the cut is taken on a path Cy if C = C;|JCz is a closed path. One only
need apply on each field configuration of the former set a transformation where
inside C (inside is the region covered by going counterclockwise from Cy to Cy) the
field is affected by g, whereas outside it is unaffected. Since g is an element of
a symmetry group, the action is unchanged under such a transformation, except

for a contribution on the path C:
(05(2) Yo, = (Pele® T wg (). ), (iv.2)

where ds* is the length element along C and ;¥ is a local field. This local field is in
fact exactly the current associated to the charge generating the element g. Hence,
the only effect of this contribution is to apply the symmetry transformation ¢ on
the fields inside the path C, as asserted.

If two elements g; and g, commute with each other, then the associated twist
fields o, and sigma,, are local with respect to each other, otherwise they are
not. Indeed, the symmetry transformation gy, say, acts on the twist field o,, by
producing O gpggs!» A8 Can be seen by making a global symmetry transformation
g1 on the configurations in the path integral (iv.1). Hence formula (iv.2) shows
that sigma,, and o,, are local with respect to each other only if g2g19;" = ¢1. In
particular, a twist field is self-local.

For twist fields associated to the U(1) symmetry in a free-fermion theory, it is

possible to carry out further the form factor programme: usually one can re-sum

the form factor expansion in terms of Fredholm determinants [112, 111, 6, 12]. Tt



is also possible to calculate exactly the one-point functions [141, 91, 37] (see also
the derivation in Section 4.6 of this dissertation) and to have the complete local

expansion of correlation functions.

In fact, one of the most important characteristics of correlation functions of
twist fields associated to the U(1) symmetry in free-fermion models is that they
can be described by particular non-linear differential equations of Painlevé type.
The first result of this sort was found in the context of a lattice theory in [132],
for correlation functions of spin variables in the Ising model. The Fredholm deter-
minant description, which can be obtained from the form factor expansion or by
other means, also provides a way of obtaining a description in terms of non-linear
differential equations [79, 6, 12]. A powerful viewpoint is the one relating the
correlation functions of twist fields to problems of isomonodromic deformations
[112, 111]. This is based on considering the linear equations of motion for the
fermion fields inside correlation functions with twist fields. The solutions to these
linear differential equations are such that their monodromy properties around the
positions of the twist fields are unaffected by moving the twist fields. This im-
poses constraints on the dependence of the solution on the positions of the twist
fields, from which it is possible to deduce non-linear differential equations for cor-
relation functions of the twist fields. Finally, methods involving Ward identities
[52, 39] provide very simple ways of obtaining such non-linear differential equa-
tions. Supplemented with appropriate asymptotic conditions, coming from the
large-distance or from the short-distance analysis, correlation functions can then

be evaluated very efficiently.

The problem of calculating correlation functions is still in general not solved
in integrable models. Examples with a free-fermion description and conformally
invariant models offer essentially the only nontrivial exceptions. It is still not
known if the methods in these two classes of examples are related, and if they

can be generalized to models of interacting massive particles. It would certainly



be very interesting to understand more deeply their meaning.
In Part II of this dissertation, methods for exact calculations in free fermion
models will be developed and explained to some extent. Hence, I will not elaborate

further on this subject in this section.

v Plan of the dissertation

In this work, I study correlation functions and their applications in two particular
integrable models using the techniques mentioned above.

In Part I, I study the fermion two-point correlation functions in the SU(2)-
Thirring model (or O(4) chiral Gross-Neveu model). As I said, this is a model
for the low-energy behavior of electrons in a Mott insulator. The SU(2)-Thirring
model is integrable, and its spectrum contains particles and anti-particles with
a nontrivial scattering matrix. Using techniques of form factor expansions and
conformal perturbation theory, the two-point function of Fermi fields is evaluated
accurately at all distance scales. This part is based on the joint work [42] in
collaboration with my dissertation director Prof. S. Lukyanov.

In Part II, I study the correlation functions of spin fields in the Ising field
theory on a curved space of constant negative curvature. The aim of this study
is to understand the effects of a space curvature on the critical properties of
statistical systems. The Ising field theory is integrable, and in fact its spectrum
is that of free fermions. Hence correlation functions and their long and short
distance expansions can be evaluated exactly, and 1 generalize the methods used
in flat space to the space of constant negative curvature. This part is based on

my works [37, 38] and on the joint work [39] with Dr. P. Fonseca.
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One-dimensional correlated
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Chapter 1

Introduction

1.1 Fermi Liquids

Understanding the behavior of strongly correlated electrons is one of the main
problems of condensed matter physics. In some situations in two or more space
dimensions, the behavior of electrons in metals is well understood through the
Fermi liquid theory of Landau (see [106]). Although this is very standard mate-
rial, T will explain briefly the main points of this theory, in order to emphasize
afterwards the differences that occur in one-dimensional systems.

In a system of non-interacting spin-1/2 fermions, the spectrum of the Hamil-
tonian can be described by giving a set of allowed energy levels, characterized by
the momentum p and by a spin s, with an associated energy €, ;, and by describ-
ing the ground state and the excitations by a distribution function np  specifying
the occupancy of the allowed levels, which can be 0 or 1. In a system with a
fixed number of fermions, for instance, the ground state is obtained by filling the
energy levels up the Fermi energy e¢p determined by the number of particles; this
is the “Fermi sea.” The excitations are then obtained by putting particles above
the Fermi surface and by putting holes below it.

In the Fermi liquid theory, one essentially assumes that the low-lying excita-
tions of a theory of interacting fermions can be described by the same picture:
the system possesses a well-defined Fermi surface, and elementary excitations can
be accurately described, at low temperatures, by long-lived particles, or quasi-

particles, above the surface, and holes below it. More formally, the elementary



quasi-particle excitations are defined by starting with a system without interac-
tions and by adiabatically turning on the interactions between fermions. By this
process, if there is no level crossing!, energy eigenstates of the noninteracting
system are mapped to energy eigenstates of the interacting system, so that the
latter can be labelled by the distribution function of the noninteracting state,
say np (spin indices are implicit from now on). In particular, one assumes that
the ground state of the interacting theory can be reached from some (possibly
excited) state of the noninteracting theory, call it n), (it can be seen as describing
the Fermi sea in the interacting theory). Low energy single quasi-particle and
single quasi-hole states are obtained by starting from states with one particle or
one hole near to the corresponding Fermi surface: n% + 0np.

Low-lying excitations with many quasi-particles and quasi-holes are then as-
sumed to be described by quasi-particles and quasi-holes near to the Fermi surface
in a fashion similar to the description in a free theory. Of course, the number of
quasi-particles and of quasi-holes is not conserved, so that the lifetime of quasi-
particles and quasi-holes is not infinite; it is in fact proportional to the inverse
of their energy difference to the Fermi energy. Hence this description becomes
valid only at low temperatures, for quasi-particles and quasi-holes located near
to the Fermi surface. The excitations are then described by a rarefied gas of
quasi-particles and quasi-holes near to the Fermi surface, and in some sense, the
Fermi sea survives the interactions. The quasi-particles and quasi-holes also in-
teract among themselves, and at low excitation energies, a consistent lowest-order
description of the free energy only needs density-density interaction terms of the
type dnpdnp:

1
OF = Z(ep — p)déng + 5 prp/ Inpdng .

p p,p’

For describing electrons in the conduction band of a metal, one needs to take

'In particular, if the interaction between the fermions is attractive there is level crossing
because nontrivial bound states can form; hence we must assume repulsive (or no) interaction.



into consideration the Coulomb interaction which has a long range. The Fermi
liquid theory can be adjusted to include the screening effect of the Coulomb
interaction, giving a so-called charged Fermi liquid, and the considerations above
stay valid. The charged Fermi liquid theory is then a phenomenological theory for
electrons in metals, valid when the Fermi level is inside a conduction band (that
is, in a metallic state) and at temperatures low compared to the Fermi energy
and to the width of the conduction band. Such restrictions are in fact fulfilled in

many materials of interest.

Most of the qualitative features of thermodynamical quantities of a free Fermi
gas are not altered by the interacting quasi-particle description depicted above.
This can be understood from the viewpoint of quantum field theory. The quasi-
particles and quasi-holes near to the Fermi surface are fermionic excitations that
can be represented by massless Fermi fields at low temperatures. For such fields,
repulsive interactions of the type density-density, involving four-fermion terms,
are irrelevant in two or more space dimensions, so that the low energy or long
distance physics is that of free massless fermions: the quasi-particles and quasi-
holes are asymptotically the true excitations. The features of Fermi liquid theory

are in good agreement with many experimental observations.

Interesting situations occur when the Fermi liquid theory breaks down. Sit-
uations with the most interest for the present chapter are systems in one space

dimension, which show drastically different behaviors.

1.2 Luttinger liquids

One-dimensional correlated electron systems in their metallic phase are believed
to be Luttinger liquids, in some sense the one-dimensional counterpart of Fermi
liquids [125]. The drastic difference from Fermi liquids that occurs in one di-

mension can be understood from the fact that the phase space around the Fermi



surface of a free theory is very restricted: the Fermi surface in one dimension is
composed solely of two disjoint points pp and —pp (the Fermi momenta). Hence
it is not possible to have a rarefied gas of quasi-particles or quasi-holes near to
the Fermi surface. In interacting theories, no matter how weak the interaction,
collective modes are stable and the Fermi surface does not survive (in higher
dimensions, collective modes decay into quasi-particles).

Particular models of one-dimensional correlated electrons may have very dif-
ferent features, but as usual, their universal properties at long distances may be
fruitfully described using quantum field theory. In a free theory, excitations near
to the Fermi surface are described by right- and left-moving massless fields, for
momenta around the points p = pp and p = —pg, respectively, of the Fermi
surface. For low-lying excitations, the dispersion relation around these momenta
is linear, so that the resulting theory looks like a relativistically invariant free
massless fermion theory, where the velocity of “light” is the Fermi velocity. In
order to account for interactions, one can simply add certain density-density lo-
cal interaction terms to the Hamiltonian, similar to density-density interactions
among quasi-particles and quasi-holes in the Fermi liquid theory. In this fashion,
one obtains the Tomanaga-Luttinger model. In its simplest form, the interac-
tion couples the fermion density around pgr with itself (right-right coupling), the
fermion density around —pp with itself (left-left coupling), and both densities
among themselves (right-left coupling). The Luttinger liquid model of quantum

field theory is then described by the second quantized Hamiltonian

+ 91 (tJrRJR+ 1 JLin )+ G2t JRIL:

+ 93 (3 Jr - Jpt jLﬁ)} (1.2.1)

where vp is the Fermi velocity, and where I wrote explicitly only interaction

terms that preserve spin SU(2)-invariance. Here the U(1) currents are jr =:



;ZJEL@/JRL : and are associated to the electric charge of the excitations, and the
SU(2) currents are jR,L = ;/)L ;TYrr  and are associated to their spin. The
colons represent an appropriate normal ordering of the product of operators.

Note that T do not consider here electron-phonon interactions.

The main difference compared to the higher dimensional situation is that the
perturbing interactions are exactly marginal: the coupling g; and g, are exactly
dimensionless?. Hence the interaction terms have non-negligible effects at low en-
ergies, and the true excitations are not the initial fermions, but collective modes.
There are two main properties of Luttinger liquids. First, there is spin-charge
separation. This phenomenon can be easily understood from the bosonized form
of (1.2.1): the theory becomes a sum of two independent free massless boson
models, one carrying the charge of the electrons, the other carrying the spin. The
separation occurs because the coupling g; renormalizes the velocity in the charge
sector, whereas the velocity in the spin sector is renormalized by g3. Note that rel-
ativistic invariance is broken in a simple way, since two different velocities appear.
The spin and charge excitations, called spinons and holons, are the elementary
excitations replacing the quasi-particles of the Fermi liquid theory. Second, an-
other characteristics of Luttinger liquids is that the fermion fields g, 11, acquire
anomalous dimensions with respect to the free theory. More precisely, under
bosonization the fermion fields are decomposed into spin and charge “factors,”
which are nonlocal with respect to the original fermion fields and which each have
independent power-law correlation functions with independent anomalous dimen-
sions. The anomalous dimension in the charge sector, for instance, is a function
of g3. The presence of anomalous dimensions destroys the Fermi surface, as they

result in no sharp jump in the distribution function np.

?In fact, by the definition of a Luttinger liquid as describing gapless excitations, all exactly
marginal local four-fermion interaction terms may be added in general.



1.3 Omne-dimensional Mott insulators

There are situations, in one dimension or in higher numbers of dimensions, where
the low-energy physics is not described by a Luttinger liquid or by a Fermi liquid.
In some of these situations, the Mott insulators, the breakdown is due to electron
interactions creating a spectral gap between the ground state and the first excited
state. That is, in Mott insulators, the gap is not due to the band structure coming
from the periodic potential created by the atoms in the material, but rather to
a dynamical effect coming from the strong interaction between electrons. In one
dimension, by spin-charge separation, the gap can be either in the spin or in the
charge sector (or in both). One-dimensional materials with a dynamical gap in
the charge sector are one-dimensional Mott insulators. Of course, the effect of
the dynamical gap can be seen only if the ground state is far enough from the

end of the conduction band: then sub-bands can dynamically form.

What processes make the formation of a dynamical gap possible? Again,
it is instructive to analyze this question in its universal form, from the view-
point of quantum field theory. A gap will be formed if we add to the univer-
sal model Hamiltonian (1.2.1) terms that are relevant or marginally relevant in
the charge sector. In their simplest form, interaction terms must contain four
fermion fields located at the same point. Hence a gap may appear as a result of
dimensional transmutation from marginally relevant local four-fermion interac-
tion terms. For instance, there will be a spin gap generated in this way if there is
an anti-ferromagnetic isotropic coupling between the right and left spin currents:
g Jr - jL, g > 0 (whereas a ferromagnetic coupling, g < 0, gives marginally irrel-
evant terms). In order to have a charge gap from a marginally relevant operator,
we must consider so-called umklapp terms, of the type ¢£T¢£¢ Yr4tr,. They
correspond to backward scattering of charge-carrying spin singlets of electrons,

and essentially occur when there is commensurate filling, for instance half filling



(n(x)) = 1/2, where n(x) is the number operator at position z. Intuitively, it is
clear that such backward scattering of singlets may impair on the propagation of
charge, but not on that of spin; it is also clear that commensurate fillings should
provide better opportunities for spin singlets to form. In fact, umklapp terms may
be embedded into a structure very similar to that of the spin current-current in-
teraction. Indeed, there is another SU(2)-current structure, the so-called isospin
current, and umklapp terms producing a dynamical gap in the charge sector may
be seen as coming from an “anti-ferromagnetic” isotropic coupling between right
and left isospin currents. We will see that a fruitful model of interacting electrons
in the conduction band of a metal, the Hubbard model, is correctly described at
low energies by such interaction terms, which we will explicitly construct in the

context of this model.

1.4 Experimental observation of one-dimensional physics

The past two decades have witnessed experimental work to identify and study
quasi one-dimensional systems (for a review, see [59, 17]). The most striking
and nontrivial prediction of the Luttinger liquid description of one-dimensional
strongly correlated electrons is spin-charge separation. An experimental investi-
gation of this phenomenon is of conceptual importance for several reasons. First,
the direct observation of spin and charge excitations and the comparison with
theoretical predictions is a nontrivial test for models widely used to describe one-
dimensional correlated electron systems, and in particular for the properties of
Luttinger liquids. Second, the understanding of the spin and charge excitations
gained from their experimental study can be valuable to assess the structure of the
excitations in two-dimensional systems. In connection to this point, there is evi-
dence that high-temperature superconductivity can be a result of an effective low

dimensionality of space. Understanding the main properties of one-dimensional



systems, and in particular of their fundamental excitations, may shed light onto
the subject of high-temperature superconductivity.

However, identifying spin and charge degrees of freedom in a material believed
to be described by one-dimensional physics is a difficult task. In fact, it requires
studying the dynamics of these degrees of freedom; thermodynamical properties,
although they may be suggestive of one-dimensional physics, cannot be used to
accurately identify spinons and holons and study their properties.

In recent years, angle-resolved photoemission spectroscopy (ARPES) has ma-
tured into a powerful experimental method for probing the electronic Green’s
functions in quasi one-dimensional systems [63]. Roughly speaking, incident pho-
tons illuminate the surface of a crystalline sample, and photoelectrons are ejected
from the surface. The kinetic energy and the angle of the outgoing electrons are
measured, from which the probability for an excitation to eject an electron can be
deduced. This probability is simply related to the electronic spectral density, and
to the Green’s function. The observation of the features of the spectral density is
the most direct observation of spinons and of holons, and allows for an extensive
study of their properties [75]. It is worth mentioning that ARPES data also offers
evidence for the relevance of the Luttinger liquid spectral functions in cuprates
high-temperature superconductors [14].

In view of these new experimental techniques, it is an important task to cal-
culate electronic Green’s functions in one-dimensional systems of correlated elec-
trons. Integrable models offer a unique opportunity to obtain accurate theoretical
predictions. This is why there were recently collective efforts of many physicists to
apply integrable quantum field theory to describe quasi one-dimensional systems
[58]. For this purpose, a non-perturbative treatment of the correlation functions

in integrable models seems to be valuable.



Chapter 2

The SU(2)-Thirring model

2.1 Introduction

In this chapter, I study the fermion two-point correlation functions in the SU(2)-
Thirring model. This chapter is based on my joint work with my dissertation
director Prof. S. Lukyanov [42]. We performed perturbative and renormalization
group analyses to obtain the short-distance asymptotic behavior of the two-point
function, and numerically evaluated the long-distance behavior by using the form
factor expansion. The results presented here illustrate the use of bosonization and
conformal perturbation theory in the renormalization group analysis of a fermionic
theory, and numerically confirm the validity of the form factor expansion in the

case of the SU(2)-Thirring model.

The results and methods are also of interest because the SU(2)-Thirring model
is the scaling limit, at half filling, of a popular microscopic model of interacting
electron gas in the conduction band of a metal, the Hubbard model. The Hubbard
model at half filling shows the behavior of a Mott insulator, and as emphasized
in the previous chapter, results concerning the electronic spectral function are
of interest. The one-dimensional Hubbard model is also relevant to the study
of high-temperature superconductivity. Indeed, it probably has common prop-
erties with the two-dimensional Hubbard model, which is believed to possess a

superconducting phase characteristic of high-temperature superconductors.



2.2 The Hubbard model and the SU(2)-Thirring model

The Hubbard model [62] captures most of the important properties of electrons
in a narrow conduction band, where features of both the electron gas and electron
localization on the atoms are relevant. The effect of the atoms is implemented
essentially by accounting for Hund’s rule: electrons on the same site with aligned
spins, which cannot come too close by anti-symmetry of their wave function, do
not feel as much the Coulomb repulsion as electrons with opposite spins. The
standard Hubbard model in fact describes electrons in an s-band, where two
electrons on the same site must have opposite spins, so that the effect is taken
into account by an extra potential energy for two electrons to be on the same
site. Some of the main features should hold in other situations with a narrow
conduction band. In one dimension, the model is described by the following
Hamiltonian:

o0

Hiw = ) {_t > (el e + el ,00) (2.2.1)

j=—00 o=T,4

+ Unjpngy+p(njy+nj)

with n;, = c;gcj’g, and where ¢ can be seen as a tunnelling amplitude between
sites (the so-called transfer integral), /' > 0 represents the difference of strength
of the on-site Coulomb interaction between opposite- and aligned-spin configura-
tions, and p is the chemical potential.

The Hubbard model is in fact an integrable model, and can be solved by Bethe
ansatz techniques [88, 44, 50, 129, 80]. In the charge sector, the spectrum of the
Hubbard model shows two (sub-)bands, and exactly at half filling (u = —U/2)
the ground state fills the first band: the model is a Mott insulator. At half
filling, the theory possesses some extra symmetries which are worth describing
briefly. Consider the Hubbard model on a finite chain of L (even) sites with

periodic boundary conditions; the model (2.2.1) is obtained by taking the limit



L — oo. The model on the finite chain possesses an SO(4) = SU(2) x SU(2) | Z,

symmetry, which is realized by the spin SU(2) algebra satisfied by the charges

L L L
S_ = Z C;ch@’ S+ = Z C}7¢Cj7T, SZ = %Z(nm — nm) (222)
=1 =1 =1
and by the isospin SU(2) algebra satisfied by the charges
L L 1 E
T =Y (=1 e, nt = (1Y, = 3 D (i tnis—1).
j=1 j=1 =1

(2.2.3)

Because L is even, half-integer representations of SU(2) x SU(2) are projected
out, giving SO(4).

From the exact solution, one finds that at half-filling, the correlation length,

which is inversely proportional to the gap, is given by [99]

Vis t27rt
R, = —1/—=€U .
=9V U

In particular, the correlation length diverges as U/t — 0, so that there is a
quantum phase transition at this point (at zero temperature). The scaling limit,
describing the universal behavior of the model near to its phase transition, is
then obtained by sending U/t to 0 from above and by considering correlation
functions at lattice separations proportional to the correlation length. In this
limit, the leading behavior of correlation functions assumes certain scaling forms.

In particular, the equal-time fermion correlation function can be written as

sin (377 - 7))

m(j' =)

<CJ'/7C,/ C}7g> — 50/70

F(lj' - I/ R.) (2.2.4)

for some scaling function F'.

Since the scaling limit is obtained by sending U/{ to 0, the quantum field
theory that describes it can be obtained directly from the Hamiltonian (2.2.1) by
taking a naive continuous limit. We simply keep modes of the electron operator
¢j» in the vicinity of the Fermi wave numbers +kr = +7/(2a) (with the lattice
spacing a):

¢j = Va[e* T yr(z) + e P (2)]



where spin indices are implicit, and replace sums over indexes j = x/a by integrals
over positions z in the Hamiltonian (2.2.1). We find

scaling
H,.™® = / dx

or (—iehdovn + 6o )
+g(lfﬁ'fRi-l-ifL'fLi—IjR'jRI—IjL'jLI>
ny (fR T = Tn- fL) } (2.2.5)
where vy = 2ta and ¢ = Ua/2. The spin currents are, as usual, jR,L = ¢L,LF¢R7L,

and the components of the isospin currents I 1, are

[]3%,L = @/’;F%,Ll/)R,L H []—I%—,L = (¢L,L)T(¢£,L)¢ ) [ﬁ,L = (¢R,L)¢(¢R,L)T . (2-2-6)

(Here, according to our normalization, we have for instance : Jr-Jri=: Ji T3
+2: J]%L Jp i 4+2:J, JE :.) These spin and isospin currents are local currents
in the model (2.2.5) of quantum field theory, and they correspond to the spin
and isospin charges (2.2.2) and (2.2.3) of the lattice Hubbard model. The U(1)
currents jgz involved in the Luttinger liquid Hamiltonian (1.2.1) are just the
components ]%,L of the isospin currents. The term Ir - I1, contains the umklapp
terms.

In fact, it is a simple matter to observe spin-charge separation and to under-
stand more precisely the effects of the various terms in the Hamiltonian (2.2.5) by
applying the techniques of bosonization [58]. Consider two mutually commuting
chiral operators, ¢r(z) and ¢r(z), satisfying the commutation relations

[6r(2), ¢r(")] = 2(0(z —2) = O(z" —z))

9r(e),60(a)] = —5(O(z — &) ~ 0! ~ )

where O(z) is Heaviside’s step function. Assume that these commutation rela-
tions are represented on a Hilbert space, where the two-point vacuum expectation

values are formally given by

(vac|pr(z), pr(z')|vac) = —Lln(—i(x—x'))

47

(vac|or(z), or(a')|vac) = —41 In(+i(z — 2"))

T




and other vacuum expectation values are calculated using Wick’s theorem. The
logarithmic function In(z) is taken on its principal branch, with a cut along
Re(z) < 0, Im(z) = 0. Then we can represent the fermion operators by ex-

ponential operators on this Hilbert space:

1 1 :
¢R§U($) = GRQUE el\/ﬂ(bR;U(I) ) ¢L;a(x) = 6L;o’ﬁ e_l\/H(bL;a(I) (227)

where €r 1., are Klein factors, which anti-commute with each other and square
to 1. We can then define canonical bosonic operators ¢, = ¢r, + ¢r,, and
I, = 0.(¢ro — ¢1.0) satisfying [l,(z), g, (z')] = 16(xz — 2')d,,. Changing basis

to a charge and spin basis:

1 1
pe = ﬁ(w te), @ = ﬁ(w %),
with similar relations for II., II;, the kinetic part of the Hamiltonian (2.2.5) be-
comes
S [ dr (2 4+ (Do) 4+ T2+ (Bups)?)

The operator : fR . fR T4 fL . fL : in the Hamiltonian contributes to the
charge part of the kinetic term, (3/7)(II2 + (9y¢.)?), up to a term 92¢p. which
does not contribute in the Hamiltonian. The operator : jR . jR Dt jL . jL :
contributes to the spin part of the kinetic term, (3/7)(II2 + (9,¢5)?), up to a
term 02p,. Hence the second line of (2.2.5) only renormalizes the velocities in the

charge and spin sectors; this separates spin and charge excitations:

v](;):vp—l—%, vg):vp—g.

=)

The third line of (2.2.5) is the most interesting. The operator gI31; is equal

to
i 2 2
T~ (2uge)?)

This has two effects. First, it modifies further the charge velocity:

v;f) = \/vr(vr +2§/m). But most importantly, it changes the dimensions of



exponential operators. For instance, the operator 'V8¥< which has dimension 2

at g = 0, acquires dimension

_?z

which is smaller than 2 (since g > 0). But the operator J3.J; + J5.J{ is propor-
tional to cos(\/8_7rgoc), hence it becomes relevant. This indicates that ng . fL is
marginally relevant, and it opens a gap in the charge sector. On the other hand,
a similar analysis shows that the term —f]jR Ty is marginally irrelevant and it
does not contribute to the large distance physics. That is, the spin sector is a
purely massless bosonic field theory in the scaling limit.

Apart from the different velocities in the charge and spin sectors and dropping

the marginally irrelevant interaction, the quantum field theory above is exactly

the SU(2)-Thirring model [58, 147], with Euclidean action
A= /d% (0,770,0, + < (05, 79)°] (2.2.8)

(with implied summation over repeated indices) for ¢ > 0. A more accurate
relation between the scaling limit of the Hubbard model and the SU(2)-Thirring
model is given in Refs [99, 130]. Here W, is a doublet of Dirac Fermi fields, and
the Pauli matrices 7 = (7', 7% 7%) act on the indices ¢ =7,]. The “spin” of the
Dirac fermion, labelled by its index o, is in fact an isospin index in the connection
to the Hubbard model (and will be referred to as the isospin index from now on).
The interaction term has a similar effect to that of the “anti-ferromagnetic” right-
left isospin current interaction Ir - I;, in the Hamiltonian (2.2.5); it opens a gap
in the isospin sector. As is clear from the discussion above, this gap appears
by dimensional transmutation. The scaling function appearing in (2.2.4) can be
obtained from fermion Schwinger’s function (Green’s function in the Euclidean

region) in the SU(2)-Thirring model:

05t 0 Yt
2 |z|?

(Wor(2)W,(0)) =

F(M|z|) . (2.2.9)



The SU(2)-Thirring model present a number of interesting properties. For
instance, it is an asymptotically free theory (for g > 0) with unbroken chiral
symmetry. Of course, like the Hubbard model, it is also an integrable model, and
the corresponding Hamiltonian was diagonalized by Bethe ansatz techniques in
(3, 9]. In Ref. [45] the Green’s function was studied and it was used in a model
of weakly coupled one-dimensional chains in order to study Mott metal-insulator
transitions. In Ref. [29], the optical conductivity was calculated in this model
and compared with experimental ARPES results on Bechgaard salts, which are
believed to be quasi one-dimensional systems at temperatures above a “critical”

scale.

In this chapter, I will be interested in the Schwinger’s function of the SU(2)-
Thirring model. The analysis is based, on the one hand, on expressions for the
form factors of soliton-creating operators (or topologically charged fields) in the
sine-Gordon model proposed some time ago [92]', and on the other hand, on a
conformal perturbative analysis of two-point correlation functions involving such
fields. The form factor expressions can be used to obtain the long-distance be-
havior of these two-point functions, whereas conformal perturbation theory gives
their short-distance expansion [144]. The interest in some of these topological
fields stems from their role in fermionic theories; examples of such topological
fields are given in (2.2.7) for a free massless theory. For instance, it is well-known
that the sine-Gordon model is equivalent to the massive Thirring model [27].

The components of the Thirring fermion field are then associated with soliton-

1

5> and correlators

creating operators of topological charge £1 and Lorenz spin +
of these operators in the sine-Gordon model are related to fermion correlators in
the massive Thirring model [96]. More interestingly, the sine-Gordon theory is

closely related to a model which is an integrable deformation of (2.2.8) [147]. This

'Without taking normalization into consideration, some of such form factors were considered
previously in Refs. [7, 33]



“deformed” (or anisotropic) SU(2)-Thirring model also exhibits the spin-charge
separation. The fermion field is likewise “factorized;” the spin part of the fermion
field, which represents the charge part of the electrons from the connection to the
Hubbard model, corresponds to soliton-creating operators of topological charge
+1 and Lorenz spin :I:% in the sine-Gordon model. The charge part of the fermion
field, which is the spin part of the electrons, is related to similar operators in a
free massless bosonic theory.

Although form factor expansions and conformal perturbation theory are very
effective tools for the study of, respectively, the long-distance and the short-
distance asymptotics of Schwinger’s functions [13, 144, 8, 1], one usually gets
into trouble when trying to compare both predictions in a region where they
are expected to be accurate enough. Indeed, in general, one has the freedom of
choosing the overall multiplicative normalization in the expansion arising from
conformal perturbation theory as well as in the form factor expansion, and there
is no systematic way of relating both normalizations. For the case of the soliton-
creating operators, the constant relating both normalizations was conjectured in
[92]. Tt allows one to make unambiguous numerical predictions on the correlation
functions of soliton-creating fields on the whole distance scale using the com-
bined conformal perturbation theory and form factor data. In this chapter, this

calculation is performed for the case of the SU(2)-Thirring Fermi fields.

