

Table of Contents

Overview /	Introduction	4	o Interposer Die	
0	Executive Summary Reverse Costing Methodology	0	 ✓ View, Dimensions & Marking ✓ μBumps & TSVs ✓ Interposer Cross-Section 	
Company Pr	2.5D & 3D Packaging Market High Bandwidth Memory TSMC CoWoS TSV Technology NVIDIA Company Profile NVIDIA Ampere A100 Characteristics GPU Supply Chain	<u>8</u>	 Global Overview GPU Process Description & Foundry Interposer Process Flow & Foundry HBM2 Stack Process Flow & Foundry CoWoS Process Flow & Foundry 	16
Physical Analysis		31		19
0 0 0	Summary of the Physical Analysis Physical Analysis Methodology NVIDIA Ampere A100 Teardown Package ✓ Views & Dimensions ✓ Passives Assembly ✓ Laminate & IHS Cross-Section DRAM Die ✓ View, Dimensions & Marking ✓ µBumps & TSVs ✓ HBM2 Stack Cross-Section GPU Die		 Summary of the Cost Analysis Yields Explanation & Hypotheses GPU Front-End & Die Cost HBM2 Stack ✓ TSV Manufacturing Cost ✓ Micro-Bumping Manufacturing Cost ✓ Dies Cost (DRAM + Logic) ✓ HBM2 Stack Cost Interposer ✓ Microbumping Cost ✓ Microbumping Cost ✓ Interposer Cost O CoWoS Assembly Manufacturing Cost 	
O	✓ View, Dimensions & Marking ✓ µBumps ✓ GPU Cross-Section		 ✓ Microbumping Cost ✓ Interposer Cost ○ CoWoS Assembly Manufacturing Cost ○ Final Component Cost Estimated Price Analysis ○ Manufacturer Financial Ratios ○ Component Manufacturer Price 	21
0	Filler Die ✓ View, Dimensions & Marking ✓ Filler Cross-Section			<u>21</u>
			System plus Consulting Services	21

OVERVIEW METHODOLOGY

- Executive Summary
- o Reverse Costing Methodology
- o Glossary

Company Profile & Supply Chain

Physical Analysis

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

<u>Feedback</u>

Related Reports

About System Plus

Executive Summary

- The high end electronic packaging market was worth more than \$880 million dollars in 2019. The biggest market for high end performance packaging comes from telecom and infrastructure. It has more than a 50% market share according to Yole Développement's report High-End Performance Packaging: 3D/2.5D Integration 2020.
- The NVIDIA Ampere A100 targets high performance data centers, artificial intelligence applications, data analytics, and High-Performance Computing (HPC). It uses advanced technologies, including TSMC's 7nm FinFET chip, 3D stacked memory with 2.5D integration on a silicon interposer in a Chip-on-Wafer-on-Substrate (CoWoS) process.
- The new generation GPU provides significantly higher performance compared to the previous generation. The NVIDIA Ampere A100 provides the consumer market with 40GB or 80GB of Samsung's high bandwidth memory (HBM2). Samsung's HBM2 is engineered to sustain and support high speed data transfer. The HBM2 DRAM solution satisfies the market need for high performance, energy efficiency, and compact integration. The NVIDIA Ampere A100 is characterized by GPU Memory Bandwidth of 1,555 GB/s. A 3D assembly process yields HBM2 stacks composed of eight 1GB memory dies and one logic die, connected with via-middle through-silicon vias and micro-bumps.
- More than 6,000mm² of silicon area is integrated in a single 55mm x 55mm 12-layer ball grid array (BGA) package of the NVIDIA Ampere A100. Two major semiconductor leaders, Samsung and TSMC, collaborate to deliver this much silicon in a single package. TSMC is the main provider for the NVIDIA Ampere A100. Using its 2.5D CoWoS platform, it manufactures the world's largest processor built on 7nm process technology. This GPU die features a 7nm FinFET transistor process and 54 billion transistors on a single chip. It also produces a large silicon interposer on which the GPU and HBM2 memory is assembled at the wafer-level.
- The report includes a complete physical analysis of the package, the GPU die, interposer die and the Hank DRAM. Along with the manufacturing process of the silicon dies, CoWoS process and final assembly, this report times with a cost analysis and a price estimation of the NVIDIA Ampere A100. Finally, the report includes a composition to highlight the similarities and differences between the NVIDIA Ampere A100 and NVIDIA's Tesla P100 and V100.

PHYSICAL ANALYSIS

Graphic Card Teardown

Overview / Introduction

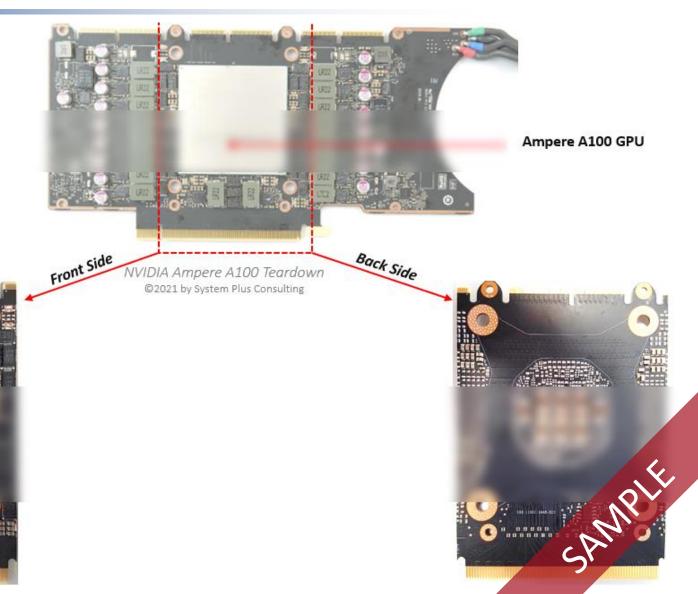
Company Profile & Supply Chain

Physical Analysis

- o Summary
- Graphic Card View & Teardown
- o Package X-Ray Images
- o Package Overview
- o Package Opening
- o Package Cross Section
- o HBM Stack-Logic/DRAM Die
- o HBM Stack Cross Section
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis


