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Abstract: The multi-layer structures of Deep Learning facilitate the processing of higher-level abstrac-
tions from data, thus leading to improved generalization and widespread applications in diverse
domains with various types of data. Each domain and data type presents its own set of challenges.
Real-world time series data may have a non-stationary data distribution that may lead to Deep
Learning models facing the problem of catastrophic forgetting, with the abrupt loss of previously
learned knowledge. Continual learning is a paradigm of machine learning to handle situations when
the stationarity of the datasets may no longer be true or required. This paper presents a systematic
review of the recent Deep Learning applications of sensor time series, the need for advanced prepro-
cessing techniques for some sensor environments, as well as the summaries of how to deploy Deep
Learning in time series modeling while alleviating catastrophic forgetting with continual learning
methods. The selected case studies cover a wide collection of various sensor time series applications
and can illustrate how to deploy tailor-made Deep Learning, advanced preprocessing techniques,
and continual learning algorithms from practical, real-world application aspects.

Keywords: deep learning; continual learning; sensor; time series; preprocessing; non-stationary;
catastrophic forgetting

1. Introduction

Time series modeling is a challenging task in data mining and machine learning.
Popular time series modeling tasks include classification, anomaly detection, regression,
forecasting, and clustering. A time series is a sequence of measurements taken at various
times. Spatial time series data refers to multiple time series data corresponding to different
spatial locations. The spatial–temporal models face difficulties in addressing not only the
short-term and long-term patterns but also the spatial patterns [1]. Time series datasets
have the property of temporal ordering by nature [2]. Generally speaking, time series
models have the capability to utilize the fact that observations closer together in time relate
more closely. Time series modeling has many real-world applications like environment and
traffic tasks, and successful modeling for the time series has become increasingly important.
For example, wind time series forecasting is essential for the decision-making of electric
system operators.

Time series analysis models can be divided broadly into time domain models and
frequency domain models. The time domain model investigates the data with respect
to time, while the frequency domain models focus the analysis on frequency instead of
time [2]. Statistical models like autoregressive models and the moving average models are
popular time domain models. Preprocessing operations like data cleaning, normalization,
differencing, feature selection, etc., are also popular time domain models. For the frequency
domain methods, mathematical models are employed to convert the time series data
between the time and frequency domains. The Fourier transform is a popular, simple,
and basic transforming tool for computing the frequency domain representation of a time
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series. Other popular preprocessing of frequency domain are wavelet transformation (WT),
empirical mode decomposition (EMD), etc.

Over the last decade, smart sensors have been deployed on a very large scale, and
huge amounts of continuous data have been generated [3]. Machine learning (ML) methods
can extract valuable information from datasets and have been widely employed for sensory
data in the industry, such as in the sensing and condition monitoring fields [4]. In the
knowledge discovery process, feedback is generated at each iteration with the goal that
further improvement can be achieved [5]. Deep Learning (DL), a particular type of machine
learning algorithm with multi-layer structures for processing higher-level abstractions
from the input dataset [6], is very well suited for very large datasets, as most of its layer
computations can be implemented in parallel and distributed computing techniques can be
applied easily. Deep Learning models have been shown to perform satisfactorily for many
time series analysis tasks like forecasting.

Deep Learning (DL) has been developed from traditional neural networks with large-
sized deep structures since 2006. Compared with traditional machine learning, DL learns
through a general-purpose learning procedure of multiple levels of representation and
identifies features automatically [7]. In each layer, the representation is obtained from the
representation of the previous layer, involving updating process with a back-propagation
algorithm. Different from the more traditional ML methods, the addition of more layers
in the Deep Learning model can further enable the deep network to cope with scenarios
of increasing complexity, thus leading to improved generalization. A multi-layer learn-
ing structure enables very high performance in complex situations like video, speech,
classification problems, and multi-sensor aggregation.

Deep Learning models have been shown to perform satisfactorily for many time
series analysis tasks. For example, Deep Learning has proven excellent in human activity
recognition (HAR) tasks, where wearable sensors can connect people with the cyber–
physical system through HAR [8]. Deep Learning has also been employed for tipping-
point prediction, with performance better than traditional early warning systems [9].
Nevertheless, the reliability of these forecasting methods is not guaranteed [10]. Deep
Learning methods may also face the overfitting problem. Common preprocessing methods
like smoothing, transformation, and estimation can remove the noise in time series signals in
advance and improve the overall performance of the time series models. The performance
of Deep Learning models may improve with preprocessing of time series inputs, usually
on conditions that the data distribution at test time is similar to that at training time.

When building ML models, it is usually assumed that the distribution of the data is
stationary. When the statistical properties of a time series do not depend on time, the time
series is called stationary [2]. It is possible that a time series is stationary in terms of one
characteristic while non-stationary for another characteristic. Mathematically, a time series
TS(yt) is defined to be (weakly) stationary if all time t:

E(yt) = E[(yt−1)] = µ,

Var(yt) = σ2 < ∞,

Cov(yt, yt−k) = γ(k),

where the expected value µ is represented by E(.), the variance σ2 by Var(.), and the
covariance γ by Cov(.), respectively [11]. If the stationary conditions are no longer true, the
non-stationary behaviors may pose significant difficulties for time series applications like
remote sensing [12].

In many real-world applications, the stationarity of the datasets may no longer be true.
There are four basic components that can cause the non-stationarity in some time series.
These four components are trend, seasonal, cyclical, and irregular components [13]. The
trend component refers to long-term increases or decreases over time, with examples like
long-term population growth. The seasonal component refers to the existence of seasonality
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patterns, like, for example, time series with yearly, quarterly, or monthly patterns. The
cyclical component refers to the patterns of ups and downs of a time series over the duration
of a cycle. The economic time series data of economic growth and then economic recession
may have a cyclical component. The irregular component is due to unpredictable factors
and does not repeat with particular patterns. For some time series data that exhibit a simple
trend, seasonal, and cyclical components, DL methods may be deployed directly with
satisfactory results, as seen in the first part of Section 2. For some more complicated sensor
time series datasets, advanced preprocessing tools may be needed, as seen in the second
part of Section 2. Among the time series datasets that can not be handled well with both
advanced preprocessing and DL methods, some may fit the scenarios for the deployment
of CL methods, which are described in detail in Section 3.

Continual learning is a paradigm of machine learning that may handle some of the
non-stationary situations while imitating the capability of human intelligence to handle new
situations from the old experiences learned. CL algorithms are developed to mimic human
intelligence that will rarely forget all of the learned information, as the natural system will
only gradually lose the learned information [14]. On the other hand, traditional neural
networks (NNs), while mimicking human cognition, lack this ability and face catastrophic
forgetting (CF). If Deep Learning methods are naively employed in CL tasks, learning on
shifted distribution may lead to CF problems. The capability of how to learn continually is
one of the biggest unsolved issues in ML [15], while forgetting learned knowledge is the
key obstacle to continual learning [16].

This survey focuses solely on real-world practical time series applications with DL
and CL. Lange et al. [17] presented a survey on CL about the stability–plasticity trade-off
and focused on the problems of classification only. The motivation for them to limit the
discussion to classification alone is that NN has been very well-established for classification
tasks. In the survey [18], it was highlighted that the most recent surveys usually covered
continual learning partially, like biological underpinnings [19–22], visual classification
tasks [23–26], NLP tasks [27,28], and RL [29]. Wang et al. [18] talked about only five
tasks of practical CL applications, i.e., object detection, semantic segmentation, conditional
generation, reinforcement learning, and NLP. None of the above-mentioned recent CL
surveys focused on time series analysis tasks like time series forecasting. The focus of this
survey is solely on the current application case studies of DL for sensor time series datasets.
It provides a summary of the difficulties that the DL faces in deployment for real-world
sensor applications and the advanced preprocessing techniques for how to address some of
these practical difficulties. There are some cases that typical DL approaches, together with
advanced preprocessing techniques, can handle well. Nevertheless, in some other time
series application cases, continual learning is found to be suitable for deployment. The
topic of deploying CL for sensor time series modeling has not been systemically covered in
these previous surveys.

This paper is organized with the following sections, covering the recent time series
applications of Deep Learning and continual learning. In Section 2, firstly, the focus is on
the current advances in deploying Deep Learning methods for sensor time series modeling.
Then, the recent sensor case studies that still require data preprocessing techniques for DL
modules are highlighted. In Section 3, a summary of the sensor time series datasets and
environments that suit the deployment of continual learning methods is undertaken.

2. Advances in Deep Learning Methods for Time Series Modeling

Deep Learning is capable of modeling the complex non-linear relationships among
the variables, while traditional neural network needs to assume that all input vectors are
independent, which may lead to its ineffectiveness for sequential data prediction [30]. Com-
paring DL with the conventional time series methods [13,31], it is found that Deep Learning
models can give better representation and classification. Cai et al. [31](2019) investigated
the day-ahead multi-step load prediction of commercial buildings with RNN and CNN
against autoregressive integrated moving average with exogenous inputs (ARIMAX), a
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popular traditional time series method for the time series modeling of load forecasting.
The results show that the CNN approach with a direct multi-step procedure can perform
better than the seasonal ARIMAX by a 22.6% improvement in prediction accuracy. This
illustrated that the Deep Learning hierarchical structure may have the capability to han-
dle data-dependent uncertainty better. It is also shown that the long-term trends can be
explored better when the preprocessing tool of the moving averages method is deployed
for smoothing the short-term fluctuations. Mahmoud and Mohammed [13] presented a
survey of Deep Learning models, such as CNN, RNN, LSTM, GRU, deep autoencoders
(AEs), restricted Boltzmann machines (RBM), deep belief networks (DBNs), in the time
series forecasting of electricity load and price, solar power, and finance, with comparison
results showing that DL performs better than classical methods.

After discussing the advantages of deploying DL methods with time series data, the
following Table 1 shows a synthetic summary of the advances in Deep Learning techniques
for real-world sensor time series applications, followed by a detailed description of the
corresponding methods, motivations, and advantages. The following Figure 1 shows
the tree diagram grouping the popular Deep Learning methods for sensor time series
classification and forecasting tasks covered in this survey.