2.3 Bosonization of the anisotropic SU(2)-Thirring model

The SU(2)-invariant Thirring model admits an integrable generalization such that
the underlying SU(2) symmetry is explicitly broken down to U(1) ® Z,:

Aarar = / o {3 W00+ = B T (L) ] 23)

8 8
o="14

where

J =Wy, (2.3.2)



are vector currents (and, as before, 74 are Pauli matrices). The model (2.3.1) is
renormalizable, and its coupling constants g, g, should be understood as “run-
ning” ones. In particular, in the RG-invariant domain g > |g.|, all RG tra-
jectories originate from the line g, = 0 of UV stable fixed points, and (2.3.1)
indeed defines a quantum field theory?. Hence, in this domain (which is the only
one that we discuss here), each RG trajectory is uniquely characterized by the
limiting value

p= 1 lim gy (£) (2.3.3)

2 (=0
of the running coupling g () at extremely short distances (¢ stands for the length
scale), i.e. the theory (2.3.1) depends only on the dimensionless parameter p,
besides the mass scale M appearing through dimensional transmutation.
As is well known (with similar arguments as in the previous section, see e.g.
[58, 147]), the model (2.3.1) can be bosonized in terms of the sine-Gordon field
o(z),

Asq = /dQLL' { 16% (0,0)% — 2 cos(By) } , (2.3.4)

with the coupling constant 3 in (2.3.4) related to p (2.3.3) by

1
L — 2.3.5
B T, ( )

and a free massless boson. Then the mass scale M is identified with the mass of

the sine-Gordon solitons, which is related to the parameter p by [142]

(L (L 4+ L o
©= (Lpp) M LIQP) (2.3.6)
ﬂF(m) QF(ﬂ)
under the “conformal normalization”
1 2
(cos(Bp(x)) cos(Be(y))) ~ §|:z: —y|™" as z—oy. (2.3.7)

2The Hamiltonians corresponding to opposite choices of the sign of ¢ are unitary equivalent,
so the sign of this coupling does not affect the physical observables.



The precise operator relations between (2.3.1) and (2.3.3) can be found in [92].

In particular, for the two-point fermion correlator, the bosonization implies that

— 0ol AT
(U, (2) Upn(0)) = 52 o F{(r) (2.3.8)
27 af

where we use the notation Fu(,n) (n = 1, w = 1/4) for the real function which
depends only on the distance r = |z| (and implicitly on the the mass scale M and
the parameter p), and which, in essence, coincides with the Euclidean correlator

of nonlocal topologically charged fields in the model (2.3.4):
n —n in 7\ wn "
(07(2) 0Z(0) = (¢72) 7 FP(). (2.3.9)

where z = x' +1x% 7 = x' — ix?. Again we refer the reader to the paper [92] for

the precise definition of the field OF (¢ = wf3). Here we note that it carries an
integer topological charge n, a scale dimension

2w? n?
d = — (1 2.3.10
1+p+8( +0), ( )

and a Lorentz spin wn.

2.4 Short-distance expansion

In this section, the short-distance behavior of correlators (2.3.9) of the soliton-
creating operators is examined by means of conformal perturbation theory. I then
perform a renormalization group (RG) resummation of the perturbative expansion
in the vicinity of the Kosterlitz-Thouless point which corresponds to the SU(2)

limit of the fermion theory.

2.4.1 Conformal perturbation theory

In general, one can examine the short-distance behavior of correlators via the

operator product expansion, for instance:

FI(r) = Ci(r) + Coon(r) {cos(Be) ) + ... - (2.4.1)



The structure functions (Cr(r), Ceos(sy)(r), etc.) admit power series expansions in
p?, which can be obtained by using the standard rules of conformal perturbation
theory [144, 60] (see also Section iii in the Introduction), whereas the vacuum
expectation values of the associated operators are in general non-analytical at
p = 0. In the perturbative treatment, we regard the sine-Gordon model (2.3.4)

as a Gaussian conformal field theory

_ [ b 2
AGauss = /d X 167 (@ygo) (242)

perturbed by the relevant operator cos(3¢). Notice that in the limit ¢ — 0, the
nonlocal topologically charged fields OF can be expressed in terms of the right
and left moving parts of a free massless field ¢ = pr(z) — ¢1(z) governed by the
action (2.4.2):

Ouliso — or :exp{i (a— %)@Mz)—i(a—l—%)g‘%(z)} . (2.4.3)

Conformal perturbation theory gives the structure function Cy (2.4.1) in the form

(ei7T z)wn Ci(r) = <(’~);g($)(’~)iwﬁ(0)exp (2,u // d*y cos(ﬁap)) > , (2.4.4)

VA Gauss

where (...)gauss 15 the expectation value in the Gaussian theory Agguss and
the exponential is understood as a perturbative series in . In the perturbative
series, the integrals will have power law IR divergences which should be thrown
away [144]. Such a regularization prescription is indicated by the prime near the
integral symbol. In the absence of logarithmic divergences, throwing away the
divergences is equivalent to treating the integrals as analytical continuations in
the field dimensions [144]. Considering only the part of R perturbative in pu, it

is a simple matter to obtain
FO(r) = v {1 4 1 (2wp?, —28%) w2 = 1 O(=7 02) L (245)
where d is given by (2.3.10) and
Jo(a,e) = // Pad?y 2375 (1 —2)™ 75 (1 —2) 7> (2.4.6)

Xy T TR (1 —y) (1 =) T e — gl (24.7)



Two comments are in order here. First, the next omitted term in the short-
distance expansion (2.4.5) comes from either the next term in the perturbative
series for Cp (O(r®=*")) or from the leading contribution of cos(8¢) (O(r?)) in
(2.4.1). Therefore, the y? term written in (2.4.5) is a leading correction to the
scale invariant part of the correlation function for % < f3? < 1 only. Second, in
writing (2.4.5) we specify the overall multiplicative normalization of the nonlocal

topologically charged field O 5 by the condition
F(r) — =2 as r—0. (2.4.8)

The integral (2.4.6) can be calculated using, for instance, techniques illustrated
in [97]. The result can be expressed in terms of two generalized hypergeometric

functions at unity:

Alg,c) =3l (—c,—c— 1,1 —q;—c—q,2;1) (2.4.9)

B(q,¢) =3F3(q,qg+ 1,¢4+2;¢+q+2,¢+qg+3;1) .
With ¢ =a+n/2 and ¢ = a — n/2, we found:

Jola,e)=JO 4 & 4 g 4 g0 (2.4.10)

JW = qqg (1= g)T(1 = @) T(1 + e+ @l(1+c+ QI* (=1 —¢) x

(cos(m(q —q)) — cos(me) cos(m(q + g + ¢))) Alg,c)A(g,¢),
w2qT(1 + ¢)T D'l +c+ (=1 —c—q) _
TGt et q) Alq,¢)B(q,¢),
PJI'A+c+Pl'(=1-c—q) }
ONECErE Pl A,
_WW%P+® 24 ¢l(-1—c—ql(-2-c—q)
2(=q)T(=c)T(2+ c+ ¢T3 + ¢+ q)

—

1+
q)l'(—
1+

(1+
(
g6 _ gl (1 +oI'(1 +
(q

B(q,¢)B(g;c).

Notice that for n = 0, the integral (2.4.6) was calculated previously in the work
[36] (see also Ref. [61]).



2.4.2 Renormalization group resummation

The perturbative series in the previous subsection was obtained by expanding in
powers of p the action (2.3.4). This action is the bosonized form of the isospin
sector of the model (2.3.1) (recall that the index o in the Fermi field ¥, is an
isospin index in the connection to the Hubbard model that we consider).

In fact, the parameters p and 3 can be seen as forming a convenient system
of coordinates in the space of parameters of the model (2.3.1). As is clear from
the calculation above, this system of coordinates is defined through the ultra-
violet regularization procedure obtained by considering the model (2.3.1) as a
perturbation by the term (7§, /8) [ d*z (JiJ; + JiJi) of the fix-point theory
(Luttinger liquid)

/ &z { N U,n,0m0, + %5’” Jjjj} (2.4.11)
o=1,1
(here we use the notation g and g, for this system of coordinates, reserving g and
g1 for other coordinates defined below). This fix-point theory is equivalent to a
free massless boson == [ d*z (0,¢)?, and in this bosonic language the perturbing
field J}.J} 4 J2.J? is (up to positive normalization) the cosine field — cos(By) with
B2 =1/(1+g/2).

All needed ultraviolet regularization associated to the perturbation about a
free massless Dirac theory by the field Ji’Ji’ are simply embedded into anomalous
dimensions of fields in the fix-point theory (2.4.11). As for the remaining ultravi-
olet regularization associated to the perturbing field .J}.J! 4+ J2.J?, note that the
field cos(B¢) has dimension 23? in the fix-point theory. Hence for g > 0, the per-
turbing field has dimension less than 2, so that the theory is super-renormalizable.
Then one only need normal-order (with respect to the ground state of the fix-
point theory) the perturbing operator cos(B¢) in the corresponding Hamiltonian
in order to get rid of all remaining ultraviolet divergencies (the normalization

of the cosine operators (2.3.7) completely fixes this normal ordering). That is,



in this system of coordinates, g = 2(47% — 1) does not flow and g, o p flows

trivially according to the scale dimension 2 — 23%

d d . R
Sa=0 g =M 2.4.12
=0 = 1 (2:4.12)

l

where / is a distance scale.
We are interested in the short-distance expansion of the correlator (2.3.9) for
3? sufficiently close to unity. As will become clear below, at 32 = 1 one recovers
the SU(2)-invariant model (2.2.8). In this case there are new (logarithmic) ultra-
violet divergences, and the system of coordinates formed by 3 and y as described

above is singular.

It is convenient to use the notation
e=1-p"<1. (2.4.13)

Our previous short-distance analysis suggests the following expansion for the
structure function Cy:

Ci(r) = r { 14> e (ur*)® } , (2.4.14)

k=1

where the coefficients ¢; are given by certain 4k-fold Coulomb-type integrals.
Evidently, this expansion cannot be directly applied in the limit € — 0, where the
perturbation cos(3¢) of the Gaussian action (2.4.2) becomes marginal. However,
being expressed as a function of the scaling distance Mr, the structure function

Ci(r) should admit the following form:
Ci(r) = Zn, CU™(Mr) (2.4.15)

where the r-independent renormalization constant Z, ., absorbs all divergences

at ¢ = 0 and renders the renormalized structure function C%ren) finite in this

limit. The divergences of the renormalization constant Z, . should be directly
(ren)

related to the singularities of C; at Mr = 0; they point out that the power

law asymptotic behavior (2.4.5) is modified by logarithmic corrections at ¢ = 0.



Note that the use of the deformation (2.3.1) of the model (2.2.8) along with
a singular system of coordinates where the renormalization group flow is that of
a super-renormalizable theory can be understood as a nonperturbatively defined
dimensional regularization for the model (2.2.8). The parameter € is the small pa-
rameter of this dimensional regularization, and the form (2.4.15) for the structure
function is the expected form where the renormalization constant Z,, , absorbs
all ultraviolet (¢ — 0) divergences.

In order to explore the short-distance behavior for ¢ < 1, it is convenient
to return to the fermion description, and to define an appropriate system of
coordinates in the coupling space. Being essentially the corresponding structure
function in the renormalizable QFT (2.3.1), Cy(r) obeys the Callan-Symanzik

equation. Therefore it can be written in the form:

"d

Ci(r) = r—2 exp{ 9 / o, —d) } . (2.4.16)
0 r

Here the function I'; is supposed to have a regular power series expansion in terms

of the running coupling constants g . = g, .(r):
Ty= Y g gt (2.4.17)
{,k=0

where 7, are constant coefficients. Notice that only even powers of the coupling
gL appear in this expansion (see footnote #3). In writing (2.4.16), we use the
normalization condition (2.4.8), and take into account that the UV limiting value

of I', coincides with the scale dimension (2.3.10),

limT, =d . (2.4.18)

r—0
We have also assumed that there is no resonance mixing of the operator O7,; with
other fields, so it is renormalized as a singlet. One can easily check that this is
|

indeed the case for the operators with |w| < 1 + %.

Condition (2.4.18) already encloses an important restriction on the series

(2.4.17). Indeed, using Eqs. (2.3.3) and (2.3.10) along with the condition that



the line of UV stable fixed points corresponds to g, = 0, one obtains

Iy =TO(g) + T W (g g1 + TP (g)) gl +0(g5) , (2.4.19)
where

The values of the other coefficients v; ;> appearing in (2.4.17) essentially
depend on the choice of a renormalization scheme, i.e on the precise specification

of the running coupling constants. The latter obey the RG equations

dg) gt dg. 991
r—=—_——-— r =

dr— filgn92)’ dr — filgp,g.) (2.4.21)

Perturbatively, fj(g),g.) and fi(g),g.) admit loop expansions as power series in
gy and g1 . In this work, we will use the scheme introduced by Al.B. Zamolod-
chickov [142, 140]. First note that from arbitrary power series fj(g,g.) and
J1(g,91), it is always possible to find a diffeomorphism in g and g, such that
in (2.4.21) we have

Tia,91) = filay,90) = fgy) -

In such a system of coordinates the line g = g, is preserved under the renor-
malization group and corresponds to the SU(2)-invariant situation. Next observe
that at very short distance scales r — 0, we have g; — 0 and g — 2p so that in

that region,

dg)
r— =

dgy 2
L=0(g2),  roE=EE406) (r=0). (2.4.22)

dr ~ J(2p)

This renormalization group flow should be the same, in the region r — 0, as that
for any system of coordinates sharing the same limiting values 2p of g and 0 of g,
as r — 0. In particular, comparing with the renormalization group flow (2.4.12)

for the system of coordinates formed by g, g, discussed above, we find

fla) =1+ % : (2.4.23)



Note that the fact that we have a line of fixed points allowed us to determine a
regularization scheme where the beta function is known to all orders.

It is in fact possible to exhibit quite explicitly a transformation of coordinates
that brings (2.4.21) with (2.4.23) to coordinates g, g1 obeying (2.4.12). Indeed,

this can be achieved by

g1 =g+ ha(g) 31 +0(G1), gL =hi(g) .+ ha(g) 31 + O(G1)

where all A, are determined once we fix hy = O(g)). For instance,

hihy
2g1he = kY, 2§hs = ———, ...
g|| 2 1> 9|13 1_|_§”/27
and we can choose h; = g). Since we know that there exists a regularization

scheme leading to coordinates described by the flow (2.4.12) in the model (2.3.1),
then the change of coordinates above shows that there exists another regulariza-
tion scheme leading to coordinates described by the flow (2.4.21) with (2.4.23).
With the choice (2.4.23) for the S-function, the RG equations (2.4.21) can be
integrated. To do this, we note that this system of differential equations has a
first integral, the numerical value of which is determined through the condition
(2.3.3),
? - = (20 (2.4.24)

Using (2.4.24), (2.4.13) and (2.3.5), equations (2.4.21) are solved as

1+¢ 4./g
=2 = —p VL 2.4.25
M= =P T ( )
where
1 — —2e
g (—q> = (rA)*. (2.4.26)
p

The normalization scale A is another integration constant of the system (2.4.21).
It is of the order of the physical mass scale and supposed to have a regular loop
expansion,

A=M eXp(T0—|—7'1,0—|—T2p2—|—...) ) (2.4.27)



It should be noted that the even coefficients 7y, 75, ... are essentially ambiguous
and can be chosen at will. A variation of these coefficients corresponds to a smooth
redefinition of the coupling constants which does not affect the -function. By
contrast, the odd constants 75,41 are unambiguous and precisely specified once
the form of the RG equations is fixed. It is possible to show [142, 140] that the

odd constants vanish in Zamolodchikov’s scheme:
Tok+1 = 0 (k=0,1...).

Once the coefficients 15 in (2.4.27) are chosen, the running coupling constants
are completely specified, and all coefficients in the power series expansion (2.4.17)

are determined unambiguously. They can be explicitly calculated by comparing

the conformal perturbative result (2.4.5) with the form (2.4.16). From (2.4.16),

1
I, = —5 T 0, log (Cy) (2.4.28)

and, as it follows from the general conformal perturbative expansion (2.4.14) and
the definition (2.4.26) of ¢, the function I'; can be expanded in powers of q.

Explicitly, using the conformal perturbative result (2.4.5),

[, =d—2e (\/T'E)% 2 Jn(20(1 = €),2¢ — 2) g+ O(?) . (2.4.29)

Moreover, the coefficients in this expansion are power series in p. For example,

using Eqs. (2.3.6) and (2.4.27), it is easy to show that

% (%)26 = exp { —27op+ (Zfo— %)pQ— (272+270—§C(3)— %) p’+0(p") } :
(2.4.30)

Here and after, we set for convenience

e = \/g FEtm (2.4.31)

where yg = 0.5772... is the Euler constant. The integral J,(2w(1 — €),2e — 2)

appearing in (2.4.29) can also be expanded in powers of p, using ¢ = p/(1 +



p). In Appendix A.1, we quote the first few terms in the expansion of .J,(a,c)
(2.4.6) around ¢ = —2, which are obtained through the use of (2.4.10). From this
expansion, it is easy to obtain the expansion of .J,(2w(1 — €),2¢ — 2) in powers
p. Then, one can compare the conformal perturbative expansion of T'; in ¢ and p
(2.4.29) with the corresponding expansion (2.4.17) coming from the RG analysis
(where of course one should expand g and g} in ¢ and p from (2.4.25)). This
determines the coefficients ;1 for [ = 0,1,2. If we want an expression valid to
order g*, we need one more coefficient: 79 2. In principle, it can be obtained from
the expansion in p of the coefficients ¢, in the series (2.4.14). In Section 5, we
describe a way to find 792 without the cumbersome calculation beyond the lowest
order in conformal perturbation theory.

In order to simplify the form of the structure function (2.4.16), it is convenient,
instead of using the coefficients v, ;, to parametrize the first few terms of the power
series expansions F(l’Q)(g”) (2.4.19) as:

2

1 n U 3u
o =~y {55 e (- )00}
2
v
PO = 10l (2.4.32)

2

The explicit values of the coefficients uq, ug, v and vy in (2.4.32) are given in
Appendix B.

Let us substitute (2.4.19) and (2.4.32) into Eq. (2.4.16). The RG flow equa-
tions (2.4.21) allow one to evaluate the integral and to write the structure function

in the form (2.4.15) with

2

Cgren) _ (MT)—4w2—n2(1+p2)/4 (gi)w —-n?(1-p%)/16

X eI (1 + g% (v + vag)) + 0(94)> ;o (24.33)

and

>n2/2_2d 62pu1+(2p)3u2+“' . (2434)

3
an — MQd <2P+1\/IBGTOP+T2P +...



Notice that the transformation

Ty — et @042 4 (2.4.35)

where the series contains only even powers of p with arbitrary coeflicients wy,

accompanied by the transformation

CY@”) N e—wo—wl(gﬁ—gi)—wg(gﬁ—gi)Q-}—... C%ren)

does not affect the structure function Cy (2.4.15) due to relation (2.4.24).
Our prime interest in this work is the correlation function (2.3.8). For n =

1 and w = i, the relations obtained above lead to the following perturbative

expansion for the two-point fermion correlator in the anisotropic SU(2)-Thirring

model:
- Zgls15  Yuxt i 3 70
\IIU; \IIUO = 79 s 276 {__ _ Y 3}
(Vo (2) 0o (0)) = =57 2 (L)' exp = 15 91~ 55 9
3 /- 1 3/ 1 1
<exp {15 (7)1~ 35 (% 5™ —75) mel + 0" }

(2.4.36)

where

g ~ st 3
Zy = (4p) 509 (M\/§> e exp{gp—%pg—l—O(p‘l)}.

In Eq. (2.4.36), we use the notation 7o defined by (2.4.31).
We now set p = 0 and g = g1 = g in (2.4.36) to obtain the perturbative
expansion of the scaling function F' (2.2.9) for the SU(2)-Thirring model,

3 3 1 3 1
(pert) _ {__ _<7__> 2__(4__)3 4}. A
F exp T g+ T To 1 g T T, T g+ 0(g") (2.4.37)

Here the running coupling constant g solves the equation

1 T _
_ 41 _ — Z vE+To
g+ 5 In(g) =1n <\/;e Mr) , (2.4.38)

which is the limit p = 0 of Eqs. (2.4.25) and (2.4.26).



Let us stress here that, if the perturbation series could be summed, then the

function F' should not depend on the auxiliary parameter 7y:

oF
—=0.
070

This is, however, not true if we truncate the series (2.4.37) at some order N (for

instance, if one leaves only the terms explicitly written in (2.4.37)). In this case,

a er
o7 IV = 0(g™)

where the truncated series is denoted by F](\?m). In fitting numerical data with

(2.4.37), we may treat 7o as an optimization parameter, allowing us to minimize

or at least develop a feeling for the effects of the remainder of the series. Similar

ideas have been discussed for QCD in Ref. [121].

2.5 Perturbative expansion in momentum-space

Perturbative calculations of fermion Green’s functions in renormalizable 2D mod-
els with four-fermion interaction are widely covered in the literature (see [11, 2]
and references therein). The results in this domain are usually expressed in mo-
mentum space. Hence it seems appropriate at this point to adapt the calculation
of the previous section to the momentum-space fermion correlator, giving a large-
momentum expansion. Here we give the two-point function in the SU(2)-Thirring
model to third order in the running coupling.

The RG analysis performed in the previous section can be applied in essentially

the same way to the Fourier transform of the fermion correlator (2.3.8):

—ipa i S
/d2$ e (W, (2) Ui (0)) = —i 0o pQM F(p*) . (2.5.1)
Here and after we use the notation p*> = p“p,. From the result of conformal

perturbation theory, (2.4.5), one can immediately obtain the large momentum

expansion of this Fourier transform. The RG analysis in momentum space goes



as in the previous section. The perturbative part in p of F obeys the Callan-
Symanzik equation, so it can be written as
77 (pert) 2\dy — 1 “ds -
FOr) — O(dy) (p?)Pr—3 exp{ - =0 - dq,)} , (2.5.2)
p2

where the function I'; admits a power series expansion in terms of the momentum-

space running coupling constants g1 = ¢|,.(p*) depending on the Lorentz in-

variant p*:
Ty = A gjgt . (2.5.3)
1,k=0
Here
INER
_ gl-2a _\2
A= riray
and
1 p*
dy = -+ ——
LA RAPTT Ry

is the scale dimension of the fermion field. Notice that, with some abuse of
notations, we use here the same symbols g . for the momentum-space running
couplings as we used for the coordinate-space running couplings. In order to fix
the coefficients in (2.5.3), we have to choose a renormalization scheme. Substitut-
ing r by 1/\/}72 in (2.4.26) defines Zamolodchikov’s scheme in momentum space.
It is a simple matter to repeat the steps of the previous section in order to de-
termine the first few coefficients 4;; in (2.5.3). As for the coefficients 4,2, one
would in principle need the next order in conformal perturbation theory. How-
ever, again as in the previous section, it is possible to determine ¥y, without this
calculation, as described in the next section. From these coefficients, and from
the form of the RG flow equation, one can evaluate the integral in (2.5.2) and
obtain the asymptotic behavior of the two-point function in the Euclidean region
at p* — +oo. I quote here the result in the case of the SU(2)-Thirring model,

. 3 3 1 3 1
F(pem‘) — { - (N _ _> 2_ = <~2 — —) 3 4 } . 2.5.4
exp 169‘|‘ 16 o= 7)Y 16 7o 16 g+ 0(g") (2.5.4)



Here

g+ % In(g) =In(V2rM €™ /\/p?) (2.5.5)

and 7y is an arbitrary parameter which can be chosen at will. Notice the strong
similarity between (2.5.4) and (2.4.37).
I also quote here the corresponding function fg (2.5.3) in the case g = g1:

.1 3 3 3 3
IR S APRE —(~2 ~——)4 5 2.5,
i =T g9 Ty (3% HT— ¢ g +0(g") (2.5.6)

In [2], the anomalous dimension for the fermion field in the MS scheme was
found to fourth order for a general non-abelian Thirring model (see also [11] and
references therein for a discussion of various aspects of dimensional regularization
in the non-abelian Thirring model and for results to lower order). In contrast, we
have calculated, in coordinate space, the two-point functions of more general op-
erators, including the fermion fields, in the particular case of the SU(2)-Thirring
model (and an anisotropic deformation of it), and we have sketched the equiva-
lent calculation in momentum space for the fermion fields. We would now like to
compare Eq. (2.5.4) with the SU(2) case of the Ali-Gracey result [2]. In order to
perform the comparison, we need to find the relation between our running cou-
pling constant g and theirs, which will be denoted g4 = —X ?, and then find the
relation between our function fg (2.5.2) and their anomalous dimension, which
we will denote 7.

The coupling A corresponds to the MS scheme; the associated f-function was
found in [11] to fourth order:

Ldx A2+A_3 83
dp2 "% m 272 128%3

A+ 0(N) . (2.5.7)
By comparison, in the scheme that we use, the S-function (2.4.21), (2.4.23) is

dg q° g g
22 5 = ——?+ L L L0 . 2.5.8
p By o2 S5 -7t (9°) (2.5.8)

3Notice that in [2], the coupling constant g4 is assumed to be negative, so A > 0, which
agrees with the sign of our coupling constant g.



The difference in the factor multiplying the square of the coupling in these two
expressions results only from a different normalization of the coupling in the action
(see Eq. (2.2.8)). The relation between the couplings g and A that corresponds

to these different B-functions is

Here 7 1s some numerical factor which cannot be determined by comparing the (-
functions: its variation modifies the choice of the normalization scale and doesn’t
affect the B-functions. The normalization scale for the MS scheme is defined by
imposing the following condition on the subleading asymptotics of the solution of

the RG flow equation (2.5.7):

A 1 1 Inln(v/p2/Ags) In® In(v/p?/Ayrs)
A L +o( ) . (25.10)
In*(v/p?/Asis)

= +
T In(Vp/Am) 2 It (VP As)
(This implies that the term O(1/In*(y/p?/As5s)) does not appear in the expansion
of A\.) From (2.5.5), (2.5.9) and (2.5.10), we find that

Asis = V21 M €77 . (2.5.11)

In [2], the perturbative part of the function F (2.5.1) was calculated up to the
overall multiplicative normalization to third order in A. The result can be written

in the following form

N 1 1 (7 ds
Fleert) o — { _ / = }
X hA eXp 2 < ")//\ 5

where the function k) and the anomalous dimension «, were given in [2] to fourth
order in A for the Thirring model with a general non-abelian symmetry. In the

particular case of the SU(2)-symmetry, they specialize to

15 o 114 3(80¢(3) —511)

hy =1 -
R T 51273 32768 74

M4+ 0N, (2.5.12)

and

3 15
= — 22 23 M+ 0. 2.5.13
MW= Tz N Toa N T iozam M TON) ( )



Comparing (2.5.2) in the case p = 0 with the above expressions, one has the

following relation:

r=---_-= — log(hy) . (2.5.14)

Using Eqs. (2.5.9)-(2.5.13), one can check that our result (2.5.6) agrees with
(2.5.14), provided that
=7, (2.5.15)

Notice that the relation between the normalization scale Ajg and M,
Ayis = V21 M (2.5.16)

which is a consequence of (2.5.11) and (2.5.15), was previously found in Ref.
[130].

2.6 Long-distance behavior

Here we concentrate on the long-distance behavior of Schwinger’s function (2.3.9)
for n =1 and w = 1/4. Let us recall that for % < (3? <1, there are only solitons
and antisolitons in the spectrum of the sine-Gordon model. We will denote them
by A_ and Ay, respectively. The conservation of the topological charge,

ﬁ o0

dx Oy
27 xOx¥

— 00

implies that the non-vanishing form factors of the operator (’)E/l4 are of the form
(vac | OFL(0) | AL(Br)+ A_(Onsn) A (8)- - An(8h)) . (26.0)

where 6; and 0’ denote rapidities of solitons and antisolitons, respectively. Up
to an overall normalization, all these form factors can be written down in closed
form, as certain N-fold integrals [118, 89, 90, 7]. The spectral decomposition for
the correlation function (2.3.8) then gives

+teo dp
F)r) = / 5 e Mt [(vac | OF1(0) | A-(0))] (2.6.2)

o0



L / = d01d0>d05 1,57 cosh(on)
31 ()

<3 Jvac | OF(0) | Any (6)Ars(62) Ary (62)) + .. |

o1+oa+o3=—1

where the dots stand for the five-particle and higher contributions, which are
of the order of e=®M". The long-distance asymptotic behavior of the correlation

function is dominated by the contribution of the one-particle states,

( vac | OF1,(0) | A_(0)) = \/Z1(B/4) €5 O+5) |

and has an especially simple form,
—Mr

Fl(/lz)l(r) = Zl(/B/4) { \/m

Here we use the notation Z,(a) (¢ = wf3) from work [92] for the field-strength

+ O(e=?M) } . (2.6.3)

renormalization which controls the long-distance asymptotics of the correlation
function (2.3.9). Let us stress here that the overall multiplicative normalization
of the field Oﬁ/4 was already fixed by the condition (2.4.8), hence the constant
Z,(3/4) is totally unambiguous. In [92], the following explicit formula for Z,(w3)

was proposed:

(2.6.4)

2\ 2 2 _§ \/_MF(% QL)
wet) = () () orosp |

202 16p 2T (1 +

/Oo dt cosh(dwt) e~(+ont
X exp [ — { . .
o ¢t U2sinh(¢)sinh ( (14 p)t) cosh(tp)

T3 si:h(t) -2 e ]

In this formula, d is the scale dimension (2.3.10) and the constants Cy, C; read

9= ei (L o0 inh?(%2) et
G = - 3(4) exp{ / ﬂ SmQ (Q)Ci }7
VAL o t 2 cosh”(tp) sinh(t)

(L  dt  sinh?(2) e
c, = (4) eXp{—Q/ at Sin (2)6 }7
0

473 t cosh(tp) sinh(t)

where Ag = 1.282427 ... is the Glaisher constant.
We do not write down explicitly the general formula for the three-particle

contribution in (2.6.3) because it is a rather mechanical substitution of relations



presented in [92]. (For 3* = 1 the corresponding formulas can be found in Ap-
pendix A.4.) Here we make the following observation concerning the 3? — 1

limit. The examination of (2.6.2) based on explicit formulas for the form factors

shows that the function [Z(5/4)]”" ro)

1/4 admits an asymptotic power series ex-

pansion in terms of the variable p?. In other words, all divergences at p? — 0

of )

1/4°

the normalization constant Z;(3/4). Using Eq. (2.6.4), one can check that the

considered as a function of the variables p? and Mr, are absorbed by

constant Z;(/3/4) admits exactly the same type of singular behavior at p* = 0 as
the constant 7, (2.4.34) for n = 1, w = 1/4, and also that

le(ﬁ/4) — 9t me T A2 exp (wi p? + O(p%)) . (2.6.5)
1,1/4

The explicit form of the coefficient wy i1s not essential here. What is important is
that the linear term in p does not appear in the expansion (2.6.5). This observa-
tion can be immediately generalized and checked for any n and w. Furthermore,

we expect that
Z,(wp - ~
tog (Z25)) = $ 7w 4 0(%) (2.6.6)
W k=0

where Z,(wf) is the normalization constant (2.6.4). In other words, by means of
the transformation (2.4.35) with properly chosen coefficients wy, the constant Z,, ,
in (2.4.15) can be set to be equal (in a sense of formal power series) to Z,(w(3).
At the moment, we do not have a rigorous proof of (2.6.6). But it leads to some
interesting prediction to be checked. As was already mentioned, the calculations
performed in the leading order in conformal perturbation theory determine only
the combination vy —3u3/2, but do not fix the individual values of the coefficients
uy and vy in the series (2.4.33). Accepting (2.6.6), one can immediately find
the values of the coefficients uy (see Appendix A.2). In the case n = 1, w = i, it
allows one to extend the perturbative expansion (2.4.37), as well as the equivalent
expansion (2.5.4), to order ¢g°. As was discussed in Section 4, Eq. (2.5.4) is in a

complete agreement with the result of four-loop perturbative calculations from [2].