Selling Price Analysis

Feedback

Related Reports

About System Plus

NVIDIA Ampere A100 Teardown — PCB Front Side
©2021 by System Plus Consulting

NVIDIA Ampere A100 Teardown — PCB Back Side
© 2021 by System Plus Consulting

NVIDIA AMPERE 100 Package - XRAY Images-

Overview / Introduction

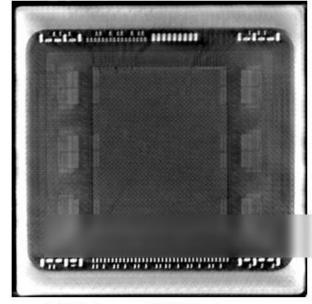
Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card View & Teardown
- ▶ Package X-Ray Images
- o Package Overview
- o Package Opening
- o Package Cross Section
- o HBM Stack-Logic/DRAM Die
- o HBM Stack Cross Section
- GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

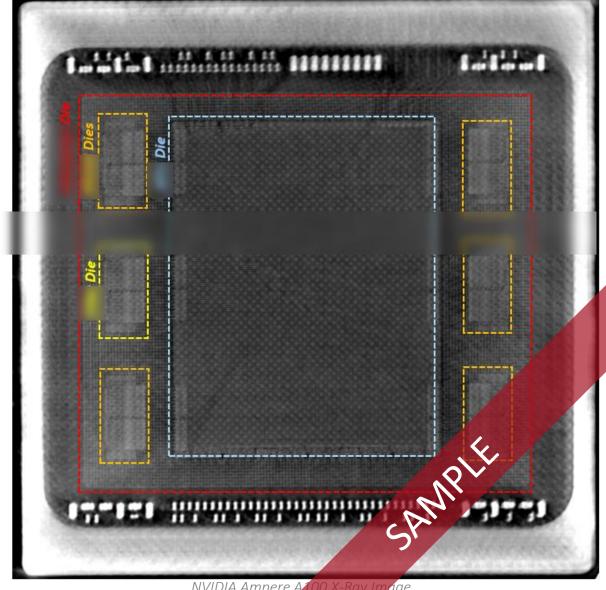
Cost Analysis


Selling Price Analysis

Feedback

Related Reports

About System Plus


NVIDIA Ampere A100 X-Ray Image ©2021 by System Plus Consulting

The Nvidia Ampere 100 package integrates:

- Interposer die
- GPU Die die on
- HBM memory packages assembled on

die

Filler Die

NVIDIA Ampere A100 X-Ray

©2021 by Syst

©2021 System Plus Consulting | SP20579 NVIDIA A100 Ampere GPU | Sample

Company Profile & Supply Chain

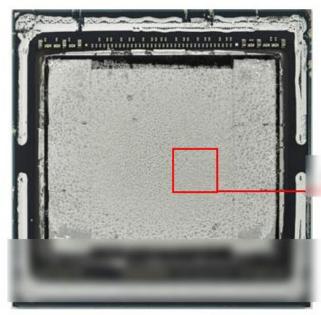
Physical Analysis

- o Summary
- o Graphic Card View & Teardown
- o Package X-Ray Images
- o Package Overview
- Package Opening
- o Package Cross Section
- o HBM Stack-Logic/DRAM Die
- o HBM Stack Cross Section
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

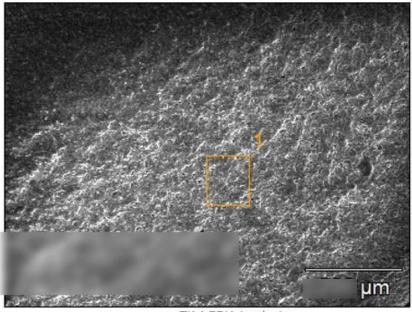
Manufacturing Process Flow

Cost Analysis

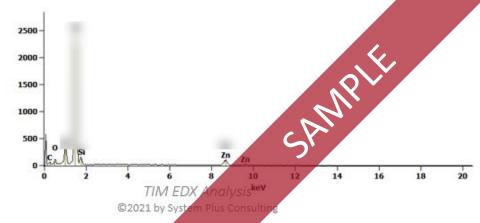
Selling Price Analysis


<u>Feedback</u>

Related Reports


About System Plus

Package Opening



Package Opening
©2021 by System Plus Consulting

TIM EDX Analysis
©2021 by System Plus Consulting

- A is applied between the memory and the top metal frame to ensure that there are so
- The helps r to avoid of the active components.
- The is made of an compound.

