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A B S T R A C T   

The atmospheric mixing layer height (MLH) is a critical variable for understanding and constraining ecosystem 
and climate dynamics. Past MLH estimation efforts have largely relied on data with low temporal (radiosondes) 
or spatial (reanalysis) resolutions. This study is unique in that it utilized continuous point-based ceilometer- and 
radiosonde-derived measurements of MLH at surface flux tower sites to identify the surface influence on MLH 
dynamics. We found a strong correlation (R2 = 0.73-0.91) between radiosonde MLH and ceilometer MLH at two 
sites with co-located observations. Seasonally, mean MLH was the highest at all sites during the summer, while 
the highest annual mean MLH was found at the warm and dry sites, dominated by high sensible heat fluxes. At 
daily time scales, surface fluxes of sensible heat, latent heat, and vapor pressure deficit had the largest influence 
on afternoon MLH. However, at best, the identified forcing variables and surface fluxes only accounted for ~38- 
65% of the variability in MLH under all sky conditions, and ~53-76% of the variability under clear skies. These 
results highlight the difficulty in using single-point observations to explain MLH dynamics but should encourage 
the use of ceilometers or similar atmospheric measurements at surface flux sites in future studies.   

1. Introduction 

The atmospheric boundary layer (ABL) is the lowest layer of the 
atmosphere that is in direct contact with the Earth’s surface. The ABL is 
a critical component of the Earth’s climate system as processes within 
the ABL control the exchange of energy, mass, momentum, and pollut-
ants between the land surface and the atmosphere (Seibert, 2000; Stull, 
1988; Yi, 2004). The height and structure of the ABL can be highly 
variable within a day and between seasons as it is influenced by diurnal 
and seasonal variations in the surface energy budget, incoming solar 
radiation, free atmospheric temperature and humidity profiles, and 
synoptic weather systems (Helbig et al., 2021; Zilitinkevich et al., 2012). 

Gaseous or particulate substances emitted from the surface become well 
mixed within the ABL due to turbulent mixing from buoyant convection 
and/or wind shear (Schween et al., 2014). This well-mixed layer, also 
known as the mixing layer, can grow up to several kilometers, bounded 
by the land surface below and a capping temperature inversion or 
statically stable layer of air above (Kotthaus and Grimmond, 2018; 
Wouters et al., 2019). The resulting mixing layer height (MLH) is a 
critical variable for understanding and constraining ecosystem and 
climate dynamics as it directly affects the heat capacity of the ABL 
(Panwar et al., 2019), CO2 concentrations within the ABL (Yi et al., 
2001), the onset of convective precipitation events (Siqueira et al., 
2009), and air pollutant (aerosol) dispersion and deposition (Seibert, 
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2000; Yin et al., 2019), among many other processes and interactions. 
The most common methods to determine MLH examine deviations in 

vertical profiles of temperature, humidity, or Richardson number (Pir-
inger et al., 2007; Seibert, 2000). These variables are often calculated 
using radiosonde data, but are commonly only used as a reference value, 
due to their limited (non-continuous) temporal resolution (Kotthaus and 
Grimmond, 2018; Münkel et al., 2007; Seidel et al., 2012). The lack of 
high temporal resolution radiosonde measurements can be resolved by 
incorporating continuous, ground-based proximal sensing techniques 
such as sodar, radar, and LiDAR instrumentation (Schween et al., 2014). 
These instruments are regarded as the most advanced methods for 
observing MLH, as they operate at a high temporal resolution and 
require minimal maintenance (Helbig et al., 2021). Aerosol backscatter 
LiDARs, also known as ceilometers, are single-lens and eye-safe LiDARs 
that were originally designed to measure cloud ceilings, but also provide 
a backscatter profile used for the determination of the MLH (Wiegner 
et al., 2014). Ceilometers have been utilized in many studies to estimate 
and evaluate the MLH (Caicedo et al., 2020; Emeis et al., 2008; Eresmaa 
et al., 2006; Gierens et al., 2019; Haeffelin et al., 2012; Hicks et al., 
2019; Lotteraner and Piringer, 2016; Mues et al., 2017; Schween et al., 
2014) as they offer one of the best proximal sensing options for the 
observation of atmospheric aerosols. However, when considering 
ecosystem-level analyses of MLH, recent studies have exclusively used 
modeled MLH outputs (e.g., Butterworth et al, 2021; Perkins, 2020; 
Schmiedeler, 2019), while limited research has analyzed 
ceilometer-derived MLH. Furthermore, diurnal and seasonal MLH dy-
namics are tightly coupled to surface fluxes of sensible and latent heat 
(Baldocchi and Ma, 2013; Betts, 2004; Yi et al., 2001), yet despite the 
close relation between surface fluxes and MLH, direct surface flux ob-
servations have rarely been analyzed together with MLH observations 
from ceilometers. 

Airports, weather services, and global research institutions use ceil-
ometers to examine cloud and MLH dynamics (e.g., heights and fre-
quencies), but these observations are rarely located near continuous 
land-atmosphere (e.g., ecosystem meteorology and flux) monitoring 
stations. The AmeriFlux and global FLUXNET networks are an extensive 
system of eddy covariance (EC) flux tower sites that support continuous 
monitoring of energy, carbon, water, and other land-atmosphere fluxes 
(Baldocchi et al., 2001; Novick et al., 2018). The EC technique allows 
continuous, high frequency measurements of the surface turbulent 
fluxes of latent and sensible heat to be made, which among other 
mechanisms, are shown to be a primary driver of the growth of the ABL 
and MLH (Garratt, 1994; Stull, 1988). At present, MLH measurements 
are only made at a small number of flux sites worldwide, and these data 
are often not publicly available (Helbig et al., 2021). Consequently, this 
study is the first of its kind to incorporate co-located EC flux and ceil-
ometer data for a range of sites across the United States, with the goal of 
answering the questions: (1) how do the MLH and flux relationships vary 
across season and ecosystem type, and (2) can we explain the day-to-day 
variations in MLH as a function of site-level environmental variables and 
fluxes? 

In this study, we incorporate a range of neighboring (< 30 km) ob-
servations from radiosondes, ceilometers, flux towers, and reanalysis 
data to examine the direct influence of surface fluxes and the indirect 
influence of surface flux proxies on MLH dynamics at select US Ameri-
Flux sites. The specific goals of this research are to: (1) evaluate 
ceilometer-derived MLH retrievals against radiosonde-derived MLH es-
timates, (2) characterize MLH across various ecosystems and climates, 
(3) analyze the role of seasonal surface fluxes and phenology on MLH 
dynamics, and (4) examine the relative influence of explanatory vari-
ables on MLH at each site. 

2. Methods and materials 

2.1. Site selection and details 

This study examined the relationships between ceilometer-derived 
(LiDAR; see section 2.2.2 for additional details) cloud and MLH data 
and EC flux and meteorological data for five AmeriFlux sites (Table 1, 
see also ameriflux.lbl.gov). These sites were included as they all had 
ceilometer measurements in close proximity to an active AmeriFlux site. 
Two of the sites (US-Wkg and US-Whs) shared a centrally located ceil-
ometer due to their distance between each other (8 km apart) and were 
the only sites to not have co-located ceilometer and flux measurements 
(Table 1). The five sites span a climatological gradient across the United 
States and cover an area ranging from the cool and wet climate of Maine 
to the hot and arid climate of Arizona (Fig. 1). Additionally, the sites are 
composed of four main plant functional types (PFTs): evergreen nee-
dleleaf forests, grasslands, croplands, and open shrublands. The broad 
range of climates and PFTs in this study (Table 1) allows us to compare 
the seasonal patterns of MLH that may exist across different vegetation 
types. 

The Howland Forest (US-Ho1) in Howland, Maine is a mature, multi- 
aged evergreen dominated forest (90% of trees) that has been unman-
aged for nearly a century (Hollinger et al., 2021). The climate at US-Ho1 
is hemiboreal (Dfb; Köppen climate classification), with long, cold 
winters, and warm summers. The Kansas Field Station (US-KFS) in 
Lawrence, Kansas is a heterogeneous grassland comprised of a mixture 
of C3 and some native C4 grasses (Brunsell et al., 2011). Infrequent 
(about every five years) prescribed burns occurred at the site prior to the 
EC installation in 2007, helping to maintain the site as a grassland. The 
Southern Great Plains (US-ARM) site located in Lamont, Oklahoma, part 
of the Department of Energy (DOE) Atmospheric Radiation Measure-
ment (ARM) user facility (arm.gov) is covered by areas of winter wheat, 
grassland pastures, and some row-crop agriculture (Bagley et al., 2017; 
Fischer et al., 2007). The climate at US-KFS and US-ARM is warm 
temperate (Cfa) with hot and humid summers and mild winters. The 
remaining two sites, the Kendall Grassland (US-Wkg) and the Lucky Hills 
Shrubland (US-Whs), are located within the US Department of Agricul-
ture Agricultural Research Service (USDA-ARS) Walnut Gulch Experi-
mental Watershed (WGEW) near Tombstone, Arizona. The desert 
shrubland (US-Whs) is dominated by shrubs, with nearly no grass 
presence at the site, while the grassland (US-Wkg) is largely perennial 
bunchgrass (Scott et al., 2015, 2010). Both US-Wkg and US-Whs expe-
rience a cold semi-arid climate (Bsk) due to their elevation (1370 – 1530 
m above sea level), with cold winters and hot summers, and the majority 
of their rainfall falling from July to September. The geographic distri-
bution of sites is shown in Fig. 1, with additional information found at 
their respective DOIs (Table 1). 

