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Abstract: The hydrogen electrode reaction (HER) on Pt electrode in a H2SO4 solution when CO gas
was injected/stopped was studied using polarization resistance curve. In order to elucidate and
confirm the CO poisoning effect, a few curve techniques were proposed. Applying them, the kinetic
parameters such as the number of electrons transferred (z) and the cathodic transfer coefficient (αc)
were determined. The HER in a 0.5 mol dm−3 H2SO4 solution saturated with H2 was confirmed as a
reversible reaction having z = 2. When the above solution was injected with CO, the reversible HER
changed to an irreversible reaction having z = 1 and αc ≈ 0.6. Once we stopped the CO injection,
alteration from the irreversible to quasireversible reaction was gradually made after several cyclic
polarizations. The proposed curve techniques can provide a reliable way to determine the kinetic
parameters changing among reversible, irreversible, and quasireversible reactions.

Keywords: hydrogen evolution reaction; platinum electrode; CO poisoning; polarization resistance
curve; Tafel slope

1. Introduction

The hydrogen electrode reaction (HER) is one of the most fundamental electrolytic
reactions in the field of electrochemistry [1–10]. This redox reaction consists of hydrogen
oxidation reaction (hor) as an anodic branch reaction and hydrogen evolution reaction
(her) as a cathodic branch reaction. The exchange current density of HER, which is the
magnitude of the reciprocal reaction between hor and her, is widely used as a kinetic
parameter to evaluate catalysts in technical fields such as fuel cells and water electrolysis.
It is well known that power generation by fuel cells will be very important and become
widespread in the very near future [2,3,7–10]. Since the hydrogen consumed in fuel cells is
mainly produced by the steam reforming process of methane, it may contain byproducts
such as CO and CO2. Many papers reported that even a small amount of CO can poison
the platinum catalyst and reduce its efficiency [11]. This poisoning phenomenon is said to
be mainly caused by the firm adhesion of CO as COad to the platinum electrode surface. A
more detailed explanation of the CO poisoning effect from various aspects is needed to
make the fuel cell fully functional. For an example, it is necessary to explain the degradation
of the electrode not only from the surface inactivation caused by CO adsorption but also
from the physical factors derived from it.

This paper explains the degradation of platinum catalysts from the viewpoint of
polarization resistance. As far as the authors know, there are few papers that provide
explanations with detailed polarization resistance curves. Exceptionally, A.C. Chialvo
et al., devised their own theory of polarization resistance and applied it to HER. It was an
experimental and theoretical study of CO poisoning HER [12–22]. However, their theory
was limited to a single point at j = 0, and there was no mention or consideration from the
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viewpoint of the whole curve. This paper, first of all, shows the continuous change of HER
from reversible to irreversible reaction caused by CO injection. Using the polarization curve
and its polarization resistance curve, which is derived from the differential polarization
method (DPM) [23–26], the CO poisoning effect is discussed from two main points: (1) how
to analyze the curve change caused by CO injection and (2) how to determine the kinetic
parameters of HER in CO-free, CO-injected, and CO-stopped solution.

2. Results
2.1. Variation of the Open Circuit Potential with Time

To detect a variation of the open circuit potential, Eocp(t), the experiments were
simulated in three environments:

Environment (I): 0.5 mol dm−3 H2SO4 solution saturated with H2 only (abbreviation;
H2 + H2SO4 solution; as a reference);

Environment (II): the above H2SO4 solution injected with continuous CO bubbling
(abbreviation; H2 + H2SO4 + CO solution; as CO-contaminated solution);

Environment (III): the above H2SO4 solution when the CO-injection was stopped
(abbreviation; H2 + H2SO4 + CO-CO solution; as CO-restored solution).

An arrival time to the steady state by monitoring the Eocp(t) was investigated. The
result is shown in Figure 1.

Figure 1. Time variation of the open circuit potential, Eocp(t) is measured in a 0.5 mol dm−3 H2SO4

solution continuously bubbled with H2 and CO. At three arrow points, E(j) was measured.

The Eocp showing≈ 1.0 V sharply descended to 0.0 V when the H2 bubbling was started.
The steady state showing Eocp = 0.0 V was obtained in the period of 0.5 ks . t . 2 ks. The
Eocp(t & 2 ks) increased to ≈0.34 V at start of CO injection and decreased to ≈0.25 V at the
gradual stop of CO injection. In this experiment, it was found that the steady state condition
is obtained at t & 4 ks for the environment (I), 3 ks . t . 5 ks for the environment (II), and
t > 5.4 ks for the environment (III).

2.2. Eexp(j) and hexp(j)
The polarization curves, Eexp(j), in the above three solutions were measured at the

immersion periods of 1.7 ks for environment (I), 4.9 ks for environment (II), and 5.4 ks
for environment (III). Their polarization resistance curves, hexp(j)

(
= d Eexp(j)/d j

)
, were

calculated using the finite difference method in a software.
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2.2.1. Eexp(j) and hexp(j) in the Environment (I)

Figure 2 shows the voltammogram (CV with seven cycles) curves in the H2 + H2SO4
solution.

Figure 2. Seven-cycled CV curves (pink fine) of Pt electrode in a 0.5 mol dm−3 H2SO4 solution
bubbled with H2 are shown. The bold dark red curve as a representative is mathematically smoothed.
It will be employed for analysis.

The starting point is (A), and the finishing point is (E). The potential-reverse operation
is carried out at points of (B) and (D). We can see that Eexp(j) follow same route and
formed no hysteresis loop. The dark red curve of (B)–(C)–(D) was selected for analysis as a
representative. Figure 3 shows that its hexp(j) is drawn in a deep blue bold line together
with the experimental hexp(j) (sky blue fine).