Company Profile & Supply Chain

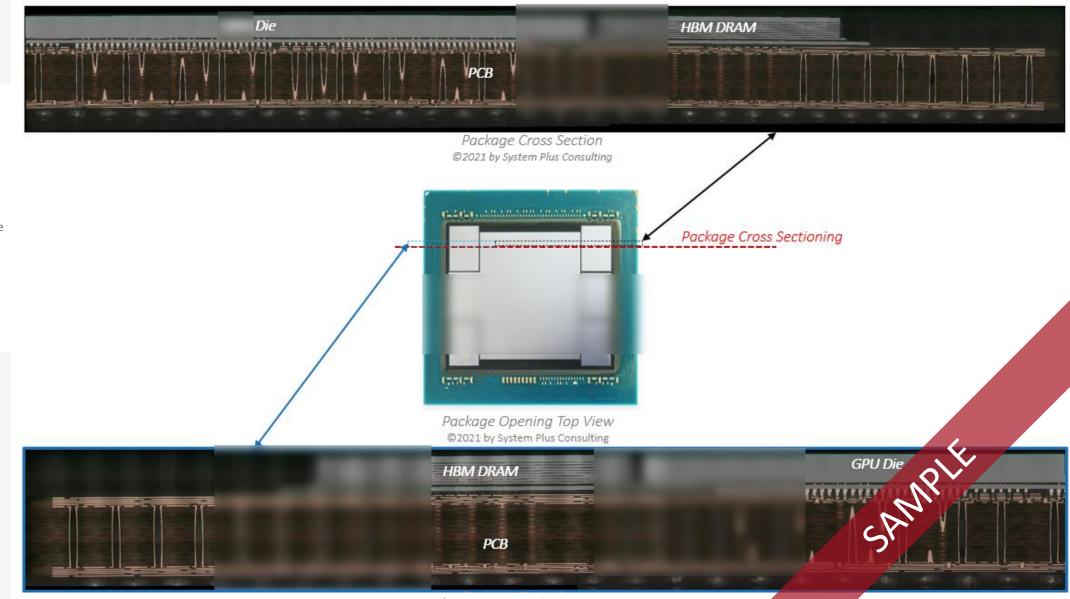
Physical Analysis

- o Summary
- o Graphic Card View & Teardown
- o Package X-Ray Images
- o Package Overview
- o Package Opening
- Package Cross Section
- o HBM Stack-Logic/DRAM Die
- o HBM Stack Cross Section
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis


Feedback

Related Reports

About System Plus

Package Cross Section

Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card View & Teardown
- o Package X-Ray Images
- o Package Overview
- o Package Opening
- Package Cross Section
- o HBM Stack-Logic/DRAM Die
- o HBM Stack Cross Section
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

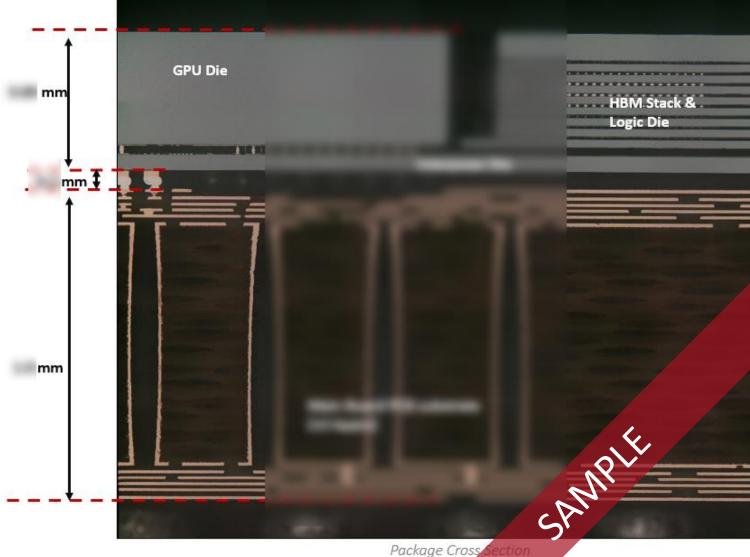
Cost Analysis

Selling Price Analysis

Feedback

Related Reports

About System Plus


Board Cross-Section

Package Opening Top View ©2021 by System Plus Consulting

mm

Package total

©2021 by System

Package Cross-Section – HBM2 Stack

Overview / Introduction

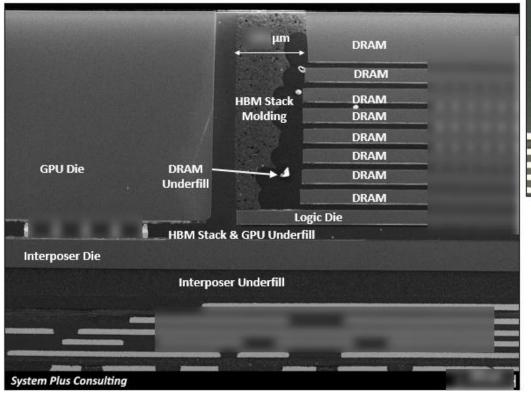
Company Profile & Supply Chain

Physical Analysis

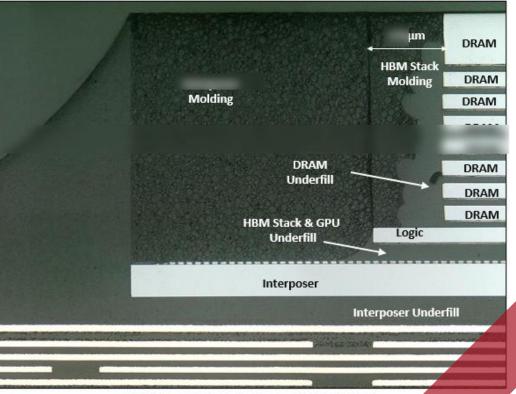
- o Summary
- o Graphic Card View & Teardown
- o Package X-Ray Images
- o Package Overview
- Package Opening
- o Package Cross Section
- \circ HBM Stack-Logic/DRAM Die
- ▶ HBM Stack Cross Section
- o GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis


Selling Price Analysis

Feedback


Related Reports

About System Plus

HBM Stack Cross-Section — SEM View
©2021 by System Plus Consulting

HBM Stack Cross-Section — Optical View
©2021 by System Plus Consulting

- The HBM stack is molded on the side.
- The side mold is 225-235µm wide.
- DRAM dies do not have the same exact six hey are diced before being bonded together.
- The top DRAM Die is thicker is size in pared to the other DRAM dies. This could be a technic to provide mechanical stability and protect the DRAM dies from fracture.