2.2. Data descriptions 

2.2.1. Theory and data selection 
The complex process-level relationships and feedbacks between 

surface fluxes and the MLH are an important topic of research (Santa-
nello et al., 2018). Therefore, we highlight these interactions to provide 
an overview of the observations used throughout this study. The surface 
energy balance describes the bi-directional exchange and partitioning of 
energy fluxes toward and away from the surface and is inseparably 
linked to the overlying mixing layer. Strong surface heating can posi-
tively influence MLH growth, especially over dry soils, while increases in 
the amount of surface evaporation and a concurrent reduction in surface 
sensible heat flux, often over wetter soils, may act to limit the growth of 
the MLH (Santanello et al., 2018; Yi et al., 2004). This exchange of en-
ergy directly influences the air temperature and humidity profiles within 
the ABL as well as the temperature of the surface (Jin and Dickinson, 
2010; Konings et al., 2010). However, varying hydroclimatic regimes, 
PFTs, and atmospheric stability conditions are shown to influence the 
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strength of these relationships on influencing MLH (Baldocchi and Ma, 
2013; Findell and Eltahir, 2003; Koster et al., 2009), which also depends 
in part on vegetation structure and function. Consequently, to capture 
and characterize the role of surface processes in controlling MLH, this 
study included measurements of: (1) sensible heat flux (H, W m− 2) and 
(2) latent heat flux (LE, W m− 2) which act as direct drivers of MLH, and 
indirect drivers such as (3) vapor pressure deficit (VPD, kPa), (4) 5-10 
cm (near-surface) soil water content (θ10cm, m3 m− 3), (5) the differ-
ence (Tdiff, ◦C) between the air temperature (Ta, ◦C) and radiometric 

surface temperature (Tsfc, ◦C), (6) PhenoCam greenness chromatic co-
ordinate (Gcc), and (7) the low-level humidity index (HILow, ◦C). All 
site-level data were averaged to provide a singular daily daytime value 
(here defined as 8 am to 6 pm local standard time). 

2.2.2. Eddy covariance and phenology data 
Half-hourly fluxes of LE, H, and meteorological data from each site 

were downloaded directly from the open-access AmeriFlux website. 
Missing data of all lengths (often due to instrument failure or 

Table 1 
Metadata for the AmeriFlux sites used in this study. Site mean annual temperature (MAT; ◦C) and mean annual precipitation (MAP; mm) are the 30-year mean values 
reported on the AmeriFlux site webpages. Additional site information can be found at the respective DOIs.  

Site IGBP* Latitude Longitude MAT MAP Years Distance Ceilometer DOI% 

US-Ho1 ENF 45.20 -68.74 5.3 1070 2013 – 2019 On-Site Vaisala CL31 1246061 
US-KFS GRA 39.06 -95.19 12.0 1014 2016 – 2019 On-Site Vaisala CL51 1246132 
US-ARM CRO 36.61 -97.49 14.8 843 2012 – 2020 On-Site Vaisala CL31 1246027 
US-Wkg GRA 31.74 -109.94 15.6 407 2017 – 2020 11 km Lufft CHM15k 1246112 
US-Whs OSH 31.75 -110.05 17.6 320 2017 – 2020 3 km 1246113  

* IGBP Vegetation Classifications: ENF, Evergreen Needleleaf Forest; CRO, Croplands; GRA, Grasslands; and OSH, Open Shrublands. %DOI: AmeriFlux DOIs are 
preceded by ’10.17190/AMF/’. 

Fig. 1. The geographic distribution of the AmeriFlux sites including the 30-year (1991-2020) mean (a) annual temperature (MAT) and (b) annual precipitation 
(MAP) for the United States (NOAA NCEI). Site-specific values and additional information are listed in Table 1. 
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malfunction) were gap-filled using REddyProc (Wutzler et al., 2018). 
REddyProc relies on half-hourly measurements of the net ecosystem 
exchange (NEE) of CO2, Ta, or soil temperature (Ts), incoming shortwave 
radiation (Rg), and VPD, to fill the gaps in the half-hourly EC data. Many 
sites do not report VPD, in which case VPD was calculated from 
measured relative humidity (RH) and Ta data (Campbell and Norman, 
1998). REddyProc estimates a site-specific u* threshold (Papale et al., 
2006) before filtering out periods of low turbulent mixing (u* filtering). 
After low-turbulence periods are removed, data gaps were filled using a 
combination of look-up tables, mean diurnal course, or marginal dis-
tribution sampling methods (Wutzler et al., 2018). 

Following the completion of the REddyProc processing, continuous 
half-hourly gap-filled flux and meteorological data were available at 
each of the sites. From here, we calculated the radiometric surface 
temperature (Tsfc) using the BigLeaf R package (Knauer et al., 2018): 

Tsfc =
( (

LWup − (1 − ε) × LWdown
)/

(σε)
)0.25 (1)  

where LWup and LWdown are the flux tower measured upward and 
downward longwave radiation (W m− 2), respectively, ϵ is the emissivity 
of the surface (set to the commonly assumed value of 0.98), and σ is the 
Stefan-Boltzmann constant (5.67 × 10− 8 W m− 2 K− 4). The Ta and Tsfc at 
a given site are strongly coupled and also sensitive to vegetation struc-
ture (e.g., aerodynamic roughness), which may lead to different re-
sponses between the Ta and Tsfc under varying evaporative conditions 
(Panwar et al., 2019). Therefore, we used the difference (Tdiff = Ta – Tsfc) 
to better understand the relationships between the turbulent exchange 
of surface energy fluxes (across different vegetation types) and the 
atmosphere. 

Canopy greenness data from the PhenoCam network (phenocam. 
nau.edu/webcam) were also included at each site to consider daily es-
timates of vegetation activity (phenology). The PhenoCam data were 
obtained from the PhenoCam V2 public data release (Seyednasrollah 
et al., 2019), and provide site-level estimates of canopy greenness from 
digital camera imagery. We quantified canopy greenness using Gcc, a 
commonly-used vegetation index (Richardson, 2019) which has been 
shown to be robust to changes in weather and illumination geometry. 
Gcc is calculated from the mean digital number (DN) of each of the red, 
green, blue (RDN, GDN, BDN) colors across a masked region within each 
image, with the mask delineating the vegetation of interest: 

Gcc =
GDN

GDN + RDN + BDN
(2)  

Further details about the PhenoCam network and related data can be 
found in Richardson (2019). 

2.2.3. Ceilometer data 
Three of the five sites utilized a Vaisala (CL31 or CL51) ceilometer, 

while a Lufft CHM15k was used at the Arizona sites (US-Wkg and US- 
Whs) (Table 1). The Vaisala CL31 (CL51) records clouds and back-
scatter profiles up to a height of 7.5 km (15 km) at a temporal resolution 
of 2 s (6 s) and a vertical resolution of 10 m (10 m). The CL51 is listed to 
have an increased (up to 6 times greater) signal-to-noise ratio as 
compared to the CL31 (Morris and Winston, 2016). The Lufft CHM15k 
measures clouds and backscatter profiles up to 15 km, (like the Vaisala 
CL51) and has temporal and vertical resolutions of 15 s and 15 m, 
respectively. 

All ceilometers retrieve MLH using the negative gradient of the 
aerosol backscatter profile and provide up to three levels of MLH attri-
butions at each time step. For this analysis, we used the lowest detect-
able MLH returned by each ceilometer. For the Vaisala ceilometers, high 
resolution data were processed using the Vaisala BL-VIEW software, 
providing half-hourly estimates of MLH from the backscatter profiles 
(Münkel et al., 2011). For the Lufft CHM15k, no additional 
post-processing steps (e.g., BL-VIEW) were necessary to create the 
netCDF output files. The CHM15k at US-Wkg/Whs often failed to 

produce reasonable MLH outputs during the day, possibly due to low 
signal-to-noise ratios (Eresmaa et al., 2006; Kotthaus and Grimmond, 
2018; Wiegner et al., 2014) or other factors, so the STRATfinder algo-
rithm was also incorporated at those two sites (Kotthaus et al., 2020). 
The STRATfinder algorithm (written in MATLAB) combines STRAT-2-
D/STRAT+ (Haeffelin et al., 2012) and pathfinderTURB (Poltera et al., 
2017) to examine and trace daytime ceilometer-derived backscatter 
profiles for regions of significant vertical gradients, indicative of layer 
boundaries (e.g., mixing layer vs free atmosphere), in order to provide 
an optimized/idealized path of MLH at 1 min resolutions (Kotthaus 
et al., 2020). 