Figure 3. A representative hexp(j) (deep blue fine) and the experimental hexp(j) (sky blue fine), which
were obtained by differentiating the Eexp(j) in Figure 2.

The important readings in Figures 2 and 3 are summarized in Table 1. Symbols used
in this paper are shown and explained in Appendix A.
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Table 1. Experimental readings of E(0) in Figure 2 and hexp(0), wc j H+ ,L, wa j H2,L, and l/κ in
Figure 3.

Item Reading Remarks

E(0)/ V vs. SHE 0 (C) and (E) in Figure 2
hexp(0)/kΩ cm2 2.2× 10−2 (C) and (E) in Figure 3, ≈

[
hexp

(
. 10−3)]∣∣∣wc j H+ ,L

∣∣∣/mA cm−2 102 < we cannot observe it in Figure 3

wa j H2,L/mA cm−2 ≈ 0.7 vertical line having (D) in Figures 2 and 3
(l/κ)c/kΩ cm2 ≈ 10−3 asymptotic horizontal line; .(B) in Figure 3

A question will occur to readers that it is impossible to read the value of hexp(0) in
logarithm expression. The above answer is that the hexp(0) ≈ hexp

(
. 10−3) is accept-

able because the hexp
(
. 10−3) is almost horizontal line. We can see that the j at (D) is

≈0.7 mA cm−2, which is related to the limiting anodic current density of H2. We cannot
observe the j relating to the limiting cathodic current density of H+ due to the over-scaled
value.

2.2.2. Eexp(j) and hexp(j) in the Environment (II)

Similarly, the Eexp(j) and its hexp(j) in the H2 + H2SO4 + CO solution are shown in
Figures 4 and 5, respectively.

Except for the first route of (F)→ (G) (downward, red line), we can see that all curves
(pink fine) repeat similar hysteresis loop of (G)→ (H)→ (I)→ (J)→ (K)(or (G))→ (L)
(or (H))→ (I) . The representative tracks of (G)→ (H)→ (I) (upward, green line) and
(I)→ (J)→ (K) (downward, blue line) are shown with their bold colors. Characteristic
readings appeared on Figures 4 and 5 are summarized in Table 2.

Figure 4. Seven-cycled Eexp(j) (pink and fine) in a 0.5 mol dm−3 H2SO4 solution bubbled with H2

and CO. The red, green, and blue Eexp(j) are representative curves for analysis.



Catalysts 2021, 11, 1322 5 of 49

Figure 5. The hexp(j) (sky blue; experimental curves) together with their representative curves (red,
green, and blue bold curves corresponding to Figure 4). The orange dashed line with the Tafel slope
is shown as a reference.

Table 2. Experimental readings in Figures 4 and 5 are shown. Explanations of items and symbols are
shown in Section 3.9 and Appendix A.

Item Reading Remarks

E(0)/ V vs. SHE 0.24 (H) or (L) in Figure 4
0.02 (J) in Figure 4

hexp(0)/kΩ cm2 ≈43 (H) or (L) in Figure 5
≈190 (J) in Figure 5∣∣∣wc1 j H+ ,L

∣∣∣/mA cm−2 102 < we cannot observe it in Figure 5

|wc2 j CO2,L|/mA cm−2 1.3× 10−3 red vertical line in Figure 5
wa5 j H2,L+wa2 j COad,L/mA cm−2 1.3× 10−3 green vertical line in Figure 5

(wa2 + wa5) j H2,L + wa4 j COad,L/mA cm−2 3× 10−3 green vertical line in Figure 5
(l/κ)c/kΩ cm2 ≈10−3 asymptotic line; (G) or (K) in Figure 5

2.2.3. Eexp(j) and hexp(j) in the Environment (III)

The results in the H2 + H2SO4 + CO-CO solution are shown in Figure 6 for Eexp(j)
and Figure 7 for hexp(j).

The complex shape of Eexp(j) in Figure 5 has disappeared, and the similar shape
of Figure 1 appears. Close observation on Eexp(j) leads to an interesting fact that there
is open loop in upward and close loop in downward. The hexp(j) also shows complex
shape, but there are two remarkable points: (1) the crowded route of (P)→ (Q)→ (R)
in Figure 7 is almost similar to the route of (B)→ (C)→ (D) in Figure 3, and (2) the first
line of (M)→ (N) , on which the Tafel slope was satisfied, was disappeared and gathered
into (Q)→ (R) after several CV. Characteristic readings appeared in Figures 4 and 5 are
summarized in Table 3.



Catalysts 2021, 11, 1322 6 of 49

Figure 6. Changes of Eexp(j) (pink fine line) and the smoothed ones (bold red curve, a representative)
when the CO injection was stopped.

Figure 7. All Eexp(j) (blue fine line) are obtained by differentiating all Eexp(j) in Figure 6. The hexp(j)
as a representative is dawn with bold red. The orange dashed line with the Tafel slope is shown as a
reference.

Table 3. Experimental readings in Figures 2 and 3.

