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Introduction

e Exploit underlying graph structure to improve learning
e Many applications: cellular network configuration; molecular and social network analysis

e Focus on semi-supervised learning

/

Brain Functional Connectivity
Reproduced from Hong S-B et al. (2013), Plos ONE 8(2):e57831.

Wireless Cellular Network
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Problem Setting

e Features available at each node x;,i =1,..., N
e Labels available at some nodes y;,i € V1

e Approach 1: Ignore graph, learn function y; = f(x,-)
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What if we don’t believe in the graph?

e Features available at each node x;,i =1,..., N
e Labels available at some nodes y;,i € V1

e Approach 3: 7
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Background and motivation
Graph Convolutional Neural Networks (GCNNs) use convolution on the graph
In existing methods, the observed graph G,ps is processed as ground truth

The graph is often derived from imperfect observations or constructed from noisy data

Gobs Might have spurious links; important links might not have been observed

Our contribution: Bayesian framework to account for graph uncertainty

St
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Graph Convolutional Neural Networks (GCNNs)

Graph convolutional layer! with adjacency matrix A and node feature matrix X:
H® = o(AgXW() (1)
HEFD = 5 (AGHOWO) (2)

Ag: operator derived from the adjacency matrix

W) weights of neural network at layer ¢

H®: output features from layer /—1

!Defferrard et al. 2016; Kipf and Welling 2017
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Bayesian-GCNNs

In Bayesian neural networks?, weights W are treated as random variables.

Posterior of W is approximated via variational inference or sampling.

Goal: Given node features X, training labels Y, and an observed graph Gops:

‘ Compute/approximate the posterior of the node labels: p(Z|Y ., X, Gops)

2Tishby et al. 1989; Denker and Lecun 1991; MacKay 1992; Neal 1993; Gal and Ghahramani 2016

Bayesian GCNN treats both the graph G and the weights W as random variables.
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Bayesian inference for a graph generative model

gobs it

Posterior of | , i

graph model

parameters | =
——

p(>\|gobs) \

V samples of )\
from p(A|Gops)

P(ZIY . X, Gops) = / P(ZIW,G. X)p(W|Y £, X, G)p(GIA)p(A|Gobs) dW dG d ).
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Sampling random graphs
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Sampling GCNN weights
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O)—

p(Z|Y[;, Xv gobs) =

Computing the posterior of the node labels

p(G|Av)

—

S

Vv Ng
VZTZZP Z|WSIV7gIV7 )

i=1 s=1

GCNN
Ws,i,v

- p(Z|Ws,i,va gi,va X)

P(ZIW, G, X)p(WIY £, X, G)p(GIN)p(A[Goss) W dG dA,
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Implementation details

e Assortative Mixed Membership Stochastic Block Model (MMSBM)? as p(G|\)
e Stochastic gradient-based MAP estimation
e Monte Carlo (MC) dropout* for sampling W

3Li, Ahn, and Welling 2016
4Gal and Ghahramani 2016
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Aside: Bayesian neural networks

e Place prior: p(W;) on weights of neural L-layer network
W; ~ N(0,1)

for i < L (and write w := {W,}L_)))
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e Place prior: p(W;) on weights of neural L-layer network
W; ~ N(0,1)

for i < L (and write w := {W,}L_)))

e Output is a random variable
f(x,w) = WLU(. . .W20’(W1X—|— bl) .. )

e Softmax likelihood for classification: p(y|x,w) = softmax(f(x,w)) or a Gaussian for
regression: p(y|x,w) = N (y; f(x,w), 7 1)
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Aside: Bayesian neural networks

Place prior: p(W;) on weights of neural L-layer network
W; ~ N(0,1)

for i < L (and write w := {W,}L_)))

Output is a random variable
f(x,w) = WLU(. . .W20’(W1X—|— bl) .. )

Softmax likelihood for classification: p(y|x,w) = softmax(f(x,w)) or a Gaussian for
regression: p(y|x,w) = N (y; f(x,w), 7 1)
Very difficult to evaluate the posterior: p(w|x,y)
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Approximate inference in Bayesian neural networks

e Define gg(w) to approximate the posterior p(w|x,y)
e Minimize KL divergence:

