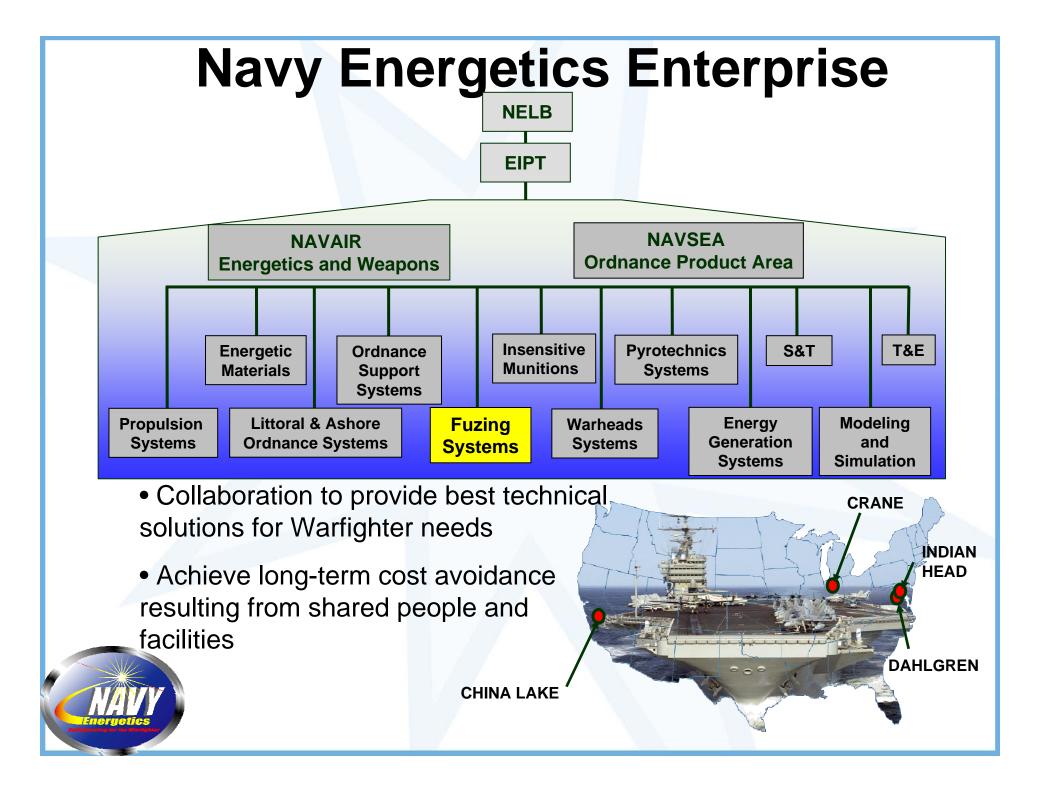
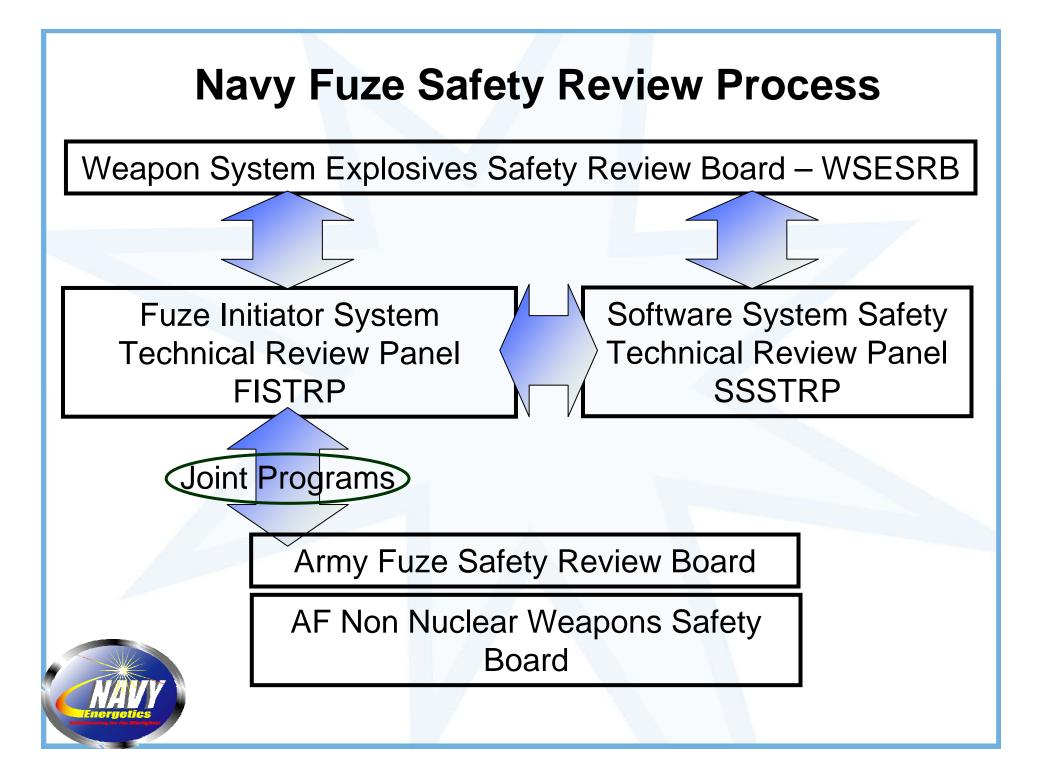
NDIA 50th Annual Fuze Conference UNITED STATES NAVY OVERVIEW