Item Reading Remarks

E(0)/ V vs. SHE ≈0 (Q) in Figure 6
hexp(0)/kΩ cm2 0.03 ∼ 0.06 (Q) in Figure 7∣∣∣wc jH+ ,L

∣∣∣/mA cm−2 102 < we cannot observe it in Figure 3

wa jH2,L/mA cm−2 0.6 ∼ 0.9 vertical line having (P) in Figure 7
(l/κ)c/kΩ cm2 ≈10−3 asymptotic horizontal line; (B) in Figure 7
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3. Discussion
3.1. Single Electrode Reaction and Its Classification

The single electrode reaction is basic redox reaction in electrochemical field. In this
paper, it is expressed as:

Red� Oxz+ + ze−. (1)

The Nernst equation for the above is expressed as:

Eeq = E∅ +
R T
z F

ln

[
Oxz+]

bulk
[Red]bulk

(2)

When electrons are pumped up or into the system, the equilibrium state is lost.
Consequently, the equilibrium potential, Eeq changes to a new Eeq. The difference between
applied potential, E and the Eeq is the overpotential, η:

η = E− Eeq (3)

Applying η to the system, a net current, j is observed. The curve plotting between j
and η is the polarization curve, j(η). When charge transfer and diffusion transfer processes
simultaneously occur, the j(η) is expressed to [27]:

j(η) =
exp( faη)− exp(− fcη)

1/j0 + exp( faη)/jRed,L + exp(− fcη)/− jOxz+ ,L
= ja(η) + jc(η), (4)

where the ja(η) and jc(η) are the anodic and cathodic branch current density, respectively:

ja(η) =
exp( faη)

1/j0 + exp( faη)/jRed,L + exp(− fcη)/− jOxz+ ,L
(> 0), (5)

jc(η) =
− exp(− fcη)

1/j0 + exp( faη)/jRed,L + exp(− fcη)/− jOxz+ ,L
(< 0) (6)

The ja(0), total exchange current density is expressed as the reciprocal of the summa-
tion of the reciprocals of j0, jRed,L, and −jOxz+ ,L:

ja(0) = −jc(0) =
1

1/j0 + 1/jRed,L + 1/−jOxz+ ,L
(7)

Therefore, the ja(0) is a harmonic mean among j0, jRed,L, and −jOxz+ ,L. Its value has
a tendency to be close to the minimum value among them. The jRed,L and jOxz+ ,L are
shortened into jd in this paper:

jd =
1

1/jRed,L + 1/−jOxz+ ,L
(8)

Then, Equation (7) is simplified as below:

ja(0) =
1

1/j0 + 1/jd
(9)

In order to simplify the complicated Equation (4), it is convenient to divide j(η) into
three approximations by considering relationship between j0 and jd.

(A) Reversible reaction; j0 � jd (or ja(0) ≈ jd);
(B) Irreversible reaction; j0 � jd (or ja(0) ≈ j0);
(C) Quasireversible reaction; j0 ≈ jd (or ja(0) ≈ jd/2 ≈ j0/2).

The above classification may be archaic, but it plays an important role in the h(j)
expression.
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Note that, at the equilibrium state (j = 0 or η = 0), the following relationship holds:

ja(η) + jc(η) = 0, (10)

η = E− Eeq =
(
E− E∅)+ (E∅ − Eeq

)
= η∅ − R T

z F
ln

[
Oxz+]

bulk
[Red]bulk

(11)

Substituting them into Equation (4), we can obtain same Equation (2). The same result
shows that the Nernst equation is a special case of j(η).

3.2. Single Electrode Reaction and Its Polarization Resistance

Polarization curve has been frequently employed as a simple and basic electrochem-
ical method to elucidate reaction mechanism. Usually, the polarization curve has been
expressed using two functions: j(η) and E(j). The former, j(η), is possible for direct plot-
ting using measuring data. It has a decided merit that current can be superposed. The latter,
E(j), is also commonly used, which is obtained by exchanging between the horizontal and
vertical axes in j(η). Having same vertical axis with potential scale, there is a superiority
that E(j) is easy to compare with the Tafel equation. Furthermore, its advantage will be
clarified when predicting thermodynamically stable chemical species and their possible
reaction by referring to the E-pH diagram. In addition to the above two expressions, we
have another expression: polarization resistance curve, h(j). The h(j) is not so familiar, but
it is possible to express the system. The great advantage of it lies in reduction of parameters,
which must be experimentally determined. For example, overpotential, which is not so
easy to determine in experimentally, is disappeared due to its constant value. As a result,
the h(j) tends to be a concise expression. These curves have very different forms, but
mathematically, they are exactly the same and are interchangeable.

j(η)� E(j)�
{

dE(j)/dj = h(j)
E(0) = Eeq (one initial condition)

(12)

Detailed expressions of h(j) are shown below. Differentiating Equation (4), we can
obtain polarization conductance, g(η):

g(η) =
d j(η)

d η
=

d (ja(η) + jc(η))
d η

= ga(η) + gc(η) = fa ja(η)− fc jc(η)− j(η)

{
fa ja(η)
jRed,L

+
fc jc(η)
−jOxz+ ,L

}
(13)

where,

ga(η) =
dja(η)

dη
= fa ja(η)− ja(η)

{
fa ja(η)
jRed,L

+
fc jc(η)
−jOxz+ ,L

}
, (14)

gc(η) =
djc(η)

dη
= − fc jc(η)− jc(η)

{
fa ja(η)
jRed,L

+
fc jc(η)
−jOxz+ ,L

}
(15)

Using the inverse function relation between g(η) and h(j), the below will be obtained:

d j
d η

d η

d j
= g(η)

d
(
E(j)− Eeq

)
d j

= g(η)
d E(j)

d j
= g(η) h(j) = 1. (16)