This in fact shows that the p*-term really is absent in the series (2.6.5). Equation
(2.6.6) predicts an infinity of relations among the perturbative coefficients of the

anomalous dimension I', in Zamolodchikov’s scheme (see Appendix A.3).

2.7 Spectral density

The spectral density is an important quantity related to the two-point function
and its analytical structure in momentum space. It is often what is measured
in actual condensed matter experiments [63, 45], and it allows one to completely
reconstruct the two-point function. In this section, we discuss the properties of
the spectral density in the SU(2)-Thirring model.

The spectral decomposition of the fermion Green’s function yields the follow-

ing form for the function F (2.5.1):

F@%:1—[;mmﬁ%%%. (2.7.1)

The notation AF for the spectral density reminds us that F, considered as a
function of one complex variable p*, has a branch cut in the Minkowski region
p? < 0 starting at p> = —M?, and that the spectral density can be recovered from

the discontinuity along this cut:

AF(S) _ L (F(e”s) — F(e_”s)) ) (2.7.2)

2w
The easiest way to obtain the large s asymptotics of the spectral density is to
use the expansion (2.5.4) along with knowledge of the analytical properties of the
coupling constant g (2.5.5) as a function of the complex variable p?. Notice that g
can be expressed in terms of the principal branch of the product log (or Lambert)

function, which gives the solution for W in W e" = 2 (see e.g. [30]):

2 27
re ). (2.7.3)

:2%”%
g 7w M?2

The principal branch of the W-function analytically maps the complex z-plane

minus the branch cut z €] —oo, —e™'] to the part of the complex W-plane enclosing



the real axis and delimited by the curve ReW = —Sm W cot(Sm W) for —7 <

Sm W < m. The analyticity implies that the power series

o0

n=0

converges for real positive s > ¢! and |¢| < 7 and coincides with W (e'?s).
Similar considerations are, of course, valid for the coupling constant g (2.7.3). In

particular, for sufficiently large s,

CDEDY % (imp? d%)n 9(r”)

n=0

p?=s

This then gives us, with (2.5.4) and the RG flow equation (2.5.8), the asymptotic
expansion of the spectral density for large s. It can be written in the following

form:
2 2

~ __g_ _g_ﬂ' —1 9 3 aF(peTt)
AF(s) = 2{1 " g-+0@)} 5

Here the function F®er?) is given by (2.5.4) and ¢ is defined by the equation

(2.7.4)

p?=s

(2.5.5).
Now let us consider the threshold behavior of the spectral density. According
to the analysis of the previous section, the long-distance asymptotic behavior of

the scaling function F' (2.2.9) is described by the expansion

F=FY4 p® L0 My, (2.7.5)
where
F(l) — C e—Mr 7
with the constant
C=27% 7 AL =0.921862... .

The function F®) in (2.7.5) gives the three-particle contribution to the correlation
function. Using the definitions (2.2.9), (2.5.1) and the above relation, one can

obtain:

N B 1
Pty =c {1 ;Tfﬁﬁﬁ}+“" (2.7.6)



Here the dots stand for contributions of the massive multiparticle intermediate

states. The last relation implies that the spectral density (2.7.2) can be written

as
- C O(s— M?) 9 .
AF(s) = — ————L +0(s —IM?) AFO)(s) | 2.7.7
()= G Ty O M A )
where
1 for s >0
6(5) = )
0 for s <0

and AF®) is some function which contributes to the spectral density only above

the threshold s = 9M?2.

2.8 Numerics

In Table 2.8 we present results of numerical evaluation of the function F' (2.2.9)
as a function of the scaling distance Mr (r = |z|). To estimate the short-distance
behavior, we use the perturbative expansion (2.4.37). As was already mentioned,
the parameter 75 allows one to have control over the accuracy of the truncated
series, so we calculate (2.4.37) for two different values of 75 : —0.25 and +0.25.
To determine the long-distance behavior of the function F', we use the formula
(2.7.5), where the three-particle contribution F®) was obtained by means of Eq.
(2.6.2) along with formulas for the three-particle form factors quoted in [92] (see
Appendix A.4). It is interesting to see that the sum of the one- and three-particle
contributions to F'is very near to unity at r = 0 (to within 1%), which indicates
that this three-particle computation of the correlation function is in fact accurate
to about 1% for all distance scales (more accurate, of course, for larger r). Also,
note that the crossover between the long- and short-distance asymptotics appears
to be at the scaling distances Mr ~ 0.001 —0.01, where both asymptotics coincide

to within about 0.1%.



Mr FO) FO PO 4 pO [ plert) (7 = —0.25) | Frert) (7 = 0.25)
0 ].921862| .068 990 1.00000 1.00000
.00001 | .921853 | .0553 9771 980129 1980130
.00005 | .921816 | .0522 9740 976311 976314
0001 |.921770 | .0504 9722 974192 974196
0002 |.921678 | .0483 9700 971674 971678
001 [.920941 | .0415 9624 1963508 1963520
002 |.920020 | .0375 9575 1958435 1958454
01 [.912689 | .0252 9379 1939386 .939460
025 |.899101 | .0168 9159 1919294 919494
.05 | .876902 | .0106 8875 894050 894547
075 |.855251 | .00738 | .86263 871796 872717
1 [.834135 | .00541 | .83955 850520 852013
15 [.793454 | .00317 | .79662 .808380 811548
2 | .754757| .00200 | .75676 765139 770842
25 [ .717947 | .00131 | .71926 719980 729252
3 ].682932|.000889 | 683822 672640 686654
35 |.649625 | .000617 | .650243 623153 643171
4 .617942 |.000436 | 618379 ST1774 599063
45 | .587805 |.000313 | 588118 518942 554677
5 [.559137 |.000227 | .559365 465257 510405

Table 2.8. The scaling function F' (2.2.4), (2.2.9). The first columns give the
results of the long-distance expansion which includes contributions of the one-,
three- and one+three-particle states. The data in the last two columns correspond
to the perturbative expansion (2.4.37) for the two different values of the auxiliary
parameter 7.



2.9 Conclusion

In this chapter, I studied the fermion Schwinger’s function in the SU(2)-Thirring
model and in an anisotropic integrable deformation of it. I used and compared
two well-established methods: the form factor expansion, and conformal per-
turbation theory combined with a renormalization-group (RG) analysis, leading
respectively to the long-distance and the short-distance behavior of the correla-
tion function. A proper comparison of these opposite limit behaviors needs an
adjustment of the normalization used in one method with respect to that used in
the other method. The necessary formula for such an adjustment was proposed
in [92]: there the exact form factors, with appropriate normalization constant,
were conjectured under a “conformal” normalization of the fields. This allowed
us to numerically compare both methods and to observe an agreement to within
1% in the region 0 < Mr < 0.05. Moreover, using these exact form factors it was
possible to conjecture an infinite set of relations between expansion coefficients of
the fermion anomalous dimension arising in the RG treatment of the anisotropic
model. This was done essentially by identifying the singular part in p* (see Egs.
(2.3.3) and (2.3.5)) of the normalization constant conjectured in [92] with the
singular part of the normalisation constant obtained in the RG treatment (see
(2.6.6)). Using one of these relations along with a first non-trivial order calcu-
lation in conformal perturbation theory, it was possible to obtained the desired
fermion Schwinger’s function to third order in the coupling of the SU(2) model,
and to observe agreement with what was obtained in [2] by standard perturba-
tion theory. These results, numerical and analytical, suggest the validity of the
conjectured exact form factors of [92] in the case of the SU(2)-Thirring model. It
might be interesting to apply similar methods to Thirring-like models with other

symmetries.
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Chapter 3

Introduction

Quantum field theory in curved space-time is a subject which has been studied
from many viewpoints (see for instance [15, 126]). Naturally, understanding this
subject is an important first step in the development of a theory that includes
quantum gravity as well as the quantum dynamics of local fields, as one needs to
probe the effects of a curvature on quantum fields. But, borrowing intuition from
theories on flat space, we can expect other applications of quantum field theory
in curved space, in particular in a space with Euclidean signature: those related

to the study of classical statistical systems on curved space’.

A classical statistical system on a manifold is composed of a large number
of classical local degrees of freedom interacting locally on this manifold. Such
classical systems on flat space have been used to describe many physical situa-
tions where quantum fluctuations are negligible compared to thermal fluctuations.
Probably the most important outcome of the study of classical statistical models
is the understanding of second order phase transitions occurring at finite temper-
atures. The importance of this understanding resides in the universality of the
descriptions of phase transitions: models with very different physical constituents
may behave in very similar ways near to a second order phase transition. This
universality can be understood in terms of quantum field theory, and the univer-

sality classes of phase transitions are essentially identified with the symmetries of

! Although in the case of flat space, models of quantum field theory with Euclidean signature
are related by analytical continuation to models with Minkowsky signature, generally there is
not such relation on a curved space.



the order parameters describing the phase transitions.

On curved space, the problem of understanding classical statistical systems
has much room for development. An effective curved space induced by the mi-
croscopic physics of a “classically described” material may occur, for instance,
because of the systematic presence of defects in the material (locations where
the local interaction is modified), or because of smooth variations in space of
the strength of local interactions. Defects are certainly present in real materials,
and in many models they are studied in random distributions (quenched disor-
der). Studying their effects when they are distributed in more systematic fashions
can lead to interesting new insights into the problem of defects in materials. In
addition, there may be situations where such a more systematic distribution of
defects naturally appears. Some materials can be described effectively by two-
dimensional statistical models: crystalline planes do not interact strongly among
each other. It is natural to inquiry as to the effects of smoothly “bent” planes,
where the bending induces defects, on the statistical properties. In fact, any
three-dimensional material where the interaction between the degrees of freedom
is restricted, by some means (like by application of a magnetic field), to a curved
surface, will have a description near “phase transition” in terms of a statistical

model on a curved space.

Defects can also be considered as dynamical degrees of freedom. If they are
much slower than the degrees of freedom of the statistical model, then one can
consider the thermodynamical laws of the statistical model as inducing a dynamics
on the defects. Glasses are examples of materials where the structure is a very
slow dynamical degree of freedom, and the understanding of the thermodynamics
of statistical systems on curved space may shed some light onto systems of this
kind. From this point of view, there might also be an interest in quantum gravity:
a statistical system that thermalizes faster than natural fluctuations of the metric

can lead in this way to an approximate dynamics of space-time geometry.



Finally, there is a possible a posteriori reason to study statistical mechan-
ics on curved space. In systems with boundaries, one usually observes, in the
renormalization group flow of quantum field theory, a cross-over behavior from a
model of a given dimensionality to a model of a lower dimensionality. This is very
natural, since the short distance physics does not see the boundaries, whereas the
long distance physics sees only the directions (if any) parallel to the boundaries.
It would be very interesting to obtain a model where the renormalization group
goes in the opposite direction. Indeed, one is sometimes able to solve models of
quantum field theory of lower dimensionality, and a model is usually described
by its local degrees of freedom, which is essentially an ultraviolet description.
Solving a model that has low dimensionality in the ultraviolet and that flows to a
higher dimensional model would give information about this higher dimensional
model. As we will argue from our exact results, it is possible to have a model
that flows to “infinite” dimensionality by considering its local description on a
two-dimensional manifold of constant negative curvature. Although “infinite” di-
mensionality is not the most interesting case and can usually be studied by mean
field theory, it is tempting to suggest that there may be ways, using similar ideas,

of finding fixed points of intermediate dimensionality.

3.1 From lattices on curved space to quantum field theory

The most natural question in the study of statistical models on curved space
is probably about the modification of their critical properties due to a nonzero
curvature, which introduces an additional scale. In analogy to models on flat
space, | expect that this question can be studied using Euclidean quantum field
theory. More precisely, the “program” for such a study can be divided into three

steps:

The first step in our program would be to construct an actual statistical model



on a curved space: to give an explicit description of the microscopic degrees of
freedom of a model on a given curved space. There are many ways of doing
that. One can start with a given statistical system on a regular lattice on flat
space, and implement the curvature by assuming that the sites are separated by
a constant geodesic distance and by modifying the number of neighbors around
some sites: more neighbors around a site implements a local negative curvature,
whereas less neighbors implements a local positive curvature. There is a precise
relation between the number of neighbors for a given regular lattice and the
local curvature. This procedure is useful, because it directly gives a curved-space
equivalent of any statistical system where the interaction between sites is function
of “neighborhood,” as is often the case in statistical models. For instance, the

nearest-neighbor interaction in the Ising model is easily adapted to this procedure.

One could also imagine implementing a curvature by modifying the distance
between neighbors: a greater distance implements a local negative curvature,
whereas a smaller distance implements a local positive curvature. From the view-
point of lattice statistical models, thought, it seems slightly harder to realize
this method. One would have to change the strength of the interaction between
neighbors in a position-dependent way, according to the inter-site distance; but
in many statistical models, like in the Ising model, there is usually no a prior:

way of relating the interaction strength to the inter-site distance.

In the second step, in analogy with the situation on flat space, a scaling limit
has to be defined so as to keep only the universal properties of the model: the
parameters (temperature and curvature) should be adjusted so that the system
is around a critical point, with a correlation length much larger than microscopic
distances. This is in fact a very nontrivial step, and little is done in the liter-
ature. Let me describe in more precise terms how the scaling limit should be
defined, assuming that most of the basic concepts underlying it in the flat-space

situation carry over to the curved-space situation. Consider for definiteness a



statistical model on a space of constant negative curvature, the pseudosphere;
this space will be the subject of my study in the following. Assume that we
first embed the statistical model on a lattice with a finite number of sites into
a given patch of the pseudosphere, in one of the ways described in the previous
paragraphs, for instance. There should be some sites that can be identified as
“boundary” sites on this finite lattice; they lay on the boundary of the patch. We
prescribe some boundary condition on the degrees of freedom of these boundary
sites. There should also be a prescribed ratio between the “radius of curvature” of
the pseudosphere, denoted R below and defined such that the Gaussian curvature
is —1/R?, and some microscopic distance characterizing the lattice, playing the

role of a lattice spacing.

Now, consider the operation that modifies the lattice in such a way that the
curvature is brought towards zero in microscopic units, and that the patch on
which the lattice sits is kept invariant on the scale of the radius of curvature R;
during this operation, the number of sites certainly increases. Consider doing this
operation in such a way that the lattice embedded into the patch of the pseu-
dosphere resembles more and more, in any region of fixed radius in microscopic
units, a prescribed flat-space regular lattice. Assume that the statistical model
we are considering, when put on that prescribed flat-space regular lattice at infi-
nite volume, possesses a critical temperature 712!, with an associated correlation
length 3¢, We define the finite-volume scaling limit on the pseudosphere by
the operation described above along with bringing the temperature towards 7fat,
keeping the ratio of the radius of curvature to the flat-space correlation length
R/€%¢ constant. The resulting theory should be a quantum field theory on a
finite patch of the pseudosphere. Correlation functions of local variables on the
lattice, when evaluated at distances proportional to the radius of curvature R in
the scaling limit, should be described by correlation functions of local fields in the

quantum field theory. Then we may take the thermodynamic limit by taking the



size of the patch to infinity in units of the radius of curvature. This step is also
nontrivial: there is no guarantee that the resulting theory will be independent of
the conditions that we impose on the boundary degrees of freedom as we send the
volume of the patch to infinity in units of the radius of curvature, or even that it

will be independent of the shape of the patch.

Finally, the last step is the one which I will develop below: analyzing the ex-
pected model of quantum field theory on a curved space with Euclidean signature,

obtained after taking the scaling and thermodynamic limit.

It is important to note that the validity of this picture for the scaling limit may
depend on the way the lattice is embedded into the pseudosphere. For instance,
putting defects on the lattice in order to implement a curvature will cause the
lattice to effectively have a curvature concentrated at points separated by finite
distances in units of R. Then, the quantum field theory can only be expected to
describe correlation functions at very large or very short distances compared to R
in the scaling limit. One way of circumventing this problem would be to smooth
out the curvature by statistical fluctuations of the lattice defects. This, however,
introduces an additional randomness akin to random lattice systems, and require

further studies.

3.2 The Ising model on the pseudosphere

A model of statistical mechanics which has been studied extensively for a long time
is the classical two-dimensional Ising model (see [98]). It is a model where two-
state variables representing semiclassically spin-1/2 quantum degrees of freedom
are placed on the sites of a regular lattice, with nearest-neighbor ferromagnetic
interactions, at some temperature and in some magnetic field. It is a very rough
model of a ferromagnet, an in fact is used fruitfully to model other statistical

systems like binary alloys. But probably its most prominent virtue is that it is a



simple model, where many exact results can be obtained in two dimensions, with
a nontrivial critical behavior representing a large universality class of statistical
systems. Its universal critical and near-critical behavior is most adequately stud-
ied using Euclidean quantum field theory; in this case, it is the so-called Ising
field theory. At zero magnetic field, this is the massive Majorana free fermion the-
ory (where the mass represents the separation of the temperature from its critical
value), and a magnetic field add to the free Majorana action a term nonlocal with

respect to the fermion degrees of freedom, proportional to the Ising spin field?.

I will be interested in studying the Ising field theory at zero magnetic field
on a two-dimensional curved space of constant negative curvature, the pseudo-
sphere?. In parallel to the case on flat space, I expect that this model represent
a large universality class of critical (or near-critical) behaviors on curved space:
Zo-symmetric statistical models with short-range interaction on a pseudosphere
should have a near-critical behavior represented by the Ising field theory on the
pseudosphere. Note that an Ising model on a regular lattice embedded on the
Poincaré disk was studied in [110]. It will be possible to compare some results of

[110] to results in Chapter 5; this is done in Section 5.8.

The interest in the pseudosphere is in part technical: since a space of constant
curvature is maximally symmetric, known techniques developed for the case of
flat space can be extended to the Ising field theory on such a space. But the
pseudosphere also has unusual characteristics, for instance it has an infinite (two-
dimensional) volume while providing an infrared regularization (as was argued in
[20]), and it can be expected to have nontrivial effects on the thermodynamics.
The study of these effects should in fact throw light on the main properties of the

thermodynamics on any negatively curved spaces.

I will present exact results concerning the magnetization and the two-point

2With a magnetic field, the model is non-integrable, except at zero mass (at criticality).

3The pseudosphere is also called the Poincaré disk when realized on the unit disk.



correlation functions of spin fields. The magnetization, which is the average of the
order parameter, gives a rough description of the various thermodynamical phases,
and the way it vanishes at a critical point is a universal characteristics, in principle
accessible to experiments. The two-point correlation function of order fields gives
direct access to the magnetic susceptibility, which also presents universal singular
behaviors, and which gives information about the phase structure of the system

with a magnetic field.

These results, and in fact more general results, are derived in the three pa-
pers [37, 38, 39]. The development in these papers goes as follows. In [37], 1
calculate the form factors of a set of local spinless scaling fields in the free Dirac
theory on the pseudosphere. In particular, I obtain the vacuum averages of these
scaling fields, and the form factors give the large (geodesic) distance behaviors
of their two-point correlation functions. The Dirac theory is just two copies of
the Ising field theory at zero magnetic field, and on flat space, particular linear
combinations of scaling fields in the Dirac theory factorize into products of order
and of disorder fields [148, 113, 132]. On a curved space, a similar relation should
exist. If so, then vacuum averages of particular scaling fields in the Dirac theory
give the magnetization in the Ising field theory, and their form factors give the
large distance expansion of two-point correlation functions of spin fields. In [38],
I verify this relation between the scaling fields in the Dirac theory and order and
disorder fields in the Ising field theory on the pseudosphere. Finally, in [39], with
Dr. P. Fonseca, we obtain nonlinear differential equations for describing the two-
point correlation functions of order and of disorder fields in the Ising field theory,

and we briefly discuss the thermodynamics of the model.

It 1s worth noting that these results have interesting applications in the the-
ory of Painlevé equations. Indeed, correlation functions of scaling fields in the
Dirac theory on the pseudosphere were suggested in [104] to be described by a

family of Painlevé VI differential equations. Then, my results about the form



factors in [37] give a solution to the so-called connection problem in the theory
of Painlevé equations: I found an explicit relation between the asymptotic forms
of the Painlevé transcendent around two of the singular points of the Painlevé
VI equation. Likewise, the nonlinear differential equations that we found in [39]
are a particular degenerate case of the equations in [104], and results about the
form factors of order and disorder fields as well as our short-distance analysis
using conformal perturbation theory give a solution to the associated connection
problem.

In Chapter 4, T reproduce the results and a slightly extended version of the
derivations of the paper [37] concerning scaling fields in the Dirac theory on the
Poincaré disk. Some of the results will then be used in Chapter 5 in order to
study the Ising field theory on the Poincaré disk, reproducing the results of the
papers [38] and [39].



Chapter 4

Two-point function of scaling fields in the Dirac
theory on the Poincaré disk

4.1 Description in terms of Painlevé VI transcendents

The free massive Dirac action with fermion mass m in the system of coordinates

of the Poincaré disk with a Gaussian curvature —1/R? is

- 2
A= /dxdy\ll <7X8X+7y8y+ ﬁ) v, (4.1.1)
— |z
where we use
r=mR, (4.1.2)
Ur _
and U = , U = Uy, We choose the Dirac matrices as
Uy,
. 0 0 1
v = ’ 7y =
—1 0 10

The field Ug has SU(1,1) dimension (1/2,0), and the field ¥z, has dimension
(0,1/2) (see Appendix B.1).
The two-point function that we are interested in can be represented by the
appropriately regularized Fuclidean functional integral
(Ou(2)O04(y)) :/ [DUDT]e . (4.1.3)
faya/

The integration is over the space F, . of field configurations vanishing on the



boundary of the disk and such that ¥, U acquire phases when continued coun-

terclockwise around the points z and y:

around z : U — €20, U — e~y
Fa,a’ : ) B . (414)
around y: U — 2™ — ¢~ 2mi"
It is easy to generalize this definition to correlation functions involving many

fields O, (x). The fields thus defined, O, = O! . —1 < a <1, are so-called twist
fields associated to the U(1) symmetry of the Dirac theory (see Section iv in the
Introduction). They are spinless, U(1)-neutral and have scaling dimension a®. As
is clear from their definition, they are not mutually local with respect to the Dirac
field. Their mutual locality index with the Dirac field is «, that is, the Dirac field
U takes a factor, U — ¢?™*¥, when continued counterclockwise around the field
O,. Their self-locality, on the other hand, follows from /(1) invariance of (4.1.1).

In the free massive Dirac theory on two-dimensional flat space, correlation
functions analogous to (4.1.3) can be studied by their relation to the problem of
isomonodromic deformations [112]. They are tau functions [112, 68, 67, 103] for
the isomonodromic deformation problem associated to some Painlevé equations:
they can be expressed in terms of Painlevé transcendents.

In [104], the authors generalized the method of isomonodromic deformation
to the study of determinants of the Dirac operator on the Poincaré disk. Their
results suggest that the two-point function (4.1.3) can be expressed in terms
of Painlevé VI transcendents. The general form of the Painlevé VI differential

equation is:

1/1 1 1 1 1 1
T "2 - J
v 2<w+w—1+w—s>(w)+<s+s—1+w—s>u

_w(w—1)(w —s) ((1 —4)s(s—1)  (A—1)%s (s —1) A?)

s2(1 —s)? 2(w — s)? O w? + (w—1)2 + 92

where w = w(s) and the primes mean derivatives with respect to s. There are

four parameters: r, v, A, X. For the description of the two-point function (4.1.3),



the parameters are fixed to r = mR as in (4.1.2), A = a — o/, A = a+a and
~ = 0. The two-point function is then identified with the associated tau function
7(s), with s simply related to the geodesic distance d(z,y) between the points z
and y:

(Oa(2)Ou(y)) = 7(s)

with

s = tanh? <d(;]’%y)> . (4.1.6)

Up to normalization, the tau function is given by [104]:

_ o\ 2 2
ilnr(s) _ s(1—s) w’—l w\® T
ds dw(l —w)(w — s) 1—s w— 8
22 2w A2 4p? )2 )2
+ A
41 =s)w  4s(l —s) 4s 4(1 — s)

n (4.1.7)

4.2 How to specify the Painlevé VI solution?

This description for the correlation function needs to be completed and to be
compared with a direct calculation in the Dirac theory on the Poincaré disk. In
order to complete it, one must supply appropriate integration constants specifying
the Painlevé transcendent that describes the two-point function.

First, the exponent 2aa’ in the short distance power law of the two-point
function,

(0u()O0ar(y)) ~ (Oagar)d(z,y)*** asz—y, (4.2.1)

specifies the exponent in the asymptotic behavior of w(s) near the critical point
s =0

w~ Bs®t as s — 0, (4.2.2)
where B is some constant. A solution of the Painlevé equation (4.1.5) (with

v = 0) that has the form w ~ s” as s — 0 must have 0 < v < 1. Then we must

have 0 < a + o < 1.



Second, the cluster property of the two-point function,

(0:0)0u0) = ©)OF (U5 fmF =1, 23)

fixes the form 1 —w ~ (1 —s)* as s — 1, and further imposes ¢ = 1 £ 2r. But a
solution that has the form 1 —w ~ (1 —s)* as s — 1 must have 0 < u < 1 or else
must have g = 1 + 2r. For r > 1/2, the only valid possibility is then gy =14 2r,
which specifies the exponent in the asymptotic behavior of w(s) near the critical
point s = 1:

l—w~A(1l—35)""" ass—1, (4.2.4)

where again, A is some constant. For 0 < r < 1/2, the two possibilities are valid:
i =142r. I will consider for now only the case y = 1+ 2r, for r > 0. The other
case corresponds to a different regime of the quantum field theory, and will be
analyzed in more detail in the framework of the Majorana theory in Chapter 5.
One can expect that the exponents in (4.2.2) and (4.2.4) form a set of inte-
gration constants fixing the Painlevé transcendent. However, one doesn’t know «a
priori that there exists a solution to the Painlevé equation with both behaviors
(4.2.2) and (4.2.4). In addition, even if such a solution exists, this set is not the
most convenient. One cannot use it for instance to provide initial conditions for
numerically solving the differential equation (4.1.5). It is more appropriate to fix
the full expansion of the Painlevé transcendent near the singular point s = 1, that
is, to specify the constant A in (4.2.4). Fixing this constant gives a solution to the
connection problem for the particular Painlevé VI equation that we are consid-
ering, that is, the problem of relating the behaviors of the Painlevé transcendent
near its various critical points. The expansion of the Painlevé transcendent near

s = 1 is directly related to the long distance expansion of the two-point function:

’
F (t) -1 A(r ‘E‘Qif)—l(_rl—):a )42r+1e—(4r+2)t + 0O (e—(4r+4)t) ) (425)

To my knowledge, the theory of Painlevé VI equations (4.1.5) in the case y = 0

provides no expression for A in terms of the exponents in (4.2.2) and (4.2.4).



The asymptotics (4.2.2) can also serve as initial condition once B is known,
although it is numerically not as efficient. Using results of Jimbo [66] there is an
explicit expression for the constant B involved in the short distance behavior of

. L) ()Tl —a—a)T(a+a +7)

B:rF(l—a)F(l—a/)F(a—I—a')QF(l—a—O/‘I'T‘).

(4.2.6)

From this, one can obtain the full short distance expansion of w, valid for 0 <
a+d <1:
w = Bsa-l-oz' Z Opq Sp(oz—l—oz')—}—q(l—oz—oz')

p,g=0

where Cyo = 1. Once B is fixed, the other coefficients €, , are uniquely deter-
mined by the differential equation (4.1.5).

Another quantity needs to be calculated in order to determine the two-point
function completely: one must have an expression relating the normalization
of the leading long distance asymptotics of the two-point function to that of its
leading short distance asymptotics. The theory of Painlevé VI equations does not
provide such constant. Comparing (4.2.1) and (4.2.3), one sees that the relation
between normalizations can be obtained by calculating the one-point function
(O,). Note that the condition (4.2.1) fixes the normalization of the scaling fields
O,. This normalization being fixed, the one-point function (O,) is unambiguous.

In the next sections I will develop a quantization scheme for the theory (4.1.1)
whose Hilbert space is formed by the equivalent of the asymptotic states of the-
ories on flat space. 1 will then calculate the long distance asymptotics of the
two-point function by a “form factor” expansion, that is, by inserting between
the two operators in a vacuum expectation value a resolution of the identity on

this Hilbert space. This will give the following value of A:

A=

sin(ma) sin(ra)I'(r + a)I'(1 +r — a)['(r + & )I(1 + 7 — ) ‘

AT T3] (4.2.7)

In order to calculate form factors, I use the angular quantization scheme where

“time” is taken on orbits of compact subgroups of the SU(1,1) isometry group of



the Poincaré disk. The one-point function can similarly be calculated using this

quantization scheme:

(0.) H( ;_*_” ) . (4.2.8)

This is in fact a simple generalization of calculations done on flat space in [141, 91].
The two constants (4.2.7) and (4.2.8), along with the Painlevé VI description,

completely fix the two-point function (4.1.3).

4.3 Hilbert space I

An expansion of the functional integral (4.1.3) for large geodesic distance be-
tween the points x and y is most conveniently obtained by using the operator
formalism. I will construct a Hilbert space H on which this functional integral
is represented by a vacuum expectation value (vac|T[O,(z)O.(y)]|vac), where
[vac) is a SU(1,1) invariant vacuum implementing vanishing boundary condi-
tions and where the fields O,(z) and O,/(y) act on H as operators implementing
the quasi-periodicity conditions (4.1.4). The symbol 7 here denotes an appro-
priate “time”-ordering, described below. The large distance expansion will be
obtained by inserting between the fields O,(z) and O,/(y) a resolution of the
identity in terms of a basis of states that diagonalize a non-compact subgroup of
the SU(1,1) isometry group of the Poincaré disk.

