Bayesian graph convolutional neural networks

Mark Coates[†]

Collaborators: Soumyasundar Pal[†], Yingxue Zhang^{*}, Deniz Üstebay^{*}

[†]McGill University, *Huawei Noah's Ark Lab

February 13, 2019

Montreal

Introduction

- Exploit underlying graph structure to improve learning
- Many applications: cellular network configuration; molecular and social network analysis
- Focus on semi-supervised learning

Wireless Cellular Network

Brain Functional Connectivity
Reproduced from Hong S-B et al. (2013), Plos ONE 8(2):e57831.

Problem Setting

- Features available at each node \mathbf{x}_i , $i = 1, \dots, N$
- Labels available at some nodes $y_i, i \in \mathcal{Y}_T$
- Approach 1: Ignore graph, learn function $\hat{y}_i = \hat{f}(\mathbf{x}_i)$

Problem Setting

- Features available at each node \mathbf{x}_i , $i = 1, \dots, N$
- Labels available at some nodes $y_i, i \in \mathcal{Y}_T$
- Approach 2: Use graph, learn function $\hat{y}_i = \hat{f}(\mathbf{x}_i, \{\mathbf{x}_j\}_{j \in \mathcal{N}_i})$

Problem Setting

- Features available at each node \mathbf{x}_i , i = 1, ..., N
- Labels available at some nodes $y_i, i \in \mathcal{Y}_T$
- Approach 2: Use graph, learn function $\hat{y}_i = \hat{f}_{\mathcal{G}}(\mathbf{x}_i, \{\mathbf{x}_j\}_{j \in \mathcal{N}_i})$

- Features available at each node x_i , i = 1, ..., N
- Labels available at some nodes $y_i, i \in \mathcal{Y}_T$
- Approach 3: ?

- Features available at each node x_i , i = 1, ..., N
- Labels available at some nodes $y_i, i \in \mathcal{Y}_T$
- Approach 3: ?

- Features available at each node x_i , i = 1, ..., N
- Labels available at some nodes $y_i, i \in \mathcal{Y}_T$
- Approach 3: ?

- Features available at each node x_i , i = 1, ..., N
- Labels available at some nodes $y_i, i \in \mathcal{Y}_T$
- Approach 3: ?

- Features available at each node x_i , i = 1, ..., N
- Labels available at some nodes $y_i, i \in \mathcal{Y}_T$
- Approach 3: $\hat{y}_i = \int \hat{f}_{\mathcal{G}}(\mathbf{x}_i, \{\mathbf{x}_j\}_{j \in \mathcal{N}_{i,\mathcal{G}}}) p(\mathcal{G}|\mathcal{G}_{obs}) d\mathcal{G}$

- Features available at each node x_i , i = 1, ..., N
- Labels available at some nodes $y_i, i \in \mathcal{Y}_T$
- Approach 3: $\hat{y}_i = \frac{1}{K} \sum_{v=1}^K \hat{f}_{\mathcal{G}_v}(\mathbf{x}_i, \{\mathbf{x}_j\}_{j \in \mathcal{N}_{i,\mathcal{G}}})$

Background and motivation

- Graph Convolutional Neural Networks (GCNNs) use convolution on the graph
- In existing methods, the observed graph \mathcal{G}_{obs} is processed as ground truth
- The graph is often derived from imperfect observations or constructed from noisy data
- \mathcal{G}_{obs} might have spurious links; important links might not have been observed
- Our contribution: Bayesian framework to account for graph uncertainty

Graph Convolutional Neural Networks (GCNNs)

Graph convolutional layer¹ with adjacency matrix A and node feature matrix X:

$$\mathbf{H}^{(1)} = \sigma(\mathbf{A}_{\mathcal{G}}\mathbf{X}\mathbf{W}^{(0)}) \tag{1}$$

$$\mathbf{H}^{(\ell+1)} = \sigma(\mathbf{A}_{\mathcal{G}}\mathbf{H}^{(\ell)}\mathbf{W}^{(\ell)})$$