The g(η) is a function of η, but the h(j) is a function of j. In order to express the g(η)
as a function of j, all of j(η), ja(η), and jc(η) must be expressed as a function of j. Using the
Maclaurin expand series, they are approximated to the linear relations:

j(η) = j(0) + j′(0)
1 ! η + j′′ (0)

2 ! η2 + · · · ≈ g(0) η = g(0) h(0) j = j, (17)

ja(η) = ja(0) +
ja ′(0)

1 ! η + j′′a (0)
2 ! η2 + · · · ≈ ja(0) + ga(0) η = ja(0) +

ga(0)
ga(0)+gc(0)

j, (18)
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jc(η) = jc(0) +
jc ′(0)

1 ! η + j′′c (0)
2 ! η2 + · · · ≈ jc(0) + gc(0) η = jc(0) +

gc(0)
ga(0)+gc(0)

j (19)

By arranging the ga(0)
ga(0)+gc(0)

and gc(0)
ga(0)+gc(0)

, ja(j), and jc(j) are expressed as:

ja(j) = ja(0) +

{
αa −

(
αa ja(0)

jRed,L
+

αc jc(0)
−jOxz+ ,L

)}
j, (20)

jc(j) = jc(0) +

{
αc +

(
αa ja(0)

jRed,L
+

αc jc(0)
−jOxz+ ,L

)}
j. (21)

Then, the h(j) can be expressed as:

h(j) =
1

fa ja(j)− fc jc(j)− j
{

fa ja(j)/jRed,L + fc jc(j)/−jOxz+ ,L

} . (22)

At the equilibrium state (j = 0), common expression of h(0) is obtained:

h(0) =
1

fa ja(0)− fc jc(0)
=

1
( fa + fc)ja(0)

=
RT
z F

1
ja(0)

=
0.026

z
1

ja(0)
(23)

We can see that the h(0) is inversely proportional to ja(0) and has a constant of 0.026/z.
In other words, the above equation tells that the ja(0) will be easily calculated by reading
the h(0) when the z is already known. Around the equilibrium state (j ≈ 0), h(j) can be
approximated to linear relation:

[h(j)]j≈0 = h(0)

{
1 +

(
2 αa

jRed,L
+

2 αc

jOxz+ ,L
+

1− 2 αa

ja(0)

)
j

}
. (24)

We can see that the [h(j)]j≈0 is a straight line having an intercept of h(0) and a slope

of h(0)
(

2 αa
jRed,L

+ 2 αc
jOxz+ ,L

+ 1−2 αa
ja(0)

)
.

Being in a far polarized state (|η| � 0), information for each branch reaction can be
obtained. The kinetic parameters for anodic branch will be obtained when the system is
anodically far-polarized (η � 0):

j = ja(j) + jc(j) ≈ ja(j) (or jc(j) ≈ 0). (25)

Let jpa be the minimum ja(j) in the above state. The polarization resistance curve for
anodic branch, ha−branch(ja), will be expressed by arranging Equation (22):

ha−branch(ja) = ha−branch(j) = [h(j)]jc(j)≈0 ≈
1

fa j− j { fa j/jRed,L}
=

RT
αa z F

(
1
j
+

1
jRed,L − j

)
. (26)

The second term in the above will be close to zero if j is sufficiently large:[
RT

αa z F
1

jRed,L − j

]
jpa�j

=

[
0.026
αa z

1
jRed,L − j

]
jpa�j

≈ 0. (27)

Then, Equation (26) is approximated to:

[h(j)]jpa�j ≈
RT

αa z F
1
j
=

0.026
αa z

1
j
. (28)

Arranging the above, the αa z can be calculated as:

αa z ≈
[

0.026
h(j) j

]
jpa�j

(j > 0). (29)
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Similarly, information on the cathodic branch will be obtained when the system is
cathodically far-polarized (η � 0):

j = ja(j) + jc(j) ≈ jc(j) (or ja(j) ≈ 0). (30)

Let jpc be the maximum jc(j) in the above state. Then, the polarization resistance
curve for cathodic branch, hc−branch(jc) can be obtained:

hc−branch(jc) = hc−branch(j) = [h(j)]ja(j)≈0 ≈
1

− fc j− j
{

fc j/−jOxz+ ,L

} =
RT

αc z F

(
1
−j

+
1

j− jOxz+ ,L

)
. (31)

For sufficiently large −j (j < 0), the second term will be close to zero:[
RT

αc z F
1

j− jOxz+ ,L

]
j�jpc

=

[
0.026
αc z

1
j− jOxz+ ,L

]
j�jpc

≈ 0. (32)

Then, Equation (31) is approximated to:

[h(j)]j�jpc
≈ RT

αc z F

(
1
−j

)
=

0.026
αc z F

(
1
−j

)
. (33)

The αc z can be calculated as:

αc z ≈
[

0.026
h(j) |j|

]
|jpc|�|j|

(j < 0) (34)

Each of jpa and jpc will be expressed by arranging Equations (20), (21), (25) and (30):

jpa =

(
αc

ja(0)
+

αa

jRed,L
− αc

−jOxz+ ,L

)−1

, (35)

jpc = −
(

αa

ja(0)
− αa

jRed,L
+

αc

−jOxz+ ,L

)−1

. (36)

When we can find two inflection points on the curve, a very interesting relationship
between Equations (35) and (36) is shown as:

1
ja(0)

=
1

jpa
+

1
−jpc

. (37)

The same equation had been already established by J.M. Pearson in 1942 in the
corrosion field [28].