Table 1. Summary of the advances in DL techniques for sensor time series applications.

Ref. First Author Year Application
Field Datasets Deep Learning

Models Accuracy Details

[32] Choi 2021
Time series

anomaly
detection

Water treatment
test-bed, water

distribution pipelines,
Mars Science

Laboratory rover

RNN, CNN, hybrid,
attention

No clear
one-size-fits-all

method

Compare DL anomaly
detection time series

models with
benchmark datasets

[33] Deng 2021

Detecting
deviation from

normal
patterns

Sensor time series
datasets of water

treatment systems
(SWaT and WADI)

Graph Deviation
Network

54% better
F-measure than the
next best baseline

Combine graph neural
networks with

structured learning
approach

[34] Jiang 2020 Time series
classification

UCR Time Series
Classification Archive

MLP, CNN,
ResNet

Not significantly
better than 1-NN
classifiers with
dynamic time

warping

Conduct comparison
between nearest
neighbor and DL

models

[35] Ismail Fawaz 2019 Time series
classification

Univariate
time series datasets of
the UCR/UEA archive

MLP, CNN, Echo
State Network

SOA performance
achieved with
CNN and deep

Residual Networks

Conduct empirical
study of DNNs for TSC

[36] Han 2022

Leaf and wood
terrestrial laser
scanning time

series
classification

Seven broad-leaved
trees (Ulmus

americana) with a Rigel
VZ-400i

Fully Convolutional
Neural Network,

LSTM-FCN, ResNet

Accurate
separation of leaf

and woody
components from

point clouds

Compare DL models
on leaf and wood

classification with a
time series of geometric

features

[37] Campos-
Taberner 2020 Classification

of land use
Sentinel-2 time series

data
2-layer Bi-LSTM

network

Achieving best
overall accuracy of

98.7%

Evaluate deep
recurrent network

2-BiLSTM for land use
classification

[38] Naqvi 2020

Real-time
classification of

normal and
abnormal
driving

Database of driver
facial emotion and gaze CNN

Superior
performance vs.

previous methods

Apply CNN to find
changes in gaze from

driver’s images

[39] Zheng 2020
Traffic flow
time series
forecasting

Traffic flow time series
from OpenITS LSTM Outperform the

ARIMA and BPNN
Deploy LSTM for

traffic flow forecasting
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Table 1. Cont.

Ref. First Author Year Application
Field Datasets Deep Learning

Models Accuracy Details

[40] Hua 2019

Traffic
prediction and
user mobility
of telecommu-

nication
problems

Traffic time series Random
Connectivity LSTM

Reduced
computing

complexity by 30%

Deploy the Random
Connectivity LSTM for

traffic and user
mobility prediction

[41] Chen 2020
Equipment
reliability
prediction

Reliability test data of a
cylinder in the small

trolley of vehicle
assembly plant

Deep Learning
method based on

MLP

Significant
improvement over

PCA and HMM

Employ DNN
framework for

reliability evaluation of
cylinder

[42] Lim 2021 Time series
forecasting

M4 competition (Smyl,
2020)

Exponential
smoothing RNN

Hybrid model with
better performance
than pure methods

Conduct survey of
common encoders and
decoders for time series

forecasting

[43] Yasrab 2021 Plant growth
forecasting

Public datasets
(Arabidopsis and

Brassica rapa plants)

Generative
Adversarial Network

Strong
performance

matching expert
annotation

Employ generative
adversarial predictive
network for leaf and

root predictive
segmentation

[44] El-Sappagh 2020

Alzheimer’s
disease

progression
detection

Time series data from
Alzheimer’s Disease

Neuroimaging
Initiative

Ensemble of stacked
CNN and

Bidirectional LSTM

Much better than
conventional ML

Deploy deep network
for detecting common

patterns for
classification and
regression tasks

[45] Lara-Benitez 2021

Twelve time
series

forecasting
tasks

Twelve public
datasets cover time

series applications like
finance, industry, solar
energy, tourism, traffic,

and
internet traffic

MLP, Elman RNN,
LSTM, Echo State
Network, GRU,
CNN, Temporal
Convolutional

Network

LSTM and CNN
are the best choices

Evaluate seven popular
DL models in terms of
efficiency and accuracy

[46] Cao 2020

Investigating
temporal

correlations of
intra-series

and the
correlations of

inter-series

Time series datasets
from energy,

electrocardiogram, and
traffic sectors

Spectral Temporal
Graph Neural

Network

Outstanding
forecasting results,
plus advantage of

interpretability

Develop the Spectral
Temporal Graph

Neural Network for
multivariable time
series forecasting

[30] Rajagukguk 2020

Prediction of
solar

irradiance and
photovoltaic

Time series data of
temperature, humidity,

and wind speed

RNN, LSTM, GRU,
CNN-LSTM

Better prediction
results than

conventional ML

Evaluate models based
on accuracy, forecasting
horizon, training time,

etc.

[47] Torres 2018
Solar energy
generation
forecasting

Two-year time series of
PV power from a
rooftop PV plant

Deep Learning
approach, based on

the H20 package
with the grid search

method for
hyper-parameter

optimization

Particularly
suitable for big

solar data, given its
strong computing

behavior

Deploy DL approach
for solar photovoltaic
power forecasting for

the next day

[48] Xiao 2019

Prediction of
sea surface

temperature
(SST)

SST time series
data from 36-year
observations by

satellite

Convolutional Long
Short-Term Memory

Outperform
persistence model,

SVR, and two
LSTM models

Deploy ConvLSTM to
capture correlations of
SST across both space

and time

Multi-layer perceptron (MLP), recurrent neural network (RNN), Long Short-Term
Memory network (LSTM), convolutional neural network (CNN), graph neural networks
(GNN), deep belief network (DBN), autoencoder (AE), and neural networks with an
attention mechanism are popular DL methods that have been used by the authors in
this survey.
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Figure 1. Tree diagram for grouping the popular Deep Learning methods for sensor time series
classification and forecasting tasks covered in this survey [30,32–48] (note: if a paper uses two
methods separately with similar satisfactory results, the paper will be listed under both groups).

2.1. Multi-Layer Perceptron

MLP is the most conventional and simplest Deep Learning structure and is fully
connected (FC) between layers. All the neurons in one layer are connected to every neuron
in the nearby next layer. This means that each time series record is assigned its own weight,
and the temporal information is not utilized [35]. During the training phase of the MLP,
the weight between the neurons of two nearby layers can be estimated by the minimization
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of cost function through gradient descent optimization. The computing of the gradient of
the cost function is used in the back-propagation algorithm.

Jiang [34] conducted a comprehensive evaluation of the Deep Learning methods
(MLP, CNN, and ResNet) against a conventional machine learning method—the nearest
neighbor. The 1-NN classifiers are deployed with eight different distance measures. A
total of 128 univariate time series datasets about image, motion, and sensor from the UCR
Time Series Classification Archive [49] were tested for the classification performance of
the models. The experimental results showed that the Deep Learning methods could have
better performance than the nearest neighbor, but their difference is not significant when
appropriate distance measures are deployed for the nearest neighbor based on the types of
the time series datasets.

Ismail Fawaz et al. [35] comprehensively evaluated the performance of three popular
structures of Deep Learning for time series classification (TSC), i.e., MLP, CNN, and Echo
State Network (ESN). The Deep Learning models for TSC tasks can be classified as gen-
erative and discriminative approaches. The essential structure of ESN is the reservoir, a
sparsely connected random RNN with random initialization in the hidden layers. Jaeger
and Haas [50] invented the ESN in 2004 for time series forecasting for wireless communica-
tion tasks. The evaluation was conducted with the 85 univariate time series datasets of the
UCR/UEA archive [51] and 13 MTS datasets from Baydogan’s archive [52]. For univariate
time series applications, a one-dimensional CNN model is used, and the filter can be
viewed as performing a non-linear transformation for the time series. For multivariate time
series, the dimensions of the filter are set to be the number of dimensions of the time series.
For time series classification, the final layer is the discriminative layer which can assign
probability distribution for the class variables of the time series concerned. The results
supported that end-to-end Deep Learning is able to reach state-of-the-art performance for
TSC tasks.

Chen et al. [41] presented a Deep Learning method based on MLP for equipment
reliability prediction with sensor time series data. Condition monitoring for equipment and
its maintenance prediction is important for smart manufacturing. It is desirable to conduct
maintenance before the machine failure happens. The experiment was conducted with a
reliability test of a cylinder in the small trolley of vehicle assembly plant. As it takes longer
to complete each operation for an aging cylinder, the cylinder operation duration can serve
as the time series inputs for the Deep Learning method. The results show that the Deep
Learning method can perform much better than conventional machine learning methods.

Lara-Benitez et al. [45] compared the performance of seven popular Deep Learning
algorithms against twelve time series forecasting tasks. Time series forecasting is the
process of utilizing relevant historical time records to determine future values. When
deploying CNN for time series modeling, causal convolutional filters are used to ensure
that forecasting is made only based on past information in the time series [53]. The same
as standard CNN, temporal CNN also shares the same assumption that the relationships
among the time series variables are time-invariant. In attention mechanisms, the temporal
features of the time series signals can be aggregated with the dynamical generation of
weights by the attention layers. The attention network can pay more attention to the
significant historical event, no matter how far back it is in the key-value lookup window.
The Deep Learning models are MLP, four models of recurrent networks (Elman RNN,
LSTM, Echo State Network, GRU), and two convolutional networks (CNN and Temporal
Convolutional Network). The twelve public datasets cover time series applications like
finance, industry, solar energy, tourism, traffic, and internet traffic. The evaluation results
showed that LSTM performs the best, while CNN can also make accurate and stable
forecasting with less computational requirements. Another performance comparison of
Deep Learning methods can be found in Torres et al. [54], making a summary of the
satisfactory time series forecasting applications of the popular Deep Learning models
(ENN, LSTM, GRU, BRNN, MLP, CNN, and TCN) in the sectors like energy, environment,
finance, health, industry, and image. The practical tip on how to set hyper-parameters
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has also been covered. The four main types of hyper-parameter optimization methods are
trial-error, grid, random and probabilistic.