Stephen Mitchell Co-Chair, Naval Energetics Enterprise





OUTLINE

- Navy Energetics Enterprise NEE
- Navy Safety Board Structure
- Air, Surface, Undersea Navy Programs
- Emerging Technology
- Summary

Fuze Initiator System Technical Review Panel FISTRP

Panel Chair – Jack Waller

Panel Members – Ralph Balestieri

Randy Cope John Hendershot Dave Libbon Dave Riggs Brian Will Ray Ash Tinya Coles-CieplyBrad HannaGeorge HenningsScott PomeroyGabe SotoJohn KandellGene Marquis

Current Topics of Interest/Challenge

- Evolving Requirements Definition (within FESWG)
- Move to STANAGS

•1901A/23659B – In-Line Ignition Safety Device (ISD)

Programmable Logic Devices (PLD) Implementation

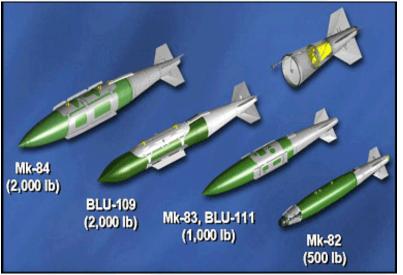
Built In Test (BIT)

FMU-139 Family Electronic Bomb Fuze

- FMU-139C/B Currently Being Procured From KDI and ATK
 - Replenish Current Aging Inventory
 - Extended Operational Life With FFCS

FMU-139 PIP Efforts

- Currently Being Conducted at KDI and ATK
 - Enhanced Capabilities Demonstration
 - Serial Data Interface
 - Increased Penetration
 - In-Line Explosive Train
 - Increased Reliability



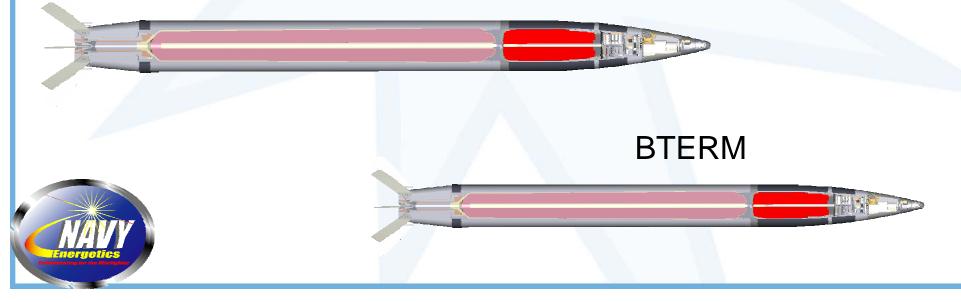
FMU-139D/B

- Next Version of FMU-139
 - ✓ Enhanced Capability✓ Enhanced Reliability

Planned Full & Open Competition RFP Release Late FY-06

HI-REL FUZE

- Next Generation Fuze For Precision Guided Munitions
 - Dual Mode LGB, JDAM
- Higher Reliability
 - Eliminate external devices such as Fuze Function Control Set (FFCS), Mk-122 Arming System Switch, M 70 Series Cable, and associated electrical and mechanical connections (i.e. lanyard)
 - Incorporate Pre-Release Checks
- Safety Architecture Integral With MIL-STD-1760 Interface and Weapon Guidance Control Unit
- NAWCWD Conducting Tests to Evaluate Compliance of Approach with MIL-STD-1316