 $\textbf{A}_{\mathcal{G}}\colon$ operator derived from the adjacency matrix

 $\mathbf{W}^{(\ell)}$: weights of neural network at layer ℓ

 $\mathbf{H}^{(\ell)}$: output features from layer $\ell{-}1$

(2)

¹Defferrard et al. 2016; Kipf and Welling 2017

Bayesian-GCNNs

- In Bayesian neural networks 2 , weights W are treated as random variables.
- Posterior of W is approximated via variational inference or sampling.
- Bayesian GCNN treats both the graph $\mathcal G$ and the weights W as random variables.
- Goal: Given node features **X**, training labels $\mathbf{Y}_{\mathcal{L}}$, and an observed graph \mathcal{G}_{obs} :

Compute/approximate the posterior of the node labels: $p(\mathbf{Z}|\mathbf{Y}_{\mathcal{L}},\mathbf{X},\mathcal{G}_{obs})$

²Tishby et al. 1989; Denker and Lecun 1991; MacKay 1992; Neal 1993; Gal and Ghahramani 2016

Bayesian inference for a graph generative model

$$p(\mathbf{Z}|\mathbf{Y}_{\mathcal{L}},\mathbf{X},\mathcal{G}_{obs}) = \int p(\mathbf{Z}|W,\mathcal{G},\mathbf{X})p(W|\mathbf{Y}_{\mathcal{L}},\mathbf{X},\mathcal{G})p(\mathcal{G}|\lambda)p(\lambda|\mathcal{G}_{obs}) dW d\mathcal{G} d\lambda.$$

Sampling random graphs

$$p(\mathbf{Z}|\mathbf{Y}_{\mathcal{L}},\mathbf{X},\mathcal{G}_{obs}) = \int p(\mathbf{Z}|W,\mathcal{G},\mathbf{X})p(W|\mathbf{Y}_{\mathcal{L}},\mathbf{X},\mathcal{G})p(\mathcal{G}|\lambda)p(\lambda|\mathcal{G}_{obs}) dW d\mathcal{G} d\lambda.$$

Sampling GCNN weights

$$p(\mathbf{Z}|\mathbf{Y}_{\mathcal{L}},\mathbf{X},\mathcal{G}_{obs}) = \int p(\mathbf{Z}|W,\mathcal{G},\mathbf{X})p(W|\mathbf{Y}_{\mathcal{L}},\mathbf{X},\mathcal{G})p(\mathcal{G}|\lambda)p(\lambda|\mathcal{G}_{obs}) dW d\mathcal{G} d\lambda.$$

Computing the posterior of the node labels

$$\underbrace{\lambda_{v}} \rightarrow \underbrace{p(\mathcal{G}|\lambda_{v})} \rightarrow \underbrace{\mathcal{G}_{i,v}} \rightarrow \underbrace{W_{s,i,v}} \rightarrow p(Z|W_{s,i,v},\mathcal{G}_{i,v},X)$$

$$\begin{split} \rho(\mathbf{Z}|\mathbf{Y}_{\mathcal{L}},\mathbf{X},\mathcal{G}_{obs}) &= \int p(\mathbf{Z}|W,\mathcal{G},\mathbf{X})p(W|\mathbf{Y}_{\mathcal{L}},\mathbf{X},\mathcal{G})p(\mathcal{G}|\lambda)p(\lambda|\mathcal{G}_{obs})\,dW\,d\mathcal{G}\,d\lambda\,,\\ &\approx \frac{1}{V}\sum_{v=1}^{V}\frac{1}{N_{G}S}\sum_{i=1}^{N_{G}}\sum_{s=1}^{S}p(\mathbf{Z}|W_{s,i,v},\mathcal{G}_{i,v},\mathbf{X})\,. \end{split}$$

Implementation details

- Assortative Mixed Membership Stochastic Block Model (MMSBM)³ as $p(G|\lambda)$
- Stochastic gradient-based MAP estimation
- Monte Carlo (MC) dropout⁴ for sampling W