Additionally, under conditions with significant clouds, precipitation, 
or adverse weather conditions, the estimate of MLH is highly uncertain 
or often poorly constrained. Therefore, the quality index and sky con-
dition of the data were also evaluated and MLH data were removed if 
they did not meet the highest quality standards. For the Vaisala ceil-
ometers, this study included MLH data with a ‘bl_index_1’ or quality 
index of 3, and for the Lufft ceilometer, a ‘Q-Index’ equal to 1 or 2. From 
these high quality half-hourly data, a late-afternoon (3 pm – 7 pm local 
standard time) median MLH was calculated in order to produce 
maximum daily MLH (growth) estimates. Lastly, in the final part of this 
study, we considered only clear sky or ‘cloud free’ data to analyze the 
highest quality MLH data at each site. Following the guidance of Oli-
phant et al. (2011), the half-hourly ceilometer cloud fractions were used 
to distinguish ‘cloud free’ (≤ 20% of samples detecting clouds) condi-
tions from cloudy or mixed sky conditions. When considering only 
daytime data (to not incorrectly characterize days with clouds present 
overnight), fewer than 6 daytime half-hours were required to be flagged 
as cloudy or mixed sky conditions for the day to be considered clear or 
‘cloud-free’. All ceilometer data were recorded by default in UTC (co-
ordinated universal time) and were adjusted to local time for the anal-
ysis and Fig.s. 

2.2.4. Radiosondes and reanalysis data 
Atmospheric sounding data were obtained from the University of 

Wyoming Department of Atmospheric Science (weather.uwyo.edu/upp 
erair/sounding.html). The sounding data, measured at roughly 5- 
millibar (mb) vertical resolutions, correspond to atmospheric data 
from the National Weather Service (NWS) office nearest to the Ameri-
Flux tower (and location of each ceilometer). In some cases (US-Ho1 and 
US-Wkg/Whs), the nearest NWS office (often at an airport) was more 
than 80 km from the flux site, deemed to likely be unrepresentative of 
the site measurements. In other cases (US-KFS and US-ARM), the NWS 
radiosondes were launched within 30 km of the flux sites. At US-ARM, 
high vertical resolution (1 mb or hPa) DOE radiosondes were 
launched on-site and were used in this analysis. This study estimated 
MLH once daily using 00 UTC sounding data. Since the maximum MLH 
is estimated to occur in the mid-to-late afternoon (Seidel et al., 2010), 
we make the assumption that the 00 UTC (5 – 7 pm local standard time) 
sounding data most effectively estimates the maximum MLH for our 
North American site locations. MLH were estimated using the gradient 
method (Holzworth, 1967; Stull, 1988), which identifies vertical gra-
dients of virtual potential temperature (θv, K) and specific humidity (q, g 
kg− 1) profiles. In a well-mixed layer (below the MLH), θv and q remain 
constant with height (due to sufficient turbulent mixing). Consequently, 
this method defines the MLH as the height where θv and q deviate from 
their near constant values, which is also where the gradient of θv (q) is at 
a maximum (minimum), typical of the shift from a less stable region (the 
mixing layer) below the detected MLH to a more stable region (free 
troposphere) above the MLH (Seidel et al., 2010). While the NWS ra-
diosondes effectively measure point-scale atmospheric profiles of wind, 
temperature, and moisture, regional reanalysis products may also be 
useful for locations where nearby in-situ measurements are limited 
(such as US-Ho1 and US-Wkg/Whs). Therefore, this analysis also 
included temperature, pressure, specific humidity, and PBL height 
(PBLH) data from the National Centers for Environmental Prediction 
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(NCEP) North American Regional Reanalysis (NARR) datasets at the grid 
point nearest (~32 km resolution) to each site during the study period. 
NCEP NARR data integrates national surface observations with model 
simulations to generate 3-hourly gridded datasets at 29 pressure levels 
ranging from the surface (~1000 hPa) up to 100 hPa (Mesinger et al., 
2006). We used NARR products to: (1) compare the PBLH data to ceil-
ometer MLH data for further confidence in the ceilometer data, and to 
(2) calculate low-level vertical profiles of air and dewpoint temperatures 
(Td, ◦C) to determine the low-level humidity index (HILow), a measure of 
the preexisting moisture content of the lower atmosphere: 

HILow = (Ta950 − Td850) + (Ta850 − Td850) (3)  

which calculates the dewpoint depressions (Ta – Td) at 950 and 850 mb, 
or more generally, the sum of the dewpoint depressions at 50 and 100 
mb above the ground surface (Findell and Eltahir, 2003). For this 
calculation, early morning (12 UTC) data were used, as suggested in the 
original framework. Since the HILow values were derived from reanalysis 
data, we then looked to quantify their accuracy and reliability. We 
calculated the total 9-year (2012 – 2020) daily HILow using radiosonde 
data, NARR data, and (a comparative reanalysis data product) the Eu-
ropean Centre for Medium-Range Weather Forecasts (ECMRWF) fifth 
generation reanalysis data (ERA5) at the Southern Great Plains site 
(US-ARM); the only site in this study that had co-located flux, ceilom-
eter, and radiosonde measurements. Fig. 2 shows how the HILow calcu-
lated using the ERA5 and NARR products are highly correlated across a 
wide range of HILow (R2 = 0.88), but especially at the lowest HILow 
values (Fig. 2a). Similar results were found when comparing the radio-
sonde HILow to the NARR HILow (R2 = 0.86; Fig. 2b). In both examples, 
the largest anomalies were found at high HILow values, indicative of a 
very dry lower atmosphere (Findell and Eltahir, 2003). While these 
findings helped us to trust the data at US-ARM and US-KFS (not shown 
but similar R2), we acknowledge that using reanalysis data at other sites 
(with sparse surface observations) may not be illustrative of the actual 
HILow. 

2.3. Boosted regression tree (BRT) analysis 

The final portion of this analysis used boosted regression trees to 
quantify the “relative influence” of the outlined explanatory variables on 
ceilometer MLH at each site; implemented with the gbm package in the R 
computing environment (Elith et al., 2008; Ridgeway et al., 2020). We 
note that the relative influence, a metric estimated using the BRT 
method, is only indicative of correlation or association between MLH 
and the explanatory variables. Seasonal BRT models were constructed 
(based on calendar season), comprised of 100 BRTs each, and allowed 
for a direct comparison of the relationships between MLH and the 
explanatory variables. Training datasets (2/3 of the data) were incor-
porated for the BRTs to ensure distinct training and testing datasets, and 
to help assess each model’s predictive power in estimating MLH. Using 
this methodology, the relative influence of the explanatory variables 
was calculated by summing the number of times a variable was chosen 
in a BRT, weighted by the BRT improvement of each partition. At each 
stage of the sequence, each data case is modeled from the current 
sequence of trees, and the prediction results are used as weights for 
fitting the next tree of the sequence (De’ath, 2007). The mean and 
standard deviation of the relative influence values from the 100 BRT 
model runs were plotted for assessment. Additionally, bin-averaged and 
partial dependence plots were used to capture the potential relation-
ships between the explanatory and response variables (Friedman, 2001). 
This study presents the results found by calculating and comparing the 
seasonal relative influence of explanatory variables on ceilometer af-
ternoon median MLH. 

3. Results 

3.1. Radiosonde MLH detection 

The first objective of this research was to evaluate the quality of the 
ceilometer MLH retrievals at each site by comparing those data to the 
MLH derived from local radiosonde data. Since local surface properties 
influence atmospheric profiles of both temperature and humidity, we 
found poor relationships (R2 < 0.20) between ceilometer MLH and 

Fig. 2. Comparisons of the HILow calculations at the Southern Great Plains AmeriFlux site (US-ARM) from 2012 to 2020 between (a) the ERA5 and NARR data, and 
(b) the on-site radiosonde balloon sounding and NARR data. Fit equations and correlations are also shown. 
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radiosonde MLH at sites (e.g., US-Ho1 and US-Wkg/Whs) with large 
distances separating the two measurements. On the other hand, the re-
lationships were substantially stronger for the two sites (US-KFS and US- 
ARM) where the concurrent measurements were made less than 30 km 
apart, shown in Fig. 3. At these sites, the data covering all seasons 
highlights that there is a strong positive correlation (thick red line) that 
is weakened by the lowest quality data (Index 1; orange line); where 
MLH estimates are highly uncertain. Conversely, the correlations in-
crease at both sites with increasing data quality (derived from the ceil-
ometer; blue and green lines). When only considering the highest quality 
data (Index 3; green line), there is a strong correlation at US-KFS (R2 =

0.73; Fig. 3a) and at US-ARM (R2 = 0.91; Fig. 3b), as the measurements 
at the latter are higher-resolution (vertically) and co-located. These re-
lationships (Fig. 3) gave us confidence that the highest quality ceilom-
eter MLH data, between 28% and 45% of all data measured at each site 
(Table 2), are in good agreement with the radiosonde data. 

3.2. Characteristics of clouds and MLH 

The second objective was to analyze the seasonal patterns of clouds 
and MLH across different ecosystems. Clouds were present year-round at 
all the sites, but the frequency of cloud cover was dependent on the site 
location (Table 2). US-Ho1 had the highest frequency of clouds (52.6%) 
across all sites. When only considering the lowest 7600 m of the atmo-
sphere (a uniform height across all ceilometers), the sky conditions at 
the remaining sites essentially followed the national aridity gradient 
(Table 1). There was a decrease in cloud cover from US-Ho1 to US-KFS 
(40.7%), a further decrease found at US-ARM (35.8%), and lastly US- 
Wkg/Whs (31.5%), a result of decreasing water supply to feed cloud 
formation (Table 2). 