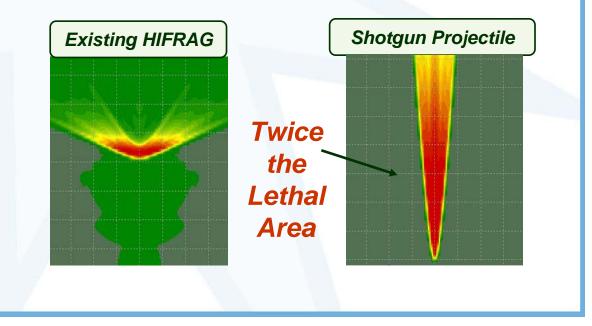

Gunnery Programs

ERGM

Long Range Guided Projectiles in Development: ERGM, BTERM, & LRLAP

• 41nmi+

LRLAP



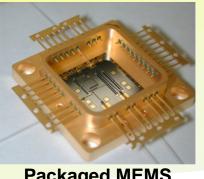
Gunnery Programs

- Short Range Self-Defense Projectiles:
 - 5" Guns Have 3 New Projectiles: KE-ET, HE-ET, HE-MFF
 - Minor/Medium
 Caliber Guns
 - 25mm
 - 30mm
 - 57mm
 - 76mm

Gunnery Fuze Production Programs

- Low Cost Fuzing
 - MOFN Instead of MFF for Most Threat Scenarios
 - Producible Fuzing:
 - Need Battery for Next Production of MFF
 - Testing Diehl/Eagle Picher Batteries

Future Undersea Weapon S&A



MEMS S&A package

- Miniaturization of safety and arming and initiation components
- Enables common S&A for multiple platform deployment
- Ruggedness demonstrated in harsh environments

Multi-Mission Capable

- Single S&A configuration for multiple missions & platforms
- Multi-point warhead initiation
- Safety Features
 - IMU based Safe Separation System
 - Safe-arm indication, safing switch

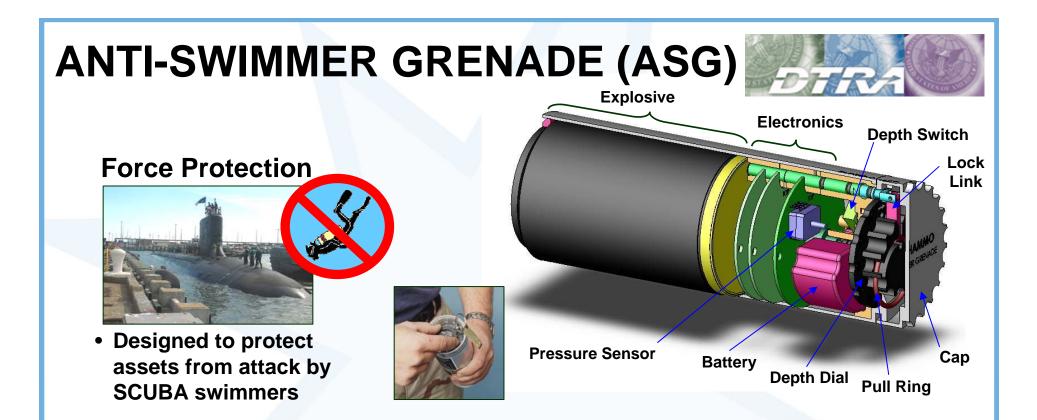
Packaged MEMS S&A Chip

JDAM Assault Breach System JABS

FY06 JABS S&T

- Flight tests with instrumented Fuzes
- Record water impact signature
- Monitor response of (FMU139) impact switches