3.3. The Relationship between the Tafel Extrapolation Method (tem) and H(j)

The Tafel equation is an empirical equation showing the relationship between η
(usually, |η| � 0) and j. It is expressed as:

η = a + b log|j| = a +
b

2.3
ln|j|. (38)

Naturally, it is possible to express the Tafel equation in differential form:

d η

d j
=

d
(
E(j)− Eeq

)
d j

=
d E(j)

d j
= h(j) =

b
2.3

1
|j| . (39)
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We can see that the above is inverse-proportional to |j| and has a constant of b/2.3.
Taking the logarithm, the following is obtained:

log h(j) = log
b

2.3
− log|j|. (40)

The above expression can give us a clear guide when finding the Tafel region: (1) the
differentiated Tafel equation has a linear relationship between the log h(j) and log|j|, and
(2) its straight line always has slope of −1. Namely, the linear slope region observed on
log h(j) vs. log|j| curve exactly corresponds to the Tafel slope region, and vice versa.

d log h(j)
d log|j| = −1 � Tafel slope. (41)

The existence of this straight line is extremely helpful in finding the Tafel slope region
and in determining its accurate value.

The graphical representation of h(j) brings direct benefits to our understanding.
Example data shown in Table 4 were employed to draw the h(j) curves.

Table 4. Example data for graphical representation for three classified reactions are shown: (A) reversible, (B) irreversible,
and (C) quasireversible reactions.

Item

j(η) = exp(faη)−exp(−fcη)
1/j0+exp(faη)/jRed,L+exp(−fcη)/−jOxz+,L

Remarks(A): Reversible (B): Irreversible (C): Quasi-Reversible

(j0 � jd) (j0 � jd) (j0 ≈ jd)

jRed,L/mAcm−2 1 1 1
jOxz+ ,L/mAcm−2 −100 −100 −100
jd/mAcm−2 0.99 0.99 0.99 jd = 1

1/jRed,L+1/−jOxz+ ,L

j0/mAcm−2 1000 0.001 1
αa (−) 0.3 0.3 0.3
αc (−) 0.7 0.7 0.7
z (−) 2 2 2
ja(0)/mAcm−2 0.989 0.000989 0.497 ja(0) = 1

1/j0+1/jd
h(0)/mAcm−2 0.013 13 0.026

The j(η) of the above three reactions are shown in Figure 8 for reference.

We can see a general tendency that (1) the jRed,L and jOxz+ ,L indicate the upper and
lower limit, respectively; (2) the ja(0) relates to the awayness between ja(η) and jc(η) (not
depicted); and (3) the αa and αc affect the symmetry of the curve. The quasireversible j(η)
is located between reversible and irreversible and slightly closer to the reversible. This
close position is thought to be the reason why “quasi” was given. To illustrate the benefits
of the h(j) expression, each curve is shown in Figure 9 using the same data in Table 3.

The straight lines concerning Equation (41) are drawn with three orange dashed
lines. We can see that the Tafel slope are visually held in the wider anodic branch
(5× 10−3 mA cm−2 . j . 10−1 mA cm−2) and the widest cathodic branch (3× 10−2 mA cm−2

. |j| . 10 mA cm−2) for irreversible reaction (blue). The Tafel slope for the quasireversible
reaction (green) is satisfied in the narrow cathodic region (≈ 12 mA cm−2). In the case of re-
versible h(j) (red), we can see that the Tafel slope is valid for only one point (≈ 6 mA cm−2).
The curve of log h(j) vs. log |j | clarified that the TEM is eminently valid for irreversible
reaction.
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Figure 8. Three j(η) curves corresponding to the three-classified reaction: (A) reversible, (B) irre-
versible, and (C) quasireversible reactions are drawn using data in Table 4.

Figure 9. Curves of log h(j) vs. log|j| for three classified reactions are drawn for the graphical
explanation. The same data listed in Table 3 are employed. For reference, three orange dashed lines
with Tafel slope of −1 are shown.

3.4. Kinetic Parameter Determination Using h(j)
Since graphical j(η) can be classified into the above three reactions, h(j) can also be

classified into the three.
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3.4.1. Reversible Reaction

The ja(j) and jc(j) of the reversible reaction are simplified to the below by arranging
Equations (20) and (21), respectively:

ja(j) = jd +
jRed,L

jRed,L − jOxz+ ,L
j = jd

(
1 +

j
−jOxz+ ,L

)
, (42)

jc(j) = −jd +
−jOxz+ ,L

jRed,L − jOxz+ ,L
j = −jd

(
1 +

j
jRed,L

)
. (43)

Substituting them into Equation (22), we can obtain the reversible h(j).

h(j) =
RT
z F

(
1

jRed,L − j
+

1
j− jOxz+ ,L

)
. (44)

At the equilibrium state (j = 0),

h(0) =
RT
z F

(
1

jRed,L
+

1
−jOxz+ ,L

)
=

0.026
z

1
jd

(
=

0.026
z

1
ja(0)

)
. (45)

If we can read the three values (h(0), jRed,L, and jOxz+ ,L) from experiments, we can
easily determine z. If that is impossible or ambiguous, there is another way to know it: a
curve technique, which is known as the parallel displacement in geometry. The following
simultaneous equation discloses the technique:

h(j + jRed,L) =
RT
z F

(
1
−j

+
1

j + jRed,L − jOxz+ ,L

)
, (46)

RT
z F

1
j + jRed,L − jOxz+ ,L

≈ 0. (47)

Substituting the precondition (Equation (47)) into Equation (46), the below equation is
obtained:

h(j + jRed,L) ≈
RT
z F

1
−j

=
0.026
z |j| (j < 0). (48)