The monthly mean MLH was then analyzed at each site (Fig. 4). At 
US-Ho1, the monthly mean MLH was the most variable in spring, 
coinciding with the timing of snowmelt and the start of the forest’s 
growing season, while the highest ceilometer heights were found in late 
summer (Fig. 4a). At US-KFS (Fig. 4b), the highest monthly mean values 
were shown to occur in late spring (April) before steadily decreasing for 
the remainder of the year. The monthly mean MLH at US-ARM followed 

a clear seasonal pattern, with the lowest values in the winter and the 
highest mean values (1600 m) during the summer (Fig. 4c). There was 
little year-to-year variation in the monthly mean ceilometer-derived 
MLH at US-Wkg/Whs (Fig. 4d) outside of the late-summer months 
(August and September). However, there was a pronounced seasonal 
pattern (similar to that of US-ARM) and summer maximum (2700 m) 
when using the STRATfinder method. These monthly heights, the 
highest of all the sites, peaked during the driest and hottest months, with 
more variability during the summer rainy season. 

US-Ho1 was the only site that had NARR monthly PBLH lower than 
ceilometer MLH but was within the range of ceilometer values 
measured. The spring and summer NARR data at US-KFS suggests an 
overestimation of MLH when compared to ceilometer MLH but yields 
similar values in other seasons. Lastly, there was good agreement be-
tween the datasets at US-ARM and US-Wkg/Whs (STRATfinder method 
only), where the mean monthly ceilometer MLH were nearly identical in 
shape, yet considerably lower in magnitude than the mean NARR PBLH. 

With the site-specific cloud frequencies and monthly MLH identified, 
we then assessed the variability in the diurnal growth and evolution of 

Fig. 3. Relationships between the gradient method derived radiosonde MLH and ceilometer MLH at (a) Kansas Field Station (US-KFS), and (b) Southern Great Plains 
(US-ARM). Points were sorted by ceilometer quality index, with solid lines illustrating the fit of each dataset. 

Table 2 
(Top) The total percent of data contained within each quality index bin for the 
Vaisala (BL-Index) and Lufft (Q-Index – in brackets) ceilometers, and the (bot-
tom) percent of clear skies (no clouds measured), cloudy skies (any number and/ 
or height of clouds measured), and missing data (e.g., instrument failure, etc.) at 
each site. The values in parentheses indicate the percent of sky conditions below 
7600 m in order to directly compare the ceilometers.  

Ceilometer 
Data 

US-Ho1 
2013 – 2019 

US-KFS 
2016 – 2019 

US-ARM 
2012 – 2020 

US-Wkg/Whs 
2017 – 2020 

BL Index 1 27.3% 13.5% 14.7% 2.2% [5-6] 
BL Index 2 44.8% 41.2% 45.1% 59.6% [3-4] 
BL Index 3 27.9% 45.3% 40.2% 38.2% [1-2]      

Clear 47.4% 51.9% 
(59.3%) 

64.2% 60.5% 
(68.5%) 

Cloudy 52.6% 48.1% 
(40.7%) 

35.8% 39.5% 
(31.5%) 

Missing 24.0% 13.5% 1.2% 23.9%  
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MLH that resulted from clear and cloudy sky conditions and therefore 
different surface forcings (Fig. 5). Using data from all-seasons, half- 
hourly ensemble averages were compiled. The largest difference was 
found at US-Ho1, with MLH under clear sky conditions ~600 m higher 
than the MLH during cloudy conditions. During these clear periods, the 
MLH rapidly deepened after sunrise, before reaching an average height 
close to 1600 m in the late afternoon. A slower developing and shallower 
(~1000 m) MLH was measured when clouds were present at US-Ho1. 
The daily development of MLH at US-KFS and US-ARM followed 
similar patterns when separated by sky condition, varying between 400 
m and 600 m at each site in the late afternoon. These general charac-
teristics (growth after sunrise and higher MLH under clear skies) were 
also found by the ceilometer at US-Wkg/Whs, but to a lesser extent when 
using the STRATfinder method (Fig. 5d). Ultimately, the differences in 
MLH as a result of varying sky conditions were likely attributable to the 
differences in surface forcing variables under similar conditions (Fig. 6). 
At each site, the magnitudes of clear and cloudy MLH closely resembled 
the magnitudes of H. Moreover, under clear skies, Tdiff was more nega-
tive (warmer surface temperatures), and VPD, LE, and H were higher 
when compared to cloudy skies, which served to promote increasing 

growth in daytime ensemble MLH values. 
In all cases, the ensemble mean MLH was found to be higher under 

clear skies and followed a well-defined evolution of diurnal growth, 
depicted by shallow stable conditions overnight and in the early 
mornings, before rapidly deepening with increasing solar radiation 
during the day. Next, the diurnal evolution of the ensemble mean MLH, 
separated by season and for all sky conditions, was examined (Fig. 7). As 
expected, the MLH at all locations was the lowest in winter, when lower 
net radiation and shorter days act to suppress the growth of the mixing 
layer. The mean MLH during shoulder seasons (spring and autumn) were 
nearly identical to one another at every site (green and orange lines) and 
were often similar in height to the mean annual MLH. There was sig-
nificant variability in the seasonal MLH at US-Ho1, the site with the 
lowest amount of high-quality data (Table 2). At US-KFS, as suggested in 
Fig. 4, MLH in the spring were some of the highest all year, even rivaling 
MLH at that site during summer (Fig. 7b). The MLH reached their 
maximum values at all sites during the summer months due to increased 
net radiation, warmer temperatures, and a likely increase in the sensible 
heat flux. The largest winter to summer seasonal difference in ensemble 
MLH was measured at US-ARM (~900 m) and at US-Wkg/Whs (> 1000 

Fig. 4. Mean monthly ceilometer (Ceilo; green), NARR (red), and STRATfinder (STRAT; gray) afternoon median MLH at (a) Howland Forest (US-Ho1), (b) Kansas 
Field Station (US-KFS), (c) Southern Great Plains (US-ARM), and (d) the WGEW sites (US-Wkg & US-Whs). Color shading represents the min and max monthly MLH 
during the period of measurements. 
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Fig. 5. Half-hourly ensemble average ceilometer data illustrating the diurnal evolution of MLH for clear (blue) and cloudy (grey) conditions, with blue and grey 
shading representing the minimum and maximum range of half-hourly MLH at the four sites (a – d same as Fig. 4). 

Fig. 6. Half-hourly ensemble average data highlighting the diurnal evolution of energy and meteorological fluxes for clear and cloudy conditions (same as Fig. 5).  
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m) when using the STRATfinder method. 
These data were then compared against the ensemble mean NARR 

PBLH data in order to estimate if the heights found at each site were 
within the range one might expect. At US-Ho1, the mean ensemble 
NARR data essentially traced the mean ceilometer MLH data (dashed 
line). The NARR PBLH were also similar to the ceilometer MLH at US- 
KFS and US-ARM, albeit slightly higher than the mean ceilometer 
values. However, the NARR PBLH data was able to effectively capture 
the timing and general growth of the ensemble MLH at both of those 
sites. Lastly, at US-Wkg/Whs, the NARR PBLH data were comparable in 
magnitude to the estimated MLH from the STRATfinder method, 
although the STRATfinder method produced peak ensemble values later 
in the day, which may be an artifact of the method calculations (possibly 
capturing the residual layer). Lastly, NARR PBLH data at those sites were 
nearly double the height of the ceilometer MLH (thick dashed line), 
highlighting the issues previously outlined. 

3.3. Role of surface processes on MLH 

Following the monthly mean and ensemble MLH patterns at each 
site, we analyzed the role of seasonal surface fluxes, phenology, and 
environmental factors on MLH dynamics. We examined the relation-
ships between the bin-averaged (or weighted moving average) responses 
of explanatory variables and the median late-afternoon ceilometer MLH 
(Fig. 8). At all sites, an increase in H led to an increase in MLH. To 

differing degrees, an increase in bin-averaged LE led to a slight increase 
in MLH at each of the sites. At all the sites, VPD was the most strongly 
correlated with increasing MLH. While the levels of VPD varied between 
sites, being much lower at US-Ho1 compared to US-ARM and US-Wkg/ 
Whs, all sites illustrated a nearly 1000 m average increase in MLH with a 
2 kPa increase in VPD. The MLH decreased with an increase (positive 
values) in Tdiff. This effect was the most pronounced at US-Wkg/Whs and 
was effectively nonexistent at US-Ho1. At US-ARM and US-Wkg/Whs, 
warmer surface temperatures and increasing differential surface heat-
ing (negative Tdiff) acted to promote the growth of the MLH, but if Ta was 
warmer than Tsfc, typical of a stable inversion layer or wet periods (or 
during periods of negative H), very shallow MLH were observed at those 
sites. Apart from increasing MLH with increasing greenness (PhenoCam 
Gcc) at US-KFS and slightly at US-Ho1, bin-averaged volumetric soil 
water content (θ10cm), Gcc, and HILow had little impact on modifying 
MLH at all sites. For these variables, the bin-averaged MLH was rela-
tively constant across their measured ranges for all years of 
measurements. 