I define the Hilbert space ‘H by quantizing the theory on curves that are orbits

of the non-compact subgroup K:

cosh(q) sinh(q
K: g, = (4) (@) , ¢ €R. (4.3.1)

sinh(q) cosh(q)

Translations in the “time” direction, perpendicular to these curves, are not isome-
tries, so that the Hamiltonian is not stationary. Translations in the “space” di-

rection, along these curves, are isometries, and a basis for H will be obtained by



y Ey : "time"

& : "space’

“t/4 -

Figure 4.1: Mapping from the Poincaré disk to the strip described by x + 1y =
tanh(& +1&y), x — 1y = tanh(& — 1&;). Lines with an arrow represent orbits of a
non-compact subgroup K of the isometry group of the Poincaré disk.

diagonalizing the generator of such translations. In order to construct H, we first

map the Poincaré disk onto the strip (see Figure 4.1):
z = tanh(¢), z = tanh(¢)

with
Ezfx‘}'ifya (& € R, _7r/4<£y <7T/4.

v
The action (4.1.1) for the fermion fields ¥, = on the strip is
(\I;s)L

- Xa y@ 2r
A:/dfxdgyws (7 ae. T @—@+m> e

where W, = Wi~¥. Elements g, of the subgroup K are translations parallel to
the strip: & — & + g, so that the quantization space is specified by the curves
¢y = const. The coordinate &, is the Euclidean “time”. Correlation functions
of local operators are expressed as vacuum expectation values of “time”-ordered

products, for instance

(Oa, (€x15 §y1)oa2(§x27 fyz) woo) = (vac|T[Oq, (x5 §y1)oa2(§x27 fyz) -+ +][vac),

where the “time”-ordering 7 means that operators have to be ordered form left
to right in decreasing values of their variable ¢,. The Hilbert space H is a module

for the canonical equal-“time” anti-commutation relations

{\Ils(gxa Sy)v \I;I‘(S)Iu Sy)} = 15(5}( - g{)v



where now WU, (£, &), Wi(&, &) are fermion operators acting on H, related on
different “time” slices {, = const by the equations of motion. The vacuum state
|vac) € H is SU(1,1) invariant, and satisfies the conditions that the fermion
operators vanish on it at early “times” ¢, — —m/4 and on its dual (vac| at late

“times” & — w/4:

lim W (&, &)|vac) = lim Wi(&, &) |vac) =0

fy—>_7r/4 fy—>—7r/4 (432)
o el Pulbn &) =l (acl¥3(6o ) = 0

A basis for the Hilbert space H diagonalizing the subgroup K is obtained
by considering a module for appropriate modes A (w), Al(w) of the Fermion
operators W, (&, &), Ui(&, &), where ¢ = & represents the U(1) charge. These
modes appear in an expansion in terms of partial waves satisfying the equations

of motion and diagonalizing the spin—% action of the subgroup K
V&) = [ dople) (AL @D (0,6) + Asw)e Py 016,)

Veat) = [ dop) (AL P06 + A @) P (0,6))
(4.3.3)

where the integrations are from —oo to oo. We choose the measure
) F(4+r+i2) (L +r—1%)
plw) = ‘ ‘
2nT (% + r)2

in order for the partial waves to be entire functions of the spectral parameter w;

(4.3.4)

this analytical property will be used later. The solutions for the partial waves

can be written:
Py 6) = (43.5)
Q_QT_%G_i%(T+%_i%)(1 + eV ) e S F (1L 4 — i1+ 2r; 1 4 1)
2-2r=b eI (HEHE) (] 4 tir)remet (L g i1 4 2051 4 €4E)

and

pﬁ(wa gy) = (Pﬁ(wv _gy))T7 (P— (wv 5y))t = P—I—(wa ‘fy)v (436)



where (+)" means transpose, and where F'(a,b;c;z) is Gauss’s hypergeometric
function on a branch delimited by the branch cut (—oc, 1], with

lim Fla,bje;z)=1.

z—0, Sm(z)>0

With this choice of solutions, the partial waves Pi(w,£,) vanish on the upper
boundary & = m/4 of the strip, and Py(w,&,) vanish on the lower boundary
£, = —m /4 of the strip.

The canonical anti-commutation relations for the fermion operators imply the
following anti-commutation relations for the modes:

{A(w), AL} = %5@ —w8eers {Adw), Au(w)} = {Al(w), AL} = 0.

’ (4.3.7)

The Hilbert space is the Fock space over this algebra, and the asymptotic condi-

tions (4.3.2) specify the vacuum |vac):
Ag(w)|vac)y =0
which we normalize to (vac|vac) = 1. A complete basis is given by

w1, - W) e ren = AL (wy)--- Af (wy)|vac) (4.3.8)

€n

or a given ordering of the w:’s, for instance the “in-ordering” w; < -+ < w,,.
it d f the w;’s, fi t the « d 7 < <

The states constructed diagonalize the subgroup K:

A

—ig(w1+twn
Y9q (e )|w

le---vwn>617...,en =ec 1,---7wn>51,...,en

as well as the U(1) charge, with eigenvalue ¢; + - - - + ¢,. Here and below we use
the notation g for representing the action of the group element g on the space H.

These states can be used to obtain a resolution of the identity on H.:

o0 1 n
n-y Ly (H » pw) WA W PN |
n=0 7=1

€14..0€n



where states with different orderings of w;’s than the in-ordering w; < -+ < w,
are given by the same expression (4.3.8) in terms of modes. They differ from
states with in-ordering by a sign through the anti-commutation relations (4.3.7).

On the Hilbert space H, the scaling fields O,(x) act as appropriately regular-

ized exponentials of line integrals of the U(1) current:

Oulz) = Ty (exp [2%@@/ d;z:“eml,\llfyylll}) , (4.3.9)

where C, is a path from the position = to the boundary of the disk and my is
the representation map on the space H (for a precise definition of the action
of similar scaling fields on the standard Hilbert space of a Dirac theory on flat
background, see for instance [113]). The resolution of the identity on H then gives
the long geodesic distance expansion of the two-point function (O, (z)O.(y)) =
(vac|T[Oa(x)O4(y)]|vac). Using the fact that the one-point function (O,) =
(vac|O,|vac) is non-zero and defining the function

an g s fer, €
Fo(wr, o Wn)eyen = (vac|Oa(0)wr nbar, (4.3.10)

(vac|O,|vac)

we have

)0 = 00N> = ¥ (H dwjpm)) (4:3.11)

€14..€n

X Fa(wla e 7wn)51,...,5n(F—a’(w17 L 7wn)q,...,en)*e_i(W1+m+wn)d;}%y .

In order to obtain this formula, one first brings y to the origin and = to the real
axis inside the Poincaré disk; this can always be done by SU(1,1) invariance of
the correlator. Since the subgroup K generates geodesic translations along the
real axis inside the Poincaré disk, matrix elements of the operator O,(z) are
related to those of O,(0) by an exponential factor involving the geodesic distance
d(z,0). Using SU(1,1) invariance again, one can replace this by d(z,y) for the
correlator of fields at arbitrary points x and y. In the next section we calculate

the matrix elements (vac|Oy(0)|w, . .., wn)e ..., which we call “form factors” of

the scaling fields O,(0).



4.4 Angular quantization

In order to construct form factors of local fields in quantum integrable models, in
[89, 18] the authors used the idea of embedding the Hilbert space H of a quantum

field theory in two-dimensional flat space-time into a tensor product
Ha @ HY

of the Hilbert space of angular quantization H,4 and its dual H%. In angular
quantization, the Hamiltonian is taken as the generator of rotations around a
given point. Form factors of local fields can then be constructed as traces on the
angular Hilbert space H4. We will make a similar construction in order to obtain
the matrix elements (vac|O,(0)|ws, ..., wn)e,..c,- The angular Hamiltonian will
be taken as the generator of rotations around the center of the Poincaré disk; it
is the generator for the compact subgroup of the SU(1,1) isometry group of the
Poincaré disk.

We first briefly develop the formalism of angular quantization [91, 18, 74] for
our theory. Angular quantization is done in conformal polar coordinates (n,8),

where 6§ is the Euclidean “time” and —oo < n < 0:

2= 7=t (4.4.1)

. (\I;pol)R . . . .
The fermion fields ¥,,,; = in these coordinates enter the Dirac action

(Wpot )L
as
2m 0 B r

A= do dn W, ("0 00) — ———— | 0,1, 4.4.2
/0 /_Oo n pl<’7 77+’7 0 Sll’lh(?])) pol ( )
where U,,; = \Il;gol’y@ and 47, 4% are, respectively, the same matrices as v*, Y.

The angular Hamiltonian derived from this action is

0 r
HA = / d?] . \II;OZ’)/e (’y”@n — m) quol 0 (443)

o0

where W,,(n) and il

poi(1) are now operators on the angular Hilbert space H



satisfying the canonical anti-commutation relation

{Wputln). Wy (')} = 180 = ).

The n-dependent mass term in the Hamiltonian (4.4.3) produces a “mass
barrier” effect somewhat similar to the effect of the mass term in the theory on
flat space [91]; it prevents the fermions from approaching too much the boundary
of the disk. More precisely, it imposes vanishing asymptotic conditions for the
fermion fields when r > % (such asymptotic conditions are in fact allowed for all
r > 0). With these asymptotic conditions, the Hamiltonian is diagonalized by

the decomposition
~ dv
\/_

in terms of partial waves

< dv
(77) -l \I/T

pot(11:0) = ¢—IUI() Y (4.44)

qlpol(na 9) =

Uy

v,
with

F(1+T)F(l—|—r—iy> - 1 )
, = W] — e2) F(r, - 14201 —
u (T 20T (L= ) (1 — ) (r2—|—r—|—w + 2r e”)

T +7)l (——I—r—w) . 9 1 ,
, = — I — e F(r, = 1 — ;1—}—2;1—2”,
) 7 (1 27“) (_ zz/) € ( e ) (7"2 r — iy r € )

(4.4.5)

where F(a,b;c; z) is Gauss’s hypergeometric function on its principal branch. In

(4.4.4), the operators c,, ¢! satisfy the canonical anti-commutation relations

{ch e} =6(v—1).
The angular Hilbert space H 4 is the fermionic Fock space over this algebra, with

vacuum vector |0) 4 defined by
&0a=0 (v>0), c0V4=0 (v<0).
With an appropriate normal-ordering, the Hamiltonian takes the form

Hy = / dv z/(czcl, + c_l,cT_l,).
0



4.5 Form factors from angular quantization

We now consider the embedding H — H 4 @H% that will allow us to calculate form

factors of scaling fields (vac|O4(0)|wy, ..., wn)er,..cn- The embedding is described

.....

by identifying vectors in the Hilbert space ‘H with endomorphisms on the angular

Hilbert space Hy:
w1, e W)y en = ey (W) - - aen(wn)e_“HA, (4.5.1)

where the operators a.(w) € End(Ha) are to be determined. Notice that the
vacuum |vac) is identified with e=™4. The scalar product on H is identified with
the canonical scalar product on the space End(H4), which coincides with the

expression of correlation functions as traces on Hy:

r (U1
(ulv) = % if luy=0U, |v)y=V. (4.5.2)

The representation of a field on H is identified with its representation on H4:
Ty (O)|u) = m4(O)U if |u) = U,

where 74 is the representation map on the space H 4.

The operators a.(w) can be fixed by imposing two conditions. First, the
operators on H 4 representing fields at the center of the disk that are mutually
local with the fermion field must commute (if they are bosonic) or anti-commute
(if they are fermionic) with the operators a.(w). It is sufficient to impose this

condition with the fermion operators themselves:

{a.(w),V,u(n — —o0)} = {a.(w), Wl (p — —o0)} =0. (4.5.3)

pol

Second, the embedding (4.5.1) must reproduce the form factors of fermion fields

(vac|Ws (&, &) lw)y = €75 Pr(w, &) and (vac|Wl(&, &)|w)- = e P_(w, &)

obtained from the partial wave decomposition (4.3.3).



These two conditions are solved as follows. We first solve the locality condition

(4.5.3) for a set of operators Z.(t) depending on a complex parameter {:

{Z(1), Wpor(n = —00)} = {Z.(1), ¥}, (n = —o0)} = 0,

pol

with the following ansatz:

Z4(t) = /_OO dv f(v)el i7", Z_(t) = /_OO dv f(v)e_, 1.

o0 o0

This leads to the equations:

nli}l}loo _(: dv ™" f(u)t™" =0, nl_i}l}loo _(: dv S(v)(2R) ¥ e f(v)1™" = 0,
where S(v) is given in (4.6.8). The first equation is satisfied if f(v) is analytical
in the lower half v-plane and increases at most exponentially as Sm(v) — —oo,
and the second equation is satisfied if S(v)f(v) is analytical in the upper-half
v-plane and increases at most exponentially as Sm(v) — oo. Indeed, under such
conditions it is possible, for n negative and large enough, to send the contour
of integration to Sm(v) — —oc in the integral [°° dve™ f(v)t™", giving zero
contribution, and similarly for the integral [~ dv S(v)(2R)™* e~ f(v)t™" by

sending the contour of integration to Im(v) — oco. This set of conditions on f(v)

forms a simple Riemann-Hilbert problem, a solution of which is:

F(%-I-T—I-iz/)
flv) = \/%F (% _|_r) [‘(%—|—i1/>. (4.5.4)

The operators a.(w) can then be formed by taking appropriate linear combi-
nations of Z.(¢). These linear combinations can be obtained by requiring that the
states |w). = a.(w)e ™4 diagonalize the subgroup K and that they be correctly
normalized. First consider states |t). € H embedded in H4 @ H7 by the identifi-
cation |t), = Z.(t)e~™H4. Using this embedding, using integral representations of
the hypergeometric functions involved in (4.4.5), and using the cyclic properties

of the traces and the anti-commutation relations for the modes ¢,,cl. we can



calculate the following matrix elements:

(vac|my(Vr(z,2))|t)y = —i%(l — zé)rt_%(l —zr) (1 — zt_l)_r_l
(vac|my(Vr(z,2)[t)y = %(1 — zé)rt%(l — 21—zt

(4.5.5)

From this and from the transformation properties of the fermion fields one can
infer the transformation properties of the states |t). under the isometry group
SU(1,1). Tt is apparent that the variable ¢ should transform like a holomorphic
coordinate. Then ¢! transforms like an anti-holomorphic coordinate and the
factors 1 — zt~, 1 — zt and ¢ all are covariant according to (B.1.10), (B.1.11) and

(B.1.12). We then find that

A

g

bt +a 4

at—l—i) = _
> :Hg#,g(t)Hgﬁ,g(t Olt)e,

where the functions H,, and H&g are the automorphic factors (B.1.7). Under
the subgroup K, holomorphic and anti-holomorphic coordinates transform in the
same way. Then, by multiplying appropriate powers of 1 — ¢ and of ¢ by the
measure dt, it is easy to construct a covariant measure whose transformation
properties under K exactly cancel those of the states |t).. Using the fact that the
ratio (1 — ¢)/(1 4 t) diagonalizes the action of K and integrating between fixed

points of K, we obtain the operators a.(w) that diagonalize K:

- : : dt(1—t) 2T (144) 25473 7,(4),
ViDL (A 4+r+i) D (L +r—i% _1( ) (1+2) (1)

2_r_%e—i§(r+§+i§)r (% -I-T')2 1

a.(w) ) /

(4.5.6)

where the integral is performed in the region —m < arg(¢) < 0 (other integration
contours are possible but equivalent).

We can verify the orthonormality of the states |w). associated to the operators

(4.5.6). We want to verify that

Tr (e‘z’rHAaZ(w)aE/(w’)) _ 1
Tr(e277) o)

Sw—w) b, (4.5.7)

o (wl]w')e



Tr (e"Q’THAaE(w)aE:(w'))
Tr (e=2mHa)

=0.

(vaclw,w')e o =

Since the operators a.(w), al(w) are linear combinations of free modes, traces of
products of such operators can be calculated by using Wick’s theorem. Hence the
two relations above are sufficient to show the orthonormality of all multi-particle
states. Also, these multi-particle states have free fermionic S-matrix, that is, it is

shown in Section B.2 that the operators a.(w) anti-commute among themselves:
{a51 (wl)v Ue, ((‘U?)} = 0. (458)
To show (4.5.7), change coordinates by setting ¢ = tanh():

d9 sinh™"2(20) e=? 7, (tanh(0)).

eTiE ST (1 4 )7 /oo
VAT (G i) T (1 +r—i3) )

a.(w) =

(4.5.9)

It is easy to invert this relation:

o ) (i YN (L ¥ .
/ dw a.(w) e“"eﬁ <2;|_r—1|_13> <2 —I_T? ZQ) = 27 sinh™""2(20) Z.(tanh(#)).
oo 6—25(r+5+25)r (% + T‘)

(4.5.10)
It is possible to check that this equation implies both equations of (4.5.7) using

the result

(sinh(26,) Sinh(292))_r_% o <€_2WHA ZE';traFe}i(Qiﬁz)ZE/(tanh(HZ)))

r(1
P S Gl k) RN (91 0y — z%)

F(%—I—T’)

(4.5.11)

and the integral

/ dwl <7“ + B + Zg) I <7“ + 3~ Z%) e =217 D(14-2r) cosh™ 7" (5) .
(4.5.12)

o0

In terms of the modes ¢,, the expression (4.5.6) gives

ar(w) = /_OO dvg(viw)el, a_(w) = /_OO dv g(v;w)e_y, (4.5.13)

o0 o0



(rti-ig) €T (3+r+iv)

. — 9—r 2%
gliw) = Vm2e T(1+m)T (L +iv)

1 1
X F(r—l—§—|—i1/,r—|—§—z’%;1—|—2r;2—i0> .
Here and below we use the notation

F(a,b;¢;2410) = lim F(a,b;c; 2+ i),

e—0t
where on the right hand side F(a,b;c;z) is Gauss’s hypergeometric function on
its principal branch. The solution (4.5.13) to the two conditions above is unique.

One can verify for instance that

Tr (6_2WHA7TA(\IIS(§X7 SY))CH‘((‘U))

— _iwfx
Tr (e=27Ha) =€ Pi(w, &) -

Using the contractions (4.5.7) and the fact that any form factor of fermion fields
in ‘H can be evaluated by Wick’s theorem, the embedding (4.5.1) reproduces all
form factors of fermion fields.

From the expression (4.5.13) one can verify the following identity:

az(w) = e”HAa_e(w)e_“HA.

This is the analogue of crossing symmetry present in theories on flat space. For
the scaling fields O,, which are scalar and have the property Of = O_,, this

leads for instance to

using the notation (4.3.10).
From the representation (4.3.9) of the scaling fields on H, we have the following

embedding:
O.(0)|u) = ¥™9U if [u) = U,

where @) is the U(1) charge in angular quantization:

Q= / dv (clcl, — c_l,cT_l,). (4.5.15)
0



Using this embedding, form factors of the scaling fields O, are given heuristically

by the following traces:

Tr (e‘Q’rHAH”aQCEq (wi) - ae, (Wn))
Tr (e=27Ha) .

<Vac|(9a(())|w1, L 7wn>61,...,en =

Both traces in the ratio above are ill-defined and need some regularization Tr —
Tr.. In the next subsection we will regularize such traces by doing the angular
quantization on a Poincaré disk from which a small disk of radius ¢ around the
origin has been removed. As the regularization parameter disappears ¢ — 0, the
resulting ratio of traces above is then singular and goes as e*°. We can cancel out

this singularity by considering normalized form factors:

<Vac|(’)a(0)|w1, o 7wn>q7m7€n B Tr (e—Qﬂ-HA+2m'onaq(w1) Cee g, (Wn))
(vac|O,|vac) N Tr (e=2rHat2mioQ)

(4.5.16)

These can be calculated without explicit reference to a regularization proce-
dure, simply by using, as above, the cyclic properties of the trace and the anti-

commutation relations for the modes ¢,, ¢/. The calculation of the one-point

Ve

function requires the use of an explicit regularization procedure:

‘ » Tr. (e_QwHA+2wiaQ)
<Ooz> = <VaC|Oa|VaC> = lg%g TI'E (e—QWHA) ’

(4.5.17)

and will be done in the Section 4.6.

The traces (4.5.16) are calculated in Appendix B.2. In particular, the “two-
particle” form factors are given in (B.2.5). Other “multi-particle” form factors of
scaling fields O,(0) can be constructed from these “two-particle” form factors by
Wick’s theorem, as in (B.2.10). T also verified that the expression (B.2.5) for the
“two-particle” form factors specializes to the known expression for form factors

in the flat-space limit.

4.6 One-point function

I now calculate the one-point function (O,). This is a simple generalization of the

calculation done in [141, 91] for similar vacuum expectation values in flat space.



Consider regularizing the trace Tr — Tr. by cutting a small disk of radius ¢
around the origin and considering the angular quantization of the theory (4.1.1)

on the resulting annulus with the boundary conditions

[(\I;pol)R(n) - (qlpol)L(n)]n:]n tanh(ﬁ) = [(\IIPOZ)L(U) - (qlpOl)E(n)]n:]n tanh(ﬁ) = 0
(4.6.1)
Then the one-point function (O,) can be expressed as (4.5.17), where the U(1)

charge @) in the regularized theory is

0
Q= / dn U W,
1

n tanh( ﬁ)

which specializes to (4.5.15) in the limit ¢ — 0. It was shown in [141, 91] that
for the theory on flat space, the definition (4.5.17) with the boundary conditions
(4.6.1) are in accordance with the conformal normalization (4.2.1). Since the
leading behavior at short distances of the two-point function is not affected by
the curvature, the expression (4.5.17) with the boundary conditions (4.6.1) lead
to the same conformal normalization (4.2.1) for the theory on the Poincaré disk.

Using the Poincaré disk as an infrared regulator, an argument for the valid-
ity of (4.5.17) with the boundary conditions (4.6.1) goes as follows. The trace

expression in (4.5.17) can be written in radial quantization as the overlap:
fIWI,5 <€—27rHA+27rion)

Tr. (e=2mHa)

= radial<VaC|€>a . (462)

Here the state |¢), implements the boundary conditions (4.6.1) along with the
condition that the fermion fields take a phase, U — €™ W, U — e~ 2™y, when
brought counterclockwise around (and outside of) the circle of geodesic radius
¢ concentric with the disk. Of course, this monodromy condition in principle
requires two singular points delimiting a branch cut of the field configurations on
the Poincaré disk, but since the fields vanish at infinite geodesic distances (on the
boundary of the disk), the vacuum state (vac| automatically supports the end of

a branch cut. Remember also that the one-point function can be written as

<OOZ> = radial<VaC|Oa(0)|Vac>radia] . (463)



In (4.6.2), the state |¢), can be expressed as an infinite series of local operators

at the center of the disk acting on the vacuum state |vac) as follows:
le)a = Cea2Oa(0)|VaC>radial +0 (€a2+1) (4.6.4)

where (' is a number. The contributions that are not written come from positive
powers of me and from descendants of the field O,(0). The number C' does not
depend on the product r = mR since it is a short-distance characteristics and is
unaffected by the curvature. It can be calculated by taking the limit m — 0 of
the theory (4.1.1). This is a theory of free massless Dirac fermions on the disk
of radius 2R with conformal boundary conditions. For this boundary conformal

field theory (BCFT), the explicit calculation of the trace (4.6.2) gives (see below):

2

E o
radial(vac|e ) BOFT = (ﬁ) . (4.6.5)

On the other hand, the conformal normalization (4.2.1) of the operator O, gives

radial<VaC|Oa(0)|VaC>B0FT - (2]%)_0[2 . (466)

radial

Replacing the state [¢)BYFT in (4.6.5) by its expansion given by (4.6.4) (recall that
the term explicitly written is the same in the boundary conformal field theory as

it is in the massive theory), one finds
C=1.

Putting the expansion (4.6.4) in (4.6.2) and comparing with (4.6.3), we then

obtain
TI'E (e—ZWHA—l—ZWion)

Trs (6—27I'HA)

2

~e®(0,) as € =0 (4.6.7)

which gives the result (4.5.17).

In order to evaluate the limit ¢ — 0 in the expression (4.5.17), we need the

density of angular quantization states d,In(S(v)), where the S-matrix S(v) is



associated with the scattering off the “mass barrier” described in the previous

section:

u, eiun

v, —ie”"1S(v)(2R) ™4V

n—+—00

Here u, and v, are the partial waves (4.4.5). The S-matrix is given by:

(1/2 +w)l'(1/2 —w +7)
(1/2 —iv)I(1/2 +i1/—|—r)'

S(v) = (21%)2”5 (4.6.8)

Then one finds

(0.) = exp UOOO o, <(1 temrT) (1t e_m_m)> d,1n 5(1/)} .

2m (1+ 6—271'1/)2

(4.6.9)

The result of the integration using (4.6.8) can be expressed in various ways:

0 = g [ - i)

t sinh? (1)

2 = 1 - L2 !
— (2R)™ (%) (4.6.10)

B a2 nC:;(I +r—a)G(l+r+a)
= (2R) G(1+r)*G(1 —a)G(1 + a)7

where (G(z) is Barnes’ G-function, characterized mainly by the properties G(z +
1) =T(2)G(2) and G(1) =1 (cf. [122]).

Solving numerically the differential equation (4.1.5) with v = 0 by using the
appropriate initial conditions, it is possible to verify the consistency of our result
(4.2.7) for the constant involved in the long distance asymptotics of w, our result
(4.6.10) for the one-point function, and the value (4.2.6) for the constant involved
in the short distance asymptotics of w. We used as initial condition the long
distance asymptotics (4.8.5) with non-zero coefficients Dy, given in (4.8.6) and
with the value (4.2.7) for the normalization constant. We numerically verified
that the behavior (4.2.2) with the constant (4.2.6) is recovered, and that the

equation (4.2.1) is satisfied to a high accuracy.



4.7 Hilbert space 11

As argued in Section B.2, the “two-particle” form factors (B.2.5), like the partial
waves (4.3.5), are entire functions of the spectral parameters w; and w; (hence all
form factors of scaling fields O, are entire functions of their spectral parameters).
Moreover, they have the following behavior as the real part of wy or wy goes to

positive or negative infinity:

plwr) Fo(wi,we)y,— ~ |y |71E as Re(w) — +oo

plwr) Fo(wi,wy) - ~ Jwa| 7' as Re(wy) — £oo

up to proportionality factors, and other “multi-particle” form factors have similar
behaviors. Hence for —1 < a — o' < 1, the integrals over w;’s in (4.3.11) are
absolutely convergent. They can be evaluated by deforming the contours in their
lower half planes and summing over the residues at the poles of the measure p(w;).
The measure p(w) has poles on the imaginary axis; in the lower half plane, they
are at positions w = —i(1 + 2r 4 2k) for k € N.

It is instructive to interpret the poles in the measure p(w), and the evaluation
of the integrals in (4.3.11) by contour deformation as described above, in terms of
a different quantization scheme. Let us summarize our construction. We choose
an isometry K (4.3.1), subgroup of the full isometry group SU(1,1), and we
quantize the theory (4.1.1) on orbits of this isometry. That is, the generator K
of the subgroup K generates “space” translations. A basis for the corresponding
Hilbert space H is taken as a set of states diagonalizing K. They are normalized
so that all form factors of local fields are entire functions of its eigenvalues w.
With this normalization, the resolution of the identity on H in terms of this basis
involves a measure p(w) (4.3.4) with a specific analytical structure, in particular
with singularities on the imaginary axis. Now, these singularities should give
information about the spectrum in a quantization scheme where K is taken as

the Hamiltonian, that is, as the generator of “time” translations.



This last assertion is the analogue of what is well known to happen for instance
in a free massive theory on flat space: the singularity structure of the invariant
measure p(p) = (m? + p2)_% as function of the momentum p gives the energy
spectrum. Momentum operator and energy operator (or Hamiltonian) can be seen
as representations of the same translation generator in two different quantization
scheme, one where this translation is along the “space” direction, the other where

it is along the “time” direction.

In a free theory on flat space, the invariant measure exhibits in particular
a branch cut starting at p = —im and going to p — —ic0, corresponding to
the continuous spectrum (from m to infinity) of the energy operator. In our free
theory on the Poincaré disk, the position of the poles of the measure (4.3.4) on the
imaginary axis are interpreted as the discrete eigenvalues of the generator K in the
scheme where it is taken as the Hamiltonian. It is a simple matter to repeat the
canonical quantization procedure of section 3 for this quantization scheme. One

indeed finds a discrete set of eigenstates |ki, ..., k,)

ki €N, n=01,2,...

€1 4ee09€n Y

with eigenvalues Ay + --- + \,,, where
/\]' :1—|-27“—|-2]{?]

Since these states diagonalize a generator of time translation, they can be more
naturally interpreted as multi-particle states. Matrix elements of the operator O,
between the vacuum |vac) and multi-particle states in this scheme can be found

from similar matrix elements in the Hilbert space H by the following identification:

<\7§C|Oa|k17 e 7kn>61,...,5n =
Pl 2T 42 k)1 , ,
o & d Fol—idg, o —id)e
<O > H (l \/ k]’ F(%—FT)) ( AL, ; ¢ )1,...,n

i=1

and

(... k1| Oulvac) = (7ac|O_alki, ..., En)*

€1 4e009€m €] 4eeng€n ”



4.8 Long distance expansion of the two-point function

The resolution of the identity on the Hilbert space introduced in the previous

section is given by the sum

1:2% SN ke el

61<kn7 s 7kl|Oa'(0)|\7&%>6_(A1+"'+’\“)ﬂ%1_

This expansion coincides with the sum of residues coming from the evaluation
of the integrals in (4.3.11) by contour deformation. Using crossing symmetry

(4.5.14) and summing over the U(1) charges, this can be written

(Oa() Ot (y)) = (Oa)(Ou) (18.1)
3 ! N —(M Ay ) Yoy
% Z (N1)? Z Jalkr, .o kon) far(Ban, .o ke (Mt +don) 5% 7
N=0 ky ko =0
where

(Ou) falkyy .- han) = (V| Ou(O)|kr, o kan)y o~ — . (4.8.2)
——— ——

N N
The functions f,(ki,...,ksn) are evaluated in closed form in Section B.2, formula
(B.2.7). The first few terms of (4.8.1) give the following expansion for the two-

point function:

F(l)—1= (4.8.3)
psin(ra)sin(ra)I(1+r+ a)l(1 +r —a)T(1+r+ o )['(14+r — o) y
m21(2 + 2r)?

« elareay <1 ~ 200 e o(a‘“)) + O,
r

_42r+

where the function F(¢) was defined in (4.2.3).



It is interesting to note that in the massless limit r — 0, the two-point function
still decreases exponentially at long distances. This is a signal of the infrared
regulator properties of the negative curvature of the Poincaré disk [20].

From [104], the two-point function can be described in terms of a Painlevé VI

transcendent:

F(t) = exp [_ /t1 dsdilm(s)], (4.8.4)

anh? ¢ S

where 4 1In7(s) is given in (4.1.7) and the Painlevé transcendent w(s) satisfies
(4.1.5) with v = 0.

The leading long distance asymptotics (4.2.4) of this Painlevé transcendent is
fixed by specifying the proportionality constant A. This constant can be obtained
by comparing our form factor result (4.8.3) with the expansion (4.2.5); this leads
to the value (4.2.7). Since we must have 0 < w < 1 for all 0 < s < 1, the
asymptotics (4.2.4) is valid only for A > 0, and the asymptotics (4.2.2) only for
B > 0. This imposes aa’ > 0. From the behavior (4.2.4) and using the differential
equation, one can obtain the full long distance expansion of w:

L—w=A(1—s)""" " D,, (1— s+ (4.8.5)

P,9=0

with Dy = 1. For instance, the coeflicients Dy , are given by
Z Dog (1 —38)! = Sa_a/F(l —a' +ra+rl4+2r;1 —5)% (4.8.6)
g=0

The long distance expansion (4.8.5) can also be obtained from the full form factors
expansion (4.8.1). For instance, one can verify that the coefficient Dg; in (4.8.6)

t

is consistent with the coefficient of =% in the parenthesis in the form factor

expansion (4.8.3).
4.9 Conclusion

I have fully characterized the two-point function (O, (2)O4(y)) in the Dirac the-

ory on the Poincaré disk, with fermion mass m and Gaussian curvature —%, in



the region 0 < a + o' < 1, ae’ > 0 and mR > ;. A comparison of the long
distance expansion with the expansion obtained from the Painlevé VI differential
equation strongly suggests both that the “form factor” expansion is correct and
that the Painlevé VI differential equation indeed describes the two-point function
of the scaling fields O, in the region of parameters above. Notice that the results
and description above in terms of the differential equation are valid in the region
0<mR< % as well; however, they do not describe all the possible behaviors in
this region.