Shock Hardened Recorder Redundancy


- Two Recorders per Bomb
- Two Accelerometers per Recorder
- Non-Volatile Memory

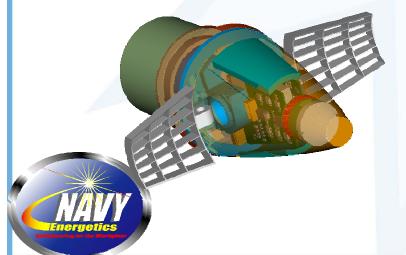
- Fuze (FMU139) with pre-selected delay times to increase bomb effectiveness against mines / obstacles in the surf zone
 - Bomb detonates at optimum position in range of water depths
 - Increase lethality against mines and obstacles
- FY07 Evaluate JABS lethality in the Very Shallow Water (VSW)

Data Recorder

Safety

ASG will detonate <u>only</u> underwater beneath a predefined safety depth
Will harmlessly render itself safe if it is activated but fails to see the correct arming environments

Features


- Electronic In-Line Safe-Arm Device
- Hand-Emplaced Ordnance design meets MIL-STD-1911
- User-selectable function depth (10-ft to 100-ft in 10-ft increments)

Gunnery Technology Fuzing Thrusts

- Low Cost Guidance:
 - GIF & PGK
 - Developing Next Generation GPS Receiver
 - Small Size (<1.5 in2)
 - Low Cost (<\$500)
 - Low Power (<1 Watt)

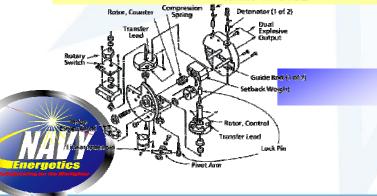
GPS

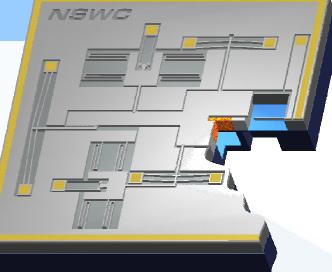
Receiver

ONR Future Naval Capability (FNC) Program IMU Based Safe Separation System

- Miniature (MEMS based) Inertial Measurement Unit (IMU) embedded in S&A to measure safe separation distance
- Flexible IMU-based safety algorithm that incorporates:
 - Weapon post-launch position determination independent
 of guidance system
 - Two independent parallel algorithms for fault tolerance
- COTS IMU sensor integrated into S&A.
- FY06: in-water tests of IMU sensors

ONR Discovery & Invention (D&I) S&T Program MEMS S&A Technology


- Enables weapon system integrated fuzing for multi-mission and scaled effect capability
- Reduces fuze cost and size


Status;

Completed characterization of 1st prototype S&A components and devices in laboratory ... long throw actuators, G sense locks & impact sensors

Designed & fabricated hermetic cap chips

MEMS in-situ detonator based S&A device technology currently TRL 4

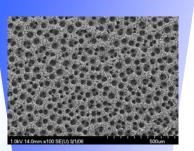
S&A Chip

From tens of mechanical parts per fuze to 100's of fuze chips per single wafer

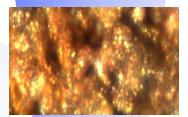
ONR Discovery & Invention (D&I) Program In-Situ Micro Detonator Technology

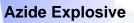
- Energetics formed in-situ after MEMS fabrication
- No energetic waste material
- No processing equipment exposed to energetics

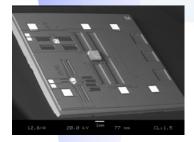
Status;


Developed in-situ (dry) conversion process

Demonstrated explosive transfer to qualified booster materials; RSI-007, PBX-N5 & Comp A-5


Currently conducting detonation characterization experiments


MEMS in-situ micro detonator technology currently TRL 4



Porous Metal

S&A Device with Micro Explosive

Summary

The Path Forward ...

Joint Fuze Technology Program

- Navy PM/PEO community validated weapon requirements and needs that fed into the Joint Fuze Technology Program (DoD Fuze IPT)
 - Joint Fuze Technology Program will leverage on Navy S&T efforts and advancements
- Examples of Navy Future Capabilities Needed
 - Hard and Deeply Buried Target Fuzing
 - Increased reliability to reduce UXO
 - Multi-mission selectable fuzing
 - Advanced initiation for controlling lethal effects

Navy Energetic Enterprise