³Li, Ahn, and Welling 2016

⁴Gal and Ghahramani 2016

Aside: Bayesian neural networks

• Place prior: $p(\mathbf{W}_i)$ on weights of neural L-layer network

$$\mathbf{W}_i \sim \mathcal{N}(0, \mathbf{I})$$

for
$$i \leq L$$
 (and write $\omega := \{\mathbf{W}_i\}_{i=1}^L$))

Aside: Bayesian neural networks

• Place prior: $p(\mathbf{W}_i)$ on weights of neural L-layer network

$$\mathbf{W}_i \sim \mathcal{N}(0, \mathbf{I})$$

for
$$i \leq L$$
 (and write $\omega := \{\mathbf{W}_i\}_{i=1}^L$))

• Output is a random variable

$$f(\mathbf{x},\omega) = \mathbf{W}_L \sigma(\dots \mathbf{W}_2 \sigma(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) \dots)$$

• Softmax likelihood for classification: $p(y|\mathbf{x},\omega) = \text{softmax}(f(\mathbf{x},\omega))$ or a Gaussian for regression: $p(\mathbf{y}|\mathbf{x},\omega) = \mathcal{N}(\mathbf{y}; f(\mathbf{x},\omega), \tau^{-1}\mathbf{I})$

Aside: Bayesian neural networks

• Place prior: $p(\mathbf{W}_i)$ on weights of neural L-layer network

$$\mathbf{W}_i \sim \mathcal{N}(0, \mathbf{I})$$

for
$$i \leq L$$
 (and write $\omega := \{\mathbf{W}_i\}_{i=1}^L$))

• Output is a random variable

$$f(\mathbf{x},\omega) = \mathbf{W}_L \sigma(\dots \mathbf{W}_2 \sigma(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) \dots)$$

- Softmax likelihood for classification: $p(y|\mathbf{x},\omega) = \text{softmax}(f(\mathbf{x},\omega))$ or a Gaussian for regression: $p(\mathbf{y}|\mathbf{x},\omega) = \mathcal{N}(\mathbf{y}; f(\mathbf{x},\omega), \tau^{-1}\mathbf{I})$
- Very difficult to evaluate the posterior: $p(\omega|\mathbf{x},\mathbf{y})$

Approximate inference in Bayesian neural networks

- Define $q_{\theta}(\omega)$ to approximate the posterior $p(\omega|\mathbf{x},\mathbf{y})$
- Minimize KL divergence:

$$egin{aligned} & extit{KL}(q_{ heta}(\omega)||p(\omega|\mathbf{x},\mathbf{y})) \ & \propto -\int q_{ heta}(\omega)\log p(\omega|\mathbf{x},\mathbf{y})d\omega + extit{KL}(q_{ heta}(\omega)||p(w)) \ & =: \mathcal{L}(heta) \end{aligned}$$

• Approximate the integral with MC integration $\hat{\omega} \sim q_{\theta}(\omega)$:

$$\hat{\mathcal{L}}(\theta) = -\log p(\mathbf{y}|\mathbf{x},\hat{\omega}) + KL(q_{\theta}(\omega)||p(w))$$

Unbiased estimator:

$$\mathsf{E}_{\hat{\omega} \sim q(\omega)}(\hat{\mathcal{L}}(heta)) = \mathcal{L}(heta)$$

- Converges to the same optima as $\mathcal{L}(\theta)$
- For inference, repeat:
 - **1** Sample $\hat{\omega} \sim q_{\theta}(\omega)$.
 - **2** Minimise (one step) w.r.t. θ

$$\mathcal{L}(\theta) = \log p(\mathbf{y}|\mathbf{x}, \hat{\omega}) + \mathit{KL}(q_{\theta}(\omega)||p(\omega))$$

- Need to specify $q_{\theta}(\cdot)$:
- Given $z_{i,j}$ Bernoulli random variables
- Variational parameters $\theta = \{\mathbf{M}_i\}_{i=1}^L$ (set of matrices):

$$egin{aligned} z_{i,j} &\sim \textit{Bernoulli}(p_i) \; \text{for} \; i=1,\ldots,L, \; j=1,\ldots,K_{i-1} \ \mathbf{W}_i &= \mathbf{M}_i \cdot \operatorname{diag}([z_{i,j}]_{j=1}^{K_i}) \ q_{ heta}(\omega) &= q_{\mathbf{M}_i}(\mathbf{W}_i) \end{aligned}$$