It would be very interesting to extend this description to a larger region of
a, o'. A similar restriction on the validity of the description in terms of a nonlinear
differential equation also occurs on flat space, and to my knowledge it is still an
open problem to extend this description to a larger region of values of a and «’'.

Also, it is interesting to fully analyze the region 0 < mR < % and the analytical
continuation to negative values of m R. This will be done in the next chapter in the
Ising field theory on the pseudosphere. We will find that the region —% <mR < %
is the most interesting from the viewpoint of the thermodynamics of the model,

as it supports many stables regimes.



Chapter 5

Ising field theory on the Poincaré disk

5.1 Introduction

In this chapter T will describe results concerning the Ising field theory on the
Poincaré disk at zero magnetic field. The lattice Ising model on flat space at
zero magnetic field and at a temperature very near to its critical temperature
(more precisely, in the scaling limit) is described by the quantum field theory of
a free massive Majorana fermion [102, 73] (see also [131]). Strictly speaking, the
Ising field theory is the Majorana theory in the sector composed of three primary
fields: the identity field, the energy field, related to the energy density in the
lattice Ising model, and a local, interacting fields, denoted by o, corresponding
to the spin or order variable in the lattice Ising model. It is in fact convenient to
consider all fields of the Majorana theory, which includes also the disorder field,
i, corresponding to the disorder variable of the lattice Ising model. The order
variable is the natural two-state degree of freedom on each site of the lattice,
and the disorder variable is a variable defined non-locally [69] with respect to
the order variable. Correlation functions of disorder variables are obtained by a
duality transformation from correlation functions of order variables, which brings
the system from its low-temperature to its high-temperature regime and vice
versa. A nonzero expectation value of the order variable means that the system
is in its ordered (low-temperature) regime, and a nonzero expectation value of
the disorder variable means that it is in its disordered (high-temperature) regime.

The order and disorder fields o and p are local fields, but they are not mutually



local with respect to the Majorana fermion fields or with respect to each other.

It is natural to assume that the Ising quantum field theory on the pseudosphere
represents the scaling limit of an Ising-like statistical system on a lattice embedded
into the pseudoshpere. Although we do not have yet a precise construction of this
statistical system and of its scaling limit, I will keep in mind, below, the situation

depicted in Chapter 3.

In the next sections, I will first study the Hilbert space of the model and find
some of its stable regimes. Then I will calculate the average of the order field, or
magnetization, and the form factors of order and disorder fields from results of
the previous chapter, and 1 will derive the nonlinear differential equations that

specify the order-order and disorder-disorder correlation functions.

5.2 Definition of the model

The Ising field theory on the Poincaré disk can be described in terms of the
boundary Ising conformal field theory on the disk [22] perturbed by the energy
field e(z), with action

A= Ag — — d*z @) e(z) . (5.2.1)

27 J disk

Here, Ag; stands for the action of the Ising conformal field theory on the unit disk

and d?z ¢?(®) is the volume element in the metric of the Poincaré disk (B.1.2):

. AR?
e?®) = % : (5.2.2)
(1 —22)

The action Agy can be written explicitly in terms of free massless Majorana
Fermi fields. Then the action (5.2.1) is the same as the action for the Majorana

theory on the pseudosphere with mass m:

1

A= —/ &z [¢a¢+¢a¢+ 2
|z|<1

1 —=z2z

L | | (5.2.3)



where we have used for the energy field

e(z) =i(2R)™'(1 — 22) (V) () . (5.2.4)

In (5.2.3), the parameter r is related to the mass parameter m and Gaussian
curvature (B.1.1) as in (4.1.2), (z,2) are complex coordinates on the unit disk
2| < 1,0 = 0. = (0« — 10y), 0=0; = 1(0x +10y) and d*z = dxdy; (x,y)
are cartesian coordinates on the disk related in the usual way to the complex
coordinates, z = x + 1y, z = X — 1y.
The chiral components b and ) obey the linear field equations
LT —ir

0v(z) = —)(x),  OP(x) = P(z) (5.2.5)

1 =2z 1 -2z

and are normalized in (5.2.3) in accordance with the short-distance limit
(z—N(x)p(2) =1, (z=2)p(x)p(2’) =1 as |z—2'| = 0. (5.2.6)

The action (5.2.1) is invariant under SU(1,1) transformations described by
(B.1.4). The Fermi fields v and ¢ have dimensions (%, 0) and (0, %), respectively,
and the energy field ¢, as defined in (5.2.4), has dimension (0,0). In order for
the full quantum theory to be SU(1, 1)-invariant, we have to impose appropriate
SU(1,1)-invariant asymptotic conditions at the disk boundary |z| — 1, as will be
discussed below.

The zero curvature limit R — oo corresponds to the familiar theory of free

massive Majorana fermion in flat space (and mass m) after rescaling
z—z/(2R)  and  ¢(z)— (2]%)1/2 (), (5.2.7)

with similar rescaling for z and ).

5.3 Hilbert space and stable regimes

The boundary Ising conformal field theory Agr admits “free” and “fixed” bound-

ary conditions [22], whereby the order field has, respectively, zero and nonzero



vacuum expectation value' (and vice-versa for the disorder field). Likewise, by
constructing the Hilbert space and demanding that the Hamiltonian be hermitian,
I will show that when the energy perturbation is turned on (m # 0), the resulting
theory (5.2.1) on the pseudosphere possesses in the region —% <mR < % stable
asymptotic conditions corresponding to “free” and “fixed” conditions: the order
field has, respectively, zero and nonzero vacuum expectation value, and vice-versa

for the disorder field. In the domain mR > 1

5, only the “fixed” asymptotic con-

dition is stable, whereas in the domain mR < —%, only the “free” asymptotic
condition is stable (this description is in close connection with some results of,
for instance, [19]). Situations with “free” and “fixed” asymptotic conditions can
be obtained from one another by duality transformation, which interchanges the
order and disorder fields o(z) ¢+ p(z) and reverses the sign of the energy field
e(x) = —e(x). In the following sections, I will assume “fixed” asymptotic condi-
tion and mR > —%. Details regarding the construction of the Hilbert space can
be found in Appendix B.3

A particularly convenient Hilbert space is the one obtained by associating
time translations to isometry transformations corresponding to the non-compact
subgroup K (4.3.1) of SU(1,1). This Hilbert space is similar to the one developed
briefly in Section 4.7 of the previous chapter for the Dirac theory. More precisely,

we consider the system of “isometric” coordinates (¢,€¢) related to coordinates

(z,2) on the Poincaré disk by
z=tanf, Z=tanf, (5.3.1)
where £ = & + i &, and € = £ — i & (see Figure 5.1). The transformations
& — & +q,  for arbitrary real ¢, (5.3.2)

are the integrated versions of the second infinitesimal transformation of (B.1.13)

1'With the “fixed” boundary condition, the order field can be fixed to a positive or a negative
value at the boundary; we will choose to fix it to a positive value throughout the paper.
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Figure 5.1: Mapping from the Poincaré disk to the strip described by x 4+ i1y =
tan(& 4 1€y), x — 1y = tan(& — 1&y). Lines with an arrow represent orbits of a
non-compact subgroup of the isometry group of the Poincaré disk.

and are elements of K. We choose ¢ to represent the space coordinate and &,
the Euclidean time coordinate, and the Hamiltonian is the integral of motion
associated to (5.3.2).

The integrals of motion defined in (B.1.15) can be written as integrals over

lines of constant ¢,

p - L {¢P¢dz—¢P&dz,
AT Je
p - L [&ﬁ&dz—¢ﬁ¢d4, (5.3.3)
i Je
1 TN T g
R — Lﬁ(j¢ﬂwdz—¢ﬂwd4,
where
C={(z,2)] —m/d<é&<m/4, & = const.}. (5.3.4)

Inside correlation functions with some local fields, these integrals are independent
of the value of ¢, associated to the path C, except for contributions at the positions
of the fields, given by the corresponding Lie derivatives as in (B.1.15). The

Hamiltonian is then simply

H=-P+P, (5.3.5)

and a basis can be obtained by diagonalizing it, as in Section 4.7. The correspond-
ing states can be interpreted as “particle states”, since they form an irreducible

representation of the SU(1,1) symmetry group.



The Hilbert space is defined as a module for the canonical equal-time anti-
commutation relations of the fermion operators () (£ £,), ) (£ &) in the

isometric system of coordinates?:

{w(iso)(fxafy)a ¢(i50)(§;7§y)} = _27” 5(5){ - f)/() ? (536)
{0, &), 906, 6)) = 2mid(&— &) -

Invariance under the subgroup described by (5.3.2) imposes that the Fermi fields

vanish as & — Foo, which gives the following conditions on the vacuum state:

Jim 90 (6 &) vac) =0, (vaclp "N, &) =0, (53.7)

lim
Ey—r+oo

is0) - (Clorrelation functions of local fields are then

with similar conditions for 1
expressed as time-ordered vacuum expectation values of corresponding operators;
the time ordering puts operators from left to right in decreasing values of their
variable &,.

The Hilbert space is further specified by the asymptotic conditions imposed
on the Fermi fields at the disk boundary. In order to guarantee their stability, one
has to choose such conditions giving a Hilbert space on which the Hamiltonian has
real eigenvalues bounded from below. Among these, I shall only consider those
which respect the SU(1,1) symmetry. Let me note however that for —% <r< %
there are stable asymptotic conditions which are not SU(1, 1) invariant.

For r > %, finiteness of matrix elements of the Hamiltonian gives the asymp-

totic conditions imposing Fermi fields to vanish as
o~ e md (5.3.8)

when d, the geodesic distance between the origin, say, and the position of the

Fermi field, goes to infinity. These asymptotic conditions correspond to “fixed”

2The Fermi fields in isometric coordinates are related to the Fermi fields on the Poincaré

disk by (B.1.5), that is, 1:(5°) (&, &) = t(x)/ cos(€), ¥1%°) (&, &) = t(x)/ cos(€).



asymptotic conditions on the order field o. For 0 < r < %, the above asymptotic
conditions are also stable, and there is an additional set of stable asymptotic

conditions, by which the Fermi fields diverge as
P~ €™ (14 O(emRY) (5.3.9)

as the geodesic distance to the origin goes to infinity. This second set corresponds
to “free” asymptotic conditions on the order field . The field theory with this
second set of asymptotic conditions can be obtained by analytically continuing the
field theory with the first set of asymptotic conditions from the region 0 < r < %
to the region —% < r < 0, and vice versa. Hence it will be sufficient in what follows
to consider only the conditions specifying the asymptotic behaviour ~ e™™9 of
the Fermi fields for r > 0.

With these asymptotic conditions, the Fermifields, obeying Eqs. (5.2.5), admit
expansions in partial waves as

PlEaty) = cosE I [eFm Alebg () —i e T A0, (60| (5:3.10)

n=0

U(66) = cosE Y |t Alenig, () +i e A0, (6]

with discrete energy spectrum
wy, =2r+2n+1 (n>0). (5.3.11)

Partial waves are given by

212 /m T(2r + n 4+ 1)"/2
P(r+3) Tlr+1)72

2

X g iwnéx—1gn (1 + e4i§x)r F (—n, ril+2r 1+ e4i£x) ,

9n(&) = (5.3.12)

with g,(&) denoting its complex conjugate, and F'(a,b; ¢; z) stands for the Gauss
hypergeometric function, here specialized to polynomials; phases in the decompo-

sition (5.3.10) were chosen for later convenience when introducing particle states.



The functions ¢,(&), gn(&x) satisfy the orthogonality relations

/4
[ [0 + 0u(8anl6)] = dmb.  (313)

/4

/4
| s faeae) - aueaned] = 0.

/4

as well as the relations

9n(éx)

T (&)| s 9l = i0ea(&)]

L 1
2 2 2 2

(5.3.14)

The creation and annihilation operators A and A, (n > 0) in (5.3.10) satisfy

canonical anti-commutation relations as consequence of (5.3.6):
(AL Ay =6, , {AL ALY ={A,, AL} =0, (5.3.15)
with the vacuum state |vac) obeying, from (5.3.7),
Aplvac) =0  forall n>0. (5.3.16)
A basis of N-particle states is obtained from the set of states
Ini ...nn) = AL LAl Jvac) | (5.3.17)

which diagonalize the Hamiltonian,

Hin, ...ny) = (zp) Iny ... nN) (5.3.18)

with energy eigenvalues w,, Eq. (5.3.11). The discretization of the energy spec-
trum is essentially a consequence of requiring trivial monodromy of the hyper-
geometric functions involved in the partial waves (5.3.12) as & — & + /2, a
necessary condition in order to ensure the proper vanishing asymptotic behaviour
at the boundary of the disk.

The action of the operators P, P and R, defined in (5.3.3), can be easily

determined from the fact that the above Hilbert space provides a lowest weight



module for SU(1,1). The raising and lowering operators, J; and J_ respectively,
are given by

J,=P-P+2R, (5.3.19)
and are related by hermitian conjugation, JL = J_. Together with the Hamilto-

nian (5.3.5), they satisfy the algebra
H, Iy =+2Jy, [J_.Jy]=4H, (5.3.20)
from which the action of J1 on eigenstates of the Hamiltonian follows:
Jin)=a,ln+1), J_|n)=a,1|n—1), (5.3.21)

with

an=2¢/(n+1)2r +n+1). (5.3.22)

5.4 Order and disorder fields

Besides the Fermi and the energy fields, other local fields are present in the theory.
Two spin fields associated to the Z, symmetry (¢,1) = (—t, —¢) of the action
(5.2.3) can be defined, the order field o(z) and the disorder field y(z). They are

not mutually local with respect to the Fermi fields, since the products

Yol o), b@pE), F@uE) (A
acquire negative signs when the point z is brought around z’. This property does
not define the fields ¢ and p uniquely. Besides having this property, they are
required to be “primary” with respect to the action of the Fermi fields in the

operator algebra. This fixes operator product expansions (OPE) of the form

b(e)o(e) = (5.4.2)
Y e \@ () un () () 4 4| 5 Lal,2') v (5) D)




The factors s, and ¢, are given by

—-

1 — 2% n+%
sp(z,2') = ( i > (z =272, (5.4.3)

1—zz
1 — '3 n+l (Z B Z/)n+%
taleo2) = (1—zz’> 11—z

s, transforms under the representation (%, O) in z and (—n,0) in 2/, and ¢, under

(0, %) in  and (—n,0) in 2’ (see Appendix B.1); the factors s,, {, are their

complex conjugates; the projective invariant s is given by (4.1.6), (B.1.3), i.e.

_ =)E=2)
T )1 —z2) (5.4.4)

the functions u,(n) and v,(n),

1 1
uy(n) = (1—n)F (r,r + 3 + n; 3 + n; n) \ (5.4.5)
r 1 3
n = 1— 7ﬂ]j 1, — ;— ’ s

are determined by the field equations (5.2.5); and D, D are the covariant deriva-
tives introduced in (B.1.6). The constants ¢, can be determined, say, from re-
quiring associativity of the operator algebra on ¢(z)¢(z")do(0) (see Appendix
B.4),

=1, cnzz/G)n (n>1), (5.4.6)

with (3), =T (3 +n) /T (3).

There are similar expressions for the products ¢ (z)u(z'), ¢ (z)u(z"), obtained
from the above OPE (5.4.2) by interchanging o <+ p and v/i <+ /—i. These

completely define the fields o and p, together with the normalization

ST

(o(2)o(y)) ~ d(z, )%, (pla)u(y) ~d(z,y) 7 asz—y. (547

Note that the fields o and u are taken to be SU(1,1) invariant (so that their
SU(1,1)-dimensions are h = h = 0). This is in contrast to the order and disorder

fields in the boundary Ising field theory on the disk, Agy, about which we perturb



as in (5.2.1), where they are usually taken to have the same SU(1,1) dimension
as their “scaling” dimension (1/16,1/16). This contrast comes from the fact that
the boundary theory is interpreted as the scaling limit of the lattice Ising model
with a boundary, whereas we are interested in the scaling limit of a model on the
pseudosphere. The effect of the boundary implies, for instance, that the average of
the order field depends on the position, whereas on the pseudosphere, by SU(1,1)
invariance, it does not. More precisely, the order field in the boundary theory on

flat space is related to that on the pseudosphere by

Oflat = (1 - 22)_1/8Jpseudosphere (548)

and a similar relation holds for the disorder field.

In connection to the last remark, note also that when the parameter r is
set to zero in (5.2.3), we obtain a conformal field theory on the disk, and since
the operator product expansion is a local entity, it should be independent of the
boundary and be the same as on the full plane. The OPE’s (5.4.2) are certainly
not those of the Ising conformal theory on the plane (those derived in Appendix
B.4) when r = 0, since we still have covariant derivatives and factors s, and t,.
However, making the replacement (5.4.8) in (5.4.2) at r = 0, we would obtain the

usual OPE on the full plane for the fields oq,¢ and pigac.

5.5 Two-point functions

5.5.1 Differential equations

All correlation functions of fermion fields in the theory (5.2.3) can be directly con-
structed by requiring that they be solutions to the equations of motion (5.2.5),
and by requiring that these solutions have the singularities specified by the behav-
iors (5.2.6) at colliding positions of the fields as well as the asymptotic conditions

(5.3.8) or (5.3.9) (depending on the regime). Is it possible to similarly construct



the correlation functions of order and disorder fields from solutions to differential
equations and from appropriate asymptotic behaviors? As in the case of the fields
O, in the Dirac theory, since order and disorder fields are embedded in a free the-
ory, it turns out that this is possible. The key is to use particular conserved
charges in the theory, and relations among them that amount to the equations of
motion (5.2.5).

Recall the conserved charges (5.3.3), forming the isometry algebra. Note that
the field equations (5.2.5) specify the Casimir of the representation formed by the

Fermi fields and their descendants under the action of the isometry algebra,

S (1.1, l) + [P, [P, 0]]) — [R,[R, ] = ( - i) v, (5.5.1)
with a similar equation for ©». This determines correlation functions of Fermi
fields. Of course the order and disorder fields do not form such a representation
for the isometry algebra.

Since a free theory is certainly integrable, it contains an infinite number of
conserved charges. A set of such charges can be constructed from conserved

currents obtained by applying an arbitrary number of Lie derivatives on Fermi
fields:

(LY Ly) =0 (LY L) (5.5.2)
where L' = Pm™ Pm2 R™: L = P™ P2 R"™ m’s, n’s being some non-negative
integers. That the conservation law (5.5.2) holds is a simple consequence of the
equations of motion (5.2.5).

Consider the following infinite sum of some of these charges, parametrized by

a real variable 8:

Q(0) = i g (2;1@,) /C {;z; R dz — o R™p dg} (5.5.3)

n=

which can be written less formally as

Q) = L {1/}(2, zZ) ei§¢(ei6’27 e_wé) dz —(z,72) e‘ig;/;(ewz, e_wé) dé} )

27TZ C
(5.5.4)



These are in fact nonlocal conserved charges; for instance, their action on a Fermi
field at a given position gives generically Fermi fields at positions separated by a

finite distance from the initial position:
[Q(0), ¢] = v—g — s (5.5.5)

where vy is the field ¥ rotated by an angle § around the origin of the disk:
Yo(z,2) = e 2ep(e 2, ez) | (5.5.6)

These nonlocal charges form, by the adjoint action, a nontrivial module for the

isometry algebra with a Casimir given by

5 (IP.[P.Q+ [P.[P.QUIT) — IR [R. Q)] = (107~ 1) sin* () Qo).
(5.5.7)
The value # = 7 is particularly useful. Define
1
Zy = §Q(7r) : (5.5.8)

It generates the following transformation on the Fermi fields:

[Z0,¢(Z,§)] = iL/J(—Z,—Z) > [Zoa%/;(zaé)] = —i¢(—z,—2) > (559)
which is the infinitesimal transformation for the group action
e 2%y (2,2)e™"*%0 = cosh(a)¢(z, z) — sinh(a)¥(—z, —%) . (5.5.10)

It is easy to verify that the equations of motion, the OPE’s between Fermi fields
and the asymptotic conditions are indeed preserved under this transformation.
The Ward identities coming from the nonlocal charge Z, and the cluster prop-
erty of correlation functions are enough to determine the nonlinear differential
equations for order-order and disorder-disorder correlation functions. What is
usually the hardest part in finding Ward identities associated to nonlocal charges

is to find their action on local fields. In the present case, we consider the set of



local fields of the form 9*d'c(z, 2)0™0"0(—z, —%) as well as similar fields where
one or two of the ¢’s are replaced by disorder fields p. For convenience, we will

use the notation

6(z,2) =0(—2,—2), f(z,2) = p(—z,—2) .

Correlation functions containing a Fermi field ¢(z) and fields in the set above at
various positions z;’s have square-root branch cuts in the z-plane linking z; to
—z; for all i. Bilinear combinations of Fermi fields of the type t(2)¢(—z) in such
correlation functions are then defined on the plane without cuts. The integrands
of the charge Zg, defined by (5.5.4) with § = 7, are such bilinear combinations
of Fermi fields. Hence the charge Zy has a well-defined action on fields in the set
above, that can be calculated by picking up poles at the positions of the fields.
The poles can easily be obtained from the full operator product expansion (5.4.2).

In fact, the calculation can be simplified by noticing the following. On any field
that contains only holomorphic derivatives or only anti-holomorphic derivatives,
for instance 0”0 &, the action of Zy can be calculated using solely the conformal

OPE, obtained by taking r = 0 in (5.4.2). For instance, we easily find
[Zo,a'ﬂ] = :ua— 3 [Zovlu&] = _Jﬂ 3 [Zoaa&] =0 3 I:Z07ILLIEL] =0. (5511)

Denoting 06(z,z) = (do/0z)(—=z,—%) and 0ji(z,z) = (Ou/0z)(—=z,—2), the ac-

tion on fields with one derivative is given by

[ZO,Ja/jL] = a:u& 3 [ZO,/M‘?&] = _aaﬂ 3
[Zo,dofi) = pos ,  [Zo,0uc| = —odji , (5.5.12)
[Zo,006] = 1(Opfi — pofp) ,  [Zo,pofi] = i(do6 — 0d) ,

[Zoa 80'5'] = Z(:uaﬂ - 8/41) ’ [Z07/’Laﬂ] = Z(Ja& - 60'5') :

On particular linear combinations of fields that contain mixed derivatives, one

can use the equations of motion in the form (5.5.7). For instance, consider the



linear combination

W = ([P, [P.ofil] + [P, [P.oji]) ~ [R.[R, 0] (5.5.13)

Then, the action of Zg on W,
[Zo, W(z,2)], (5.5.14)

can be expressed using (5.5.7) in terms of the action of Zg on the fields oji as well
as on the fields [P, ofi], [P,ofi] and [R,cji], all of which can be obtained using
the conformal OPE:

[Z07 W] = [P7 [Zoa []-57 J/l]]] + []-57 [Z07 [Pa U/*NL]]]
5 ([P.[P, (2,0l + [P [P. [Z6, 7]
+2[R7 [Z07 [Rv J/*NL]H + [Ra [Rv [Zov U/”NL]]]

—|—(4r2 — )[Zo,0f] . (5.5.15)

In order to determine the correlation functions, it is sufficient to consider the

following two Ward identities, which only express the fact that Zg is conserved:

([Zo, W(z,2) (uo) (', 2")]) = 0 (5.5.16)

([Zo, [P, (05)(2, 2)] [P, (pit)(=',2)]]) = 0 . (5.5.17)

The first Ward identity is in some sense the equations of motion on the fields ¢ and
p (a similar identity can be used on Fermi fields giving essentially the equation of
motion (5.5.1)), and the second is a supplementary condition that relates order-
order and disorder-disorder correlation functions. Of course, these Ward identities
in fact give linear equations for four-point functions. We can consider a particular
case of these equations by taking z and z’ very far from the center of the disk but
at a finite distance from each other: z = pe, 2/ = pe?’ + Az, p — oco. Using
cluster property and PT-invariance of correlation functions, we obtain bilinear

and quadratic differential equations for two-point functions.



More precisely, consider the two-point functions of order and disorder fields

Gr,2') = (o(a)o(e')) . Ca,2’) = (p(x)u(z')) . (5.5.18)

and Equation (5.5.17) gives the quadratic differential equation

0G OG- *G G — 2 (0GAG - 9 G) +22°0G G (5.5.20)
=9GIG -GG -7 (GG - 9*GG) +22°0G G

where 0 = 0,, 0 = 0., 0 = 0; and 0’ = 0. In deriving these equations, it is
important to keep track of the phases of the Fermi fields in the integrand of Zg
in order to get the correct signs.

We are interested in a solution that respects the SU(1,1) symmetry, in which
case the two-point correlation functions are simply functions of the projective
invariant s (4.1.6). Then, Eqgs. (5.5.19) and (5.5.20) above imply the set of equa-

tions

s(1—3) (GG = G"G + GG = GG + (25— 1) (GG + (/G =0,

(s =) (G - G"G =G+ 6G) - (GG -GGy =0, (55.21)
s (GG Y GG — zé'G') n (G'G n GG') _ 221:7136;1 aa

where primes denote derivatives with respect to s and the first two equations of
(5.5.21) are consequences of Eq. (5.5.20).
From these equations, we can express the two-point functions in terms of a

Painlevé VI transcendent w(s) satisfying (4.1.5) with A =1, A = 0 and v = 0:

, 1 [1 1 1 9 1 1 1 ,
wh=-|—+ + wo—| -+ + w
2\w w—-—1 w-—s s s—1 w— 8§

! _ 92 w(w —1)
- (2 2 ) s(s—1)(w—s) " (5.5.22)




From the usual parametrization in terms of auxiliary functions x(s) and ¢(s),

(2]%)1/4 (o(z)o(y)) = ex(s)/2 cosh(p(s)/2) , (5.5.23)
ORI () ) = &P sinh(o(s)/2) (5.5.24)
we have
cosh? p = % , (5.5.25)
g s(s—1) W S 1 2 w— 1
X dw(w — s)(w —1) 2w(w — s) + (4 ) (s —1)(w—3s)

The function x is the logarithm of the tau function (4.1.7) associated to the
Painlevé equation (5.5.22).

Note that the derivation above is in close connection to the method for deriving
differential equations for correlation functions of order and disorder fields in the
Ising field theory on flat space developed in [52]. The results above were obtained
in [39] by using this method. In the method of [52], one first consider two copies of
the Majorana theory. The charge Zy above is replaced by a charge that generates
a rotation of the Fermi fields among the two copies. Since two copies of the
Majorana theory is a Dirac theory (see Section 5.6), the charge Zy is just the
U(1) charge of the resulting Dirac theory. The product of fields of the type
o above is replaced by a product of fields belonging to different copies, and
the cluster property used above is simply replaced by the fact that correlation
functions of fields belonging to different copies factorize.

Note also that the method can be applied to the Ising field theory on a surface
with boundaries and boundary conditions that break some or all of the spatial
symmetries of the bulk. For instance, consider first the infinite flat space, where

the two Ward identities (5.5.16) and (5.5.17) lead to the two equations
D0G G + G 9IG — 0G IG — 0G G = m*G G (5.5.26)

and

G OG- *G G =dGIG -GG . (5.5.27)



Since these two Ward identities only use the fact that Zg is conserved, one would
obtain the same equations for a theory on the flat half-plane, where the spatial
symmetry perpendicular to the boundary is broken. These equations should fix
completely the two-point functions, once the boundary conditions on the line

delimiting the half-plane are specified.

5.5.2 Fixing the solutions

As in the case of the scaling fields in the Dirac theory, the appropriate solution
to the Painlevé equation (5.5.22) can be fixed, for instance, by the short distance
s — 0 behavior

w = r?sn (k‘(r)Q 5) +0 (52 In* 5) . (5.5.28)
The constant k(r), given by

Ink(r) =1¢(r)+ % +~v—1In4 (5.5.29)

(¢(z) = dInT'(z)/dzx and v is Euler’s constant), can be obtained from the vacuum

expectation value of the energy field (¢),
2R (e) = =2r(¥(r)+~v)—1, (5.5.30)

by applying conformal perturbation theory. This is done in Section 5.7. T used
the condition

—(&)| =0, (5.5.31)
and the normalization
d(z,y)* (e(z)e(y)) =1 as d(z,y) —0. (5.5.32)
The power law in (5.5.28), as well as the behavior
1 1
x(s) = 1 In(s) + O(s?) (5.5.33)

fixing the integration constant for y(s) in (5.5.23), (5.5.25), are specified by the

leading short distance behaviors (5.4.7).



This solution has the property that at large distances s — 1 it behaves as
L—w=A(r)*1 =)+ 0 ((1—s)*, (1 —s)**") , (5.5.34)

with the coeflicient
_ T(3+7)
CAn/al(1 )

Furthermore, x(s) approaches the constant 41n((2R)"/2(c)), related to the mag-

A(r) (5.5.35)

netization

T (L e
@VZUU%TII<—Tfij>. (5.5.36)

i P
obtained in Section 5.6. The leading behavior (5.5.34) are obtained from the form
factors of the order and disorder fields (5.6.10) and (5.6.11) in Section 5.6. The
behavior (5.5.34) also provides an alternative description of the solution to the
Painlevé equation (5.5.22) describing the correlation functions. Together with
(5.5.28), it gives a solution to the connection problem relating the singular points
s = 0 and s = 1. This solution cannot be obtained by a simple specialization of

the solution showed in Section 4.2 of the previous Chapter: the particular case

XA =1, X =0is singular.

5.6 Long distance expansion and form factors

The purpose of this section is to determine the long-distance expansion of the two-
point functions (o(z)o(2’)) and (u(x)p(z’)). This fixes the constant A (5.5.35)
that specifies the singular behavior of the Painlevé transcendent around s =
1 as in (5.5.34) and the vacuum expectation value (5.5.36) that specifies the
normalization of the associated tau function describing these two-point functions

as explained in the previous section.

The long-distance expansion is obtained by a form factor expansion, as was



done in (4.3.11) of (4.8.1):

(o(x)o(z)) = > (vaclolki, ... k) En, . . ., ko |vac)e= e+ 255

n=0 k1> -->kn=0
> k; odd

(5.6.1)
and
(w)p)) =>" > (vaclplkr, .. k) o, - ., | |vac)e= it 455t

n=0 k1> ->kn=0
> k; even

(5.6.2)
where

)\]‘Zl—I-QT—I-Qk]'.