We can see that the above has an inverse proportional relation between h(j) and |j|,
which has the same relation as Equation (39). From the above, we can determine the z:

z =
0.026

|j|h(j + jRed,L)
(j < 0). (49)

Similarly, the same displacement for another side will lead to the same z:

z =
0.026

j h
(

j + jOxz+ ,L

) =
0.026

|j|h
(

j + jOxz+ ,L

) (j > 0). (50)

Around the equilibrium state (j ≈ 0), the reversible h(j) is linearly expressed to:

[h(j)]j≈0 = h(0)

{
1 +

(
1

jRed,L
+

1
jOxz+ ,L

)
j

}
. (51)

Arranging Equations (42) and (43), jpa and jpc will be expressed as:

jpa = jRed,L (52)
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jpc = jOxz+ ,L (53)

We can see that Equation (37) holds true in the reversible system.

3.4.2. Irreversible Reaction

Considering j0 � jd, the ja(j) and jc(j) are simplified below:

ja(j) = j0 +

{
αa − j0

(
αa

jRed,L
+

−αc

−jOxz+ ,L

)}
j ≈ j0 + αa j, (54)

jc(j) = j0 +

{
αc + j0

(
αa

jRed,L
+

−αc

−jOxz+ ,L

)}
j ≈ −j0 + αc j. (55)

Substituting them into Equation (22), we can obtain the irreversible h(j).

h(j) =
jRed,L jOxz+ ,L

fc(j− j0)
(

j− jOxz+ ,L

)
jRed,L + fa j0 jOxz+ ,L( jRed,L − j) + αa j

{
fc ( jOxz+ ,L − j) jRed,L + fa jOxz+ ,L( jRed,L − j)

}
≈ RT

z F
1

j0+(αa−αc) j =
0.026

z
1

j0 + (αa − αc) j
.

(56)

At the equilibrium state (j = 0),

h(0) =
1
f

1
j0

=
RT
z F

1
j0

=
0.026

z
1
j0

(
=

0.026
z

1
ja(0)

)
. (57)

Around the equilibrium state (j ≈ 0), h(j) is linearly expressed as:

[h(j)]j≈0 = h(0)

{
1 +

(
αa

jRed,L
+

αc

jOxz+ ,L
+

1− 2 αa

j0

)
j

}
. (58)

At anodically far polarized state (η � 0, or j ≈ ja, or jc ≈ 0, or jpa < j), anodic h(j)
of the irreversible reaction is expressed:

[h(j)]η�0 =
RT

αa z F

(
1
j
+

1
jRed,L − j

)
. (59)

The second term above will be close to zero when (jRed,L − j)� 0:

RT
αa z F

(
1

jRed,L − j

)
≈ 0, (60)

Then, Equation (59) is simplified to:

[h(j)]η�0 ≈
RT

αa z F

(
1
j

)
=

0.026
αa z

(
1
j

)
. (61)

Similarly, when being cathodically far polarized (η � 0, or j ≈ jc, or ja ≈ 0, or j < jpc),
[h(j)]η�0 is:

[h(j)]η�0 =
RT

αc z F

(
1
−j

+
1

j− jOxz+ ,L

)
. (62)

When the second term is close to zero:

RT
αc z F

(
1

j− jOxz+ ,L

)
≈ 0. (63)
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Then, the far cathodic h(j) is expressed below, which is the same as Equation (33):

[h(j)]η�0 =
RT

αc z F

(
1
−j

)
. (64)

It is important to notice that irreversible z is the number of electrons transferred
in the rate determine step (rds), not z of the whole reaction of Equation (1). Arranging
Equations (54) and (55), jpa and jpc will be expressed as:

jpa = j0/αc (65)

jpc = −j0/αa (66)

We can see that the relation of Equation (37) holds true in the irreversible system.

3.4.3. Quasireversible Reaction

The ja(j) and jc(j) are expressed as:

ja(j) =
jd
2
+

{
αa −

jd
2

(
αa

jRed,L
+

αc

jOxz+ ,L

)}
j, (67)

jc(j) =
−jd

2
+

{
αc +

jd
2

(
αa

jRed,L
+

αc

jOxz+ ,L

)}
j. (68)

Substituting them into Equation (22), we can obtain the quasireversible:

h(j) =
2 jRed,L jOxz+ ,L

(
jOxz+ ,L − jRed,L

)
αa j

(
jOxz+ ,L − jRed,L

){
fc jRed,L

(
jOxz+ ,L − j

)
+ fa jOxz+ ,L( jRed,L − j)

}
+
(

j− jOxz+ ,L

)
jRed,L

{
fa jOxz+ ,L(j− jRed,L) + fc

(
2 j jOxz+ ,L − j jRed,L − jRed,L jOxz+ ,L

)} (69)

The above equation has little practical use due to its overcomplicated expression.
Another expression is needed for quasireversible h(j), which will be discussed in detail in
Section 3.6.3. At the equilibrium state (j = 0):

h(0) =
RT
z F

2
jd

(
=

RT
z F

2
j0

)
=

0.052
z jd

(
=

0.052
z j0

)
=

(
0.026

z
1

ja(0)

)
. (70)

Each of jpa and jpc will be expressed as:

jpa =

(
αc

jd
+

1
jRed,L

)−1
=

(
1 + αc

jRed,L
+

αc

−jOxz+ ,L

)−1

(71)

jpc = −
(

αa

jd
+

1
−jOxz+ ,L

)−1

= −
(

αa

jRed,L
+

1 + αa

−jOxz+ ,L

)−1

(72)