Company Profile & Supply Chain

Physical Analysis

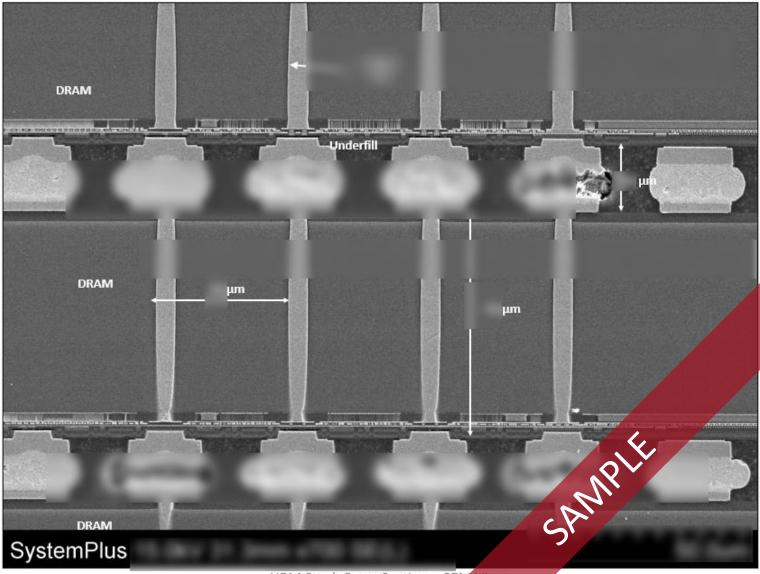
- o Summary
- o Graphic Card View & Teardown
- o Package X-Ray Images
- o Package Overview
- o Package Opening
- o Package Cross Section
- o HBM Stack-Logic/DRAM Die
- **HBM Stack Cross Section**
- GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback


Related Reports

About System Plus

Package Cross-Section – HBM2 Stack

- HBM die thickness(Si substrate, capacitors & top metal layers) (except top die): µm
- HBM stack TSV & micro-bumps pitch: : µm
- Underfill thickness:

HBM Stack Cross-Section - SEN ©2021 by System Plus Const

Company Profile & Supply Chain

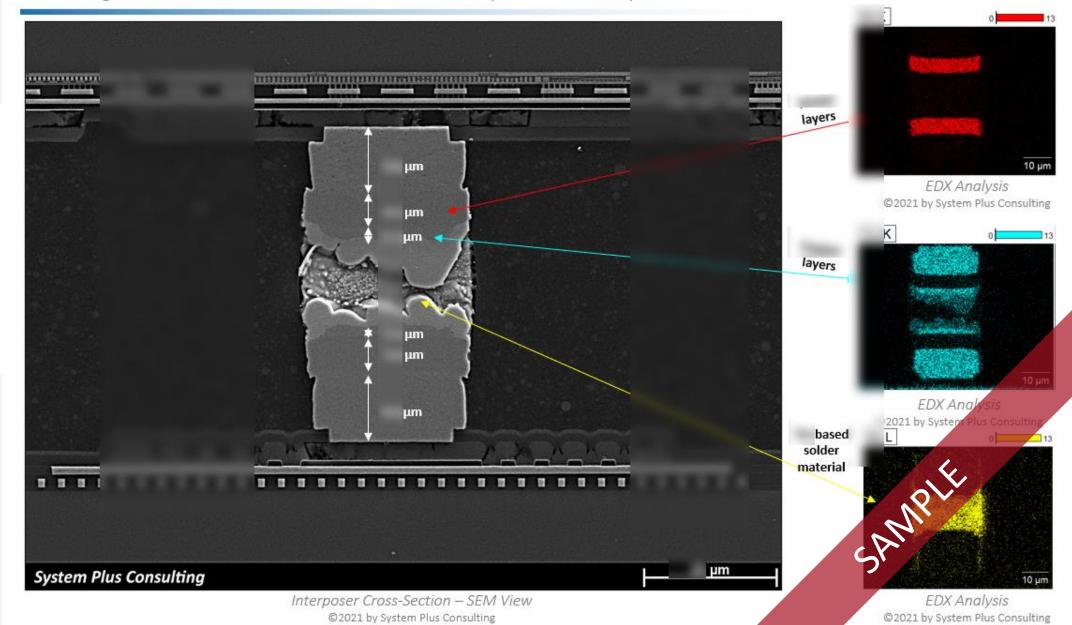
Physical Analysis

- o Summary
- o Graphic Card View & Teardown
- o Package X-Ray Images
- o Package Overview
- o Package Opening
- o Package Cross Section
- o HBM Stack-Logic/DRAM Die
- o HBM Stack Cross Section
- o GPU Die
- Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis


Feedback

Related Reports

About System Plus

Package Cross-Section – GPU – Interposer Bumps

Die Cross-Section – GPU

Overview / Introduction

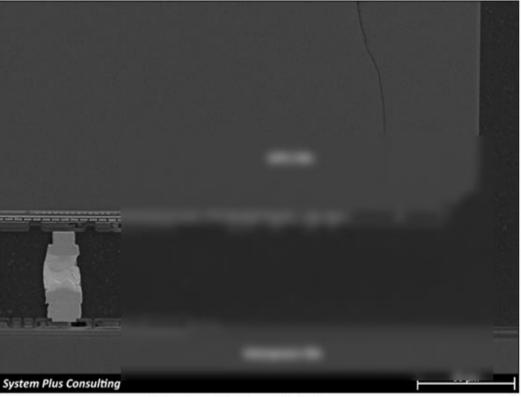
Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card View & Teardown
- o Package X-Ray Images
- o Package Overview
- o Package Opening
- o Package Cross Section
- o HBM Stack-Logic/DRAM Die
- o HBM Stack Cross Section
- o GPU Die
- ► Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- o Cross-Section Interposer