This long-distance expansion gives (recall the notation (5.5.18) and (4.1.6))

G(s) _ 1+2r §)2+2r s
G(s)

= SA(L— 3 (140(1 - 5))

where the constants A and A’ are given by

. 41—2r(1 —|—T)2

__q—r 2 2
A = 47" |(vac|p]0)|” , A= T+ or |(vac|e|0,1)] . (5.6.3)

The description in terms of the differential equation (5.5.22), (5.5.25) imposes

that A is the constant appearing in (5.5.34) and further that
A= A2, (5.6.4)

Along with the constant A, the description in terms of the differential equation
then fixes completely the long-distance expansion of the two-point functions, as do
the form factor decomposition. Note though that the form factor decomposition
gives more information, as it can be used to determine the long-distance expansion
of multi-point correlation functions of order and disorder fields as well.

In order to calculate the magnetization (5.5.36), I will use the results of the

previous chapter for the one-point function (4.2.8). The strategy is to use the fact



that the Dirac theory factorizes in two copies of the Majorana theory, and to show
that particular linear combinations of fields O, in the Dirac theory factorize into
product of order and of disorder fields in the Majorana theory. This factorization
will be shown by proving that form factors for these linear combinations in the
Dirac theory factorize in an appropriate basis. Then, the vacuum expectation
value of these linear combinations give products of vacuum expectation values of
order and of disorder fields. In fact, this proof will directly give expressions for

the form factors of order and of disorder fields.

5.6.1 Factorization of the Dirac theory

The correlation functions of particular fields O, in the Dirac theory are simply
related to correlation functions of order and disorder fields in the Ising field theory
[148, 113, 132]. Let me explain in more detail what this relation is on flat space.
The tensor product of two independent copies of the Majorana theory can
be described by a single copy of the Dirac theory. One can then represent the
tensor product of two order fields and of two disorder fields acting non trivially on
independent copies of the Majorana theory as a single field in the Dirac theory.
Taking the Majorana theory with positive mass to represent the scaling limit of
the Ising model in its low-temperature regime, one has the following equivalences
(148, 113]:
cRo=0% pou=0 (5.6.5)

where the fields O and O belong to the Dirac theory. They can be expressed
in terms of the fields @, described above®:
1

o)
V2

(0;+0.,), 0= \/% (0;-0.s). (5.6.6)

3We also have more generally:
OW (@) 0 (en) = (o(21) - 0(2n)) @ (o(21) - o(2n))
0 (1) -0 () (=)D (1) - p(2n)) © (u21) -+ p(en))



Similarly, the Dirac theory on the pseudosphere is equivalent to a tensor prod-

uct of two copies of the Majorana theory on the pseudosphere. Consider four real

fermion fields ), ¥y, ¥4, U5, defined via

1

V2

It is easy to verify that correlators of these fields factorize; for instance:

wR=§§%+W@,wL (dy — itha).

(Palz1) - tal@n) o(@h) - n(27)) = (Palwr) - al@n)) (P(21) - - u(aln).

This factorization can be expressed by writing the fields t,, 15, 14, 1y as tensor

products of fields in two independent copies of the Majorana theory*:

Ya=9®R1, P=10%, =01, ¢h=11¢¢.

Here 1,1 are (real) Majorana fields that satisfy the equations of motion

(9 - T a r —
6" T eor260 86T T8

with £ = & +1i€, and € = & — i€, and have short distance normalization given by

1 1
2mi & —52’

1 1
27”@1 —52.

(&1, &)Y (62, &2)) ~ (&1, &)Y (&, &) ~

For product of fields, we have

Ya(1) -+ a(@n) Yol2)) - Pu(ar,) = (P(21) - (2a) @ (P(27) - ()

and in general we must take into account the signs coming from the fact that two

Dirac fields anti-commute. For instance, we have

Ya(1)ye (7)) Yal(w2)ve(2y) = —(P(x1)Y(w2)) @ ((27)(23)) -

Consequent to this decomposition of the Dirac fermion field, the Hilbert space

of the Dirac theory can be written as a tensor product of two copies of the Hilbert

*In this section, we use a slightly different normalization of Majorana fermion fields than
that used in Section 5.2.



space of the Majorana theory: H = Ha @ Has. It is easy to verify that the Hilbert
space Hys, within the quantization scheme that we are considering, has a structure
similar to that of H. Recall that a basis for Has can be taken as the discrete set of
states diagonalizing the Hamiltonian of the Majorana theory in this quantization

scheme:

k1, oo k), ki €Ny n=0,1,2,..., k1 < -+ < Ky,

with vacuum denoted by |vac)as. These states correspond to eigenvalues Ay +
...+ A,. States with different orderings of energy levels are defined by the fact
that exchanging the positions of two arguments k;, k; brings a factor of (—1). In
order to obtain a precise correspondence between the Dirac Hilbert space and a
tensor product of two copies of the Majorana Hilbert space, define one-particle

states |k), and |k); in the Dirac theory by

1 i
[K)a = ﬁ( F)+ +1k)-), k) = 75( k)4 = [k)-), (5.6.7)

and multi-particle states involving states of type a and b by forming exterior

products of these one-particle states. Then,
[vac) = |vac)yr @ |vac)u

and

by Bk K o b= [ kdar @ R B,
S————

Here we have fixed some of the phases by requiring the charge conjugation sym-

metry in the Dirac theory to be implemented by
Yy e kY-, UL o wg Ul o g,

In what follows, we will omit the subscript M on Majorana states unless required
for clarity.
We can expect that on the Poincaré disk, the fields O™ and O given by

(5.6.6) factorize as a tensor product of local fields (also called order and disorder



fields) belonging to the Majorana theory, the way they do on flat space, like in
(5.6.5). Although such a factorization is not a priori obvious from the defini-
tions of @) and O), it is a local property and should not be affected by the
curvature. The study of the fields O, above then gives information about order
and disorder fields in the Majorana theory on the pseudosphere. Indeed, the ex-
pected correspondence (5.6.5) between fields O+) and O defined in (5.6.6) in
the Dirac theory and fields ¢ and g in the Majorana theory, and the correspon-
dence described above between the Hilbert spaces H and Hps of both theories,
allow us to write matrix elements in H of the fields O™) and O) in terms of
matrix elements in Hpas of the fields ¢ and p. Having expressions for form factors
of the fields O) and O-) in Appendix B.2, this in turn gives us expressions for

form factors of the fields ¢ and p.

In the next subsections, I obtain expressions for form factors and vacuum
expectation values of order and disorder fields by specializing the results of Ap-
pendix B.2. From these results, I directly verify the factorization property (5.6.5)
of the fields OF) and O). More precisely, since the Hilbert space of the Dirac
theory on the pseudosphere is a tensor product of two copies of the Hilbert space
of the Majorana theory on the pseudosphere, I verify that in the tensor product
basis of the Dirac Hilbert space, matrix elements between vacuum and excited

states, or form factors, of the fields Of) and O) factorize.

5.6.2 Magnetization and form factors

Let me first summarize the results. Consider the Majorana theory with fermion
mass m on the pseudosphere with Gaussian curvature —1/R*.  Recall that 1
use the quantization scheme where the Hamiltonian is taken as the generator
of a non-compact subgroup of the SU(1,1) isometry group, which gives a set of
eigenstates (5.3.17). The Hilbert space of the Dirac theory is just a tensor product

of two copies of the Hilbert space of the Majorana theory. Then, I will verify the



factorization properties:

(vac|OW) (|ky, ... k) @ |k}, .. K)) = (5.6.8)

(vac|o|ky, ..., ky){(vac|o|kl,... k)
and®

(vac|O) (Jkr, .. k) @ K, KL)) = (5.6.9)

—(vac|ulky, ... k) {vac|u|k], ... k).
Under the normalization of the states implied by (5.3.15), for instance

<k1|k2> = 5]?17]?2 )

the two-particle form factors of order fields are given by

(vac|o|ky, ko) _ (_1)k1+;€2+1 ko (2r + k)
(o) (14 2r 4+ ki + ko)
S BRI

Pr+t+ )T+ +3)T0+H)T(E+%)

2.

(5.6.10)

for ki even and k; odd, where we use again r = mR as in (4.1.2). For k; odd
and kq even, one can use (vac|o|ki, ke) = —(vac|o|ks, k1), and in other cases the
two-particle form factor is zero. One-particle form factors of disorder fields are

given by

[NES

(o) =(=1) al(r+1+5)0(1+%)

for k even, zero otherwise. Multiparticle form factors in both cases can be ob-

(vaclulk) \/F (r+5+5)T(5+3) (5.6.11)

tained by Wick’s theorem on the particle states: contractions between two one-

particle states in a multi-particle state i1s given by the two-particle form factor

®The sign (—) on the right-hand side comes from the identification

O (@) al1) - a(en) () -ty (ay,) =
(=D (@) (21) - - (2a)) @ (p(2)P(21) - P(27)),

which can be obtained, for instance, by analyzing the OPE’s in the Dirac and in the Majorana
theories, and from the fact that form factors of disorder field u are zero if they contain an even
number of particle.



of the order field, and contraction between a one-particle state and the disorder
field is given by the one-particle form factor of the disorder field; there are no
other contractions. Above, the fields are at any point of the unique line on the
pseudosphere that is both a geodesic and an orbit of the non-compact subgroup
generated by the Hamiltonian. On these fields at such points, the Hamiltonian
generates geodesic translations in units of 2.

The fact that the form factors factorize strongly suggest the validity of the
factorization relations (5.6.5). Then, from the vacuum expectation value (4.2.8) of
fields (’)%, we can deduce the vacuum expectation value of the order field (5.5.36).
From (4.2.1), we have the following normalization of the fields O) and O in

the Dirac theory on the Poincaré disk:

[N

(OD(@)0H () ~ d(a,y) 72, (OD(@) O () ~ —d(x,y)77  asz—y,
(5.6.12)
where d(z,y) is the geodesic distance between the points z and y (B.1.3). This
indeed corresponds to the normalization (5.4.7) for the order and disorder fields.
Note that in the theory on flat space, form factors were first calculated in [13],
and the vacuum expectation value of the spin field was first calculated in [132].
Below, for definiteness, the fields of which I take matrix elements are assumed
to be at the center of the Poincaré disk. Using their transformation properties
under the SU(1,1) isometry group, they can always be translated to any other

points in the Poincaré disk.

5.6.3 Form factors of order field

I now verify the factorization properties of the field O+) as defined by (5.6.6)
and calculate the multi-particle form factors of the order field o in the Majorana
theory. Using a formula of the form (B.2.10) of Appendix B.2, which essentially
states that multi-particle form factors of the fields O, can be evaluated in terms

of their two-particle form factors through Wick’s theorem, the multi-particle form



factors of @) in the Dirac theory can be written in the form

<O(+)> <VaC|O(+)|k1’ B 7kn7 ki? B 7k;z>—|—, Tty = (5613)
(—1)nn-1)/2 det(A) + det(A-)

2
where the n X n matrices Ay and A_ have matrix elements
[Asli; = (ki K)), [A-]ij = —f (K5, ki)

with f(ki,k2) = f+(ki1,ks) given by (B.2.12)) in Appendix B.2.5. In Appendix

B.5, it is shown that

(5.6.14)

det(A det(A_ A A_
o) o) _ g (et A,

This equation simply means that we can calculate the form factor in (5.6.13)
by using Wick’s theorem to pair one-particle states in the asymptotic state, the

contractions being given by

1 0 (k1 + ks even)
[ki)s [ka)— = S(f(krs ko) = f(kas ) = (5.6.15)
f(ki,k2) (k1 4 ko odd)

where we used properties (B.2.13) (other contractions being zero). Changing basis
to |k), and |k), through (5.6.7), we can calculate the multi-particle form factors

by using Wick’s theorem with the contractions

rax .

k1)a |ka)a = ki)s |k2)y = |ki)s [hka)-

and

We then obtain

<(9(+)><Vac|(l)(+)|kla'''71{:7”]{:17''-71{:;1>a’a7“.7b7 [)7 == Pf(E)Pf(E/) (5616)
——



for n and m even, the form factor being zero otherwise. Here Pf means the
Pfaffian of a matrix. The n x n matrix ¥ and the m x m matrix ¥’ have matrix

elements
— —

Xlia = lkj)+ k-, [E50 = 1K)+ [kr)-
The factorized form of the right-hand side of (5.6.16) strongly suggests that we
can identify the field Ot in the Dirac theory on the Poincaré disk with a tensor
product of order fields o in two independent copies of the Majorana theory on
the Poincaré disk, as in (5.6.5). Comparing with (5.6.8), equation (5.6.16) then
leads to the form factors of the order field:

(vac|o|ky, ... kn)
(o)

for n even, zero otherwise. In particular, this gives the two-particle form factor

= Pi(%) (5.6.17)

as
(vac|o|ky, k2) _ 0 (ki + ks even) (5.6.18)

(o) f(ky,ks) (k1 + k2 odd)
(where I recall that f(ki,k;) is given by (B.2.12) in Appendix B.2.5), and says
that we can calculate multi-particle form factors of the order field by using Wick’s
theorem to pair one-particle states in the asymptotic states, the contractions being

given by the two-particle form factors. It is possible to verify that the two-particle
form factor (5.6.18) can be written as (5.6.10)

5.6.4 Form factors of disorder field

Now we proceed to verify the factorization properties of the field O(-) and to
calculate the multi-particle form factors of the disorder field p in the Majorana
theory. As in the previous subsection, using definitions (5.6.6) and Wick’s theo-
rem, the multi-particle form factor of the field O(=) in the Dirac theory can be

written in the form

<O(+)><Vac|(’)(_)|k1, T (5.6.19)

n n



(n—l)/2 det(A+) — det(A_)
2

(="

where, again as in the previous subsection, the n x n matrices A, and A_ have

matrix elements
[Asli = [(ki, k3), [A-]iy = — [ (K], k).
In Appendix B.5, it is shown that

det(A;) — det(A)
2

= Res,, det(A4(w)) (5.6.20)

where A4 (w) is a matrix with matrix elements depending on an auxiliary (formal)

variable w:

w™' (k; and K’ even)

[As(w)]ij = [(ki, k) -

1 (ki or K} odd).
In equation (5.6.20), the symbol Res,, is just a convenient way of saying that
one must keep only the coefficient of the monomial w™! in the determinant
det(A4(w)), that is, one must take the formal residue in the variable w. Equa-

tion (5.6.20) means that we can calculate the form factor (5.6.19) by using Wick’s

theorem with contractions given by

' ! w™'  (k; and ky even)

|]€1>+ |k2>— = f(klakZ) :
1 (ki or ky odd)

(other contractions being zero) and by taking the formal residue in w of the
resulting sum of products of contractions. Changing basis to |k), and |k),, we
can calculate the multi-particle form factors by using Wick’s theorem with the

contractions

1 (vac|o|ky, ka)

|k1>a |k2>a = |k1>b |k‘2>b = g(f([ﬁ,kb) - f(k‘%kl)) = <J>

and

ki)a Tko)y = —sw ' (f(kike) + [(k2, k1))



and by taking the residue in w (here we used the first and second equations of

(B.2.13)). Then we find

1 _
<O(+)><VaC|O( )|k17 s '7kn7k17 s '7k;n>a7a’ . _7b7 b’ L. (5621)

- (i<—1>f‘1<—1)%‘ if (k. k) <V“'“"“1’-<-g-;1@7---7’fn>) x

J=1

x

X (i(—l)j_l (—1)72 i f (K, kL) il G ]%7 — 7k;n>)
@)

for n and m odd, the form factor being zero otherwise (where the hat means
omission of the argument). Again, as in the case of the field O™ the factorized
form of the right-hand side of (5.6.21) strongly suggests that we can identify
the field O() in the Dirac theory on the Poincaré disk with a tensor product
of disorder fields p in two independent copies of the Majorana theory on the
Poincaré disk, as in (5.6.5). Comparing with (5.6.9), equation (5.6.21) then leads
to the form factors of the disorder field:

(vaclilb, ) = (=17 vy 2l e onh)

=1
for n odd, zero otherwise. Here the one-particle form factor (vac|ulk), up to a

(5.6.22)

sign factor independent of k, is given by

k
2

(vac|plk) = (o) (=1)2+/i f(k, k) (5.6.23)

(where we recall that f(k,k) = fi(k,k) is given by (B.2.12)). From the last
property of (B.2.13), the one-particle form factor (vac|u|k) is non-zero only for k
even, and it is real since i f(k, k) is real and positive. The ambiguous sign factor
was chosen to make (vac|u|0) positive. This ambiguity is related to the ambiguity
in the choice of branch on which to evaluate the correlation function (¢ (z)u(y))
in the Majorana theory.

It is possible to show that the one-particle form factor (5.6.23) can be ex-
pressed as (5.6.11)



5.7 Short distance expansion and conformal perturbation

theory

In this section, I calculate the short-distance expansion of the two-point functions
(o(x)o(z')) and (u(x)p(z")). This fixes the constant & (5.5.29) that specifies the
singular behavior of the Painlevé transcendent around s = 0 as in (5.5.28), which
determines the Painlevé transcendent used to describe these two-point functions
as explained in the Section 5.5. The form of the short distance asymptotic behav-
ior s — 0 of the appropriate transcendent can be obtained by iteratively solving
(4.1.5), (5.5.25) with prescribed leading behavior (5.5.28), (5.5.33). In terms of
the combinations F_(s) = (2R)/*s'/® G(s) and Fy(s)(2R)"*s'/® G(s), it is given
by
1 1
Fi(s) = 1% 1720 + §(2r2 —1)s + gr 532 [2 +Q 4+ 27’29] (5.7.1)
1
+@32 [—7+ 77 (15 + 80%) +r* (1 + 802 — 80%)]
1
ST s (1T 479 +3r2(3 +7Q) + r* (=1 4+ 52)] + 0 (s Q?) |

where the term 0 contains the logarithmic dependence in s,
Q=1n(ks'?) . (5.7.2)

The constant k is determined from conformal perturbation theory and from
the vacuum expectation value of the energy field e(z) = i(2R)~' (1 — 22) () ().

The latter can be obtained from the propagator

((2)(a’)) = (1 - 22")7'G(s) , (5.7.3)

where the piece

L'(r)I(1 +r)

G(s) = —; I(2r)

(1=s)"F(r,14+r142r1—2s) (5.7.4)

is function of the projective invariant s, Eq. (5.4.4). This propagator is determined

by the equations of motion (5.2.5)

(1= 22) 0. ((1 = 22)0:(0(2)$(2")) = rP(@(2)d(=)) . (5.75)



and the normalization condition

(WB(2)p(a)) ~ ———TIn|z — 22 as  |¢—2| =0, (5.7.6)

1 — 2z

as well as the condition that it vanishes in the limit of large geodesic distance
s — 1. One can calculate the vacuum expectation value of the energy field by
point-splitting technique. Due to resonance between the energy field e(z) and
the identity field multiplied by the mass parameter, m 1, one needs one more
condition to define the energy field. This condition can be taken as (5.5.31)
which gives (5.5.30).

Now consider the order-order operator product expansion (OPE) in the mas-

sive Majorana theory on the pseudosphere, which has the form
o(z)o(z') = (2R)“1/43_1/8 (C’l (s,r)1+4+2R s'/? Ce(s,r)e(z’) + .. ) . (0.7.7)

where Cy(s,r) and C.(s,r) are structure functions and the dots represent con-
tibutions coming from descendent fields. In the Majorana theory of mass m on
infinite flat space, the main property of such OPE’s is that the structure func-
tions involved are analytic in the perturbing parameter m in some region around
m = 0 (in fact, they are entire functions of m). All non-analyticities around
m = 0 of correlation functions come from the vacuum expectation values of the
fields appearing in OPE’s. In the massive Majorana theory on the pseudosphere,
analyticity of structure functions is a trivial statement, since all correlation func-
tions are expected to be analytic in some region around m = 0 (expected to be
finite). This comes from the fact that the negative curvature plays the role of an
infrared regulator. A more useful statement is that the flat space limit R — oo
(that is, the limit where the infrared regulator disappears) should be well defined
independently on every term in the expansion in m of the structure functions.

This gives, for the structure functions, the form
Ci(s,r) = 1+ C'st? 4 O(s) + rst/? (a Ins+ b+ 0(51/2 In s)) + O(r231n2 s),

1
Co(s,r) = 5 + 0(51/2 Ins) . (5.7.8)



Logarithmic terms appear in the part proportional to r in Cy(s,r) because of the
resonance between ¢ and m 1; from (5.7.1) the coefficient a is equal to —1/2.
Clearly, the OPE (5.7.7) shows that the constant —r In k involved in the short

distance expansion (5.7.1) of the order-order correlation function is given by
—rlnk=R(e) +rb+ C (5.7.9)

in terms of the vacuum expectation value of the energy field and of the constants
b and C appearing in the structure function Cy(s,r). These constants can be

obtained from the conformal limit m — 0 [22],
(o(x)o(z"))meo = (2]%)‘1/4\/ sl/4 4 s=1/4 (5.7.10)

which gives C' = 0, and from the known flat space limit k(r) — re”/4 as r — oo
[132], so that b= In4. This gives Eq. (5.5.29).

It is instructive to explicitly evaluate the constant b by conformal perturbation
theory, thereby giving a simple derivation of the known flat space limit. This
illustrates the use of a negative curvature as an infrared regulator. The form
(5.7.8) of the structure functions imply that the constant b can be calculated by
perturbation theory of the two point function (o(z)o(z’)) about the boundary

Ising CFT, expanding to first order in m:

(o(2)o(2")) = (o(z) 0(2'))m=0 + (5.7.11)

QRQm dx”dy” , , » /

where ¢ = x" 4 iy” and { = x” — iy”. By simple considerations of large geodesic
distance asymptotics, the integral above is infrared (|(| — 1) convergent. From

the result (5.7.10) and from

. (2R) /4 { s <|<||<—s%| 11— s3] )
clx)olx T ))m=0 = S 1 + 1
(o(@)o(@)ela")) 251/t § 518 1 —s3¢]  [¢]I¢ — s3]

. /< s8] el —sf(l) } |
[l —st T JC= s3]




where s is the projective distance (5.4.4) between the points z and z’, we find

(o(x)o(2")) = (5.7.12)

1 1 1 1 1 1 >
(2R)7s7% 1_|_§55-|-O(s)—|—r35 <—§1n3—|—1n4—|—0<85>> +O(T2)} )

which, as expected, gives C' =0, b = In4.

5.8 Thermodynamics and Discussion

5.8.1 Relation to the hypothetical statistical model

Consider an Ising-like lattice statistical model embedded into the pseudosphere
and recall the picture of the scaling limit described in Chapter 3. According
to this picture, the correlation functions of order and disorder variables in the
lattice model are evaluated, in the scaling limit, at distances proportional to R,
with prescribed proportionality constants. Then the leading asymptotic behaviors
of correlation functions in this limit are described by correlation functions in the

Ising quantum field theory on the pseudosphere developed in this chapter, with
m| = 1/¢™.

The quantity r in the Ising field theory is equal to the ratio R/¢%at that is kept
fixed in the scaling limit.

The order field ¢ in the Ising field theory can be interpreted as the scaling limit
of the lattice spin variable, let’s denote it 4, in the microscopic theory. According
to this interpretation, the sign of m is positive if the temperature is brought
towards the critical temperature from below in the scaling limit, and negative if
it is brought from above. Similarly, the lattice disorder variable [ is described
in the scaling limit by the disorder field g in the Ising field theory. The relation
between correlation functions in the lattice theory and correlation functions in

the Ising field theory is given by, for instance,

(6(2)6(y)) ~ (o(z)o(y)) in the region a < €™, a < R, a < d(z,y)



with
R/fﬂat =r, dl(:l:,y)/fﬂat fixed,

where a is a microscopic distance. The spin and disorder variables on the lat-
tice are normalized in accordance to the conditions (5.4.7). More precisely, the

normalization of the spin and disorder variables on the lattice is given by
(6(2)6(y) ~ dla,y) 75 (A(2)a(y)) ~ d(w,y)77 as o < d(w,y) < €

5.8.2 The free energy

An interesting quantity to study is the specific free energy f(m, R) as function of
the mass m and curvature radius R, defined through the partition function Z by
f = —limy_. In Z'V where V is the (two-dimensional) volume of space.

A particularly simple case is the massless one, m = 0, where the free energy
f(m = 0, R) can be computed using the defining relation between the trace of
the energy-momentum tensor T and the variation of the action S under a scale
transformation of the metric g,,, /g T! = 2g,, §5/6g,,. This gives

d 2
R [V(R) J(0, R)| = V(R)(T}) . (5.8.1)

where the volume V(R) must be taken finite (but large) for this equation to make
sense and must vary like R? under a scale transformation, RdV (R)/dR = 2V (R).
For the pseudosphere, the trace anomaly is related to the central charge ¢ by
(Tr) = ¢/(12m R?), where we have set to zero the constant piece related to the

vacuum energy density. With ¢ = 1/2, this yields

1 2R
fm=0,R) = mln (T) , (5.8.2)

where [ is an integration constant not determined by the quantum field theory
but only fixed after specifying the microscopic theory, i.e. the theory with an
explicit ultra-violet cutoff. In the scaling limit of the corresponding microscopic

theory, that is, setting the temperature equal to the flat-space critical temperature



and making R very large in microscopic units, the corresponding free energy per
unit volume is expected to have the leading behavior (5.8.2).

Such a geometrical contribution to the specific free energy, and in particular
the presence of the non-universal distance L, is expected for theories on a space
that is not asymptotically flat. In the case of the pseudosphere, the logarithmic
increase of R*f(0, R) as R increases is related to the decrease of the “space avail-
able” around every site, which decreases the interaction energy and increases the
free energy (as opposed to the case of a sphere of radius R, where one observes a
decrease of R*f(0, R) [143]). In comparison, there is no such contributions to the
specific free energy in asymptotically flat spaces without singularities, for instance.
There is only a finite and universal contribution to the total, volume-integrated
free energy; for a conformal-to-flat metric g,, = €2?6,, ,,, this contribution is given
by the well-known formula

% fim [ ?20,60" . (5.8.3)

241 Voo fy
The free energy f(m, R) of the Ising field theory at arbitrary mass can be
obtained from the vacuum expectation value of the energy field at finite volume

V, here denoted by (e)v(z), by taking the infinite-volume limit:

%f(m,z%) = —Qi lim i/vd%c [<5>V(:c>+m1n (EH . (584

T Voo V €
where ¢ is another non-universal microscopic distance.

In (5.8.4), it is tempting to take the limit of infinite volume V' by simply re-
placing (e)y(z) by its infinite-volume, position-independent expression (5.5.30).
However, because on the pseudoshpere the surface enclosing a finite region in-
creases as fast as its volume for large volumes, it is possible that contributions
proportional to the surface, arising from integration of (¢)y () at positions x near
the boundary (where it is significantly different from (5.5.30)), give in f(m, R)
additional finite terms. We have not yet evaluated these contributions, but expect

to come back to this problem in a future work.



A similar situation was found in the study of the Ising model on hyperlattices
[110]. As the authors did, we focus our attention on a “bulk” free energy, defined
by taking for (¢)y(z) in (5.8.4) the expression (5.5.30), valid at positions z far
from the boundary. This gives

r r? 2R 1 2R

where (G(z) is Barnes” G-function
Gz+1) = (27r)z/2e—[z(z+1)+wz2]/2 H [(1 + i>n e—Z+22/(2n)} , (5.8.6)
n
n=1

and ~ is Euler’s constant. This expression has the small r convergent expansion

1 2R\ r . [2R\ & re
21 R? =—In|—|—=——=—In[— 1) (n—1)— 8.
TR f(m, R) 12n<L> 575 n<€>—|—n§:3( )7 (n )n,(587)
where ((n) is Riemann’s zeta function, as well as the following asymptotic expan-

sion at large r,

r

) 2 mee’1/2 1 m L , 5
2rR*f(m, R) = 51n <f> — E1n (T) +{'(-1)+0 (r7?) , (5.8.8)

with the first term corresponding to the specific free energy of the massive Ma-
jorana fermion theory in flat space (the R — oo limit). As on the sphere [143],
there is no logarithmic term in R in this large r expansion.

From the analytic properties of Barnes’ G-function, one can see that the free
energy (5.8.5) has logarithmic singularities located at the negative integers r =
—1, =2, .... In particular, it is regular at r = 0, that is, the flat space critical
temperature does not correspond to a singularity of the free energy.

It is interesting to note that when we fix r = 1/v/6, the free energy (5.8.5)
does not depend on R anymore, and only the ratio /e appears. In this case, the
logarithmic increase of R%f(m, R) as R increases due to effects of the geometry

as explained above is exactly cancelled out by the logarithmic decrease due to the

increase of the interaction energy as the correlation length grows.



The “bulk” free energy defined above still depends on the asymptotic condi-
tions of the quantum field theory. Specifically, the expression (5.8.5) is valid for
“fixed” asymptotic conditions, whilst the replacement r — —r gives the expres-
sion for “free” asymptotic conditions. Both asymptotic conditions, or regimes, are
stable in the region —% <r< % and we intend to discuss the possible transitions
between these regimes in a future work. A full treatment of the thermodynamics
of the model, in fact, seems to require a better understanding of the nature and
importance of the neglected surface terms as well as of the other stable asymptotic
conditions that break part or all of the symmetries associated to the isometry of

the pseudosphere, as described in Section 2.2.

5.8.3 The magnetization

The expression (5.5.36) for the magnetization (o) in the Ising field theory is
expected to determine the coefficient of the leading asymptotic behavior of the
magnetization in the microscopic theory as the scaling limit is taken. As depicted

in Figure 3, it does not vanish at the flat space critical temperature m = 0, but

rather at a higher temperature, corresponding to the value m = —% of the mass
parameter. That is, at r = —1/2, there is a change in the power law of the

leading asymptotic behavior of the magnetization in the microscopic theory as
the scaling limit is taken. From this only, we cannot conclude that there exists an
R-dependent temperature at which the magnetization vanishes identically in the
microscopic theory for any finite R. However, the vanishing of the magnetization
occurs at the value of m below which the ordered regime is unstable and the
disordered regime, where the magnetization is zero, is stable. It is plausible that
there be a similar point joining an ordered and a disordered regime at finite R
in the microscopic theory at a temperature higher than the flat-space critical
1

temperature (higher by an amount that has the power law behavior ~ R™' as

the scaling limit is taken). The magnetization would vanish at the turning point



between the two regimes, as it has been suggested for the regular lattice theory
studied in Ref. [110]. We note, though, that our expression (5.8.5) for the free
energy is regular at r = —1/2. Of course, as we have pointed out, the expression
(5.8.5) probably does not give the full free energy, hence no serious conclusion
can be drawn from it yet.

Near the effective “critical” temperature, the magnetization in the Ising field

theory vanishes as

()2 = (2R st (r + %) L0 ((r 4 %)2) L (58.9)

where 3ga = 21/12 ¢71/8 A3/2 (A being Glaisher’s constant). The exponent 1/2
can be explained by recalling that a space of constant negative curvature is ef-
fectively infinite-dimensional at large distances due to the fact that the volume
grows exponentially [20]. In fact, a theory on the pseudosphere should essentially
show, in some sense, a cross-over behavior from a two-dimensional theory to an
infinite-dimensional theory. Hence mean-field theory could be used to predict
the exponent ruling the vanishing of the magnetization in the Ising field theory,
giving 1/2 as above. Assuming that the magnetization in the microscopic theory
vanishes similarly at a “critical” temperature, the exponent ruling its vanishing
should then be 1/2, which agrees with the results of Ref. [110]. In the flat-space
limit R — oo, the magnetization takes the usual form (o) — Sga¢ ml/g, and the
exponent 1/8 is recovered.