3.4. Relative influence of explanatory variables 

The final objective of the study was to examine the relative influence 
of explanatory variables on MLH at each site. We ran seasonal and 
annual boosted regression trees (BRT) to further determine the relative 
strength or association of those same seven sub-surface (θ10cm), surface 

Fig. 7. Half-hourly ensemble MLH separated by season (e.g., winter, spring, summer, autumn, and annual) at the four ceilometer sites. The shading is the same as 
previously described, with the annual ensemble NARR PBLH data (grey) also included. 
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(LE, H, VPD, and Gcc), and atmospheric stability (Tdiff and HILow) 
explanatory variables on afternoon median ceilometer MLH (Fig. 9). 
During the winter, when MLH was the lowest of any season, the relative 
influence of explanatory variables on MLH was revealed to be sporadic, 
with slight associations due to heat fluxes at US-Ho1 and US-ARM, Gcc 
at US-KFS, and Tdiff at US-Wkg/Whs. In spring, H and LE had the most 
impact on MLH at US-Ho1 and US-KFS, VPD at US-ARM, θ10cm at US- 
Wkg, and Gcc at US-Whs. The winter and spring data at each site had 
the lowest BRT model performance (R2) and fewer total data points than 
the other seasons (Fig. 10; Table 3). At US-Ho1 and US-KFS, similar 
erratic associations were evident in all remaining seasons and when 
considering all of the data, with an overall slight relative strength in 
determining annual MLH resulting from H at US-Ho1 and LE at US-KFS. 
However, these sites had the lowest BRT model performance (Fig. 9; 
Table 3). 

At US-ARM, the seasonal results were much more consistent, with 
MLH associated with VPD at all times (~40% of influence), with sec-
ondary forcings as a result of heat fluxes (LE and H). Autumn was the 
season with the highest BRT performance at US-ARM (R2 = 0.54). 
During this season, there was a significant positive relationship between 

ceilometer MLH and BRT MLH, even able to explain large deviations 
(from 500 m to 2500 m) in ceilometer MLH (Fig. 10). Ultimately, the 
impacts of VPD on MLH shaped the entire dataset (‘annual’), with the 
relative strength of the remaining explanatory variables providing a 
trivial (< 10%) impact on ceilometer MLH. 

The MLH data using the STRATfinder method at US-Wkg/Whs pro-
duced some of the highest seasonal BRT relationships (R2 > 0.50). In 
summer, surface temperature and humidity appeared to have the largest 
impact on the sites, with Tdiff (VPD) most largely impacting MLH at US- 
Wkg (US-Whs). In the autumn, the seasonal grassland at US-Wkg was 
most associated with changes in Gcc, while the US-Whs surface data was 
most associated with Tdiff. At both sites, Tdiff was the dominant influence 
across all seasons (when considering all the data) with secondary asso-
ciations from VPD. This relative strength due to differential surface 
heating (and thus H) was highlighted previously, as these two sites saw 
the largest difference between Tsfc and Ta and the highest H (Fig. 6). 
Lastly, the flux data at US-Wkg/Whs produced the highest annual BRT 
R2 (0.65), effectively capturing the deviations in STRATfinder MLH 
(Fig. 10). 

The analysis up to this point included data from all sky conditions, 

Fig. 8. Bin-averaged sensible heat flux (H, site-specific bin size of 12.5 – 15 Wm− 2), latent heat flux (LE, 12.5 – 25 Wm− 2), vapor pressure deficit (VPD, 0.15 – 0.25 
kPa), air and surface temperature difference (Tdiff, 0.25 – 0.75◦C), volumetric soil water content (θ10cm, 0.2 – 0.35 m3 m− 3), PhenoCam Gcc (Gcc, 0.003 – 0.0075 
Gcc), and the low-level humidity index (HILow, 2.5 – 3◦C) for all sites. Dashed black lines are the moving averages across all years of measurements. 
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but in order to be relevant to basic ABL models and attempt to capture 
unobstructed MLH growth (without the present of clouds, fog, rain, 
etc.), we also evaluated the same ceilometer MLH using only data under 
clear-sky conditions (Fig. S2). Increases in model performance were 
found at each site for all seasons except for summer when convective 
processes often dominate. While only few clear-sky days were detected 
at US-Ho1 (Table 2), the BRT MLH output improved significantly, 
resulting in an increased ability to model ceilometer MLH. US-KFS and 
US-ARM were similar to before, with slight improvements when 
considering all data. Lastly, the US-Wkg/Whs ‘annual’ relationships 
were the highest of any of the sites (R2 = 0.70-0.76), suggesting that the 
surface flux data were able to accurately capture changes in the 
STRATfinder data at those sites. 

4. Discussion 

This study examined long-term co-located surface flux and ceilom-
eter data from five AmeriFlux sites that spanned extensive climatolog-
ical (temperature and precipitation) and ecosystem (plant functional 
type) gradients to better understand the seasonal roles of surface fluxes 
on the height of the mixing layer (MLH). We used monthly, seasonal, 
ensemble, and bin averages of half-hourly and daily datasets to examine 
the variability and evolution of MLH under various meteorological 
forcings, and we incorporated a boosted regression tree (BRT) analysis 
into this study to model the relative influences of explanatory variables 
on seasonal changes in MLH. We found evidence that eddy covariance 

flux tower-based measurements of sensible (H) and latent (LE) heat 
fluxes, vapor pressure deficit (VPD), and the difference (Tdiff) between 
the surface temperature (Tsfc) and air temperature (Ta) were most 
strongly associated with daily MLH. These influences varied among the 
ecosystems but were relatively consistent for the sites with the highest 
seasonal correlations between observed and predicted MLH, namely US- 
ARM and US-Wkg/Whs. This discussion highlights the causes for the 
overall variability in MLH observed at each site and considers the 
continued importance of incorporating surface flux measurements into 
future MLH studies. 

4.1. Ancillary atmospheric observations 

We began the analysis by examining the relationships between 
radiosonde MLH and ceilometer MLH at two sites: US-KFS and US-ARM. 
Previous studies have shown significant agreement between the MLH 
estimated using both of these data sources (Martucci et al., 2007; 
Münkel et al., 2007). We therefore included the radiosonde MLH as a 
reference to determine the general credibility of the ceilometer MLH 
used throughout this analysis, as suggested in previous studies (Kot-
thaus and Grimmond, 2018; Tang et al., 2016). We found a positive 
correlation between the two datasets at US-KFS, although it is possible 
that the distance between the two measurements (roughly 30 km) 
impacted this relationship. While we expect the MLH to be relatively 
stable over large areas, spatial differences in H due to changes in soil 
moisture, land-use, or complex terrain influence MLH (Bianco et al., 

Fig. 9. Bar plots of the seasonal and annual boosted regression tree (BRT) relative influences of explanatory variables on ceilometer (or STRATfinder) median MLH 
for the five sites with error bars and model performance (R2). The explanatory variables and sites are the same as those listed in Fig. 8. 
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2011; Lee et al., 2013; Lee and De Wekker, 2016). For that reason, most 
studies often consider co-located measurements, which were available 
at US-ARM. The most significant and strongest positive relationships 
were found at US-ARM when using the highest quality ceilometer data, 
likely representative of when a clear aerosol boundary and well-defined 
MLH were present (Münkel et al., 2007). We realize that ambiguous 
MLH estimations may occur under non-ideal conditions (Collaud Coen 

et al., 2014; Salcido et al., 2020) or due to varying surface or spatial 
differences (like at US-KFS), and since we did not separate the data 
based on meteorological conditions or atmospheric stability, we were 
satisfied with the results, especially since they were comparable to that 
of similar studies (e.g., Chandra et al., 2010). 

We also examined the frequency and impact of clouds on regulating 
the land-atmosphere exchange of energy. Our findings on cloud 

Fig. 10. Seasonal and total line plots of the relationships between the ceilometer (training) and STRATfinder MLH data (both blue) and the BRT model output MLH 
(orange) for each site. Scatter plots of the data are shown in each Fig. inset with R2 and number of data points (n) included. 
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frequencies were consistent with An et al., (2017) who found the highest 
annual cloud cover to typically be in the northeastern US (45%), slightly 
lower cloud cover in the central US (39%), and the lowest cloud cover in 
the southwestern US (27%). Cloud amounts (and types) influence the 
growth of the MLH (Kotthaus and Grimmond, 2018), so we assessed the 
impacts of cloud coverage on MLH at each site. Pal et al., (2013) sug-
gested that separating MLH regimes by cloud cover identifies days 
dominated by surface-driven buoyancy (clear) and those driven by 
larger-scale effects (cloudy). By using this general method, we found the 
daytime MLH at each site to be consistently higher under clear skies 
(larger Tdiff and larger H) as opposed to cloudy skies, as suggested by 
(Ramanathan et al., 1989). 

4.2. Temporal patterns of MLH 

Our analysis revealed that the evolution and magnitude of the mean 
monthly MLH were substantially different across the sites. The highest 
winter and spring mean monthly MLH across all sites was found at US- 
Ho1 (Fig. 4). While US-Ho1 was the only forest examined within this 
study, this finding was consistent with past studies that observed deeper 
MLH over forests (when compared to shorter vegetation), due to higher 
H and surface roughness (Baldocchi and Ma, 2013; Barr and Betts, 1997; 
Li et al., 2021). Additionally, the relatively higher MLH in the winter at 
US-Ho1 was likely due to the forest darkening the typically 
snow-covered land surface (decreasing albedo), warming the sur-
rounding air, and effectively building the MLH (Lee et al., 2011; Sellers 
et al., 1997). For shorter vegetation, like the croplands, grasslands, and 
shrublands at the other sites, we saw lower mean monthly MLH during 
this period, but higher MLH during the summer. US-KFS saw maximum 
monthly MLH between April and June, likely due to the greenup 
(phenology) of the native grasses at that site, where the maximum H 
occurred prior to full leaf-out (Yi et al., 2001). The results from US-ARM 
were consistent with past studies, where we saw the highest mean 
monthly MLH in the early part of the summer (e.g., June) when soils at 
each site were the driest, which resulted in decreased LE and increased H 
relative to wetter soil conditions (Desai et al., 2006; Schmid and Niyogi, 
2012). Lastly, there was not much variability in mean monthly MLH at 
US-Wkg/Whs except during the summer months, which coincided with 
the variable presence of the North American Monsoon (Higgins et al., 
1997). Even so, the summer mean ceilometer MLH at US-Wkg/Whs was 
roughly 500 m – 1000 m lower than similar studies (and NARR data) in 
the area. Instead, the STRATfinder data followed the same seasonal 
pattern with moderately higher mean MLH than outlined in previous 
studies of the area (Perkins, 2020; Sanchez-Mejia and Papuga, 2014; 
Sorooshian et al., 2011). 