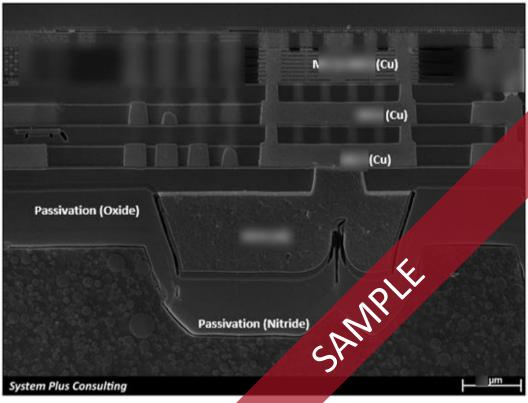
Manufacturing Process Flow

Cost Analysis


Selling Price Analysis

Feedback

Related Reports


About System Plus

GPU Cross-Section - SEM View ©2021 by System Plus Consulting

The GPU Die process uses metal layers. (Cu + 1 Al)

Company Profile & Supply Chain

Physical Analysis

- o Summary
- o Graphic Card View & Teardown
- o Package X-Ray Images
- o Package Overview
- o Package Opening
- o Package Cross Section
- o HBM Stack-Logic/DRAM Die
- o HBM Stack Cross Section
- GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- o Interposer Die
- ► Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback

Related Reports

About System Plus

Package Cross-Section — Interposer (under GPU Die)

size.

The interposer die is connected to the package PCB using region and one in region.

interposer-PCB micro bumps could

pitch could be regrou The

wo groups: one in

we assume that the

Package Cross-Section — Interposer

Overview / Introduction

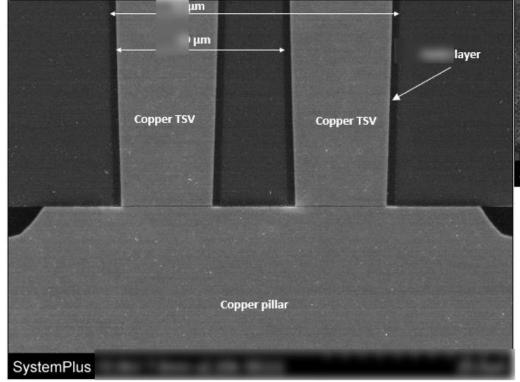
Company Profile & Supply Chain

Physical Analysis

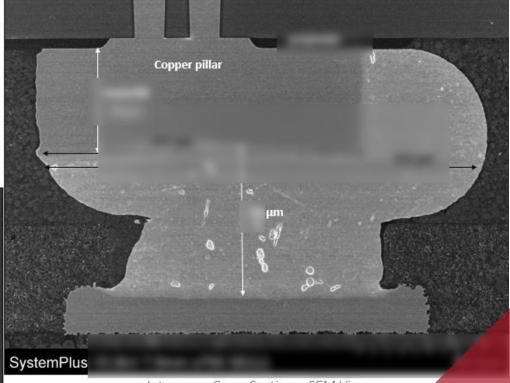
- o Summary
- o Graphic Card View & Teardown
- o Package X-Ray Images
- o Package Overview
- o Package Opening
- o Package Cross Section
- o HBM Stack-Logic/DRAM Die
- o HBM Stack Cross Section
- GPU Die
- o Cross-Section GPU
- o Filler Die
- o Cross-Section Filler
- Interposer Die
- o Cross-Section Interposer

Manufacturing Process Flow

Cost Analysis


Selling Price Analysis

Feedback


Related Reports

About System Plus

Interposer Cross-Section – SEM View ©2021 by System Plus Consulting

Interposer Cross-Section - SEM View ©2021 by System Plus Consulting

Interposer copper pillar diameter:

PHYSICAL **COMPARISON**

Company Profile & Supply Chain

Physical Analysis

Comparison V100/ P100/ A100

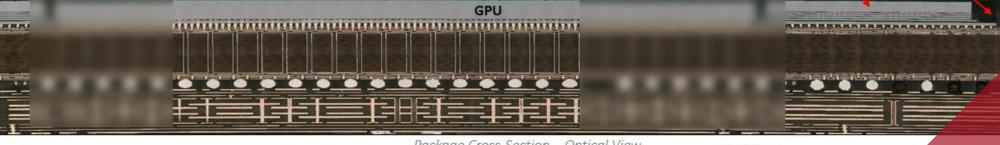
- o Characteristics
- Package
- o HBM Stack
- o Interposer
- o Summary

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedback


Related Reports

About System Plus

Comparison NVIDIA Tesla V100, P100 and Ampere A100- Package Cross Section

Silicon Interposer stacked memory dies (4GB)+ Tesla P100 1 Logic die Package Cross-Section - Optical View HBM2 Stack Silicon Interposer Tesla V100 ©2021 by System Plus Consulting stacked memory dies (4GB)+ 1 Logic die

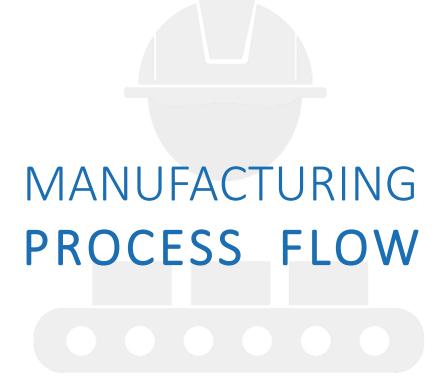
Package Cross-Section - Optical View ©2021 by System Plus Consulting

HBM2 Stack stacked memory dies (8GB)+ 1 Logic die

Silicon Interposer

©2021 by System Plus Consulting

Ampere A100


The package and die lay-out is

Ampere A100 HBM stack has

three packages.

memory dies yet the Tesla V100 and Tesla P100 had DRAM memory dies.