It can be seen that the relationship in Equation (37) is satisfied in the quasireversible
reaction. Since Equations (23) and (37) are valid for all reactions, the follow is a common
relation:

ja(0) =
R T
z F

1
h(0)

=
0.026
z h(0)

=
1

1/jpa + 1/− jpc
. (73)
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3.5. Graphical Determination of ja(0)
In addition to the above algebraic way, it is worth glancing at the geometric way. This

section shows that the reason why the graphical estimation of ja(0) is possible and how to
use it. The common h(0) at the equilibrium state is expressed as:

h(0) =
R T
z F

1
ja(0)

=
0.026

z

(
1
j0
+

1
jRed,L

+
1

− jOxz+ ,L

)
. (74)

We can regard the h(0) as a function of j0 because three value of z, jRed,L, and jOxz+ ,L
are usually constant. Here, let us consider the new function, ha0(j0), which can be expressed
below:

ha0(j0) =
0.026

z

(
1
j0
+

1
jRed,L

+
1

− jOxz+ ,L

)
=

0.026
z

(
1
j0
+

1
jd

)
. (75)

Using the above relation, each ha0(j0) in the (A), (B), and (C) is shown as:

[ha0(j0) ]j0�jd
' 0.026

z

(
1

jRed,L
+ 1
− jOxz+ ,L

)
= 0.026

z

(
1
jd

)
: constant for reversible; (76)

[ha0(j0) ]j0�jd
≈ 0.026

z

(
1
j0

)
: variable for irreversible; (77)

[ha0(j0) ]j0≈jd
≈
[

0.026
z

(
1
j0
+ 1

j0d

)]
j0≈jd

= 0.052
z j0

(
= 0.052

z jd

)
: variable for quasireversible (78)

The curves of Equations (76)–(78) are shown with pink chain line in Figure 10 together
with the h(j) in Figure 9.

Figure 10. The log h(j) vs. log| j| of the (A), (B), and (C) are shown for the graphical estimation.

The ha0(j0), which is a function of j0, is drawn in pink with a chain curve. The
employed data for drawings are the same data shown in Table 3. Three pink chain lines of
jRed,L and

∣∣∣jOxz+ ,L

∣∣∣ are added for easy readings.

The ha0(j0) curve and vertical lines of jRed,L and
∣∣∣jOxz+ ,L

∣∣∣ are shown in Figure 10
with a pink chain curve. In the irreversible reaction, the horizontal straight line of
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h(0)(= 13 kΩ cm2) meets the ha0(j0) at a point (B1) and two vertical lines of jRed,L and∣∣∣jOxz+ ,L

∣∣∣ at (B2) and (B3), respectively. Three crossed points can be graphically read as:

j0 ≈ 10−3 mA cm−2 : cross point (B1) (79)

jRed,L = 1 mA cm−2 : cross point (B2) (80)

− jOxz+ ,L = 100 mA cm−2 : cross point (B3) (81)

Substituting the above readings into Equation (7), we can calculate the ja(0):

ja(0) =
1

1/j0 + 1/ jRed,L + 1/− jOxz+ ,L
=

1
1/(≈ 10−3) + 1/1 + 1/100

≈ 10−3 mA cm−2 (= j0). (82)

Employing the ja(0) and the h(0), the z can be confirmed:

z =
RT
F

1
ja(0) h(0)

=
0.026

(10−3)(13)
= 2. (83)

Similarly, we can obtain the reversible ja(0) by reading three crossed points of (A1),
(A2), and (A3):

j0 → ∞ : ∼= (A1), the h(0) never crosses the Equation (75) curve,
but is asymptotic to it.

(84)

jRed,L = 1 mA cm−2 : cross point (A2). (85)

− jOxz+ ,L = 100 mA cm−2 : cross point (A3). (86)

Then,

ja(0) =
1

1/(∞) + 1/(1) + 1/(+100)
≈ 0.99 mA cm−2 (= jd). (87)

Using the above, the z is calculated:

z =
RT
F

1
ja(0) h(0)

=
0.026

(0.99)(0.013)
≈ 2. (88)

For the quasireversible reaction, the crossed points are (C1), (C2), and (C3):

j0 ≈ 1 mA cm−2 : cross point (C1) (89)

jRed,L = 1 mA cm−2 : cross point (C2) (90)

− jOxz+ ,L = 100 mA cm−2 : cross point (C3) (91)

Then,

ja(0) =
1

1/(≈ 1) + 1/(1) + 1/(+100)
≈ 0.498 mA cm−2

(
≈ jd

2

)
. (92)

Therefore,

z =
RT
F

1
ja(0) h(0)

=
0.026

(0.498)(0.026)
≈ 2. (93)

As was so often the case after experiments had finished, one of jRed,L or jOxz+ ,L may be
lost or cannot be read with clarity. In this case, graphical estimation is particularly helpful.
No appearance of jRed,L or

∣∣∣jOxz+ ,L

∣∣∣ usually means that their contribution to Equation (7)
can be neglected due to the characteristic of harmonic mean. In short, the larger value is
smaller or neglectable contribution.
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3.6. Physical Factors Influenced on h(j)
The physical factors such as effective area and solution resistance sometimes distort

E(j) and always prevent us from quantitative approach. The following two factors are
important and discussed in this paper.