Torres et al. [47] proposed a Deep Learning approach that was based on the H20
package written in R with the grid search method for hyper-parameter optimization and
implemented in the Apache Spark cluster environment. As the manufacturing cost for solar
panels decreases, solar energy is becoming much more popular. It is predicted that 30%
of the total electricity sources will be from solar energy in Australia by the year 2050 [55].
Factors like cloud cover, rainfall, solar radiation, and temperature can affect the gener-
ation of solar energy significantly and make the forecasting of solar energy generation
difficult. The dataset is the two-year time series of PV power with 30 min observation
interval. Its performance was compared with pattern-sequence-based forecasting (PSF) and
conventional neural networks. The experimental results supported that the Deep Learning
approach is very suitable for the solar energy forecasting task.

2.2. Recurrent Neural Network

RNN is designed with a state for the information at time steps such that it can handle
sequence data element-wise [56]. As it can maintain the dependencies among the time
series elements, RNN has gained success in different fields such as image captioning,
machine learning translation, speech recognition [57], and weather forecasting [58]. Elman
Neural Network (ENN) is an RNN model with a new hidden layer called the context layer,
which makes it capable of data sequence prediction. Nevertheless, RNN faces difficulties
due to the vanishing and exploding gradient problems during its training process. This
disadvantage of the vanishing gradient problem can be amplified when considering long-
range dependent relationships.

Choi et al. [32] focused on the frontier time series anomaly detection methods and
described how the methods model the interrelationship among variables and how the
temporal context was learned. Time series anomaly detection is about the identification
of unexpected events from the time series data. Because of their learning capability for
large-scale sequences, Deep Learning methods contribute significantly to multivariate time
series anomaly detection. Nevertheless, most of these methods have been developed for
very specific applications, and sufficient domain knowledge is necessary [32]. Benchmark
datasets of the water treatment test-bed, the water distribution pipelines, and the Mars
Science Laboratory rover were used to compare the performance of the methods (RNN,
CNN, hybrid, and attention). The result highlights that there is no single Deep Learning
method that can fit universally with all the time series tasks. Even though emerging Deep
Learning methods show encouraging results for multivariate time series anomaly detection,
most of these methods cannot explain the relationships among the sensors and thus have
limited ability to explain the deviations of the anomalous events.

Lim and Zohren [42] summarized the recent trends of Deep Learning models and hy-
brid models. Hybrid methods combining quantitative time series models with Deep Learn-
ing may address these limitations and improve the overall forecasting performance [42].
A hybrid model may be able to incorporate domain experts to feed the Deep Learning
model with prior information while addressing the issues associated with small datasets
and overfitting. Exponential smoothing RNN (ES-RNN) serves as a good example of how
the exponential smoothing module can help the RNN by addressing the non-stationary
trends of the time series by winning the M4 competition [59].

El-Sappagh et al. [44] presented an ensemble Deep Learning approach of stacked CNN
and Bidirectional LSTM (Bi-LSTM) models for AD progression detection. The temporal
information from sensor monitoring of chronic disease can be helpful for progression
detection, while the progression of chronic Alzheimer’s disease (AD) may be delayed if
it can be predicted at an early stage. The data of AD patients are heterogeneous multi-
modalities. Bi-LSTM is a special type of LSTM that can explore the dependencies of both
previous and future states [6]. For time series prediction with Bidirectional LSTM, once a
forecast is available in training, this value can be utilized for the subsequent readjustment
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process. This may result in a deeper understanding of the context concerned. The model
can handle the fusion of the five different types of time series data along with background
knowledge. The stacked CNN and Bi-LSTM models are capable of extracting both local
and longitudinal features of the modality, and the system can make predictions based on
these resultant features. The time series data from the Alzheimer’s Disease Neuroimaging
Initiative were used, and the results support the superior performance of the proposed
ensemble Deep Learning approach. For traditional methods to succeed in structural health
monitoring, suitable preprocessing of the raw sensor time series data is nearly always
needed. Dang et al. [60] applied four popular Deep Learning models, i.e., MLP, LSTM, 1D
CNN, and CNN, for structural damage detection with raw time series data. No feature
engineering procedure like extracting structural characteristics was performed. Three
different structures covering small to large structures were tested. The experimental results
support that 2D CNN is the most reliable, even though the computational time of 2D CNN
is also the highest among the models.

2.3. Long Short-Term Memory

Hochreiter and Schmidhuber [61] designed a new RNN model, called Long Short-
Term Memory (LSTM), with an internal memory unit and gate mechanism, for addressing
the issues of vanishing and exploding gradient during RNN training. A self-feeding loop is
used in the inner layers of LSTM that can learn time-based correlations such that knowledge
from previous inputs can be used in the analysis of the present inputs. The three gates
implementation [6] of LSTM can reduce the effects of the vanishing gradient problem
faced by RNN. The three gates are the forget gate, update gate, and output gate. The
forget gate is to determine what information should be kept or not. The update gate is
to determine what new information should be utilized for updating the memory state.
The output gate is to determine the output value that will serve as the input in the next
hidden unit. This design can enable the keeping of longstanding related information
while forgetting unrelated information. Thus, LSTM has the capability to process the long-
term dependencies of information in temporal datasets and is deployed for applications
like speech recognition, traffic prediction, and weather forecasting. The Gated Recurrent
Unit (GRU) is designed with a less complex RNN structure than LSTM [62] but can also
remember useful information and explore the long-term dependencies of the variables. A
GRU has only two gates, i.e., the update gate and the relevance gate. The update gate is to
determine if the memory state is to update or not. The relevance gate is to determine how
related the previous memory state is for computing the next candidate. As GRU has only
two gates, it requires fewer parameters and computational time than LSTM [63] while still
keeping the capability for handling very long-range relationships among the time series.

Han and Sanchez-Azofeifa [36] investigated the leaf and wood terrestrial laser scan-
ning (TLS) time series classification with Fully Convolutional Neural Network (FCN),
LSTM-FCN, and Residual Network (ResNet). CNN has been found to be capable of per-
forming time series classification satisfactorily, as its multiple filters can produce multiple
discrimination features for classification from the temporal inputs [35]. It is also found
that the combined LSTM-FCN method can further improve the time series classification
results by FCN [64]. TLS point cloud data are useful for classifying the leaf and woody
components, and thus the leaf area index and wood area index. The TLS time series point
clouds were observed from seven broad-leaved trees (Ulmus americana). The experimental
results showed that all three models work better with multivariable time series than with
univariable time series. The three models can also work better than previous methods, and
all these three models produce similar performances on the testing time series.

Campos-Taberner et al. [37] investigated the interpretability of a 2-layer Bi-LSTM
network for the classification of land use in Valencia, Spain, with Sentinel-2 time series data.
Added-noise permutation procedure was employed in both temporal and spectral domains
for evaluating the impact of different spectral and temporal features on the accuracy
rate. The experimental results showed that the overall accuracy of 98.7% achieved by the
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proposed method is better than other classification approaches. The proposed system can
also show the relevance of predictors and highlight that the red and near-infrared Sentinel-2
bands contain the most helpful information, while the summer time series data is most
useful among the temporal information.

Zheng and Huang [39] deployed the Deep Learning LSTM network for the forecasting
of traffic flow time series. In an intelligent traffic system, the accurate forecasting of traffic
flow may help to reduce urban congestion. The traffic flow time series from OpenITS
with 5 min intervals in ten days was used, and its performance was evaluated with the
traditional statistical method (ARIMA) and the conventional machine learning method
(BPNN). The results support the superior prediction accuracy of the LSTM model, with
the mean absolute percentage errors of ARIMA, BPNN, and LSTM at 20.97%, 9.06%, and
4.82%, respectively.

Hua et al. [40] deployed the Random Connectivity LSTM (RCLSTM) for traffic predic-
tion and user mobility of telecommunication problems in order to reduce the computational
requirement of LSTM. In RCLSTM, the neurons are connected stochastically, and some
sparsity can be achieved in this random sparse graph model to reduce computing time.
RCLSTM is found to be suitable for latency-stringent tasks like traffic time series. Another
similar task is the evaluation of the traffic time series data from the GEANT backbone
network by Uhlig et al. [65]. The experimental results showed that the forecasting per-
formance of RCLSTM is similar to the traditional LSTM while successfully reducing the
computational time.

Rajagukguk et al. [30] investigated the prediction performance of solar irradiance and
photovoltaic (PV) power with four Deep Learning models against conventional machine
learning methods. As solar energy is renewable, solar photovoltaics has gained popularity
in the generation of electricity. For the PV prediction, the popular input time series data
are the temperature, humidity, and wind speed. The experimental results confirmed that
all four Deep Learning models, i.e., RNN, LSTM, GRU, and CNN-LSTM, can perform
the prediction better, with CNN-LSTM achieving the best performance but also needing
the longest training time period. In the hybrid model CNN-LSTM, the CNN layers can
perform the feature extraction of the input time series, while LSTM for sequence prediction.
CNN-LSTM has been designed with the capability to handle temporal prediction tasks and
applied in many real-world applications. Experimental results like [66] also supported the
consistently better performance by CNN-LSTM over LSTM for precipitation prediction.

2.4. Convolutional Neural Network

CNN is another popular neural network for time series modeling. CNN is a DL
method of interconnected feedforward network architectures consisting of a sequence of
convolution, pooling, activation layers, and, finally, fully connected layers [67]. Filtering
operation is performed in the convolutional layers through a feature map. Local confluences
of features are identified from the preceding layer through discrete convolution. Thus, this
type of model becomes known as a convolutional neural network. The pooling layer is
for reducing the input size and avoiding overfitting. The input for the last dense layer is
the flattened features from the convolutional and pooling layers, and the forecasting is
made in this dense layer. 1D CNN can be deployed for simple applications, while more
sophisticated models, like CNN-Net, Enoded-Net, and CNN-LSTM, have more advanced
structures like larger kernel size and denser layers.