HBM Stacking Process Flow (2/4)

Overview / Introduction

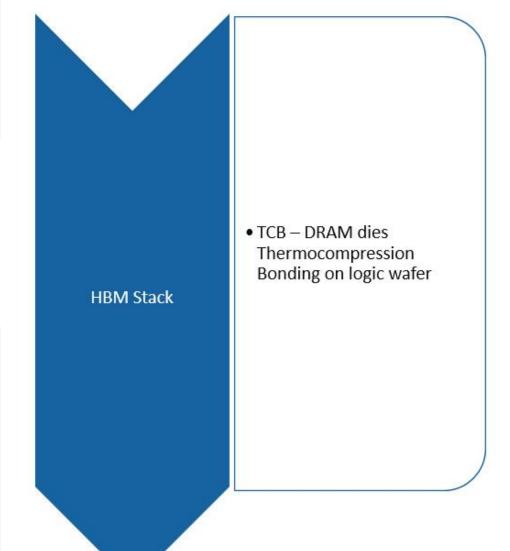
Company Profile & Supply Chain

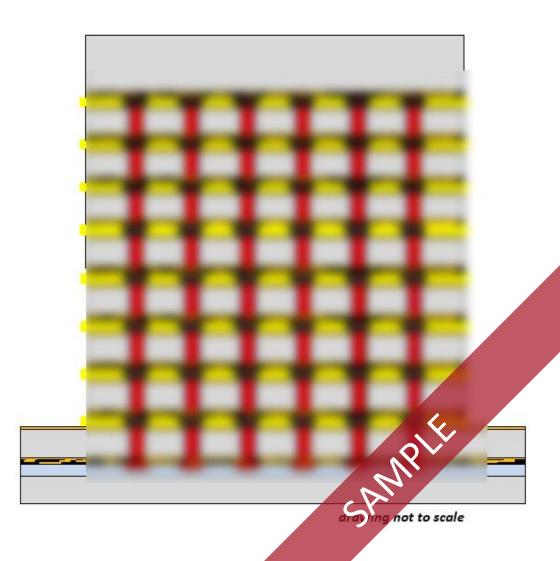
Physical Analysis

Comparison V100/ P100/ A100

Manufacturing Process Flow

- o Global Overview
- GPU Process
- o GPU Wafer Fab Unit
- o HBM Process
- o HBM Wafer Fab Unit
- o Interposer & CoW Process
- o Interposer Wafer Fab Unit
- o Final Assembly Process
- o Final Assembly Unit


Cost Analysis


Selling Price Analysis

Feedback

Related Reports

About System Plus

Interposer – CoW Process Flow (2/7)

Overview / Introduction

Company Profile & Supply Chain

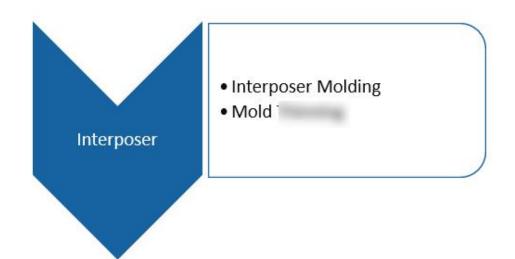
Physical Analysis

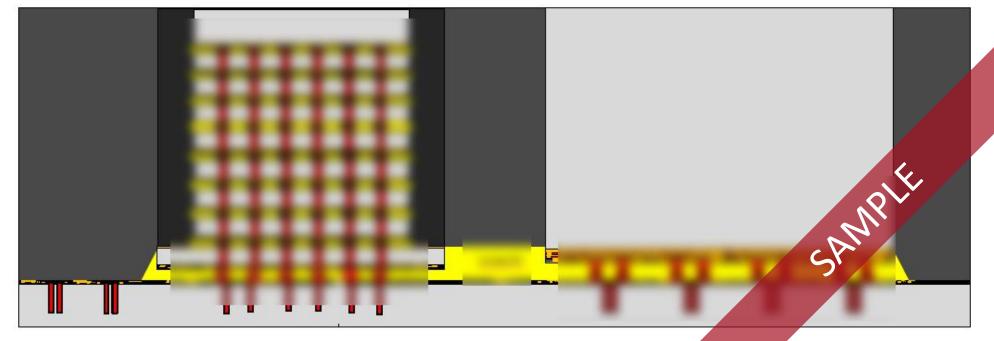
Comparison V100/ P100/ A100

Manufacturing Process Flow

- o Global Overview
- o GPU Process
- o GPU Wafer Fab Unit
- o HBM Process
- o HBM Wafer Fab Unit
- Interposer & CoW Process
- o Interposer Wafer Fab Unit
- o Final Assembly Process
- o Final Assembly Unit

Cost Analysis


Selling Price Analysis


Feedback

Related Reports

About System Plus

Company Profile & Supply Chain

Physical Analysis

Comparison V100/ P100/ A100

Manufacturing Process Flow

Cost Analysis

- o Summary
- o Supply Chain
- Yields
- GPU Cost
- o HBM Stack Cost
- o Interposer Cost
- CoW Assembly Cost
- o Component Cost

Selling Price Analysis

Feedback

Related Reports

About System Plus

GPU Wafer & Die Cost

	Low Yield		Mediu	Medium Yield		Yield
	Cost	Breakdown	Cost	Breakdown	Cost	Breakdown
Front-End Price		11.00				19.19
Probe Test Cost						
μBump Cost						
Backgrinding and Dicing Cost						
Total Wafer Cost (including foundry margin)						
Nb of potential good dies per wafer						
Nb of good dies per wafer						
Front-End Cost						
Probe Test Cost						
μBump Cost						
Backgrinding and Dicing Cost						
Yield Losses Cost						
Die Cost (including foundry margin)						

The wafer cost for the GPU is estimated to in low yield and in high yield. This cost includes TSMC foundry overheads.