The MLH also depends on the season, time of day, and local condi-
tions (de Haij et al., 2007) so we examined the seasonal ensemble pat-
terns of MLH at each site. The MLH slowly decreased after midnight at 
all sites, signifying the dissipation of a possible residual layer or other 
more stable atmospheric conditions (Banta et al., 2007; Caicedo et al., 

2020). Prior to sunrise, a minimum in MLH was present, before 
increasing solar radiation helped build the MLH throughout the day (to a 
seasonally varying extent). At all sites, the maximum ensemble MLH was 
found between 3 – 7 pm local time, consistent with past studies (Seidel 
et al., 2012). The key difference between the sites was the diurnal 
evolution of MLH measured at US-Wkg/Whs. The ceilometer at that site 
often failed to capture the evolution of daytime changes in MLH, which 
was the reasoning for implementing the STRATfinder data. Often, there 
was no MLH detected during the day by the Lufft CHM15k at that site, 
while STRATfinder actively traced the backscatter profile to provide a 
real estimate that was otherwise unaccounted for by the ceilometer 
(Fig. S1). It is possible that the low aerosol loadings and typical clear 
skies in the southernmost deserts of Arizona led to rather unreliable 
MLH retrievals. A drawback with a variety of ceilometers has long been 
their general inability to detect MLH under clean air (low molecular 
scattering) or if the ceilometer signal-to-noise ratio is too low (Eresmaa 
et al., 2006; Kotthaus and Grimmond, 2018; Wiegner et al., 2014). We 
also had difficulty measuring the MLH with another co-located ceilom-
eter that was installed at that site, a Campbell Scientific CS135. Like the 
Lufft CHM15k but worse, the CS135 was unable to resolve any patterns 
in MLH (Fig. S1), pointing to the challenge of making such measure-
ments in the arid high-desert environment. However, this may be an 
opportunity for extreme tests of ceilometer instrument performance in 
locations such as this and may make it an appropriate area for future 
studies. 

4.3. Controls of surface fluxes on MLH 

The MLH and its properties are driven by the bi-directional thermal 
and dynamic effects of the atmosphere and the land surface (Bea-
mesderfer et al., 2022; Zilitinkevich et al., 2012). Recent studies have 
identified the important linkages between local and regional land sur-
face and atmospheric variables on the growth and evolution of the MLH 
(Baldocchi and Ma, 2013; Betts and Silva Dias, 2010; Santanello et al., 
2007; Yi et al., 2004). This study similarly looked to identify the key 
surface controls that were associated with changes in daily MLH. We 
found tower flux-based measurements of H, LE, VPD, and Tdiff to have 
the largest impacts on MLH at our study sites. At all sites, a bin-averaged 
increase (decrease) in H, LE, or VPD (Tdiff) resulted in an increase in 
MLH. It is known that the primary driving factor of MLH is H, with 
increased surface heating leading to increased MLH growth (Santanello 
et al., 2005; Yi et al., 2001). We also saw slight increases in bin-averaged 
MLH with increasing LE, a result of the buoyant effects of heat fluxes and 
the surface impacts of net radiation (and effectively H), as evaporation 
(LE) is strongly tied to net radiation (Baldocchi and Ma, 2013; Koster 
et al., 2009; Vick et al., 2016). The bi-directional effects of humidity and 
temperature on MLH within the mixing layer were emphasized by daily 
fluctuations in VPD. Whether we consider changes in temperature 
and/or humidity to result from the effects of dry-air entrainment feed-
back (Konings et al., 2010; Santanello et al., 2007) or from stomata 

Table 3 
The seasonal and total linear relationships (R2 in bold) between ceilometer median MLH (input) and modeled boosted regression tree (BRT) MLH (output), and the total 
number of daily data points used for each BRT model run (in parentheses) at the five AmeriFlux sites.  

All Skies Winter Spring Summer Autumn All Data 

US-Ho1 0.65 (n = 136) 0.47 (n = 127) 0.51 (n = 140) 0.54 (n = 125) 0.42 (n = 527) 
US-KFS 0.43 (n = 125) 0.56 (n = 117) 0.52 (n = 192) 0.44 (n = 172) 0.38 (n = 606) 
US-ARM 0.50 (n = 371) 0.47 (n = 362) 0.47 (n =373) 0.54 (n = 379) 0.47 (n = 1485) 
US-Wkg 0.40 (n = 105) 0.55 (n = 123) 0.63 (n = 180) 0.53 (n = 243) 0.65 (n = 744) 
US-Whs 0.49 (n = 105) 0.68 (n = 123) 0.66 (n = 180) 0.51 (n = 243) 0.65 (n = 744)  

Clear Skies Winter Spring Summer Autumn All Data 

US-Ho1 0.71 (n = 29) 0.67 (n = 22) 0.64 (n =34) 0.90 (n = 39) 0.67 (n =124) 
US-KFS 0.62 (n = 29) 0.75 (n = 25) 0.55 (n = 81) 0.58 (n = 68) 0.54 (n = 204) 
US-ARM 0.52 (n = 165) 0.65 (n = 117) 0.50 (n = 176) 0.56 (n = 188) 0.53 (n = 646) 
US-Wkg 0.46 (n = 90) 0.55 (n = 68) 0.62 (n = 70) 0.72 (n = 143) 0.70 (n = 371) 
US-Whs 0.62 (n = 90) 0.57 (n = 68) 0.66 (n = 70) 0.71 (n = 143) 0.76 (n = 371)  
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closing (lowering LE) in response to high VPD (Lansu et al., 2020), all 
sites saw a pronounced and consistent increase in MLH with increasing 
VPD (and VPD increasing as a result of increasing MLH). 

The remaining variables appeared to have a lesser importance in 
terms of their association to MLH at all sites. To a varying degree 
(excluding US-KFS), there was an increase (reduction) in MLH with 
decreasing (increasing) Tdiff. This difference between Ta and Tsfc is 
known to be driven by both land surface properties and atmospheric 
interactions (e.g., clouds) (Jin and Dickinson, 2010). In this case, cooler 
or more stable conditions suppress the MLH, while differential surface 
heating and higher H (negative Tdiff) would lead to higher MLH (Betts, 
2000; Panwar et al., 2019). We saw little variation in bin-averaged MLH 
as a result near-surface soil water content (θ10cm). Such relationships 
have been previously examined in great detail and reflect the broader 
impacts of wet and dry soils on MLH that result from changes in H, LE, or 
VPD (Konings et al., 2010; Koster et al., 2009; Sanchez-Mejia and Pap-
uga, 2014; Santanello et al., 2005). The PhenoCam Gcc was only shown 
to have meaningful covariance on MLH at US-Ho1 and US- KFS, where 
Gcc parallels the seasonality of photosynthesis from the forests and 
native grasses (and thus LE and H) and may act as a rough indicator to 
predict changes in MLH resulting from land-surface phenology 
(Freedman et al., 2001; Yi et al., 2004). The overall stability structure of 
the lower atmosphere has been shown to be very important in influ-
encing MLH (Santanello et al., 2005), yet in this study the indirect effect 
of the low-level humidity index (HILow) failed to capture any identifiable 
mean changes in MLH. 

4.4. Modeling daily MLH with flux data 

We used boosted regression trees (BRTs) to examine the interactive 
relationships between the variables that act to influence the growth of 
the MLH. This approach was chosen over others (e.g., univariate cor-
relation analysis) as BRTs are able to fit complex nonlinear relationships 
and incorporate interaction effects between explanatory variables (Elith 
et al., 2008). The total (‘annual’) associations of H, LE, VPD, and Tdiff on 
MLH were again largely apparent. At US-Ho1, winter had the highest 
BRT model performance (R2) of any season, when seasonal (winter--
spring transition) increases in H rapidly warm the mixing layer 
(Freedman et al., 2001). In summer at US-Ho1 and autumn at US-KFS, 
the relative strength of LE on MLH was the highest, highlighting the 
seasonal impacts due to LE (and Rn) during those times (Fig. 4; Bal-
docchi and Ma, 2013; Salvucci and Gentine, 2013). The association 
between VPD and MLH at US-ARM and Tdiff at US-Wkg/Whs stress the 
continued importance (e.g., mixed layer model) and coupled behavior of 
the air temperature and humidity relationships that exist between the 
surface and the MLH (Betts, 2000; Santanello et al., 2007). We also 
examined clear sky data to better understand the transition between 
cloudy MLH and clear MLH. This has important implications on MLH 
dynamics, as cloud development and precipitation will lead to de-
viations from the MLH behaviors previously addressed (Findell and 
Eltahir, 2003; van Stratum et al., 2014). The annual clear sky BRT 
correlations increased at all sites. For clear skies, large-scale evaporative 
(LE) processes are negligible (sufficient vertical turbulent mixing) 
within the MLH, and the apparent influences of H and VPD on modeling 
MLH may increase (Panwar et al., 2019; Santanello et al., 2005). This is 
likely why we saw such a significant positive relationship at US-ARM 
and US-Wkg/Whs, where the strength of VPD on MLH was evident 
across all seasons. 