Naqvi et al. [38] deployed a CNN model for detecting changes in gaze from the
face and left- and right-eye images. Driver time series data is helpful for the real-time
classification of normal and abnormal driving and, thus, for reducing aggressive driving.
The near-infrared (NIR) camera sensor is employed here to construct a large database of
driver facial emotion and gaze. The Dlib facial feature trackers were employed to identify
the region of interest (ROI) before feeding to the CNN model. The experimental results
supported the outstanding performance of the CNN model.
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2.5. Graph Neural Network

GNN is a neural network that processes the data with representation in graph domains,
like in chemical compounds, images, and web [68]. Graphs can be classified as cyclic,
directed, undirected, or a combination of these three. GNNs have been found useful for
applications including chemistry, citation networks, environmental condition forecasting,
molecular biology, physics, and social networks. A few DNN topologies may indeed be
viewed as GNN, for example, with CNN considered as a GNN with graphs of pixel-per-
grid grids.

Deng and Hooi [33] developed a Graph Deviation Network (GDN) model for discov-
ering the relationship graph among the sensors and for detecting deviation from normal
patterns. Graph neural networks can model the complex patterns in data of graph structure,
with the node state influenced by its neighbor note states. Velickovic et al. [69] developed
the graph attention network (GAT), which employed the attention function for evalu-
ating the various weights for various neighbors during aggregation. A difficulty for a
typical GNN model is that the graph structure is needed as an input, while this struc-
ture may not be known in advance. The proposed system consists of sensor embedding,
graph-structured learning, graph-attention-based forecasting, and graph deviation scoring.
The system is tested with two large-scale sensor time series datasets of water treatment
systems (SWaT and WADI). The experimental results supported the performance of the
proposed system, while the interpretable output can assist users in better understanding
and localizing anomalies.

Cao et al. [46] presented Spectral Temporal Graph Neural Network (StemGNN) with
Graph Fourier Transform (GFT) for capturing inter-series correlations and Discrete Fourier
Transform (DFT) for temporal correlations. A difficulty for multivariate time series is the
complexity involving both the temporal correlations of intra-series and the correlations of
inter-series simultaneously. The spectral representations obtained with GFT and DFT enable
the Deep Learning modules to have clear enough patterns for the analysis. The experimental
results from ten real-world time series public datasets (from energy, electrocardiogram, and
traffic sectors) confirm the performance of the proposed StemGNN.

2.6. Others and Hybrids

Hinton and Osindero et al. [70] developed the first model and training algorithm for a
deep belief network (DBN) in 2006. DBN has a hierarchical structure with a large number
of stacked restricted Boltzmann machines (RBMs) and utilizes a greedy layer-by-layer
learning approach with fine-tuning. The RBMs can efficiently extract the features for the
initialization of feedforward neural networks, hence improving the network generalization
capability. In each RBM, there is both a visible layer and a concealed layer consisting of
neurons. While the RBM’s layers are interconnected with each other, the units among each
layer are not. The updating of the network parameters can be done with a SoftMax classifier.

Autoencoder utilizes a feature learning paradigm that can learn para-metric maps
directly from inputs to corresponding representation [71,72]. An AE consists of an encoder
and a decoder. The encoder is for feature extraction, while the decoder is for mapping the
feature space back to the input space. The structure of the encoder and decoder is an input
layer, hidden layers, and an output layer. Back-propagation algorithm is deployed for
updating the weights of the hidden layers. Deep AE can serve as a data-driven approach
for learning feature extraction automatically.

Neural networks with an attention mechanism have succeeded in time series appli-
cations [73]. These networks can dynamically control the mapping from the inputs to the
outputs intelligently with other knowledge of the task. The transformer model is based
on an encoder–decoder architecture of these networks. The input is fed to the encoder,
which consists of a stack of encoders. Then, the transformer can generate the output based
on the encoded input and previous outputs in the decoder as well. A clear advantage of
transformers is the access to any points in the past, no matter how far their distances are,
leading to the capability to discover the long-term dependencies among the time series data.
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Yasrab et al. [43] designed a Generative Adversarial Network (GAN) for forecasting
the expected growth of the plant. Plant phenotyping is the investigation of plant trait
growth and other quantitative parameters and may be automated with the help of Deep
Learning. GAN is usually developed from CNN and is formed with two networks, i.e., the
generator and the discriminator. Both networks can learn together by competing with each
other to generate new examples of synthetic data. Segmentation masks of shoot and root
were generated to predict the plant system in the future. Two public datasets (Arabidopsis
and Brassica rapa plants) were used. The evaluation results illustrated that the proposed
system can reach the level with annotation by an expert.

Xiao et al. [48] developed a Convolutional Long Short-Term Memory (ConvLSTM)
model to utilize the spatiotemporal correlations of sea surface temperature (SST) for its
short and mid-term prediction. In the global ocean, SST has a significant influence on
the marine ecosystem. SST time series data from 36-year observations by satellite was
used to evaluate the ConvLSTM against the persistence model, support vector regression
model, and LSTM models. When handling spatiotemporal data by fully connected LSTM
(FC-LSTM), it is noted that the spatial correlations can be lost [66]. To address this issue,
the ConvLSTM replaces the FC-LSTM matric multiplication with convolution operation
in the transitions. This is to ensure that the model can explore both spatial and temporal
correlations. The experimental results confirmed that ConvLSTM performs better than
other methods for the one-to-ten-day-ahead prediction of SST time series.

2.7. Advanced Preprocessing and Deep Learning Applications

Feature engineering can be very important in the data preprocessing stage before
feeding data to the Deep Learning models by significantly reducing the computational
requirements for unnecessary features. Its importance is highlighted in the work of Elsayed
and Thyssens et al. [74], which evaluated the time series forecasting performance of eight
Deep Learning methods against the traditional machine learning method—the Gradient
Boosting Regression Tree (GBRT). External features were utilized for the target values, and
data flattening can obtain the one input instance for GBRT. The evaluation was conducted
with nine datasets covering air quality, electricity, finance, solar energy, and traffic. The
results showed that the window-based transformation could enable GBRT to achieve the
best forecasting performance over the Deep Learning models, covering various types like
matrix factorization, RNNs, LSTMs, and bi-directional LSTM models. It is shown that
simpler machine learning models with efficient feature engineering can outperform the
frontier Deep Learning methods without feature engineering. Dablander and Bury [9]
highlighted the importance of preprocessing by showing that the DL model cannot extract
enough relevant features for classifying the stationary AR(1) processes without detrending
or with a Gaussian filter. The results showed that the method might learn unique features
related to a Lowess filter instead of the relevant features of the system near the bifurcation.
Thus, careful planning is needed when deploying the preprocessing models.

The following Table 2 highlights the most recent case studies that advanced prepro-
cessing is still needed, along with the Deep Learning methods, for modeling different
popular types of sensor time series. In Table 2, a synthetic summary of the application
fields, the advanced preprocessing techniques, the DL methods, accuracy, and brief appli-
cation details is presented, followed by a more detailed description of the corresponding
methods, motivations, and advantages. The following Figure 2 shows the tree diagram
for grouping the popular preprocessing methods for sensor time series classification and
forecasting tasks covered in this survey.
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Table 2. Summary of the importance of advanced preprocessing techniques for real-world sensor
time series DL applications.

Ref. First Author Year Application Field Preprocessing
Methods

Deep Learning
Models Accuracy Details

[75] Kanani 2020

ECG time series
signals for

monitoring and
classification of
cardiovascular

health

Squeezing and
stretching of the signal

along the time axis
1D convolution

Achieved more
than 99%
accuracy

Develop a DL
architecture for the

preprocessing process
for increased training

stability

[76] Kisa 2020

Surface
electromyography

time series of
human muscles for

gesture
classification

Empirical mode
decomposition CNN

Worst results
for original

signal vs. all
IMFs images

Deploy EMD to
segmented signal to
obtain the Intrinsic

Mode Functions (IMFs)
images for CNN

[8] Zheng 2018

Classifying eight
daily activities
from wearable

sensors

Segmentation and
transformation

methods
CNN

Achieved best
results with

multichannel
method

Evaluate the impact of
segmentation and

transformation
methods on DL models

[77] Castro Filho 2020
Synthetic Aperture
Radar images for

rice crop detection

3D-Gamma
filter and method of
Savitzky and Golay

LSTM,
Bidirectional

LSTM

High accuracy
and Kappa

(>97%)

Apply 3D
spatial–temporal filters

and smoothing with
Savitzky–Golay filter to

minimize noise

[78] ReBwurm 2020

Classifying crop
type based on raw
and preprocessed
Sentinel 2 satellite

time series data

Atmospheric
correction, filtering of

cloud temporal
observations, focusing
on vegetative periods,
and masking of cloud

1D-convolutions,
RNN,

self-attention
model

Preprocessing
can increase
classification
performance
for all models

Present the
preprocessing pipeline,
including atmospheric

correction, temporal
selection of cloud-free

observations, cloud
masking, etc.