The number of good dies per wafer is estimated to range from according to yield variations, which results in a GPU die cost ranging from to

Die Cost Breakdown (Medium Yield)

Company Profile & Supply Chain

Physical Analysis

Comparison V100/ P100/ A100

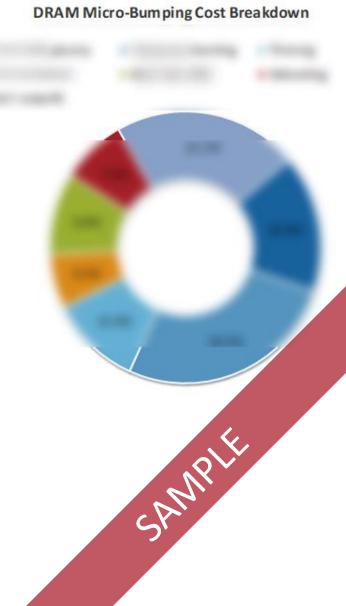
Manufacturing Process Flow

Cost Analysis

- o Summary
- o Supply Chain
- o GPU Cost
- ► HBM Stack Cost
- o Interposer Cost
- o CoW Assembly Cost
- o Component Cost

Selling Price Analysis

Feedback


Related Reports

About System Plus

DRAM Microbumping Cost

DRAM Micro-Bumping Cost	Cost	Breakdown	
Front-Side μbump	\$80.00	30.00	
Temporary bonding			
Thinning			
TSV Via Reveal			
Back-Side UBM			
Debonding			
NCF Underfill			
DRAM Micro-Bumping Cost		100%	

The DRAM micro-bumping manufacturing cost is estimated to \$1 per wafer.

DRAM Wafer & Die Cost

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Comparison V100/ P100/ A100

Manufacturing Process Flow

Cost Analysis

- o Summary
- Supply Chain
- Yields
- **GPU Cost**
- **HBM Stack Cost**
- Interposer Cost
- CoW Assembly Cost
- o Component Cost

Selling Price Analysis

Feedback

Related Reports

About System Plus

Total DRAM Wafer Cost is estimated to range between and between low and high yield.

The number of good dies per wafer is estimated to ranges from to according to yield variations, which results in a die cost ranging from

Company Profile & Supply Chain

Physical Analysis

Comparison V100/ P100/ A100

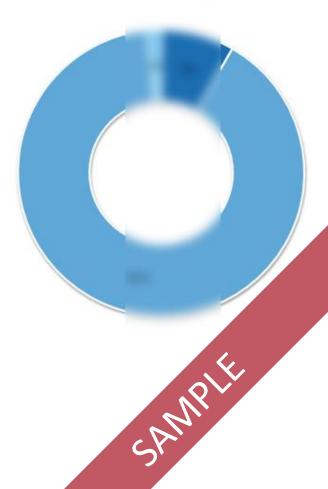
Manufacturing Process Flow

Cost Analysis

- o Summary
- o Supply Chain
- Yields
- o GPU Cost
- ► HBM Stack Cost
- o Interposer Cost
- o CoW Assembly Cost
- o Component Cost

Selling Price Analysis

Feedback


Related Reports

About System Plus

HBM Stack Cost

Low Yield		Medium Yield		High Yield	
Cost	Breakdown	Cost	Breakdown	Cost	Breakdown

HBM Stack Cost Breakdown (Medium Yield)

The number of good HBM stack per wafer is estimated to ranges from according to yield variations, which results in a HBM stack cost ranging from \$ according to yield. to

We estimate a gross margin of 50% for Samsung, which results in a HBM stack price ranging from to . This corresponds to the selling price to NVIDIA.

Chip-on-Wafer (CoW) Stack Wafer Cost

Overview /	Introduction				

Company Profile & Supply Chain

Physical Analysis

Comparison V100/ P100/ A100

Manufacturing Process Flow

Cost Analysis

- o Summary
- o Supply Chain
- o GPU Cost
- o HBM Stack Cost
- o Interposer Cost
- CoW Assembly Cost
- o Component Cost

Selling Price Analysis

Feedback

Related Reports

About System Plus

	Low Yield		Medium Yield		High Yield	
	Cost	Breakdown	Cost	Breakdown	Cost	Breakdown
Interposer Wafer Manufacturing Cost	100.0	2.00	100.00	200	265.00	2.00
CoW Cost						
Yield Losses Cost						
Total Interposer + CoW Wafer Cost						
Foundry Gross Profit						
Total Interposer + CoW Wafer Price						
HBM Stacks Cost						
GPU Dies Cost						
Filler Dies Cost						
Total CoW Stack Wafer Cost						

The manufacturing cost of the interposer including the Chip-on-Wafer assembly steps is estimated to range from according to yield variations.

By considering a gross margin for TSMC (estimated to 50%), the interposer + CoW wafer price is estimated to according to yield variations.