The fact that the effective “critical” temperature is higher than the flat-space
critical temperature is expected: the asymptotic conditions have a greater effect
on the pseudosphere than they have on flat space, hence the “fixed” asymptotic
conditions will render the establishment of disorder more difficult, increasing the
effective “critical” temperature. Similar considerations apply in the disordered
regime: there the effective temperature at which the average of the disorder

variable vanishes is lower than the flat-space critical temperature, because “free”



asymptotic conditions make it more difficult to establish order.

5.8.4 Two-point correlation functions and susceptibility

An interesting characteristics of the two-point functions is their exponential decay

at large geodesic distances,

(o(z)a(a)) 1~ F(3+r)I(G+r) 2147 d(za") /R
(0)? 22 (24 7r)

as d(z,z') = o0,
(5.8.10)

and

(o)) T (+7) (iR g
(0)? VT (1 +7) d(z,2') =00 (58.11)

As expected, the leading exponential decay is different for order-order and disorder

disorder two-point functions; in the former it comes from two-particle contribu-
tions, whereas in the latter it comes from one-particle contributions. However,
contrary to the flat-space case, the vanishing of the exponent ruling the leading
exponential decay occurs at different values of m in order-order and in disorder-
disorder two-point functions. This is simply due to the discreteness of the energy
levels, and to Pauli’s exclusion principle that forces two particles to be in different
energy levels. Hence one cannot define, in this way, a unique correlation length
valid for describing the long distance behaviour of both correlation functions. It
is natural, however, exponential decay of the disorder-disorder two-point function

as the one defining an effective correlation length,

2R
= . 5.8.12
$= 1o (5.8.12)
We indeed expect this correlation length to diverge at the point r = —% in

the ordered regime where the magnetization (o) vanishes, since at this point,
the disorder field acquires a nonzero expectation value and the large distance
asymptotic behavior of its two-point function changes. This correlation length is

also in accordance with the usual definition, in finite size systems, as the inverse



of the gap between the ground state and the first excited state. It diverges as
the inverse power of the difference of the temperature to the effective “critical”
temperature, as is the case for the Ising model on flat two-dimensional space, but

it is defined here only for the behavior from above the point r = since below

_%’
this point the system is necessarily in its disordered regime. A corresponding
definition of the correlation length in the disordered regime leads to a divergence
at the point r = % from below. Following considerations similar to those of
the previous subsection, we expect to have the same power law behavior of the
correlation length in the lattice theory in the vicinity of the critical point. Note
that a naive application of general results from mean field theory would predict
the power law ~ (1 + 27‘)_1/2.

In the ordered regime (r > —%), and as the point r = —% is approached, the
two-point function of disorder fields goes at large distances to an almost constant
value, before vanishing at larger and larger distances. This almost constant value
approaches the value that (u)? takes in the disordered regime at r = —1. More
precisely, as r = —% is approached in the ordered regime, both order-order and

disorder-disorder two-point functions tend to the exact form they have in the

disordered regime at r = —1. This is a consequence of the duality relating the
point r = —% to the point r = %, which yields for instance
(@@ | = w@pe)] . (5.5.13)
r=t3 r=Fg5

The relation (5.8.13) can be verified by the short distance expansion (5.7.1) essen-
tially from the property k(1/2) = k(—1/2), for k(r) in (5.5.29). More generally,
similar relations should hold for any correlation functions. This implements the
fact that as r approaches the value —1/2 from above, the “free” asymptotic con-
ditions become unstable and are traded for “fixed” asymptotic conditions. A
similar duality has also been observed in the study of the statistical Ising model
on a hyperlattice [110].

It is also interesting to consider the general case where an external magnetic



field h is added to the Ising field theory (5.2.1), by adding the perturbation
h [ &z e?@ o(z). The corresponding susceptibility y giving the linear response

of the magnetization is given by

= 2 [T (@) — (o) (5.8.14)

T o0

= 7 i ds sinh (%) <<0($)0(0)>|d(z,0):s_<J>2> '

Using the asymptotic behavior (5.8.10) for the ordered regime, it is straightfor-

ward to see that the integral above is convergent for any r > — %, with a divergence

_ 1
at r = —3,

S (2R)7 1

T e S 5.8.15
Ny 1+ TS (5:8.15)

The susceptibility again shows a divergence at the effective “critical” value m =
—%, with a mean-field power law behavior. A similar phenomenon was observed
for the model studied in [110]. In the disordered regime, using the asymptotic
behavior (5.8.11) with r + —r for the order-order two-point function, one can
see that the susceptibility is finite for r < —% and diverges with mean-field power
law at r = —%, even though the regime is stable above —%. Hence in the whole

range —% <r< % in the disordered regime, the response of the magnetization
to a magnetic field is not linear at small magnetic field. Note also that the

susceptibility diverges at r = —% from both directions with the same exponent.

Relating the susceptibility to the expansion of the free energy in powers of
the magnetic field in the usual fashion, one could conclude from this analysis that
the free energy possesses a singular behavior at small magnetic field in the region
—% <r < % of the disordered regime. However, from considerations similar
to those above, it is possible that one needs to take into account surface terms

in order to obtain the correct coefficients in the expansion of the free energy in

powers of magnetic field. T hope to carry out this analysis in a future work.



5.9 Conclusion

In this chapter, I have first developed the Hilbert space of the Ising quantum
field theory and identified its stable SU(1,1)-invariant regimes. In the region
—1/2 < r < 1/2, there are two such regimes, one in which the magnetization is
nonzero (ordered regime), the other in which it is zero (disordered regime); in
the region r > 1/2 only the ordered regime is stable and in the region r < —1/2
only the disordered regime is stable. In all regimes, I have calculated the two-
point functions of order and of disorder fields and the magnetization. 1 also
calculated the form factors of order and of disorder fields, which can give the
long-distance expansion of any multi-point correlation functions. Then, I have
calculated a “bulk” part of the free energy, and I have analyzed the singularities

of the susceptibility as function of the real parameter r.

The results of the present chapter open the way to a more detailed study of
the Ising model on a curved space, and at the same time leave many questions
unanswered. First, in order to have better grounds for my statistical interpreta-
tion, it would be very interesting to actually construct a lattice statistical model
on the pseudosphere. This would tell us about the subtleties involved in taking
the scaling limit, and eventually it would be interesting to compare its scaling
behavior to some of the results obtained here. Second, many quantities still need
to be calculated in the Ising field theory. The free energy very probably pos-
sesses terms that come from effects of the “asymptotic regions” of space. More
precisely, the finite volume specific free energy has an infinite volume limit which
may depend on more details of how the limit is taken than those taken into con-
sideration by the asymptotic conditions, and extra terms may have to be added
to the “bulk” free energy calculated in this chapter. A full analysis of the two

stable SU(1,1) regimes discussed here must include these terms. Moreover, in



the region —1/2 < r < 1/2 there are many stable regimes that are not SU(1,1)-
invariant, which should be taken into consideration. Among these regimes there
should be some where “domain walls” are formed, as in the Ising conformal field
theory on the disk. It seems essential to understand their thermodynamics, in
particular to calculate their free energy, in order to understand fully the Ising

field theory in the region —1/2 < r < 1/2.

It would be very interesting to understand the phase structure of the model
with a magnetic field. The situation with a magnetic field is more involved,
though. From the two-point function of order fields one can evaluate the magnetic
susceptibility, and more generally from multi-point correlation functions one can
obtain an expansion of the free energy (and of other quantities) in powers of
the magnetic field. An estimate of the expansion coefficients can in principle be
obtained from the form factor of order fields, giving their long-distance behavior,
and from their behavior at colliding points. Such expansions give information
about the phase space in nonzero magnetic field; for instance, one could estimate
from the first few coefficients of the expansion the position of a (possibly complex)
“critical” value of the magnetic field. Note however that this program is plagued
with the same problem as that affecting the calculation of the free energy without
magnetic field; namely, that possible contributions of the “asymptotic regions” of
the pseudosphere may be important, and in principle the calculations should be

done first in finite volume.

It might be rewarding to slightly change the point of view and to consider
the effect of a statistical system on the surface on which it lives. The interac-
tion between microscopic degrees of freedom living on a dynamical surface and
subjected to thermodynamical laws would give the surface a nontrivial dynamics
which would be interesting to understand. Such a point of view could be useful

in the study of quantum gravity.



Finally, let me note that the techniques used to calculate the two-point func-
tions are worth developing by themselves. For instance, I would like to understand
if they can be applied to correlation functions of the fields O, in the free Dirac
theory (on flat space, say). More ambitiously, I would like to know if they can
be generalize to theories with a more complicated spectrum than that of free
fermions. In particular, I tried in Section 5.5 to put the techniques under a light
which shows as much as possible their characteristics that are independent of the
free fermion spectrum. I constructed a nonlocal conserved charge, which action
on particular local fields I could calculate solely using conformal OPE’s and using
a Casimir equation for the algebra of spatial symmetries. Ward identities were
obtained from conservation of this nonlocal charge, and the cluster property of
correlation functions was used finally to obtain nonlinear differential equations for
the two-point functions. Nonlocal conserved charges certainly exist in non-free-
fermion integrable theories. It would be interesting, for instance, to see how the
nonlocal charge that I constructed is deformed under integrable deformation of
the critical Ising field theory obtained by adding a magnetic field. An important
point would be to understand the structure of the module for the algebra of the

spatial symmetries generated by this nonlocal charge.



Appendix A
About the SU(2)-Thirring model

A.1 Expansion of the integral J,(a,c)

In this appendix, we give the first few terms in the expansion of .J,(a,¢) (2.4.6)

around ¢ = —2. The coefficients in this expansion involve standard functions of a,

2w -2

it m) in powers

which could then easily be used to obtain an expansion of .J,(

of p, as is needed in (2.4.29). To simplify the result, we will use the parameter
b=c+ 2.

We find the following expansions in b of the functions A(q,b—2), B(q,b—2) (2.4.9)
involved in (2.4.10):

Algb—2) = ['(2-b-q)T(b) {1+b2<%2+w)+0(53)},

B +5-0) g
Bla,b—2) - %
{1+ g+ )~ 1)+ 0 a) + 20010) + O .
Hence,
Jmmw)ng;EB%ﬁﬁ—@@b
+(9%;2—2“G%flzg“@4~§460b3+0@ﬂ},
where

Gpla)=v(a+n/2)+Y(—a+n/2) 4+ 2vg ,

and G (a) = L G (a), G"(a) = L Gu(a).



A.2 Coefficients for the anomalous dimension

In this appendix, we write down explicit expressions for the coefficients uy, uq, vy
and vy taking part in the expansion (2.4.19), (2.4.32) of the the function I',.

On the one hand, from the assumption (2.6.6), the coefficients of odd powers of
p in the exponential factor of 7, ., (2.4.34) are completely fixed by the conjectured

constant Z,(wf) (2.6.4). This fixes uy, uz uniquely, giving
2

0 = () (n- ) 2052,

1 ) n? 5 n? 1 w(4w2 -1)
_ L._on R O TR G ) 00 A2.1
Uz 12 (“" 16)(“’ 16 2) W)+ =5 W(20) (A2)
L/, 1 n(n+4) 1lw? 1 Ty n?
R e )
+4<“’ 12) (2) 768 s Togt o\ g

where

To(a) =v(a+n/2)+Y(—a+n/2)+ 2v5 + 270,

T!(a) = iT (a), T!'(a)= dd—; T.(a).

R "
On the other hand, the expansion in powers of p of (2.4.29) uniquely deter-
mines the coefficients uy, v; and vy — %uz in the first equation of (2.4.32). The

coefficient uy thus obtained is in agreement with (A.2.1), verifying the assump-

tion (2.6.6) to first order. The coefficients vy and (using the expressions u; 5 from

(A.2.1)) vg are

v, = — (w2 — —) T! (2w) + i <w2 - n_2> Tf(Qw)

1 2 4 16 2 "

1 2 1 —4
——<w2 - n—)Ts’ 2w) — = (w2—|— n(n >> T?(2w)

12 16 8 16

1 -2 1
—— <w2 _nn=2) —) T, (2w)

8 8 2

1y, n? n(n—8) wu v  3uy T
(=) 2m —14¢@3) -3y T et O o

8(“ 16>(T2 ((3)=3) %6 s 272 %



A.3 Relations among perturbative coefficients

In this appendix, I derive equations that relate perturbative coefficients of the
anomalous dimension I'; (2.4.16).
It is convenient to parametrize the perturbative expansion in g and g, of the

anomalous dimension in the following form:
2

2

g n 1

Ty =TO(g)) - T :ﬂ <3—2 — 51" + V(Qnﬂi)) (A.3.1)
2

where T'(®) is given in (2.4.20), and where

n— k
Flg) = ugt™™", Vigngl)= Y vg)gt.
n=1 k=0,l=0

Eq. (2.4.16) (which is equivalent to (2.4.28) with the normalization condition
(2.4.8)), Eq. (2.4.15) and the renormalization group flow equations (2.4.21),
(2.4.23) give

CUe™) — (My)= =041 (2 =2 1=)/16 —FoD+SGpel) (A 3.2)

and

il e (20)=5(20,0)

Z = M (2P+1\/pew+72p3+~~) , (A.3.3)

generalizing (2.4.33) and (2.4.34). The power series S(g||, g7 ) can always be chosen
such that S(g),0) does not have odd powers of g, by the redundancy in (A.3.2),
and does not have even powers of g either, by the fact that their coefficients can

be set to 0 in (A.3.3) using the transformation (2.4.35). It is further defined by

the equation

1 0 0
Vigp9t) = 58—%5(%91) +9||W5(9||7gi) : (A.3.4)
1

It is a simple matter to observe that this equation along with the initial condition

S(gy,0) = 0 give the following infinite set of relations for the coefficients vl(k)

defining the power series V(g g7 ):

- k!
Zﬁvé’&_m:o, m=0,1,2,... (A.3.5)



The conjecture (2.6.6) and Eq. (A.3.3) completely fix all coefficients u, in F'(g).
Then the relations above are nontrivial relations among the perturbative expan-

sion coefficients of I'; in (A.3.1).

A.4 Three-particle contribution

In this appendix, I give the formula for the three-particle contribution F) (2.7.5)
to the fermion two-point function in the SU(2)-Thirring model that we used for
our numerical calculations. First specialize the expression written in [92] to the

case of three-particle form factors of the field (’)[13/4 for 3% = 1:

(vac [ O3 0) | A-(01) - A4(01) . A-(05) o =~ L) ;Z; o ut
xﬁeeTm G(em—ej){/ &y “HWH - H W(y—0,)
+/O d—z -3 f[W(ep— T w( —9)} (A4.1)

Here the functions G and W are

2717 ex (1) *°dl sinh*#(1 —if/m)e?

G(O) =i s> sinh(0/2) exp( /0 T simh(2D Cosh(tj ) (A4.2)

W(0) =2

(A.4.3)

The contour C starts from —oo on the real axis of the complex y-plane, goes
above the poles located at v = 6,4+ i7/2, p=1,...,k and below those located at
y=40,—in/2, p=k+1,...,3, always staying in the strip —7/2 —0 < Sm~y <
/2 4 0, and finally extends to 400 on the real axis. Similarly, the contour C_
goes above the poles located at v = 6, +im/2, p=1,...,k—1 and below those at
y=10,—1i1m/2,p=Fk,...,3. Notice that the integrals in (A.4.1) can be expressed

in terms of the generalized hypergeometric function 3F; at unity.



Using the expressions (A.4.1) and performing one of the rapidity integrals in

(2.6.2), one can obtain the following form for the function F) in (2.7.5):

) e—%AQ 00 e—MT\/3+2 cosh z+2 cosh y+2 cosh(x—y)
76 _ G

— xdy 1
3mIe(3) (3 4+ 2cosh x 4+ 2cosh y + 2 cosh(z — y))7

oty (€7 F eV 4 1NT
IR )+ 1)) 1) GG — )P e (DT

o0

The functions R; and Rj here are

Ro(w,y) = e 4% Ry(—2,y —2) — e ¥ F Ri(~y, 2 —y)

and
cosh £ cosh £ 1 1 w2 1 iy iz 1y
R :—#U(——————————'————>
1(#,9) 2sinh z sinh y 272 2n7 2 27 277 2«
-z (‘:osh%cos}}% (l’l_i(y—;z:)jl E;l_z(y—:li)’g_l_i_x)
2sinh(y — z)sinh z 272 2 2 2 2m 2m
AT e ey )
2sinh(z — y) sinhy 272 2 2 2« 2m 2

where Ul(a, b, c;d, €) is related to the generalized hypergeometric function 3F3 by

NONWINGD

Fy(a,b,c;d,e; 1) .
F(d)F(e) 3 2(“7 , G a, €] )

Ula,b,c;d,e) =



Appendix B

About models on the Poincaré disk

B.1 Symmetries of the Poincaré disk

In this thesis, I will mostly use the representation of the pseudosphere on the
so-called Poincaré disk. Hence in this section I recall some of the basic results
concerning the isometries of the Poincaré disk.

With appropriate complex coordinates z = x 4+ 1y, z = x — 1y, the Poincaré

disk can be brought to the region |z| < 1 in the complex z—plane. For a Gaussian

curvature
. 1
the metric is then specified by the length element
> 2
g5 = 242 C2R) (B.1.2)

N (1 —2z)2
The geodesic distance d(zy, 5) between points x1 = (21, 21) and 23 = (22, 22) on

the Poincaré disk is given by

d(z1,22) = 2R arctanh <M> . (B.1.3)

|1 — 2122|
The metric of the Poincaré disk is SU(1,1) invariant. The transformation of

coordinates corresponding to the group element

a b
g = _ ’ |a|2_|b|2:1
a
is )
, az+b , - az+b




A field theory covariantly defined the Poincaré disk possesses an SU(1,1)
symmetry group induced by the isometry group of the metric (B.1.2). The local
fields can then be classified by their properties under SU(1,1) transformations.
A field O(z) will be said to have SU(1,1)-dimension (h, k) if it transforms under
(B.1.4) as

O(z) = O'(z') = (8f,)"(8f,) " O(x) (B.1.5)

where & = 3/0z and d = 3/d%. One can construct local fields of higher SU(1,1)-
dimension by using the covariant derivatives
2hz

1 —=z2z

2hz

1 -2z

DO(z) = (a— >(’)(:c) , DO(z)= (a_ )(’)(m) . (B.L6)

where the holomorphic covariant derivative D takes a field of SU(1, 1)-dimension
(h,h) to a field of dimension (h-+1, k), and the anti-holomorphic covariant deriva-
tive D to a field of dimension (h, h+ 1).

The functions (9f,)~" and (3]59)_71 that appear in (B.1.5) are called automor-

phic factors, and will sometimes be denoted by

Hig(2) = (0,7 = (b= + @™, Hy () = (OF,) " = (b= + @), (BLT)
By definition, these functions have the following properties which insure that the
transformations (B.1.5) form a representation of the SU(1,1) group on the space

of fields:

Hug(f=1(2)) = H_py=1(2) , Hig(f=1(2)) = H_p =1 (2) (B.1.8)

and

Hy, oy (2)H, o1 (fy1(2)) = Hig90)-1(2)

H, =1 (2)H,, o1 (f,=1(2)) = Hi (g192)-1(2) -

The covariant functions of one holomorphic and one anti-holomorphic coordi-

(B.1.9)

nates z, z are powers of 1 — 2z, which transforms as

1 [ (E) = s () (2)(1 — 22)

2



We note that z=! transforms like an anti-holomorphic coordinate. Then, regarding

27! as an anti-holomorphic coordinate, one can consider powers of z as being

covariant functions, with for instance
folz) = H_%7g(z)1':[%7g(z_l)z ) (B.1.10)

Covariant functions of two holomorphic and two anti-holomorphic coordinates
z, w, z, W exist for many transformation laws. Consider a function F(z,w,z, w)

with the property

F(fg(z),fg(w),ﬁ(é),fg(@)) = Hh1,g(z)Hhmg(w)H%,g(é)Hﬁz,g(w)F(z7w7évw) .

Fixing the overall power of 1 — 2z to be 0, for instance, then there is a basis of

two solutions to this equation:

F(z,w,z,w) = (B.1.11)

(1 _ ww)hl‘}‘jll—}@—jm (Z _ w)fll—h1+fl2—h2(1 _ wz)—hl—ﬁl+h2—ﬁ2(1 _ wé)_th
and

F(z,w,z,w) = (B.1.12)

(1 . ww)hl-}-;bl—f@—;@ (2 . w)hl—;bl+h2—;b2(1 . wg)—hl—fl1+7l2—h2(1 . 7])2)_2}” )

A general solution can be formed by linear combinations of these two solutions

with coefficients that are arbitrary functions of the invariant ratio

22|, One
—wz

can obtain other solutions by allowing factors of powers of 1 —zz and by modifying
accordingly both h; and hy in the expressions above.
A basis for the isometry algebra can be taken as the generators of the coordi-

nates transformations
zr—>z—|—6(1—22), zr—>z—|—i6(1—|—22), Zrrz+iez, (B.1.13)

with conjugate transformations for z and where € is a real infinitesimal parameter.

These give rise to Lie derivatives on the local fields (B.1.5), denoted respectively



by Py, Py and R. Introducing the notation P = %(PX —iPy), P = %(73)( +1iPy),

they are given by

PO(z) = (@ — 720 — 2%2) O(x) ,
PO(z) = (0—2°0—2hz)O(z), (B.1.14)

RO(z) = i(20—204+h—h)O(x).

Symmetries lead to conserved currents j#, which are divergenceless in corre-
lation functions (excepts at the positions of other local fields): (9,5 --) = 0.
The integral over a closed loop of the normal part of a divergenceless current
§ dxte,,(j* -+ -) is independent of the shape of the loop. Hence conserved cur-
rents give rise to conserved charges, or integrals of motion, when integrated over
closed loops, or, in fact, over lines beginning and ending at a boundary or in
an asymptotic region of space where the fields are given boundary or asymp-
totic conditions respecting the symmetries. Contributions from local fields to the
charges P, P, R corresponding to the symmetries associated to the Lie deriva-

tives (B.1.14) are given by:

[P,O(z)]=iPO(z), [P,0(z)]=—iPO(z), [R,0(z)]=RO(z).
(B.1.15)
The commutator notation is used to represent the contribution of the line inte-
gral of the current when the line moves infinitesimally through the position z
(see (5.3.3) for explicit expressions of these conserved charges in the Majorana
theory). Hence in a quantization scheme, conserved charges are generators for the
infinitesimal transformations of local fields. The integrals of motion in (B.1.15)

satisfy the su(1,1) algebra

[P,R]=—P, [P.R]=:P, [P,P]=-2R. (B.1.16)



B.2 Construction of form factors in the Dirac theory
We study the normalized form factors of scaling fields (4.5.16):

Fa(wh s ,Wn)q,...en = <<a61 (wl) Tt ey (wn)>>a7

where we use the notation

Tr <6—27'r]x"+27'rion . )
<< ' .>>04 = Tr (6—271-1'{+2m'on) ‘

(B.2.1)

We will assume that the spectral parameters w; are real, except when explicitly

stated.

B.2.1 Construction of “two-particle” form factors

From the cyclic properties of the trace and the anti-commutation relations for the

angular quantization modes, we have

(v —1")

= 1 + 627r1/—27rioz'

((cleu))a

From the definition (4.5.13), the trace (4.5.16) is then expressed as an integral:

4-r e(‘”2_wl)%

<<a+(w1)a_(w2)>>a - W X
T ) (i) coshln
X /_Oo dl/ 1_|_ 6271'1/—27Tia %

< F +1 ; +1 L 422440 ) x
rtg-wrt g —ig r; ?

Y F -|-1 ) ‘|‘1 .W2.1_|_2‘2 0
r 5 w,r 5 12, r; 10 ) .

The contour of integration goes between the poles at v = ia—i/2 and v = ia+1/2.

—1—|—i(w1 —wg)

The integrand is proportional to e™™(—v) /2 when v — —o0, and

to e=™ (v)~'~H«1=«2)/2 when v — co. This can be obtained from the asymptotics

F(a,b;e;2440) = II:EZ; (Qa)b_ceim(”b_c) (1 + O(a_l))
T

fa;:75(2ay*ei”b(1+—0(a—w), (B.2.2)



valid for |a] — oo, |arg(a)| < m. The integral can be regularized by multiplying
the integrand by a factor e”” with some complex parameter p; the integral is then
convergent for Re(p) = 7, Im(p) # 0. It can be evaluated by the method of
residues, closing the contour for instance in the upper half plane if Sm(p) > 0.
The “two-particle” form factor is the analytical continuation to p = 0 of the

resulting expression. Contributions of poles in the upper half plane give

({(ay(wr)a_(wa)))a =

4=rirelwe—w1) g

sin(m(r —a))['(1 4+ )2

[Ga(wl,wQ) — e_i“(’”_a)Gr(wl,wg)] ,
(B.2.3)

where (G, (wy,w;) is the analytical continuation to p = 0 of the following series:

| [ Pl+r+a+n) oo,
Ggp)(wl,wz) = ; [sm(ﬂa)rzl . n;e p(z+atn) o (B.2.4)

1
X F(r—l—l—|—oz—|—n,r—|—§—i%;2r—|—1;2—|—i0> X

w2

1
X F(r—l—l—|—oz—|—n,r—|—§—i7;2r—|—1;2—z'()>}

and G, (wq,wy) is the analytical continuation to p = 0 of the series above with «
replaced by r. Note that the function G, (wy,ws) is shown below to be identically
7ero.

The series G (w1,wsq) is convergent in the upper half p-plane Sm(p) > 0 as
well as on Sm(p) = 0, Re(p) # {0, 7, —7}. The analytical continuation to p =0
can be done via a “zeta-regularization”. More precisely, we subtract, inside the

summation symbol in (B.2.4), the leading large n asymptotics of the summand:

T(2r + 1)%sin(ma)d ™" (2n) " e PTotn) o

(2n)~ N (2n)™ N
e M s ey
eiTr(oz—r+n) (Qn)—iA e—iﬂ(a—r+n) (Qn)zA

(o= O+t +i%) IOt e r+i-i5)]

where w = (w; + w2)/2 and A = (w; —wy)/2. The resulting series is convergent

at p = 0. We then add to this series at p = 0 the following quantity:

I'(2r + 1)2 sin(7roz)4_’"e7TA X



1 (1 4 w)
U(r+21—42)0(r43—422) 204w

! C(1 — iw)
P(r4+2+i)T (r+1+i2) 207w

(2718 — 1) C(1+iA)
F(T—I—%—i“;—l)l“(r_|_%_|_@'u;_2) o1+iA
e—iw(a—r)(QiA . 1) C(l . IA)

Prtg+ig)Ur+g—ig) 272 7
where ((z) is Riemann’s zeta function. The result is G, (w1,wz). Notice that the
function G, (w1, ws) is real for real wy,ws.

The resulting expression for G, (wy,ws) defines a function of w; and wy ana-
lytical in the region |Sm(w; + wq)| < 2, |Sm(w; — w2)| < 2. By repeating the
procedure above for the full large n asymptotics of the summand of G\ (wi,ws),
one can see that the function G, (wy,wy) thus defined has no singularity in the
finite complex w;- and wy-planes: the function G, (w;,ws) is an entire function of
w; and wy.

The function G,(wi,w;) can now be evaluated in the following way. From
(B.2.3), we have

4=rigelwr—w1) g

({ay(wr)a_(wg)))o = _sin(m")F(l e e "G (wr,we)

By covariance under the subgroup K we find
(w1 + wg)GT(wl,wg) =0.

Since the function G, (wy,ws,) is entire, this implies that it must be identically
zero. Notice that a similar calculation leads to ((a_(w;)a4(wq)))o = 0. Since the
commutator {a_(wy),ay(ws)} is a c-number, an immediate consequence is the
anti-commutation property (4.5.8).

Hence we finally have

4=rimelwz—w1) g

sin(m(r — a))l'(1 4 r)?

Fa(wl,w2)+7_ = Ga(wl,wg) . (B25)



B.2.2 Two-particle form factors in the discrete basis

It is possible to evaluate the function GG, (wy,ws) for some purely imaginary values
of w; and wy. We will evaluate it for the values w; = —i(1 + 2r + 2k;) and
wy = —i(1 + 2r + 2ky) for integers k; > 0 and k3 > 0. This can be done by
using the analytical continuation described above. Equivalently, it can be done
by simply replacing these values of w; and w; in the expression (B.2.4), evaluating
the resulting series at p = 0 in a region of r where it is convergent and analytically

continuing the result in r. With
Goity by = Go(—t(1 4+ 2r + 2ky ), —i(1 4 2r 4 2k3)) |

this gives

ky
kQ) 2m1+’m2
oy b, = sin(ma) Z Z 2r n 1 2r ). mI!mQ!Ha;ml’m (B.2.6)

m1= 0m2 0

where

IF'l4+r+a+m)l(l+r+a+ms) y
I'l—r+a)l(1+r+a)
X sFy(l,1+r+a+my,l+r+a+myl+r+ao,l—r+al).

Ha§m17m2 =

The 3£, hypergeometric function above can be evaluated in closed form, for any
given integer my and mg, in terms of Gamma functions and rational functions of
r and a. The two-particle form factors (4.8.2) in the discrete basis are expressed

in terms of Gok, i,:

falk, ke) = (B.2.7)

g1y I(142r + k)1 4+ 2r + ko) Gl by b
kilky! I'(1 4 2r)?sin(m(r —a))




B.2.3 “Multi-particle” form factors

The “multi-particle” form factors of scaling fields can be evaluated by Wick’s

theorem in terms of the two-particle form factors. We have

n

Fa(wla s 7wn)q,...,cn = Z(_l)jFa(wlawj)q,e] Fa(w% s 7@7 s 7wn)52,...,€3,...,en
7j=2

(B.2.8)
where the hat over an argument means omission of this argument. Of course this

will be non-zero only for 2?21 ¢; = 0. Forming the n x n matrix
Fa(wly s 7wn)51,...,en

with matrix elements [Fo (w1, ..., wn)e,, enliy = FalWisw))e e, the “multi-particle”

form factors can be written as Pfaffians':
Fo(wiy o y0n)eg,en = PE(Fo(wi, o W0n)eren) - (B.2.9)

Using (4.5.8), it is always possible to choose the order such that N operators

with positive U(1) charge are followed by N operators with negative U(1) charge.

Forming the N x N matrix G,(wy,...,wnN; @1,...@0n) with matrix elements
[Go(wiy.. ., wN; @1, .. ON)]ij = Falwi,©;)4+—, we have
Fa(wl, e ,wN,ule, e 7@N)—|—7—|—7 B = (BQlO)
N N

(_1)N(N—1)/2 det(Ga(wl, ., WNG u~)1, e ,(;)N)) .