[79] Kingphai 2022

Classifying mental
workload levels
from EEG time
series signals

Independent
component analysis
based on ADJUST

CNN, Stacked
GRU,

Bidirectional
GRU,

BGRU-GRU,
LSTM, BiLSTM,
BiLSTM-LSTM

Most effective
model

performance
can be

achieved

Deploy automatic
ICA-ADJUST to

remove the frequently
contaminated artifacts

components before
applying DL models

[80] Yokkampon 2022
Anomaly detection

of multivariate
sensor time series

Multi-scale attribute
matrices

Multi-scale
convolutional

variational
autoencoder

Achieved
superior

performance
and robustness

Develop a new
ERR-based threshold

setting strategy to
optimize anomaly

detection performance

[58] Barrera-
Animas 2022 Rainfall prediction

Correlation matrix with
the Pearson correlation

coefficient

LSTM,
Stacked-LSTM,
Bidirectional

LSTM

Retained the
main features
of DL models

Apply Pearson
correlation matric for
unsupervised feature

selection

[81] Mishra 2020 Wind predictions

Discrete wavelet
transformation, fast

Fourier
Transformation, inverse

transformation

Attention, DCN,
DFF, RNN,

LSTM

Performed best
for attention

and DCN with
wavelet or FFT

signal

Propose a
preprocessing model of

discrete wavelet
transformation and fast
Fourier transformation

[10] Livieris 2020

Time series data
from energy
section, stock
market, and

cryptocurrency

Iterative
transformations and

Augmented
Dickey–Fuller test

LSTM,
CNN-LSTM

Considerably
improved the

DL forecasting
performance

Propose transformation
method for

enforcement of
stationarity of the time

series

[1] Asadi 2020 Traffic flow
time series

Time series
decomposition method

Convolution-
LSTM

Outperformed
SOA models

Deploy time series
decomposition method

for separating
short-term, long-term,
and spatial patterns
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Table 2. Cont.

Ref. First Author Year Application Field Preprocessing
Methods

Deep Learning
Models Accuracy Details

[82] Wen 2021
Survey of data
augmentation

methods

Data augmentation
methods (like time

domain and frequency
domain),

decomposition-based
methods, statistical
generative models

Deep generative
models

Show
successes in
time series

tasks

Compare data
augmentation methods

for enhancing the
quality of training data

[83] Azar 2020 Wireless network
with smart sensors

Discrete wavelet
transform and the

error-bound
compressor Squeeze

Resnet,
LSTM-FCN,

GRU-FCN, FCN

Achieve the
optimal
trade-off

between data
compression
and quality

Develop a compression
approach with discrete
wavelet transform and

error-bound
compressor

Kanani and Padole [75] presented a preprocessing framework that can increase the
electrocardiogram (ECG) classification accuracy of the Deep Learning methods significantly,
with a higher than 99% accuracy rate. ECG time series signals are very efficient for the
monitoring of cardiovascular health, with abnormal heartbeats detected from the ECG
patterns. The labeled MIT-BIH Arrhythmia dataset, which has ECG time series signals of
five different classes, was tested. The proposed preprocessing steps include the squeezing
and stretching of the signal along the time axis and the amplifying and shrinking of the am-
plitude of the signal. It is shown that these transformations do not change the characteristics
of the signals and can be regarded as completely lossless transformations here.

Kisa et al. [76] deployed an adaptive preprocessing method with empirical mode
decomposition (EMD) was proposed to handle this nonstationary time series, as the sur-
face electromyography (sEMG) time series is nonstationary and nonlinear. sEMG can be
employed to measure the electrical activity of human muscles. The recognition of human
movements is useful for applications like human–computer interaction (HCI). The sEMG
hand gesture time series data was obtained with a sensor device of surface bipolar elec-
trodes with 30 healthy volunteers. EMD can serve as a non-linear filter to decompose the
input time series into several intrinsic mode functions (IMFs). The outputs of the IMFs
were then fed into the Deep Learning model CNN based on Residual Networks (ResNet)
for gesture classification. It is found that the IMFs can improve the validation accuracy of
the original time series from 94.22% to a maximum of 99.73%.

Zheng et al. [8] investigated the segmentation and transformation methods for their
effectiveness in data preprocessing for Deep Learning algorithms. In HAR tasks, segmen-
tation methods are essential as raw inertial time series can have very large fluctuations.
Five segmentation options of five different segment lengths were evaluated with four
transformation methods, i.e., raw plot, multichannel, spectrogram, and spectrogram with
shallow features. The experiment was conducted with datasets of eight daily activities
from wearable sensors, car workshop maintenance activity data, etc. The results showed
that the classification accuracy increases along with an increase in segment length, and
the multichannel method can perform the best for the HAR tasks. The overall accuracy is
97.2%, which is better than many other machine learning models.

Castro Filho et al. [77] applied a two-stage noise scheme for preprocessing SAR time
series, as there are inevitable noises like speckles for Synthetic Aperture Radar (SAR) images.
SAR sensors can be employed for mapping the rice-growing regions and constructing
continuous time series data. The SAR data is very useful for monitoring short phenological
stages and raising the classification capacity. 3D-Gamma filter was used to eliminate the
speckle, and the method of Savitzky and Golay [84] was employed to smooth the time
series. The processed time series was fed to two Deep Learning methods, the Long Short-
Term Memory model and the Bidirectional LSTM model, for mapping rice crops with SAR
sensor time series from West Rio Grande do Sul (Brazil). The results were compared with
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conventional machine learning models, with BiLSTM showing the best performance in the
McNemar test.
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Figure 2. Tree diagram for grouping the popular preprocessing methods for sensor time series
classification and forecasting tasks covered in this survey [1,8,10,58,75–83] (note: if a paper uses
two methods separately with similar satisfactory results, the paper will be listed under both groups).

ReBwurm and Korner [78] investigated the effectiveness of Deep Learning models
for the classification of crop type based on raw and preprocessed Sentinel 2 satellite
time series data. With the advance of remote sensing technologies, the amount of the
Earth observation time series data has been greatly increasing over recent years. While
many traditional models for remote sensing applications require preprocessing and feature
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extraction, ReBwurm and Korner [78] checked if the current Deep Learning methods are
able to utilize the raw time series data directly without data preprocessing. Atmospheric
correction, filtering of cloud temporal observations, focusing on vegetative periods, and
masking of clouds, which are typical preprocessing methods for satellite time series, have
been applied. Additionally, 1D-convolutions, recurrent neural networks (RNN), and
the self-attention model of the encoder architecture of the Transformer network [85] are
deployed and evaluated. The results show that self-attention and RNN can perform better
for raw data, while the preprocessing process can improve the results for all three methods
satisfactorily.

Kingphai and Moshfeghi [79] employed seven Deep Learning models, i.e., convolu-
tional neural network (CNN), Stacked Gated Recurrent Unit (SGRU), Bidirectional GRU
(BGRU), BGRU-GRU, LSTM), Bidirectional LSTM (BiLSTM), and BiLSTM-LSTM, for clas-
sifying mental workload (MWL) levels from electroencephalography (EEG) time series
signals. MWL can lead to a better understanding of human performance in complex envi-
ronments. EEG time series can be utilized for classifying the mental workload level of a
human subject. The dataset STEW contains signals from 48 subjects in the resting and work-
ing states. Preprocessing is needed because there is usually noise in the EEG signals. The
independent component analysis based on ADJUST (ICA-ADJUST) by Mognon et al. [86]
was found to be the most effective preprocessing tool for this dataset by Kingphai and
Moshfeghi [87]. Kingphai and Moshfeghi [79] extracted four groups of features (frequency
domain, time domain, linear domain, and non-linear domain) for the Deep Learning mod-
els. The results showed that BiLSTM-LSTM performed best with 94.75% accuracy for
classifying resting vs. working states, while BGRU-GRU was best for classifying low vs.
moderate vs. high MWL levels with 83.03% accuracy.

Yokkampon et al. [80] deployed multi-scale attribute matrices as the preprocessing
tool for transforming the multivariate time series to develop a multi-scale convolutional
variational autoencoder for unsupervised anomaly detection of multivariate sensor time
series datasets. The attribute matrices can utilize the pair-wise inner product of the time
series among segments and effectively characterize system states of the time series. The
identification of anomalies is about detecting data points that deviate significantly from
their expected values. There are three types of time series anomalies: (1) point anomalies,
which refer to outlier points; (2) contextual anomalies, which differ significantly from
typical points of the same context; and (3) collective anomalies, which refer to the existence
of a subset of time series data points with a significant difference from the other points in
the whole dataset [88]. Anomaly detection can be employed in many real-world cases, like
fraudulent transaction detection, sensor network fault analysis, and abnormal equipment
monitoring. The proposed model was tested with four publicly available benchmark
datasets: the time series data by the Australian Centre for Remote Sensing, the Wafer time
series dataset of semiconductor microelectronics fabrication, the Emotiv EEG Neuroheadset
time series dataset, and Opt handwriting dataset. The experimental results show that the
model performed better than other baseline methods.

In the investigation by Barrera-Animas et al. [58], before feeding the time series data
into the DL models, the feature selection process was achieved with the correlation matrix
(CM), which is computed with the Pearson correlation coefficient for the 43-dimensional
datasets. Rainfall prediction is complicated because of its nonlinear characters. Spa-
tial information like latitude and longitude and atmospheric information like humidity,
pressure, temperature, and wind speed may be utilized for the forecasting models. Barrera-
Animas et al. investigated the effectiveness of Deep Learning models, including LSTM,
Stacked-LSTM, and Bidirectional LSTM, with the conventional machine learning (ML)
model XGBoost, and also automated machine learning (AutoML) with the TPOT tool [89],
which can be regarded here as an ensemble of ML models. OpenWeather data of five UK
cities from 2000 to 2020 were evaluated. Highly correlated features will be eliminated. The
experimental results highlighted that the Stacked-LSTM with two hidden layers and the
Bidirectional LSTM could obtain the best performance in rainfall forecasting.
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Mishra et al. [81](2020) evaluated the wind predictions with five Deep Learning meth-
ods against three data preprocessing tools. The five methods are the attention mechanism
(Attention) of sequence-to-sequence encoder–decoder architecture [90], deep convolutional
network (DCN), deep feed Forward (DFF), recurrent neural network (RNN), and LSTM.
The dataset is the time series of the temperature and wind power variable. Discrete wavelet
transformation and fast Fourier transformation (FFT) are employed to transform the time
series dataset before feeding to the Deep Learning models, while inverse transformation
was applied to the DL model outputs before making predictions. The experimental results
showed that Attention and DCN work the best with wavelet and FFT, while some other
models work better with no need for data preprocessing.