By adding the cost of the HBM Stacks (8) and the GPU die with fillers, the total Chip-on-Wafer stack wafer cost ranges from according to yield variations. to

Related Reports

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Physical Comparison

Manufacturing Process Flow

Cost Analysis

Selling Price Analysis

Feedbacks

Related Reports

About System Plus

REVERSE COSTING ANALYSES - SYSTEM PLUS CONSULTING

ADVANCED PACKAGING

- NVIDIA Tesla P100 GPU with HBM2
- Intel Foveros 3D Packaging Technology

MARKET AND TECHNOLOGY REPORTS - YOLE DÉVELOPPEMENT

ADVANCED PACKAGING

- Computing for Datacenter Servers 2021
- Processor Quarterly Market Monitor

COMPANY SERVICES

Company Profile & Supply Chain

Physical Analysis

Physical Comparison

Manufacturing Process Flow

Cost Analysis

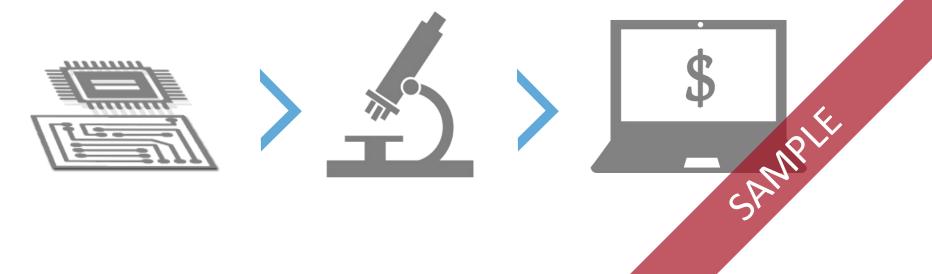
Cost Comparison

Selling Price Analysis

Feedback

Related Analyses

About System Plus


Company services

o Contact

Our Core Activity: The Reverse Costing®

A Structure, Process and Cost Analysis

Reverse Costing® consists in disassembling a device or a system, in order to identify its technology and determine its manufacturing processes and cost, using in-house models and tools.

Fields Of Expertise

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Physical Comparison

Manufacturing Process Flow

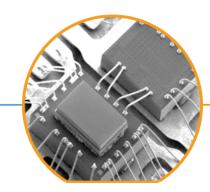
Cost Analysis

Cost Comparison

Selling Price Analysis

Feedback

Related Analyses


About System Plus

- Company services
- o Contact

Electronic System

- Automotive
 - ADAS
 - Infotainment
 - Telematics
 - Electrification
 - Safety
- Consumer
 - Smartphone
 - Smart Home
 - Wearable
- Telecom
 - o Router/Set-Top Box
 - Base Station
- Industrial
- Medical

Semiconductor Device

- Advanced Packaging
 - WLP (Fan in, Fan out)
 - SiP
 - Embedded
 - 3D Packaging
- **Imaging**
 - Infrared
 - Visible
- **Integrated Circuit**
 - ASIC
 - SOC
 - MPU/GPU/MCU/DSP
- **MEMS & Sensors**
 - Inertial Sensor
 - **Environmental Sensor**
 - **Fingerprint Sensor**
 - Oscillator
 - Microphone
 - Inkjet
 - **RF MEMS**
 - Light / Optics

- Memory
 - NAND
 - DRAM
 - Emerging
- **Power Electronics**
 - Discrete
 - Module
 - Compound (GaN, SiC)
 - Power RF
 - RF
 - Radar
 - Filter
 - Module (FEM, Wifi/BT)
 - Power Amplifie
- Solid State Lighting

 - / VCSEL

Business Model

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Physical Comparison

Manufacturing Process Flow

Cost Analysis

Cost Comparison

Selling Price Analysis

Feedback

Related Analyses

About System Plus

Company services

o Contact

Company Profile & Supply Chain

Physical Analysis

Physical Comparison

Manufacturing Process Flow

Cost Analysis

Cost Comparison

Selling Price Analysis

Feedback

Related Analyses

About System Plus

- o Company services
- Contact

Worldwide Presence

100+ collaborators in 8 different countries

Contacts

Overview / Introduction

Company Profile & Supply Chain

Physical Analysis

Physical Comparison

Manufacturing Process Flow

Cost Analysis

Cost Comparison

Selling Price Analysis

Feedback

Related Analyses

About System Plus

- Company services
- Contact

Western US & Canada

Steve Laferriere - steve.laferriere@yole.fr + 1 310 600 8267

Eastern US & Canada

Chris Youman - chris.youman@yole.fr +1 919 607 9839

Europe and RoW

Lizzie Levenez - lizzie.levenez@yole.fr +49 15 123 544 182

Benelux, UK & Spain

Marine Wybranietz - marine.wybranietz@yole.fr +49 69 96 21 76 78

REPORTS, MONITORS & TRACKS

India and RoA

Takashi Onozawa - takashi.onozawa@yole.fr +81 80 4371 4887

Greater China

Mavis Wang - mavis.wang@yole.fr +886 979 336 809 +86 136 6156 6824

Korea

Peter Ok - peter.ok@yole.fr +82 10 4089 0233

Japan

Miho Ohtake - miho.ohtake@yole.fr +81 34 4059 204

Japan and Singapore

Itsuyo Oshiba - itsuyo.oshiba@yole.fr +81 80 3577 3042

Japan

Toru Hosaka – toru.hosaka@yole.fr +81 90 1775 3866

HEADQUARTER & CUSTOM PROJECT SERVICES

22 Bd Benoni Goullin 44200 Nantes, France sales@systemplus.fr - +33 2 40 18 09 16

REPORTS & MONITORS WEBSITE

www.systemplus.fr

TRACKS WEBSITE

www.reverse-costing.com

MARKETING, COMMUNICATION & PR

Camille Veyrier, Market munication camille.veyrier@yo 72 83 01 01

Sandrine c Relations sandrine.ler +33 4 72 83 01 89