KL(go(w)Ilp(w]x,y)
x — [ go(w) log p(w|x,y)dw + KL(gs(w)||p(w))
=: L(0)
e Approximate the integral with MC integration & ~ gg(w):

L(0) = — log p(y|x, @) + KL(gs(w)||p(w))
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Stochastic inference in Bayesian neural networks

e Unbiased estimator:

Egnq(w)(£(0)) = L(0)

o Converges to the same optima as £(6)
e For inference, repeat:

@ Sample & ~ gg(w).
® Minimise (one step) w.r.t. 6

L(6) = log p(y[x, &) + KL(gs(w)]|p(w))
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Stochastic inference in Bayesian neural networks

e Need to specify gy(+):
e Given z; ; Bernoulli random variables

e Variational parameters § = {M;}L_; (set of matrices):

Zij~ Bernou//i(Pi) for | = ]_7 ey L, _] = 1, ey Kifl
W,- = M,‘ . d|ag([z’d]JKzll)
g6(w) = am,(W;)
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Stochastic inference in Bayesian neural networks

e Repeat:
@ Sample 2; j ~ Bernoulli(p;) and set:

W; = M; - diag([2,]1%,)
&= {W,;}L,
® Minimise (one step) w.r.t. § = {M;}L_;

L(0) = log p(y[x, ©) + KL(gs(w)[|p(w))
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Stochastic inference in Bayesian neural networks

e Repeat:
@ Randomly set columns of M; to zero

® Minimise (one step) w.r.t. § = {M;}5;

L(0) = log p(y|x,&) + KL(qe(w)||p(w))
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Stochastic inference in Bayesian neural networks

e Repeat:
@ Randomly set units of the network to zero = Dropout

® Minimise (one step) w.r.t. § = {M;}5;

L(0) = log p(y|x,&) + KL(qe(w)||p(w))
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Are we really sampling from the posterior?

Ground Truth - GP Hamiltonian MC MC Dropout Our Method

e T. Pearce, M. Zaki and A. Neely, “Bayesian Neural Network Ensembles”, Proc. Workshop on
Bayesian Deep Learning (NeurlPS 2018), Montral, Canada.

ReLU

Sigmoidal

RBF
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Experimental results: Citation network classification

Cora CiteSeer Pubmed

Nodes 2708 3327 19717
Edges 5429 4732 44338
Features per node 1433 3703 500
Classes 7 6 3

5/10/20 training examples per class

Random splitting of training and test data

50 trials per experiment setting

Comparison with ChebyNet®>, GCNN®, and GAT”

Sen et al. 2008; 5: Defferrard et al. 2016; 6: Kipf & Welling 2017; 7: Veli¢kovi¢ et al. 2018
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Semi-supervised node classification for Cora

5 labels/class 10 labels/class
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When training data is limited, BGCN outperforms competing techniques
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Semi-supervised node classification for Citeseer
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Node classification under graph attacks

Goal: Examine robustness to corruption or attack®

For node v with true class c¢e, classification margin is:

margin, = score, (Cerue) — max score,(c) .
true

Select 40 nodes for attack, based on classification margin.

Node perturbation: A = d, + 2, where d, is the degree of node v

e Remove % random edges; add % cross-community edges

8Ziigner, Akbarnejad and Giinnemann 2018
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Node classification

No attack Random attack

Accuracy
GCNN 88.5% 43.0%
Bayesian GCNN 87.0% 66.5%
Classifier margin
GCNN 0.448 0.014
Bayesian GCNN 0.507 0.335

under graph attacks
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Conclusion

e Compared to existing algorithms, Bayesian-GCNNs have :
— better performance with limited training data
— more resilience to random perturbations of the graph topology

— principled methodology to represent uncertainty

e The general Bayesian framework can incorporate:
— a variety of generative models for graphs
— different inference techniques for the graph generative model

— different versions of graph based learning algorithms

36 /36