Livieris et al. [10] proposed a preprocessing framework to further improve the ef-
ficiency and reliability of the Deep Learning methods. Iterative transformations and
augmented Dickey–Fuller test were applied to the time series data for obtaining stationary
processed time series data before feeding to the Deep Learning model. The Ljung–Box
Q test was employed to check the autocorrelation of the model’s errors. Time series data
from energy section, stock market, and cryptocurrency were tested, and the experimental
results showed that the proposed preprocessing framework could enhance the efficiency,
accuracy, and reliability of the Deep Learning LSTM and CNN-LSTM models considerably.
Livieris et al. [91] continued their work on the investigation of the preprocessing frame-
work for Deep Learning models. On top of their previous focus on the transformation of
non-stationary time series to stationary by differencing the time series, the raw time series
is now subject firstly subject to the exponential smoothing method, which can transform
the raw data to a de-noised version. This process is to increase the quality of the time series
data and thus improve the prediction capability of the Deep Learning model CNN-LSTM.
The experimental results with cryptocurrency, energy, and stock markets confirmed that the
preprocessing framework could significantly achieve its objective of further improvement
for the Deep Learning models.

Asadi and Regan [1] employed the time series decomposition method to obtain the
short-term, long-term, and spatial patterns in the proposed preprocessing framework.
The short-term patterns of the spatial time series were explored with the fuzzy clustering
method, which can group neighboring time series together according to the checks on the
residuals of the time series. These residuals in spatial time series can provide meaningful
patterns with neighboring locations, like showing how the traffic is evolving in the road
network. The traffic flow time series dataset was tested, and the method can obtain better
results than both the baseline and state-of-the-art methods.

Wen et al. [82] presented a survey of the data augmentation methods that are specif-
ically designed for handling time series datasets. Because many real-world applications
like medical time series or anomaly detection time series face the problem of not having
enough labeled data, it can be very helpful to have an effective way that can enlarge the
size and improve the quality of the training data during deploying Deep Learning on time
series datasets. Data augmentation has been found very suitable for this task, as it can
generate data synthetically for unexplored input space with correct labels. Not only basic
data augmentation methods, like time domain and frequency domain, but also advanced
methods, like decomposition-based methods, statistical generative models, and deep gen-
erative models, are covered in the survey by Wen et al. These augmentation methods are
found to be effective in time series classification, time series anomaly detection, and time
series forecasting.

Azar et al. [83] developed a compression module for both univariate and multivari-
ate time series data with the discrete wavelet transform and the error-bound compressor
Squeeze (SZ). On-board processing and compression algorithms can reduce the problems
associated with the transmission of large data volumes in applications of the Internet of
Things (IoT). This preprocessing procedure is especially important for the sensor systems
in IoT, as they may only have very limited bandwidth, memory, and computational power.
The processed time series data is then sent to the Deep Learning models (Resnet, LSTM-
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FCN, GRU-FCN, FCN) for time series classification. The Fully Convolutional Network
(FCN) deployed here consists of a convolutional layer with filters, a batch normalization
layer, and then a ReLU activation layer. The experiment was conducted with time series
datasets (UCR, UCI, and UEA) from sensors of ECG, motion, etc. The results supported
that the compression approach can achieve a high compression ratio, while its time series
denoising capability enables the Deep Learning module to achieve satisfactory classifica-
tion accuracy.

3. Advances in Continual Learning Methods for Time Series Modeling

In the previous section, applications of Deep Learning models and preprocessing
methods in different real-world time series scenarios have been reviewed. Limitations of
Deep Learning models include a strict static requirement for the underlying process [92].
Post-deployment changes are not uncommon in the real world, but the DL methods are
usually of fixed network structure after being deployed. When DL models are fed with data
not following the independent and identically distributed (i.i.d.) assumption, destructive
interference may occur and cause performance degradation [93]. Continual learning may be
deployed to address these difficulties faced by DL models in such a way that Deep Learning
models may benefit from continual learning to become capable of learning continually
with adaptability.

A major characteristic of continual learning is its sequential learning process. At each
time, only a small amount of the input data is available. Other names for CL include lifelong
learning, sequential learning, and incremental learning. Mathematically, the continual
learning for both classification and time series regression problems can be expressed as
follows [94]: Let T = (T1, . . . , Tm) represent the m tasks that arrive in sequence. For task
Ti(i = 1, 2, . . . , m), there exist N instances of labeled time series data Di = {(xi,r, yi,r)}N

r = 1.
Here, time series xi,r ∈ Xi is associated with the corresponding target yi,r ∈ Yi. For
classification tasks, the target space Yi refers to class labels. For time series regression tasks,
the target space Yi refers to real numbers. A constraint of continual learning is that for
any task Ti, there exists no access to the data of previous tasks Tj(j = 1, . . . , i− 1). The
common goal of each task is to learn a solver model Mi, such that Mi : Xi → Yi , with
trainable parameters θi and estimated target ŷi,r = Mi(xi,r; θi). Let L(yi,r, ŷi,r; θi) represent
the training objectives. For classification problems, this can be the standard cross-entropy
loss, while for time series regression problems, this can be the squared-error loss. Then,

Li =
q
N

N

∑
r=1

L(yi,r, ŷi,r; θi) +

(
1− q

(i− 1)N

)i−1

∑
j=1

N

∑
r=1

L
(
yj,r, Mi

(
x̂j,r; θi

)
; θi

)
where N refers to the number of instances, and 0 < q ≤ 1 refers to the importance assigned
to data from Ti.

There are several popular CL scenarios, like Instance-Incremental Learning (IIL),
Domain-Incremental Learning (DIL), Task-Incremental Learning (TIL), Class-Incremental
Learning (CIL), Task-Free Continual Learning (TFCL), and Online Continual Learning
(OCL). This taxonomy is based on how the incremental batches are divided and which
task identifies are available [18]. IIL refers to scenarios where all training samples arrive in
batches and belong to the same task. DIL refers to scenarios where task identities are not
needed; tasks have different input distributions but the same data label space. TIL refers to
scenarios where task identities are available during both training and testing, and tasks
have disjoint data label spaces. CIL refers to scenarios where task identities are available
only during training and tasks have disjoint data label spaces. TFCL refers to scenarios
where no task identity is available and tasks have disjoint data label spaces. OCL refers to
scenarios where training samples for each task arrive from the data stream one by one, and
tasks have disjoint data label spaces.

Flesch et al. [95] highlighted that for human continual learning, the extensive back-
ground statistical knowledge gained from previous unsupervised training might be utilized
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for rule learning at later stages, though with several conditions, while DNN suffers catas-
trophic forgetting (CF) problems. CF can be viewed as an issue stemming from the NN
stability–plasticity dilemma, and the CF effect is associated with the abrupt loss of previ-
ously learned knowledge [17]. Plasticity refers to the NN’s ability to learn new knowledge,
while stability means the storing of learned knowledge. CL can be employed in supervised
learning, semi-supervised learning, unsupervised learning, and reinforcement learning as
well. Shaheen et al. [96] discussed the applications of continual learning for autonomous
systems. The real-world systems of vehicles with self-driving capability, unmanned aerial
vehicles, and autonomous robotics were highlighted.

Various degrees of constraint simplification for solving the CF issue are imposed in
the current methods. There are constraints such as memory, computational power, and
data privacy. Nevertheless, there are issues when applying these methods, for example,
too rigid constraints that may break the idea of learning continually or too tailor-made
for solving a particular type of problem only. Pfulb and Gepperth [97] investigated the
CF problems in DNN with a very large number of datasets in visual classification. The
large-scale experiments show that no model and dataset is free of the CF problems, whilst
a few potential workarounds may enable a few models to become practicable in a few
application-level environments. Inspired by open-set recognition, Prabhu et al. [98] pre-
sented a model called GDumb, which is not tailor-made for CL tasks. GDumb starts with
storing samples greedily in memory as they arrive, and during testing, it proceeds with new
model training with samples only in the memory. GDumb is shown to outperform many CL
approaches and may serve as an alert to the current progress in CL for classification, with
the oversimplifications by some existing CL approaches to the problems resulting in little
real-world application value. In the deep autoencoder NN for time series forecasting [99],
buffers were deployed with online elastic weight consolidation to learn the probability
distribution of the data stream sequentially. A CL model with explicit memory structure
was used to address CF in their FFNN model for making long-term financial investment
decisions [100]. Chen et al. [101] employed graph neural networks with CL strategies—data
replay and parameter smoothing—for transferring learned knowledge to the current model
in their traffic flow forecasting framework.

The relationship between neural network architectures and CF was investigated, and
it was found that the network width has a significant effect on forgetting. Nevertheless,
when increasing the width to address CF, inefficiency problems like long computation time
and large energy waste inevitably appear. Lange et al. [17] investigated model capacity,
weight decay, dropout regularization, and the stability–plasticity trade-off among continual
learners. Lesort et al. [102] investigated the effects of the parameterizations of the DNN
output layer on learning and forgetting in CL. The evaluation is conducted in a simplified
learning environment, decomposing the model as a classifier part for the output layer and
a feature extractor part for the rest of the DNN. Weights modifications, interference, and
projection drift can be the causes of CF in the output layer. More knowledge is gained
about the continual learning in output layers. Instead of focusing solely on continual
learning, Mundt et al. [103] presented a framework combining concepts from CL, open
set recognition, and active learning. This holistic approach shows promising results in
addressing catastrophic forgetting and robustness for open-world applications.

Current limitations for CL applications include the predominant closed-world as-
sumption when deploying models, which requires that any new data follows the same
distribution as those used during training. When this closed-world assumption is no longer
valid, the neural networks may give false predictions with unknown situations or with
corrupted data [103]. Another limitation is that many current works in CL may not often
consider the scalability issue in potential applications, which may have a very large number
of sub-tasks and, consequently, huge amounts of samples.