Overall, the use of daily flux measurements generally outlined the 
seasonal patterns of our ceilometer-measured MLH at each site, but by 
using these flux data alone, we were unable to accurately capture the 
complex conditions driving MLH. Some studies have suggested that the 
scales at which the changes in MLH occur – and the scales at which 
measurements of flux and meteorological data occur – are so different 
that a direct comparison between the two datasets may not be entirely 
feasible (Gibert et al., 2007). Other studies have emphasized the 

importance of categorizing MLH by various soil moisture levels or at-
mospheric stability conditions. Wetter or drier soil regimes can have 
profound impacts on the influence of surface fluxes on MLH (San-
chez-Mejia and Papuga, 2014). Likewise, if an area is dominated by high 
pressure or larger-scale weather phenomena, it could negate the effects 
of the surface conditions on MLH growth (Santanello et al., 2005). In 
either such case, regardless of the amount of surface heating an area has, 
land-atmosphere conditions during prior days and nights can act to 
suppress the following days MLH growth. Subsidence and advection 
processes have also been shown to influence the expected growth in 
daily MLH (Pietersen et al., 2015; Rey-Sanchez et al., 2021; Sinclair 
et al., 2010). Consequently, our empirical approach was unable to ac-
count for these larger-scale influences, but we anticipate a study with 
data separated by soil or stability conditions may have better explana-
tory power on MLH than the data inputs that we used. 

5. Conclusions 

Our study used radiosonde, reanalysis, eddy covariance, and 
phenological data from select AmeriFlux sites across the United States in 
an attempt to identify the daily and seasonal trends in ceilometer cloud 
frequencies and mixing layer heights (MLH) and examine the relative 
strength of explanatory surface variables in determining MLH. We found 
significant agreement between radiosonde MLH and the highest-quality 
ceilometer MLH retrievals at two sites (US-KFS and US-ARM) with 
nearby measurements. At another site (US-Wkg/Whs), the ceilometer 
MLH retrievals were found to be unreliable, as they did not agree with 
reanalysis data or other published studies. We utilized an algorithm 
(STRATfinder) to estimate MLH from ceilometer data at that site to more 
accurately estimate local MLH. The STRATfinder results provide insight 
on the potential use of such an algorithm for more consistent MLH re-
trievals from ceilometers. Overall, cloud coverage was shown to impact 
the growth and depth of MLH, which varied strongly across the climatic 
gradient of the study. Eddy covariance (single-point) tower fluxes of 
sensible heat flux (H), latent heat flux (LE), vapor pressure deficit (VPD), 
and the difference (Tdiff) between air and surface temperatures were 
shown to have the largest direct and indirect relative influences on daily 
and seasonal MLH. However, when modeled with boosted regression 
trees (BRTs), the near-surface data often failed to capture the variations 
in MLH as captured by the ceilometers. Ultimately, the ceilometers at 
each site were shown to provide useful estimates of MLH but healthy 
skepticism and validation against independent MLH data is necessary for 
future studies. A key advantage to ceilometers is that they provide 
continuous MLH estimates unlike the labor-intensive radiosonde 
launches. Paired with single-point observations, we present an example 
on how to investigate the key land surface variables involved in the bi- 
directional land-atmosphere interactions, and how those complicated 
interactions vary across ecosystems. 
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Emeis, S., Schäfer, K., Münkel, C., 2008. Long-term observations of the urban mixing- 
layer height with ceilometers. IOP Conf. Ser. Earth Environ. Sci. 1, 012027 https:// 
doi.org/10.1088/1755-1315/1/1/012027. 

Eresmaa, N., Karppinen, A., Joffre, S.M., Räsänen, J., Talvitie, H., 2006. Mixing height 
determination by ceilometer. Atmospheric Chem. Phys. 6, 1485–1493. https://doi. 
org/10.5194/acp-6-1485-2006. 

Findell, K.L., Eltahir, E.A.B., 2003. Atmospheric controls on soil moisture–boundary 
layer interactions. Part I: framework development. J. Hydrometeorol. 4, 552–569. 
https://doi.org/10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2. 

Fischer, M.L., Billesbach, D.P., Berry, J.A., Riley, W.J., Torn, M.S., 2007. Spatiotemporal 
variations in growing season exchanges of CO2, H2O, and sensible heat in 
agricultural fields of the southern great plains. Earth Interact 11, 1–21. https://doi. 
org/10.1175/EI231.1. 

Freedman, J.M., Fitzjarrald, D.R., Moore, K.E., Sakai, R.K., 2001. Boundary layer clouds 
and vegetation–atmosphere feedbacks. J. Clim. 14, 180–197. https://doi.org/ 
10.1175/1520-0442(2001)013<0180:BLCAVA>2.0.CO;2. 

Friedman, J.H., 2001. Greedy function approximation: a gradient boosting machine. 
Ann. Stat. 29 https://doi.org/10.1214/aos/1013203451. 

Garratt, J., 1994. Review: the atmospheric boundary layer. Earth Sci. Rev. 37, 89–134. 
https://doi.org/10.1016/0012-8252(94)90026-4. 

Gibert, F., Schmidt, M., Cuesta, J., Ciais, P., Ramonet, M., Xueref, I., Larmanou, E., 
Flamant, P.H., 2007. Retrieval of average CO2 fluxes by combining in situ CO 2 
measurements and backscatter lidar information: CO2 FLUX. J. Geophys. Res. 
Atmospheres 112. https://doi.org/10.1029/2006JD008190. 

Gierens, R.T., Henriksson, S., Josipovic, M., Vakkari, V., van Zyl, P.G., Beukes, J.P., 
Wood, C.R., O’Connor, E.J., 2019. Observing continental boundary-layer structure 
and evolution over the South African savannah using a ceilometer. Theor. Appl. 
Climatol. 136 (1), 333–346. https://doi.org/10.1007/s00704-018-2484-7. 

Haeffelin, M., Angelini, F., Morille, Y., Martucci, G., Frey, S., Gobbi, G.P., et al., 2012. 
Evaluation of mixing-height retrievals from automatic profiling Lidars and 
ceilometers in view of future integrated networks in Europe. Bound. Layer Meteorol 
143, 49–75. https://doi.org/10.1007/s10546-011-9643-z. 

Helbig, M., Gerken, T., Beamesderfer, E.R., Baldocchi, D.D., Banerjee, T., Biraud, S.C., 
et al., 2021. Integrating continuous atmospheric boundary layer and tower-based 
flux measurements to advance understanding of land-atmosphere interactions. 
Agric. For. Meteorol. 307, 108509 https://doi.org/10.1016/j. 
agrformet.2021.108509. 

Hicks, M., Demoz, B., Vermeesch, K., Atkinson, D., 2019. Intercomparison of mixing 
layer heights from the National Weather Service ceilometer test sites and collocated 
radiosondes. J. Atmos. Oceanic Technol. 36 (1), 129–137. https://doi.org/10.1175/ 
JTECH-D-18-0058.1. 

Higgins, R.W., Yao, Y., Wang, X.L., 1997. Influence of the North American monsoon 
system on the U.S. summer precipitation regime. J. Clim. 10, 2600–2622. https:// 
doi.org/10.1175/1520-0442(1997)010<2600:IOTNAM>2.0.CO;2. 

Hollinger, D.Y., Davidson, E.A., Fraver, S., Hughes, H., Lee, J.T., Richardson, A.D., 
Savage, K., Sihi, D., Teets, A., 2021. Multi-decadal carbon cycle measurements 
indicate resistance to external drivers of change at the Howland forest AmeriFlux 
site. J. Geophys. Res. Biogeosciences 126. https://doi.org/10.1029/2021JG006276 
e2021JG006276.  

Holzworth, G.C., 1967. Mixing depths, wind speeds and air pollution potential for 
selected locations in the United States. J. Appl. Meteorol. 6, 1039–1044. https://doi. 
org/10.1175/1520-0450(1967)006<1039:MDWSAA>2.0.CO;2. 

Jin, M., Dickinson, R.E., 2010. Land surface skin temperature climatology: benefitting 
from the strengths of satellite observations. Environ. Res. Lett. 5, 044004 https:// 
doi.org/10.1088/1748-9326/5/4/044004. 

Knauer, J., El-Madany, T.S., Zaehle, S., Migliavacca, M., 2018. Bigleaf—an R package for 
the calculation of physical and physiological ecosystem properties from eddy 
covariance data. PLoS One 13, e0201114. https://doi.org/10.1371/journal. 
pone.0201114. 

Konings, A.G., Katul, G.G., Porporato, A., 2010. The rainfall-no rainfall transition in a 
coupled land-convective atmosphere system: rainfall-no rainfall transition. Geophys. 
Res. Lett. 37 https://doi.org/10.1029/2010GL043967. 

Koster, R.D., Schubert, S.D., Suarez, M.J., 2009. Analyzing the concurrence of 
meteorological droughts and warm periods, with implications for the determination 
of evaporative regime. J. Clim. 22, 3331–3341. https://doi.org/10.1175/ 
2008JCLI2718.1. 