- Repeat:
 - **1** Sample $\hat{z}_{i,j} \sim \text{Bernoulli}(p_i)$ and set:

$$\hat{\mathbf{W}}_i = \mathbf{M}_i \cdot \text{diag}([\hat{z}_{i,j}]_{j=1}^{K_i})$$

$$\hat{\omega} = {\{\hat{\mathbf{W}}_i\}_{i=1}^{L}}$$

2 Minimise (one step) w.r.t. $\theta = \{\mathbf{M}_i\}_{i=1}^L$

$$\mathcal{L}(\theta) = \log p(\mathbf{y}|\mathbf{x}, \hat{\omega}) + \mathit{KL}(q_{\theta}(\omega)||p(\omega))$$

- Repeat:
 - \bullet Randomly set columns of M_i to zero

2 Minimise (one step) w.r.t.
$$\theta = \{\mathbf{M}_i\}_{i=1}^L$$

$$\mathcal{L}(\theta) = \log p(\mathbf{y}|\mathbf{x}, \hat{\omega}) + KL(q_{\theta}(\omega)||p(\omega))$$

- Repeat:
 - Randomly set units of the network to zero ⇒ Dropout

2 Minimise (one step) w.r.t.
$$\theta = \{\mathbf{M}_i\}_{i=1}^L$$

$$\mathcal{L}(\theta) = \log p(\mathbf{v}|\mathbf{x}, \hat{\omega}) + KL(q_\theta(\omega)||p(\omega))$$

Are we really sampling from the posterior?

• T. Pearce, M. Zaki and A. Neely, "Bayesian Neural Network Ensembles", Proc. Workshop on Bayesian Deep Learning (NeurIPS 2018), Montral, Canada.

Experimental results: Citation network classification

	Cora	CiteSeer	Pubmed
Nodes	2708	3327	19717
Edges	5429	4732	44338
Features per node	1433	3703	500
Classes	7	6	3

- 5/10/20 training examples per class
- Random splitting of training and test data
- 50 trials per experiment setting
- Comparison with ChebyNet⁵, GCNN⁶, and GAT⁷

Sen et al. 2008; 5: Defferrard et al. 2016; 6: Kipf & Welling 2017; 7: Veličković et al. 2018

Semi-supervised node classification for Cora

When training data is limited, BGCN outperforms competing techniques

Semi-supervised node classification for Citeseer

When training data is limited, BGCN outperforms competing techniques

Node classification under graph attacks

- Goal: Examine robustness to corruption or attack⁸
- For node v with true class c_{true} , classification margin is:

$$\mathsf{margin}_v = \mathsf{score}_v(c_{\mathit{true}}) - \max_{c \neq c_{\mathit{true}}} \mathsf{score}_v(c)$$
 .

- Select 40 nodes for attack, based on classification margin.
- Node perturbation: $\Delta = d_v + 2$, where d_v is the degree of node v
- Remove $\frac{\Delta}{2}$ random edges; add $\frac{\Delta}{2}$ cross-community edges

⁸Zügner, Akbarnejad and Günnemann 2018

Node classification under graph attacks

	No attack	Random attack	
	Accuracy		
GCNN	88.5%	43.0%	
Bayesian GCNN	87.0%	66.5%	
	Classifier margin		
GCNN Bayesian GCNN	0.448 0.507	0.014 0.335	

Conclusion

- Compared to existing algorithms, Bayesian-GCNNs have :
 - better performance with limited training data
 - more resilience to random perturbations of the graph topology
 - principled methodology to represent uncertainty
- The general Bayesian framework can incorporate:
 - a variety of generative models for graphs
 - different inference techniques for the graph generative model
 - different versions of graph based learning algorithms