Whilst most of the recent works on CL focus on supervised tasks, the over-specializing
of CL training for a single set of environments limits CL generalization to other types of
applications [104]. With most recent research focusing on the CL applications for classifica-
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tion tasks, this lack of attention may hinder time series applications like renewable energy
forecasting with CL models [99]. Deep Learning methods without the ability to remember
old knowledge may not handle well in real-world applications of time series forecasting
with non-stationary sequential data [105]. On the other hand, the current CL projects on
different time series regression tasks are showing encouraging results. Pham et al. [105]
designed a fast and slow learning network for online time series forecasting, with the
per-layer adapter for fast learning and associative memory for remembering and recalling
repeating past events. CL may be very useful for addressing financial time series problems,
which can appear everywhere and are commonly non-stationary [100], and for traffic flow
time series forecasting, which is essential for smart transportation. Most current methods of
traffic flow forecasting assume static networks [101]. Yet, real-world traffic flow networks
change constantly, like possible network modification and the addition of new parts [106].

After the above discussion illustrates the importance of continual learning among the
Deep Learning time series applications, a synthetic summary of the advances in continual
learning techniques for time series applications is presented in Table 3, followed by a
detailed description of the corresponding methods, motivations, accuracy, and brief details.
The following Figure 3 shows the tree diagram of the taxonomy of the continual learning
methods for sensor time series classification and forecasting.

Table 3. Summary of the advances in continual learning techniques for time series applications.

Ref. First Author Year Application
Field

Motivations for
Deploying CL

Continual Learning
Models Accuracy Details

[107] Sah 2022
Wearable sensors

for activity
recognition

Addressing the
catastrophic forgetting
in the non-stationary
sequential learning

process

A-GEM, ER-Ring,
MC-SGD

Still need
improvement for

multitask
training

Compare CL
approaches for sensor

systems

[108] Matteoni 2022

Human state
monitoring of

domain-
incremental

scenario

Overcoming the
non-stationary
environments

Replay, elastic weight
consolidation,

learning without
forgetting, naive and
cumulative strategies

Existing
strategies

struggle to
accumulate
knowledge

Assess the ability of
existing CL methods

for knowledge
accumulation over time

[93] Kiyasseh 2021

Multiple clinics
with various
sensors for

cardiac
arrhythmia

classification

Temporal data in clinics
are often

non-stationary

Buffer strategy to
construct the

continual learning
model CLOPS

Outperform
GEM and MIR

Apply
uncertainty-based

acquisition functions,
for instance, replay

[109] Kwon 2021

Deployment in
mobile and
embedded

sensing
devices

Addressing the
resources requirements
and limitations of the
mobile and embedded

sensing devices

CL approaches-
regularization, replay

and replay with
examples

Best results for
replay with
exemplars
schemes

Compare three main
CL approaches for

mobile and embedded
sensing applications

like activity
recognition

[110] Cossu 2021 Sensors of the
robotics system

Achieving walk
learning in different

environments

Continual learning in
RNNs

Highlight the
importance of a

clear
specification

Evaluate CL
approaches in

class-incremental
scenarios for speech

recognition and
sequence classification

[111] He 2022 Identification of
anomalies

Addressing the lack of
transparency for CL

modules

Explainability
module based on

dimension reduction
methods and
visualization

methods

Proposed
evaluation score
based on metric

Propose the conceptual
design of explainability

module for CL
techniques
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Table 3. Cont.

Ref. First Author Year Application
Field

Motivations for
Deploying CL

Continual Learning
Models Accuracy Details

[112] Doshi 2022 Video anomaly
detection (VAD)

Overcoming
practical VAD

challenges

Incremental updating
of the memory

module,
experience replay

Outperform
existing methods

significantly

Develop a two-stage
CL approach with

feature embedding and
kNN-based RNN

model

[113] Maschler 2021

Metal-forming
time series
dataset of a

discrete
manufacturing

Providing automatic
capability for adapting

formerly learned
knowledge to new

settings

Continual learning
approach based on

regularization
strategies

Improved
performance vs.

no regularization

Compare CL
approaches of
regularization

strategies on industrial
metal-forming data for

fault prediction

[114] Maschler 2020
Fault prediction
in a distributed

environment

Real-world restrictions
like industrial

espionage and legal
privacy concern

prevent the centralizing
of data from factories

for the DL training

LSTM algorithm with
elastic weight
consolidation

Promising results
for industrial
automation

scenarios

Apply elastic weight
consolidation for

distributed,
cooperative learning

[115] Bayram 2020 Auditory scene
analysis

Addressing high-value
background noise and

high computational
demands

Continual learning
approach based on

Hidden Markov
Model

Achieve high
accuracy

Develop an
HMM-based CL

approach with UED
and retraining for time

series classification

[106] Xiao 2022

Evolving
long-term

streaming traffic
flow

Addressing the
non-stationary data
distribution during

policy evolution

Prioritized
experience replay

strategy for
transferring learned

knowledge
into the model

Able to
continuously

learn and predict
traffic flow over

time

Formulate the traffic
flow prediction

problem as continuous
reinforcement learning

task

[116] Schillaci 2021

Transferring the
knowledge

gained from the
greenhouse

research facilities
to greenhouses

Addressing problems
like the requirement of
large-scale re-training

in the new facility

Continual learning
RNN model with
episodic memory

replay and
consolidation

Outperform
standard
memory

consolidation
approaches

Present a CL approach
of an episodic memory

system and memory
consolidation

[94] Gupta 2021

In-process
quality

prediction by
manufacturers

Addressing the lack of
practical variability
among industrial
sensor networks

Generator-based
RNN continual

learning module

Possible
significant

performance
enhancement

Deploy task-specific
generative models to

augment data for target
tasks

As it is NP-Hard to find the optimal CL algorithms which can completely avoid
catastrophic forgetting [117], polynomial time heuristic algorithms have been proposed to
address the CF problems. These CL algorithms can be classified into three families, i.e.,
regularization-based methods, replay methods, and parameter isolation methods, accord-
ing to the storage and usage method for task-specific information during the sequential
learning process [17]. Combined approaches refer to the mixing of the methods together,
and outstanding results can be obtained on benchmark datasets [103]. Another possible
taxonomy is of regularization-based approach, replay-based approach, optimization-based
approach, representation-based approach, and architecture-based approach [18]. This
survey will follow the taxonomy of Lange et al. [17] and Mundt et al. [103].
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3.1. Regularization-Based Methods

Regularization-based methods need to utilize an extra regularization term in the loss
function for combining previous knowledge during the learning process of new data.
Regularization methods focused on how to preserve previous knowledge. Extra loss terms
can be deployed to preserve the important weights gained from the learning of former
tasks. Elastic weight consolidation (EWC) [118], learning without forgetting (LWF) [119],
and knowledge distillation [120] are popular regularization approaches.

Sah et al. [107] investigated the performance of three recent continual learning ap-
proaches (A-GEM [121], ER-Ring [122], and MC-SGD [123]) for addressing the catastrophic
forgetting in wearable sensors for activity recognition. In a wearable sensor system, it
is necessary to have the capability to monitor and recognize activities across users. This
sequential learning process is non-stationary and challenging for Deep Learning methods.
The PAMAP2 dataset [124] of human activity recognition, consisting of sensor time series
data of eight subjects and twelve daily activities, is used for the evaluation. The results
showed that MC-SGD performed the best by reducing nearly 29% of the forgetting, while
its computational time is still much less than the joint-task training time.

Matteoni et al. [108] developed two benchmarks of human state monitoring of domain-
incremental scenarios for CL models. In non-stationary environments, recurrent neural
networks for time series data can be of large importance [110], and investigation of the
network properties in these situations may lead to a better understanding and applications
of CL models. A significant obstacle that hinders the development of CL models is the
shortage of enough standard benchmarks of time series datasets for the evaluation of the
CL models. The two benchmarks were derived from datasets WESAD [125] and ASCER-
TAIN [126] of time series classification from physiological sequence data. Different CL
models were investigated with these two benchmarks to understand the effects of catas-
trophic forgetting on recurrent neural networks. Four common CL models, i.e., replay [20],
elastic weight consolidation (EWC) [118], learning without forgetting (LwF) [119], and
naive and cumulative strategies, were tested. The results showed that all the CL models can
mitigate forgetting, but besides the replay model, all other models still can not accumulate
knowledge over time.

Kwon et al. [109] comprehensively investigated the performance of three CL approaches
—regularization, replay, and replay with examples for deployment in mobile and embedded
sensing devices. Most of the existing continual learning methods do not consider the
resource requirements and limitations of mobile and embedded sensing devices [127].
Three datasets of human activity recognition, two datasets of gesture recognition, and one
dataset of emotion recognition were investigated to find the trade-offs between system
performance, storage requirements, computational power requirements, and peak memory
requirements among the CL approaches. The results showed that the CL approach of
replying with exemplars works best after considering all the trade-offs.

Maschler et al. [113] evaluated the performance of a continual learning approach
based on regularization strategies, which mimic the human brain synaptic consolidation,
for industrial application. Existing methods for anomaly detection often lack the flexibility
to adapt to changes in the manufacturing processes [113], while continual learning can
help overcome this issue by providing the automatic capability for adapting formerly
learned knowledge to new settings. Real-world metal-forming time series dataset of a
discrete manufacturing process was tested, showing promising results for the regularization
strategies over the multilayer LSTM approach with no regularization. Online elastic weight
consolidation is found to provide better performance than elastic weight consolidation.
Maschler et al. [128] evaluated the performance of the regularization strategies against
the open-access lithium-ion battery degradation dataset [129] with the LSTM approach
for remaining useful lifetime prediction for lithium-ion batteries. The results of these
degradation datasets reinforce the findings for the discrete manufacturing process. Network
monitoring can produce a huge amount of multivariate time series data that are useful
for usage, like network anomaly detection. Gonzalez et al. [130] outlined their conceptual
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framework of variational autoencoders and dilated convolutional networks for network
anomaly detection. The deep generative replay is explored for extending the continual
learning capability to the proposed system. The teacher generative model can create
synthetic data to imitate previous training examples, while the new student model can
learn from current new data and also these synthetic data at the same time. This continual
learning module may help to address catastrophic forgetting.