Kotthaus, S., Grimmond, C.S.B., 2018. Atmospheric boundary-layer characteristics from 
ceilometer measurements. Part 1: a new method to track mixed layer height and 
classify clouds. Q. J. R. Meteorol. Soc. 144, 1525–1538. https://doi.org/10.1002/ 
qj.3299. 

Kotthaus, S., Haeffelin, M., Drouin, M.-A., Dupont, J.-C., Grimmond, S., Haefele, A., 
Hervo, M., Poltera, Y., Wiegner, M., 2020. Tailored algorithms for the detection of 
the atmospheric boundary layer height from common automatic lidars and 
ceilometers (ALC). Remote Sens. 12, 3259. https://doi.org/10.3390/rs12193259. 

Lansu, E.M., Heerwaarden, C.C., Stegehuis, A.I., Teuling, A.J., 2020. Atmospheric aridity 
and apparent soil moisture drought in European forest during heat waves. Geophys. 
Res. Lett. 47 https://doi.org/10.1029/2020GL087091. 

E.R. Beamesderfer et al.                                                                                                                                                                                                                       

https://doi.org/10.1016/j.agrformet.2023.109687
https://doi.org/10.1175/JCLI-D-16-0559.1
https://doi.org/10.1002/2017JD026740
https://doi.org/10.1175/1520-0477(2001)082&tnqh_x003C;2415:FANTTS&tnqh_x003E;2.3.CO;2
https://doi.org/10.1175/1520-0477(2001)082&tnqh_x003C;2415:FANTTS&tnqh_x003E;2.3.CO;2
https://doi.org/10.3402/tellusb.v65i0.19994
https://doi.org/10.1175/JAS4002.1
https://doi.org/10.1029/97JD01105
https://doi.org/10.1029/97JD01105
https://doi.org/10.1029/2021JG006707
https://doi.org/10.1175/1525-7541(2000)001&tnqh_x003C;0507:IMFEBL&tnqh_x003E;2.0.CO;2
https://doi.org/10.1175/1525-7541(2000)001&tnqh_x003C;0507:IMFEBL&tnqh_x003E;2.0.CO;2
https://doi.org/10.1175/BAMS-85-11-1673
https://doi.org/10.3894/JAMES.2010.2.6
https://doi.org/10.3894/JAMES.2010.2.6
https://doi.org/10.1007/s10546-011-9622-4
https://doi.org/10.5194/esd-2-87-2011
https://doi.org/10.1175/BAMS-D-19-0346.1
https://doi.org/10.1175/BAMS-D-19-0346.1
https://doi.org/10.1175/JTECH-D-20-0050.1
http://refhub.elsevier.com/S0168-1923(23)00377-5/sbref0015
http://refhub.elsevier.com/S0168-1923(23)00377-5/sbref0015
https://doi.org/10.1175/2010JCLI3395.1
https://doi.org/10.5194/acp-14-13205-2014
https://doi.org/10.5194/acp-14-13205-2014
https://doi.org/10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2
https://doi.org/10.1007/s10546-005-9024-6
https://doi.org/10.1007/s10546-005-9024-6
https://doi.org/10.1111/j.1365-2656.2008.01390.x
https://doi.org/10.1088/1755-1315/1/1/012027
https://doi.org/10.1088/1755-1315/1/1/012027
https://doi.org/10.5194/acp-6-1485-2006
https://doi.org/10.5194/acp-6-1485-2006
https://doi.org/10.1175/1525-7541(2003)004&tnqh_x003C;0552:ACOSML&tnqh_x003E;2.0.CO;2
https://doi.org/10.1175/EI231.1
https://doi.org/10.1175/EI231.1
https://doi.org/10.1175/1520-0442(2001)013&tnqh_x003C;0180:BLCAVA&tnqh_x003E;2.0.CO;2
https://doi.org/10.1175/1520-0442(2001)013&tnqh_x003C;0180:BLCAVA&tnqh_x003E;2.0.CO;2
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1016/0012-8252(94)90026-4
https://doi.org/10.1029/2006JD008190
https://doi.org/10.1007/s00704-018-2484-7
https://doi.org/10.1007/s10546-011-9643-z
https://doi.org/10.1016/j.agrformet.2021.108509
https://doi.org/10.1016/j.agrformet.2021.108509
https://doi.org/10.1175/JTECH-D-18-0058.1
https://doi.org/10.1175/JTECH-D-18-0058.1
https://doi.org/10.1175/1520-0442(1997)010&tnqh_x003C;2600:IOTNAM&tnqh_x003E;2.0.CO;2
https://doi.org/10.1175/1520-0442(1997)010&tnqh_x003C;2600:IOTNAM&tnqh_x003E;2.0.CO;2
https://doi.org/10.1029/2021JG006276
https://doi.org/10.1175/1520-0450(1967)006&tnqh_x003C;1039:MDWSAA&tnqh_x003E;2.0.CO;2
https://doi.org/10.1175/1520-0450(1967)006&tnqh_x003C;1039:MDWSAA&tnqh_x003E;2.0.CO;2
https://doi.org/10.1088/1748-9326/5/4/044004
https://doi.org/10.1088/1748-9326/5/4/044004
https://doi.org/10.1371/journal.pone.0201114
https://doi.org/10.1371/journal.pone.0201114
https://doi.org/10.1029/2010GL043967
https://doi.org/10.1175/2008JCLI2718.1
https://doi.org/10.1175/2008JCLI2718.1
https://doi.org/10.1002/qj.3299
https://doi.org/10.1002/qj.3299
https://doi.org/10.3390/rs12193259
https://doi.org/10.1029/2020GL087091


Agricultural and Forest Meteorology 342 (2023) 109687

16

Lee, S.-J., Lee, J., Greybush, S.J., Kang, M., Kim, J., 2013. Spatial and temporal variation 
in PBL height over the Korean Peninsula in the KMA operational regional Model. 
Adv. Meteorol. 2013, 1–16. https://doi.org/10.1155/2013/381630. 

Lee, T.R., De Wekker, S.F.J., 2016. Estimating daytime planetary boundary layer heights 
over a valley from rawinsonde observations at a nearby airport: an application to the 
page valley in Virginia, United States. J. Appl. Meteorol. Climatol. 55, 791–809. 
https://doi.org/10.1175/JAMC-D-15-0300.1. 

Lee, X., Goulden, M.L., Hollinger, D.Y., Barr, A., Black, T.A., Bohrer, G., et al., 2011. 
Observed increase in local cooling effect of deforestation at higher latitudes. Nature 
479, 384–387. https://doi.org/10.1038/nature10588. 

Li, Y., Li, J., Zhao, Y., Lei, M., Zhao, Y., Jian, B., et al., 2021. Long-term variation of 
boundary layer height and possible contribution factors: a global analysis. Sci. Total 
Environ. 796, 148950 https://doi.org/10.1016/j.scitotenv.2021.148950. 

Lotteraner, C., Piringer, M., 2016. Mixing-height time series from operational ceilometer 
aerosol-layer heights. Bound. Layer Meteorol 161, 265–287. https://doi.org/ 
10.1007/s10546-016-0169-2. 

Martucci, G., Matthey, R., Mitev, V., Richner, H., 2007. Comparison between backscatter 
lidar and radiosonde measurements of the diurnal and nocturnal stratification in the 
lower troposphere. J. Atmospheric Ocean. Technol. 24, 1231–1244. https://doi.org/ 
10.1175/JTECH2036.1. 

Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P.C., Ebisuzaki, W., et al., 
2006. North American regional reanalysis. Bull. Am. Meteorol. Soc. 87, 343–360. 
https://doi.org/10.1175/BAMS-87-3-343. 

Morris, V., and Winston, H.A., 2016. Laser Ceilometer CL51 Demonstration Field 
Campaign Report (No. DOE/SC–ARM-14-042, 1254298). doi:10.2172/1254298. 

Mues, A., Rupakheti, M., Münkel, C., Lauer, A., Bozem, H., Hoor, P., Butler, T., 
Lawrence, M.G., 2017. Investigation of the mixing layer height derived from 
ceilometer measurements in the Kathmandu Valley and implications for local air 
quality. Atmospheric Chem. Phys. 17, 8157–8176. https://doi.org/10.5194/acp-17- 
8157-2017. 

Münkel, C., Eresmaa, N., Räsänen, J., Karppinen, A., 2007. Retrieval of mixing height 
and dust concentration with lidar ceilometer. Bound. Layer Meteorol 124, 117–128. 
https://doi.org/10.1007/s10546-006-9103-3. 
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van Stratum, B.J.H., Vilá-Guerau de Arellano, J., van Heerwaarden, C.C., Ouwersloot, H. 
G., 2014. Subcloud-layer feedbacks driven by the mass flux of shallow cumulus 
convection over land. J. Atmospheric Sci. 71, 881–895. https://doi.org/10.1175/ 
JAS-D-13-0192.1. 

Vick, E.S., Stoy, P.C., Tang, A.C., Gerken, T., 2016. The surface-atmosphere exchange of 
carbon dioxide, water, and sensible heat across a dryland wheat-fallow rotation. 
Agric. Ecosyst. Environ. 232, 129–140. https://doi.org/10.1016/j. 
agee.2016.07.018. 

Wiegner, M., Madonna, F., Binietoglou, I., Forkel, R., Gasteiger, J., Geiß, A., 
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