Similar expressions are valid for the form factors (0|0, k1, .., k) in the

€14..09€En

discrete basis.

B.2.4 Flat space limit of form factors

It is a simple matter to verify that the “two-particle” form factors (B.2.5) spe-

cialize to the known expression in the flat space limit. Two-particle form factors

1Using this, one can immediately write the form factor expansion (4.3.11) as a Fredholm
determinant in the case o = o’.



of the scaling fields O, in the flat space limit, with particle at rapidities 3; and

3, and states normalized by ., (31|32)!!*" = 276, ,6(31 — 32), are obtained by

€2

(vac|O4 |31, Ba) it = lim (B.2.11)

X (2r)a2+127r Vp(2r sinh(3;))p(2r sinh(3;)) cosh(31) cosh(8;) x

X F,(2rsinh(3y), 2r sinh(32))4+-

and the one-point function is obtained by

<Oa>ﬂ”’t = lim (27“)“2

r—r0o0

(Oa).

Using the expression (B.2.5), this gives the known normalized flat space form

factors, first obtained in [113]:

<VaC|Oa |/617 62>fﬁt _ i Sil’l(ﬂ'a/) ea(ﬁl—l32)_
(O,)flat cosh (—51552)

B.2.5 Properties of two-particle form factors of the scaling fields Oy
2

I now analyze the case of the two-particle form factors of the scaling fields Oi%
evaluated in the discrete basis. These form factors are used to construct form
factors of order and disorder fields in Section 5.6.
Define the functions fyi(k1,k2) by
<Vac|(’)i% k1, ko) —
<O:t%>

f:t(klakQ) =

where the field O,1 are at the center of the Poincaré disk. Formula (B.2.7 gives
2

expressions for these form factors. In Chapter 5, I use for convenience a slightly

different phase for the eigenstates, hence here I shall multiplying these expressions

by a phase factor :*1t%2+2 We have then

L D1+ 2r + k)D(1 + 2r + k) Giiby b
Lo ko) = 921 ka—ki+1 172
Jx (K1, ko) : ik, I'(1 + 2r)? cos(nr)
(B.2.12)




where

k1 ks [{?2) 22’m1+m2
Gy, = Hyi piyom
Fikuks = Z Z 2r+1 2r—|—1) ,mqlmg! e

m1= Omg 0
with
F(l4+r+1/24m)l(1+r+1/2+ my)
Tl —r+ 1/2)T(1 +r+1/2)
X sFo(L,14+r+1/24my,14+r+1/24my 1l +r+1/2,1—r+1/2;1).

Hyiimym, =

It can be checked that
f-}-(klv k?) = _f—(k27 kl)

As this identity relates f_(k2, k1) to fi(k1, k2), I need only use fy(ki,k2), which 1

will denote by f(ky, k). It can be verified that this function satisfies the following

identities:
flkike) = (=)™ 5/ Tk k) (k2 ka) (i + ks even)
f(k‘l, kg) = —f(kg, kl) (k‘l or kg Odd)
f(kl,k‘g) =0 (]Cl and [{/‘2 Odd) . (B213)

Of course, the last identity is just a consequence of the first and the second. In the
first identity as well as in equation (4.8.2), square roots /z assume their branch

delimited by the region —7 < arg(z) < 7 with y/z > 0 for arg(z) = 0.

B.3 Canonical quantization of the Majorana theory

In this section we briefly sketch the steps for obtaining the mode decomposition
(5.3.10). The Hamiltonian (5.3.5) in the isometric system of coordinates (5.3.1)

reads

/4 (iso)
H= / Cii((_i¢(iso)7 ipli=o)y 4 (ig@) ; (B.3.1)
—r/4 '17/)
where the Hamiltonian density is
( idfglx cos?ggx) )
H = ., - . (B.3.2)
cos(2éx) -1 déx



The Hamiltonian is just, in the language of first quantization, the diagonal

matrix element of ‘H in the state represented by the spinor wave function ¥ =
77Z)(iso)
77Z)(iso) ’

where the inner product between two spinor wave functions ¥; and ¥ is

H=(U,HV) (B.3.3)

7'r/4dX
)= [ ) (B3.4)

From the condition on the phases of the fermion operators 05)(¢,, &) =
ip ()¢, €,) and (¢ €)1 = —ipl)(¢, ¢)), and from the condition that
charge conjugation symmetry it (&, &) < ¥ (&, —&,) be implemented on modes
by Al < A, the mode decomposition of the fields has the form

PG, &) = Y (U GL(E)AL — i e Gu(&)AL),  (B3.5)

w>0

P00(g,6) = Y (DG ()AL +i e GL(6)AL).

w>0

Gw X
Su(és) = ( _ ¢ )> , (B.3.6)
Gu(éx)

for all real values of w and with G_, (&) = —iG, (&), should form a complete

The spinor wave functions

orthogonal set of wave functions diagonalizing the Hamiltonian density (B.3.2),
HS, =wS, . (B.3.7)

A set of independent spinors of the form (B.3.6) diagonalizing the Hamiltonian

density with eigenvalue w is given by
95 195
st = , S, = . , (B.3.8)
9. —ig,

N ;T . 1 )
I (e i (‘% R e 64@) :
(B.3.9)

where



and

9o (&) = —ig= (&) - (B.3.10)
The branch cut of the hypergeometric function is taken from —oo to 1, and the
hypergeometric function is chosen to be unity in the limit & — —m /4.

The (not normalized) spinors (B.3.6) can then be expressed as

s+ Cus (w>0)
Sw = ; (B.3.11)
—st+Cus;  (w<0)

for real constants C, satisfying C_, = C,. For a given set of w and given
associated constants C,, they will form a complete orthogonal set if the inner

product (S, S,) is well defined for all w and w’ in this set; and if the Hamiltonian

is Hermitian, (S,, HS./) = (HSw, Sor). These lead respectively to the conditions

lime {Re (GuGr), 1\ +Re (CuG)y__ 0 b =0, (B.3.12)
and
lim {Sm (GuGr), _ 1y, — S (GG} =0 (B.3.13)

In the case r > condition (B.3.12) is satisfied only with C, = 0 and

:
by taking the hypergeometric function in (B.3.9) to have trivial monodromy:
w=4(142r+2n), n = 0,1,2,.... The function G, then vanishes at the
boundaries & = +7 /4. With this wave decomposition, the Fermi fields vanish as

—m

e~ as the geodesic distance d to the center of the disk goes to infinity.

In the case 0 < r < condition (B.3.12) is always satisfied. Condition

:
(B.3.13) is then satisfied for many sets {w;C,}. They correspond to many sets
of stable asymptotic conditions on the fields, hence to many stable regimes of
the quantum field theory with different thermodynamic properties. In this pa-
per we concentrate our attention on the regimes which preserve the SU(1,1)

symmetry; we intend to analyse other regimes in a future paper. The charges

(5.3.3) must then be well defined (and the Hilbert space must form a lowest



weight module for the su(1,1) algebra that they generate), which imposes again
that the hypergeometric function in (B.3.9) has trivial monodromy, but not that
the function (¢, be vanishing at the boundaries & = +m/4. Hence there are
two possible sets: w = +(1 + 2r 4+ 2n), n = 0,1,2,... with ¢, = 0; and
w==x(1=-2r+2n), n=0,1,2,... with C, — oo. In the first set, the Fermi fields

m

vanish as e™™9 as the geodesic distance d to the center of the disk goes to infinity,

whereas in the second set, they diverge as e™d(1 + O(e~4/F)). These correspond

respectively to the “fixed” an “free” asymptotic conditions on the order field o.
The decomposition (5.3.10) follows from these considerations, with the identi-

fication AT — €27 Al and A, — e?2" A,; this choice of phases insures hemiticity

of the conserved charges (5.3.3) on the Hilbert space.

B.4 OPE ¢0 in CFT

We start from the following form for the OPE’s

(Y(2)o(0)-) = Y Z”_I/Q\/;jcn@”/i(ﬂ) )

n>0
(Y(2)u(0)---) = ZZ”_I/Q\/gCn@”U(O) ) (B.4.1)
n>0
where ¢, are to be determined, and use
1
(V(21)¢(22) -+ +) ~ 71 — 23

Consider the function

Frm(z1,22) = 27" 722 T 200 (20)(22) 0 (0) - )

for m,n € Z, where --- represents fields at other points (; with |(;| > |21| and
|¢;| > |22| and where the correlation function is evaluated in the NS sector. This

function is single-valued in a region around z; = 0 and z3 = 0. Then the statement



of associativity of the OPE is the statement:

Res,,—oRes.,—0 frnn(z1,22) — Res,,—oRes,, =0 fmn(21,22) = (B.4.2)

Res.,—oRes, =2, finn(21,22) .
On the right hand side, we have
Resz2=0Reszl=Z2fm,n(Zlv 22) = 5m+n70<60'(0) o >

In an expansion where |z3| < |z1]|, we have

"1 n I (m + l) .
(¢ (21)¢(22)00(0) - --) = SCmCn T (-1 %
;Z: 2 j) Tlm—it3)
1 i _ 4
- Kﬁ - ”) TR g (0) )+
1 . m—j— n— m4n—j
b (Gdmm) T e
+ ooy TR R gt g (0) - ->} .
This gives
ReszlzoReszQZOfm,n(ZlaZ?) = (B43)
1 : n+1 1 1
52 (=1 [Cnﬂ%ﬂ . (m + 5) (‘ 2 ”) +
JETZ Ni J

n 3 1
+ CnCm+j+1 ] m + § ; _§ —m +

n 1 m+n+1
+ CnCmyj . m + 3 (0 o)
7 J

which is valid for all m,n € Z if we assume ¢, = 0 for n < 0 (the sum over j is the
sum of a finite number of terms because of the binomial expansion coefficients).

Also, we have

Res,,—oRes., =0 fn.n(z1,22) = —Res, —oRes.,—o fum(z1,22) .



Now let’s take m = —n — 1 for n > 1. Only the first term of (B.4.2) contributes,

and only one value of j in the sum over j in (B.4.4) contributes. This gives

Cn
Cny1 = T
for n > 1, which is solved to
Cn = % (n>1)
2/n
using the fact that ¢; = 4 (which can be found by considering the case m =

—1,n =0). The formula is not valid for n = 0, in which case ¢y = 1.

B.5 Proof of formulas (5.6.14) and (5.6.20)

We see that [A,];; = [A_];; when k; or £} is odd, and that [A}];; = —[A_];; when
k; and k) are even. Also, when k; and k! are even, the matrix elements factorize.
Arrange the order of the k;’s and £}’s so that all even ones are at the beginning:
k; is even if and only if + < [ and £} is even if and only if j < J. Then the

matrices Ay and A_ have the following form:
Ay =M+S, A_=M-S5 (B.5.1)
where

[S]Z’]‘:Sisl SZ:OIfLZ[, S;:OIfJEJ, [M]ijZOifz'<]andj<J.

70

Using the technique of minors to calculate determinants, the determinant of A,
for instance, can always be written as a sum ). a;. In this sum, each term q;
can be factorized as a; = b; det(B;), where det(B;) is the determinant of a sub-
matrix B; of Ay that has the same horizontal dimension as that of 5, and that
contains a certain number (if any) of full lines of S. When written in such a way,
in each term b; det(B;), the only factor where matrix elements [S];z of S enter

is in the determinant det(B;). A similar expression can be written for det(A_),



with the sub-matrix S replaced by the sub-matrix —S. If more than one line of
S is contained in B;, then det(B;) = 0 because the elements of S factorize. If
only one line of S is contained in B;, then the same term will appear in both the
expressions for det(A;) and for det(A_) but with opposite signs. If no line of S
is contained in B;, then the same term will appear in both the expressions for
det(A4) and for det(A_) (with the same sign).

From these properties, in the sum of the expressions for the determinants of
Ay and A_, the only terms remaining are those containing no elements of S as
factors. Hence, det(A4) + det(A_) = 2det(M). This proves Equation (5.6.14).
On the other hand, in the difference of the expressions for the determinants of A,
and A_, the only terms remaining are the terms which are linear in elements of
S. This prescription can be implemented by multiplying the elements of the sub-
matrix S of AL by the inverse of a formal variable, w™!, thus forming a matrix
which we denote A4 (w), and by taking the formal residue of the determinant of

A4 (w). This proves Equation (5.6.20).



Appendix C
Vertex Operator Algebras

C.1 Introduction

The theory of vertex operator algebras (see the books [54] and [87] for pedagogi-
cal developments from different perspectives and for historical accounts and many
references on the original works) is a mathematical theory that was developed ini-
tially in the context of infinite-dimensional Lie algebras. In this context, it gave
rise to the construction of modules for affine Lie algebras and for central exten-
sions of algebras of formal differential operators (like the Virasoro algebra and its
generalizations). The theory also provided the “moonshine module,” a module
for the Monster group, the largest finite simple sporadic group: the Monster was
realized as the automorphism group of an “algebra of vertex operators.”

The theory of vertex operator algebras gives a mathematically rigorous frame-
work for two-dimensional conformal field theory. A vertex operator algebra is the
axiomatization of the operator formalism of radial quantization (or any quantiza-
tion on a simple closed line) for the sector containing the holomorphic currents in
models of conformal field theory on a Riemann surface of genus 0. Holomorphic-
ity and the field-state correspondence of conformal field theory are at the basis of
vertex operator algebra theory, and locality and the associativity of the operator
product algebra give its most important axioms.

In our work with my collaborators J. Lepowsky and A. Milas, announced in
[40] and including all proofs in [41], we were interested in the algebra of holomor-

phic currents in general, and more precisely in models of conformal field theory



with Wi ., symmetry currents.
In the next subsections, I will explain the general principles of vertex opera-
tor algebras from the properties of local holomorphic currents in conformal field

theory, and I will describe the main results and ideas of our work [41].

C.2 Vertex operator algebras

A vertex operator algebra is a vector space V' endowed with a countably infinite
set of maps V. — End(V) : v — v,, n € Z for each element v of V. The
space V' is the space of local holomorphic currents, and the infinite set of maps
associated to a given element v € V' are the radial modes of the current associated
to v. The fact that these modes are endomorphisms of the vector space of local
currents is possible thanks to the field-state correspondence. The action of the
endomorphism v, on an element w € V can be seen as a product labelled by
the integer n between the elements v and w. From this point of view, a vertex
operator algebra comprises an infinity of algebra products among vectors in a
vector space.

The infinite set of maps v,, can be put into a generating function, called a vertex
operator, with a formal variable . More precisely, a vertex operator Y (v, z) €
End(V)[[z,z7']] is a formal series in the formal variable = of the following form:

Y(v,2) = Zvnx_n_l .

neZ
The vertex operator Y (v, z) is the radially-evolved operator in radial quantization
representing the holomorphic field associated to the vector v, and the variable =

=15 are just

plays the role of the holomorphic variable. Mathematically, the z~
“placeholders,” endowed with a product operation according to which the powers
are simply added.

In a vertex operator algebra, there are two distinguished vectors. One is simply

the vacuum vector of radial quantization, or identity field, usually denoted by 1



(we will also use below the notation |vac) for the vacuum vector). The other is the
conformal vector, usually denoted by w, which is such that its modes w,, generate
a representation of the Virasoro algebra: w,41 = L(n) with

m3—m

[L(m), L(n)] = (m — n)L(m + n) + ——5—

5m+n70c . (021)

The vertex operator associated to it, Y (w, z), is just the holomorphic part of the
stress-energy tensor in conformal field theory. In particular, the vector space V
is graded by the eigenvalues of L(0), called weights. Weights are integers on V/,
since 1t 1s the space of holomorphic currents.

The endomorphisms v,,’s associated to an element v can be fully determined
by the operator product expansions in a given model of conformal field theory.
Indeed, the operator product expansion of the product between a field associated
to v and a field associated to w is simply, if we put the field associated to w at
the origin for convenience (that is, the infinite past of radial quantization) and
use the field-state correspondence,

Y(v,2)w= Z vow "

neZ

The operator product expansion is constrained by the locality of vertex op-
erators and by the associativity of the algebra that it forms. Mutual locality
between two holomorphic fields Oy(z;) and O,(z;) says that correlation functions
comprising these two fields (--- O;(21)Oz(22) - --) are analytical functions of z;
with possible singularities at z; that can only be poles (of any finite order); then,
bringing z; around z; gives the same function.

In radial quantization, correlation functions are vacuum expectation values
of radially ordered products of operators. Then, a vacuum expectation value of
the form (vac|--- Y (vy,21)Y (va, 23) - - |vac), when the formal variables z; and
xy are specialized to complex numbers z; and z;, respectively, in the region

|z1] > |22, is an analytical function of z; with possible poles at z;. The same



function in the complementary region |z;| < |z3| is obtained with a different
radial ordering: (vac|--- Y (ve,22)Y (v1,21) - |vac). On the other hand, the vac-
uum expectation value (vac|---Y(vy,21)Y (vq, z2) - |vac) is a formal series in
x; and z9. Since it can be specialized to a formal series in complex numbers
21, z2 1n the region |z1| > |z|, it is a Taylor expansion in this region. Sim-
ilarly, (vac|---Y (vg,22)Y (vy,21)- -+ |vac) becomes an expansion in the comple-
mentary region |z1| < |z]. Hence, generically, the vacuum expectation values
(vac|--- Y (vy,21)Y (v, x3) - - - [vac) and (vac|- - Y (vq, 29)Y (vy, 21) - - - |vac) are dif-
ferent formal series, the difference coming from the different expansions of poles
of the form (z; — z3)™™ for m > 0. Since these poles have a maximum order m,
that depends on the vectors vy and vy, then there exists a finite integer £ such

that we have, as a formal series relation,
(LCl - Jfg)k [Y(Ul, l’l), Y(’UQ, ZEQ)] =0. (022)

This relation is called weak commutativity of vertex operators.

Now consider associativity of the operator product expansion. This says that
we can evaluate correlation functions involving the product of three fields Oy (zo+
29)O4(22)O5(0) by using the operator product expansion first of Oz(22)O3(0) then
of Oi(z0 + 2z2) multiplied with the resulting fields at 0, or using the operator
product expansion first of O1(z9 4+ 22)O2(2z2) then of the resulting fields at z;
multiplied with O3(0). These two ways of evaluating the correlation functions
correspond to expansions of the same function in different (overlapping) regions.
In the first case, it is an expansion in the variables zy + z3 and 23 in the region
|20 + 22| > |22|, whereas in the second case, it is an expansion in zg and z; in
the region |z3| > |z0|. In the first case, one can also rewrite the expansion as
an expansion in zo and zy in the region |z3| < |zo|. Hence it is more natural to
see both ways of calculating as two expansions in different regions of the same
function in the variables zg and z3. The resulting analytical function of zy and 2,

has possible poles at zg+ 29 = 0, corresponding to the singularities in the operator



product expansion of O;(zg + 22)O3(0).

In terms of vacuum expectation values of radially ordered product of opera-
tors, the first way is represented by Y (vy, 2o + 22)Y (v2, £2)vs, whilst the second
way is represented by Y (Y (v, zg)vq, 22)vs, with the specialization z¢ — 2o and
T9 > 29 1n vacuum expectation values. The first expression is easy to understand,
and the binomial expression g + x5 should be expanded in nonnegative powers
of x3. The second expression contains an iterate of vertex operators. The expres-
sion Y (v, xg)vy inside the vertex operator corresponds to the operator product
expansion of O1(zg + 22)O3(z2), where vectors correspond to fields at z. From
each vector in the formal series Y (v, zo)v, we then take the associated vertex
operator at xq, that is, Y(Y(vy,z)va, z2), and calculate the operator product
expansion with the field at 0 corresponding to vs. The difference between the
two formal series Y (vy, 2o + 22)Y (v2, 22)vs and Y (Y (v, 29)va, x2)vs comes from
different expansions of the poles (zg + 29)™™ for m > 0 in the corresponding an-
alytical function. Since these poles have a maximum order m, there exists an

integer number [, depending on v; and v, such that

(ZEO + CL’Q)I Y(’Ul, o + .TQ)Y(’UQ, ZEQ)’Ug = (ZEO + CL’Q)ZY(Y(’Ul, .I'())UQ, ZEQ)Ug . (023)

This relation is called weak associativity of vertex operators.

It can be shown that weak commutativity (C.2.2) and weak associativity
(C.2.3), along with natural quasi-finiteness requirements on the vector space V,
are equivalent to the following single formal equation, called the Jacobi identity
(because it plays the same role in vertex operator algebras as the Jacobi identity

in Lie algebras):

Zo —Zo

'8 () Y)Y (020) =78 (22 ¥ (oY (om0

= 2516 (f‘” — x“) Y (Y (u, 20)v, ) . (C.2.4)



In this formal equation, the formal delta function §(x) is defined as

S(z)=> a". (C.2.5)

It has the obvious property that

(1 /x2) f(21) = 6(x1/2) f(2) (C.2.6)

for any formal series f(z). Also, in order to interpret the Jacobi identity correctly,
one must use the “binomial expansion” convention: any binomial expression of
the type 1 — x2 raised to a negative power (z; — x2)~" has to be expanded
in nonnegative powers of the second variable (x5 in this example). These rules
and other results (see for instance [87]) are at the basis of formal calculus, the
“calculus” of doubly-infinite formal series, which is the language of vertex operator
algebras.

It is a subtle matter to verify that each term of the Jacobi identity is a well-
defined formal series in xg, x; and x3. But once this is understood, many identities
can be obtained from the Jacobi identity, and many results can be found simply
and rigorously, without having to appeal to the analytical properties of correlation
functions, which are embedded in this algebraic framework. For instance, one can
easily prove the equivalence between weak commutativity and weak associativity,
under simple natural axioms (see [87]).

The Jacobi identity and quasi-finiteness requirements on V' form the axioms
defining a vertex operator algebra. More precisely, these axioms are as follows:

A vertex operator algebra (V,Y,1,w), or V for short, is a Z—graded vector
space

V= HV(n); for v € Viy), wt v =n,
neL
such that

Viny =0 for n sufficiently negative,

dim V) < oo for n € Z,



equipped with a linear map Y (-, z):

Y(,z): Vo — (End V)[[z,z7"]]

v = Y(v,z)= Zvngj_”_l , v, € End V,

where Y'(v, z) is called the vertex operator associated with v, and two particular
vectors, 1, w € V, called respectively the vacuum vector and the conformal vector,
with the following properties:

truncation condition: For every v,w € V
vow =0

for n € Z sufficiently large;

vacuum properly:
Y(1,2) =1y (ly is the identity on V);
creation property:

Y(v,2)1 € V[[z]] and limY(v,2)1=v;

z—0

Virasoro algebra conditions: Let

L(n) =wy1 forn € Z, ie, Y(w,z)= Z L(n)z™""2 .
neZ
Then
S —m

[L(m)7 L(n)] = (m — N)L(m —+ n) + CVL

12 5n+m,0 1V

for m,n € Z, where ¢y € C is the central charge (also called “rank” of V'),
L(0)v = (wt v)v

for every homogeneous element v, and we have the L(—1)-derivative property:



Jacobi identity:

'3 () VeV (o) — a8 () YoV ()

T —Zo

=z;'0 (xl — :l?()) Y (Y (u,x0)v, z2) .

i)

C.3 Modules and twisted modules

A module for a vertex operator algebra is a vector space on which elements of
a vertex operator algebra act in such a way that appropriately adjusted weak
commutativity and weak associativity relations are satisfied. That is, fields rep-
resented by vectors in V' should still be local and their operator product expan-
sions should still be associative, but the vector space on which they act is not V.
Vertex operators acting on a module W are denoted by Yw (v, z) for v € V, and
they satisfy the Jacobi identity

To — 1

T —Zo

x5 <$1 — $2> Y (u, z1)Yw (v, 29) — 2516 ( ) Y (v, 22) Y (v, 21)

= 2516 <°””1 — 5"“) Yir (Y (u, z0)v, 22) . (C.3.1)

T2

In general, in a model of conformal field theory, one is given a set of local
holomorphic fields with integer weights, the local currents from the symmetries
of the model, forming a vertex operator algebra, and a set of primary fields, each
generating a module for the Virasoro algebra and for the algebras associated to
other symmetries. Fach primary field generate also a corresponding module for
the vertex operator algebra of local currents. For instance, in minimal models,
the various modules composing a given model correspond to the various primary
fields (which have rational weights), and the holomorphic fields forming a vertex
operator algebra are the identity field and its descendants, the stress-energy tensor
and its derivatives. This vertex operator algebra is one of the simplest and is called
the Virasoro vertex operator algebra. The restrictions on the allowed modules

forming a model of conformal field theory is set by the requirements of modular



invariance (which is essentially invariance under the choice of a “time” direction
on the torus) and unitarity (although some applications do not require unitarity).

The primary fields also correspond to vertex operators: the so-called inter-
twining operators, which map different modules among themselves. The theory
of intertwining vertex operators is involved and very interesting, but out of the
scope of this introduction.

The notion which is at the heart of my work with my collaborators is that of
twisted modules. A twisted module for a vertex operator algebra can be defined
when there exists an automorphism of finite period, say p, of the vertex operator
algebra. That is, there must exist a linear automorphism v of the vector space V

preserving the identity vector 1 and the conformal vector w such that
vY(u,z)v™' =Y (vu, )

and v» = 1. In conformal field theory language, the twisting procedure cor-
responds to imposing quasi-periodic conditions, twisted by the automorphism,
around the origin of radial quantization. For a twisted module M, the twisted
vertex operators acting on it are denoted by Yas(v,z) for v € V. The twisting

procedure then essentially requires

YM(VU,I1)|I}/;> ;/p - YM(u7x2)

:Wpfl/'
where w, is a primitive p-th root of unity. Twisted vertex operators satisfy yet
another Jacobi identity:

Ty — I

:6515 <$1 — $2> Yar(w, 21) Y (v, 22) — x515 <

To
1 1 Gk 1 — X l/p
= ;:1;2_ 25 wy ( o ) Yu (Y (v u, z)v, 22) . (C.3.2)
r=0

A twisted module for a vertex operator algebra is not a true module, as is

) Yar(v, z2)Yar(u, 1)

apparent from the fact that the form of the Jacobi identity above is different

from that of the Jacobi identity (C.2.4). But it is a module for the subalgebra



of the vertex operator algebra that is invariant under the automorphism v, that
is, the subalgebra {u € V |vu = u}. For instance, since the conformal vector w
is invariant, its modes still satisfy the Virasoro algebra on M. In particular, the
eigenvalue of the mode L(0) on the highest weight vector of M is related to the

effect of the twisted quasi-periodic conditions on the Casimir energy.

C.4 Relations to infinite-dimensional Lie algebras of dif-

ferential operators

In our work with my collaborators J. Lepowsky and A. Milas [40, 41], we were
interested in studying representations of a central extension of a certain infinite-
dimensional Lie algebra of formal differential operators on the circle. This Lie
algebra, which we denote ﬁ+, is a natural subalgebra of the so-called Wi,
algebra. It is a simple extension of the Virasoro algebra and contains it as a

subalgebra. More precisely, it is the central extension of the algebra of formal

L4y

differential operators spanned by ¢” ( 3

, where n € Z, r € N (the nonnegative
integers). In the same way as the Virasoro algebra is the algebra of the modes of
a holomorphic current, the stress-energy tensor, the algebra D+ is also spanned
by the modes of holomorphic currents, hence it can be embedded into a vertex
operator algebra. If this vertex operator algebra possesses an automorphism
of finite order, then we can form a twisted module for it, call it M. In the
module M that we construct, the current algebra generating Dt is invariant
under this automorphism. Then M is a module for D+. From the general study
of vertex operator algebras and their twisted modules, we derived formulas for
the eigenvalue of the elements of the “Cartan subalgebra” (a natural infinite-

dimensional abelian subalgebra) of D+ on the highest weight vector of M. This is

the generalization of the Casimir energy due to twisted quasi-periodic conditions.

Another, related, purpose of our work was to understand the effects of a



transformation to cylindrical coordinates on this “generalized” Casimir energy.
A transformation to cylindrical coordinates, from the point of view of vertex
operator algebras, is a particular isomorphism between two vertex operator alge-
bras. In other words, on a vector space V, one can define two vertex operator
maps, say Y (-, z) and Y-, y], that generate different algebra products among the
elements of V', in such a way that there is an automorphism of the vector space
V under which the algebra products generated by Y (-,z) are mapped to those
generated by Y[-,y]. For instance, it was shown by Zhu [145], [146] that under a
transformation to cylindrical coordinates, the algebra products are generated by

the vertex operator map Y-, y| given by the following formula:
Yu,y| = Y(eyL(O)u, e —1).

As is well known, a transformation to cylindrical coordinates of the stress-
energy tensor produces a term proportional to the identity operator, giving a
contribution to the Casimir energy, that can be computed using the Schwarzian
derivative. A heuristic way of obtaining the same term is by the so-called zeta reg-
ularization. One represents the stress-energy tensor by a normal-ordered product
of free fields h(z), the modes of which generate an Heisenberg algebra:

h(z) =Y h(n)2™"

neZ

with
[h(m)v h(n)] = m5m+n,0 .

The stress-energy tensor, generating function of Virasoro modes L(n), can be

written
T(z) = 5 th(2)h(z): = > L(n)a™" (C.4.1)

with the usual normal ordering that brings the h(n)’s with positive n to the right.

Note that T'(z) is not exactly the vertex operator Y(w,z) = 3 - L(n)z™""2,

neZ

but rather an “homogeneous” version of it, where the powers of z are shifted by



2. From the expression for T'(z), if one “erases” the normal-ordering operation
one obtains an ill-defined operator T'(z), that can be rewritten as
T(e) = 5 sh()h(e): + 5 Y
) = = sh(x)h(x)s 4+ = n.
2° T2

_ 1

By the zeta regularization one can then replace > ., n by ((—1) = —;, finding

that T'(z) is the energy momentum tensor on the cylinder. The new modes L(n),

defined by
T(z)=Y L(n)z™",

neZ

form a basis for the Virasoro algebra with bracket relations where the central
term is slightly simpler than that of (C.2.1), being a pure monomial:
3

[L(m), Z(n)] =(m — n)Z(m +n) + m

S
19 im0

As was found by Bloch [16], a construction of the algebra D* in terms of
holomorphic currents similar to (C.4.1), and an “erasing” of the normal-ordering
operation followed by a zeta-regularization, give a basis for D+ with bracket rela-
tions where the central term is also very simple. From general results in the theory
of vertex operator algebras, we explained the relation between this heuristic zeta-
regularization and the well-defined transformation to cylindrical coordinates, and
the fact that this transformation to cylindrical coordinates simplifies the central
term in bracket relations. This vertex-operator explanation was announced by J.
Lepowsky in [85] and in [86], and in our work [41] we give the full proofs and fur-
ther clarifications. In fact, the transformation to cylindrical coordinates gave us
a simple way of deriving the “generalized” Casimir energy in the twisted setting

as well.
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