Maschler et al. [114] proposed an LSTM algorithm with elastic weight consolidation for
fault prediction in a distributed environment. Continual learning has the potential to serve
as a distributed approach for fulfilling the industrial automation need, with Deep Learning
performing fault prediction for industrial automation. This is because many real-world
restrictions like industrial espionage and legal privacy concern prevent the centralizing of
data from factories for the training of the Deep Learning models. NASA turbofan engine
dataset [131] was used for performance evaluation. The experimental results showed that
their approach could perform effectively with distributed datasets with no requirement for
centralized data storage, satisfying the requirements of many real-world manufacturers.

Schillaci et al. [116] developed a continual learning RNN model with episodic memory
replay and consolidation driven by prediction errors for transferring the knowledge gained
from the greenhouse research facilities to real-world greenhouses. Without the CL capability,
this process may otherwise be expensive and risky for the crop due to problems like the
requirement of large-scale re-training in the new facility. Sensor time series data may help
to better understand the causal models of a dynamic system, and this is very useful for
real-world applications. Currently, popular causal discovery methods utilize only static
data or pre-processed time series data in advance, making them not very suitable for real-
world robotics cases. Continual learning may address this limitation in the causal discovery
methods [132] but is under-investigated for robot application [133]. Castri et al. [133]
focused on the constraint-based methods for causal discovery and outlined their approach
of re-learning the causal model during observed scenario changes and during a new set of
interventions. The new inference matric of the causal model is checked against the matric
of the old causal model to discover the still valid causal links from the old model for the
new model. This approach of only small incremental changes can help the robotic system
address the CF problem. CL module can also help the robotic system address the hardware
resource limitation. Sensors in a greenhouse can produce time series data like climate
time series and leave temperature time series. A better understanding of the complex
greenhouse and modeling of these greenhouse time series data can help to predict the
effects of intervention better, thus increasing the crop yield. Memory retention is based on
congruence against prior knowledge retained in the model, and the experimental results
showed that this memory replay strategy could enhance the performance of standard
memory consolidation approaches.

3.2. Replay Methods

Replay methods need to store either the raw samples or the generated pseudo-samples
from the generative algorithm. These stored previous samples can be replayed to address
forgetting during the learning of new tasks. Difficulties for this approach may include the
demand for resources of large storage capability and the privacy concerns for storing and
deploying samples in real-world applications. Pseudo-rehearsal techniques can handle
these difficulties with a generative model instead of storing past samples directly.

Kiyasseh et al. [93] utilized the replay buffer strategy to construct the continual learning
model CLOPS from the temporal data in clinics, which is often non-stationary, as multiple
clinical sites with various sensors are involved. Acquisition based on uncertainty was
deployed for the replay of buffer instances. Four clinical environments involving transitions
between data modalities, diseases, clinics, and time are suitable non-stationary scenarios
to test the performance of the continual learning approach. The results show that CLOPS
performs better in three scenarios than the two other frontier methods—GEM [134] and
MIR [135]. He [111] also focused on the target-domain incremental application scenario
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and data-domain incremental application scenario of continual learning and described
how their previous framework, CLeaR, can be extended to learn inputs successively. The
framework utilizes the storage of buffered data by a novelty detector. The application of
continual learning to the regression scenario for power forecasting was outlined.

Doshi and Yilmaz [112] proposed a new continual learning approach for video
anomaly detection. Sensors and cameras in CCTV systems are generating huge amounts of
real-time video temporal data, and data size may be too big to be investigated by humans.
There is currently limited research on the continual learning of the new video data [112].
The CL capability was achieved in two ways, by the incremental updating of the memory
module and by experience replay. A new, more comprehensive dataset was created, con-
sisting of training segments in splits and test segments taken from a camera in a street in
New Orleans, USA. Three existing benchmark datasets, i.e., UCSD Ped 2, CUHK Avenue,
and ShanghaiTech, are also evaluated. The experimental results show that the proposed
approach can perform excellently in overcoming practical VAD challenges.

Xiao et al. [106] have recently formulated the evolving long-term streaming traffic
flow problem of sensor time series data as a continuous reinforcement learning task. With
the advances in Deep Q-Networks (DQNs), which enable the learning of complicated rein-
forcement tasks, the research on reinforcement learning (RL) has grown enormously [136].
Agents in Deep RL have shown outstanding performance in settings with narrow tasks,
but RL agents face problems like the over-fitting tendency and the lack of generalization
capability to new variations [137]. This is in sharp contrast with the human ability to
learn continually and be adaptive to new scenarios over a lifetime, which is called CL.
DQNs face CF problems [118]. With the policy evolution leading to the non-stationary
data distribution, the CL concept can be applied in RL [104]. In this way, CL methods
may be used to address the CF, and solving this issue is crucial if the artificial agents are
going to have the capability to learn continuously [138]. The continual learner has the
advantage of adapting and recovering efficiently to changes encountered over time [29].
Here, the next flow value predictor is the agent, the next time series flow value in the sensor
is the agent, and the dynamical sensor and transportation network is the environment state.
The goal is to teach the autonomous agent to mimic sensor patterns and to plan the next
visit according to the sensor profile. Prioritized experience replay strategy is deployed to
transfer learned knowledge into the model, and KL divergence to utilize long-term pattern
into model induction.

3.3. Parameter Isolation Methods

In parameter isolation methods, specific model parameters are assigned to each task
such that possible forgetting can be avoided. The methods address the CF issues with
the isolation of task-specific parameters and then dynamically adapt the structure of the
model. New modules are deployed for the learning of new tasks while keeping the formerly
learned parameters unchanged. A problem associated with this approach is the potential
growth of network parameters required. Progressive networks [139] and dynamically
expandable networks [140] are popular architectural methods.

3.4. Combined Approaches

Combined approaches refer to the mixing of the methods together [103].
Cossu et al. [110] conducted a review and evaluation of the continual learning in

RNNs, different from the typical CL focuses on feedforward and convolutional models.
Sequential data is very popular in real-world applications like robotics. The sensors of the
robotics system can feed the robot with time series input for its walk, learning in different
environments. Yet, as the current focus of continual learning is on reinforcement learning
through computer vision, there is not much research on sequential data processing for
continual learning [110]. Two benchmarks of speech recognition and hand-drawn sketches
were proposed for the evaluation of different CL methods. The results show that the
forgetting issues become more serious for longer sequences.
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He [111] presented the outline of their explainability module based on techniques
like dimension reduction methods and visualization methods. Currently, there is not
much research with a focus on the explainability of the continual learning algorithms [141],
resulting in the problems like a lack of transparency for the CL modules. The module can
not only provide the capability of explanation and visualization for the updated neural
network of the CL module but also for the identified anomalies as well. The identification
of anomalies can be achieved with machine learning approaches like the Deep Support
Vector Data Description algorithm, unsupervised forest algorithm, and transformer-based
unsupervised algorithm. The basic guideline is that novelties of scores higher than the
threshold should be labeled as anomalies instead of labeling them as new tasks for the CL.

Bayram and Ince [115] presented a continual learning approach based on the Hidden
Markov Model (HMM) for the auditory scene analysis (ASA) task. Sensor systems can
be deployed to measure the time series data of dynamical acoustic events, and event
recognition is about the identification of the events from these acoustic signals. High-value
background noise and high computational demands restrict the deployment of continual
learning approaches for this real-world ASA. A hierarchical HMM module is employed to
evaluate acoustic event recognition and unknown event detection. The new knowledge
gained from the HMM module is used for the retraining of a new HMM model in real-
time in the continual learning module. Multiple acoustic events were evaluated with
the proposed approach in real-time, and promising results of high effectiveness and high
accuracy were obtained.

Gupta et al. [94] addressed the lack of practical variability among the industrial sensor
networks by deploying an additional, conditional module to their generator-based RNN
continual learning module. Real-time sensor time series data may be used for the in-process
quality prediction by manufacturers. There are difficulties in limiting the applications of
Deep Learning methods for quality prediction, with the main difficulties being the con-
tinuous changes in the manufacturing environments. In real-world applications of Deep
Learning algorithms, various factories may have various settings, and their sensor environ-
ments may be different. Nevertheless, the current continual learning approaches do not
consider the practical variability among the total numbers and types of sensors deployed
in different manufacturing environments [94]. In injection molding, it is not uncommon
to produce new products, and the pre-trained models cannot adapt to this new process
well. Tercan et al. [142] developed a CL approach for this manufacturing scenario based on
the memory-aware synapses method for the training of ANN with various manufacturing
products. The experimental results of injection molding production support that the trans-
fer of network weights gained from similar tasks can effectively raise the efficiency of the
proposed approach. Graph neural network was employed in this conditioning module to
control the deployment dynamics of their continual learning module such that the overall
system can adapt to the different sensor settings in different real-world manufacturing envi-
ronments [94]. Real-world datasets (DSADS [143], HAR [144], and Turbofan—FD001 [145])
were tested by randomly removing 40% of the sensors for each task. The experimental
results support that their proposed conditioning GNN module can effectively enhance the
capability of the continual learning module.

To summarize, promising results were obtained by the most recent research of CL
applications with sensor time series data records for time series classification and time
series forecasting tasks.

4. Conclusions

This survey has presented an overview of how to deploy Deep Learning methods,
advanced preprocessing methods, and continual learning methods for time series classifica-
tion and forecasting in different real-world practical scenarios. The review has summarized
the encouraging results that CL can be deployed in fields beyond classification tasks. The
non-stationary nature of the datasets in many fields poses challenges for conventional
machine learning and Deep Learning while serving as good platforms for innovative CL
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applications in future works. Another very interesting direction is that further experiments
may be done to assess the impact of architectures versus preprocessing algorithms such that
the role of specific algorithms can be better understood. This is because, as observed in this
survey, here, the majority of the authors focus on the practical deployment of DL and DL
models solely, without further evaluating the influences of with and without preprocessing
algorithms in each sensor environment.
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