3.6.1. Effective Area of Electrode

As a matter of fact, what was actually obtained in the experiments was always the
total net current, J(η). It consists of the anodic branch current, Ja(η), and cathodic branch
current, Jc(η), expressed as:

J(η) = Ja(η) + Jc(η). (94)

Using the geometric surface of the electrode, S, the J(η) is normalized to the net
current density, j(η):

j(η) = J(η)/S. (95)

When, for instance, gas adsorption layers or reaction deposits are present on the
electrode surface, the effective area for the reaction will shrink. The j(η) having Ja(η) with
the effective anode area, Sa, and Jc(η) with the effective cathode area, Sc, it is arranged and
expressed as:

j(η) =
Ja(η) + Jc(η)

S
=

Sa ja(η)
S

+
Sc jc(η)

S
= wa ja(η) + wc jc(η) = jA(η) + jC(η), (96)

jA(η) =
wa exp( faη)

1/j0 + exp( faη)/jRed,L + exp(− fcη)/− jOxz+ ,L
(> 0), (97)

jC(η) =
−wc exp(− fcη)

1/j0 + exp( faη)/jRed,L + exp(− fcη)/− jOxz+ ,L
(< 0). (98)

where, the wa(= Sa/S) and wc(= Sc/S) are weighting factors that have suitably weighted
values in proportion to the surface of anode and cathode, respectively (0 < wa, wc ≤ 1) [29].
The jA(η) and jC(η) are effective anodic and cathodic branch current density, respectively.
It is important to note that E(0) when wa 6= wc is different from E(0) when wa = wc(= 1).
When the overpotential having wa 6= wc is termed as ηw, the equilibrium state is ex-
pressed as:

j(ηw) = jA(ηw) + jC(ηw) = 0. (99)

Arranging the above,

wa

wc
=
−jc(ηw)

ja(ηw)
=

exp(− fc ηw)

exp( fa ηw)
= exp(− f ηw). (100)

The above shows that the relation between wa/wc and ηw is mutually dependent and
restricted by the above equation. Taking into account wa/wc, Equation (22) is arranged
and expressed as:

h(j) =
1

gA(η) + gC(η)
=

1

fa jA(j)− fc jC(j)− j
{

fa jA(j)
wa jRed,L

+ fc jC(j)
−wc jOxz+ ,L

} , (101)

where

gA(η) =
d jA(η)

d η
= fa jA(j)− jA(j)

{
fa jA(j)

wa jRed,L
+

fc jC(j)
−wc jOxz+ ,L

}
, (102)

gC(η) =
d jC(η)

d η
= − fc jC(j)− jC(j)

{
fa jA(j)

wa jRed,L
+

fc jC(j)
−wc jOxz+ ,L

}
, (103)

j(η) = j(ηw) +
j′(ηw)

1 !
(η − ηw) +

j′′ (ηw)

2 !
(η − ηw)

2 + · · · ≈ g(ηw) (η − ηw) = j, (104)
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jA(j) ≈ jA(ηw) +
gA(ηw)

gA(ηw)+gC(ηw)
j = jA(ηw) +

{
αa −

(
αa jA(ηw)
wa jRed,L

+ αc jC(ηw)
−wc jOxz+ ,L

)}
j , (105)

jC(j) ≈ jC(ηw) +
gC(ηw)

g gA(ηw)+gC(ηw)
j = jC(ηw) +

{
αc +

(
αa jA(ηw)
wa jRed,L

+ αc jC(ηw)
−wc jOxz+ ,L

)}
j (106)

The h(0) is expressed as:

h(0) =
1

fa jA(ηw)− fc jC(ηw)
=

1
f jA(ηw)

=
RT
z F

1
jA(ηw)

(
=

RT
z F

1
−jC(ηw)

)
. (107)

The [h(j)]j≈0 is approximated to the linear relation:

[h(j)]j≈0 = h(0)

{
1 +

(
2 αa

wa jRed,L
+

2 αc

wc jOxz+ ,L
+

1− 2 αa

jA(ηw)

)
j

}
. (108)

where,

jA(ηw) = −jC(ηw) = wa ja(ηw) = −wc jc(ηw) =
wa

αc wc
αa

1/j0 +
(

wc
wa

)αa
/ jRed,L +

(
wa
wc

)αc
/
(
−jOxz+ ,L

) . (109)

We can see that the [h(j)]j≈0 is approximated to a straight line having an intercept of

h(0) and a slope of h(0)
(

2 αa
wa jRed,L

+ 2 αc
wc jOxz+ ,L

+ 1−2 αa
jA(ηw)

)
.

Graphical representation is helpful to see the influence of wa/wc on the h(j) shape.
Employing reversible reaction data in Table 3, three reversible j(η) curves were drawn as
an example. Reversible j(η), having ratios of wa/wc = 1 (as a reference), wa/wc = 0.1/0.9,
and wa/wc = 0.6/0.8, are shown in Figure 11. Their h(j) are shown in Figure 12.

We can see that not only the j(η) but also h(j) is strongly influenced by the wa/wc
ratio. Equation (100) will be useful when estimating the wa/wc ratio. It is necessary to pay
careful attention when determining the kinetic parameters using the reversible [h(j)]j≈0.
Namely, graphical determination of αa and αc of reversible reaction is very difficult. The
reason is that the line slope when wa/wc = 1 and 0.75 (= 0.6/0.8) is too small to determine.
Even if it were possible, a 4–5 decimal place reading is needed for accurate determination.

Figure 11. Influence of η(w) on the shape of reversible j(η) curve having various ratios of wa/wc;
wa/wc = 1 (as a reference), 0.1/0.9, and 0.6/0.8 are shown.
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Figure 12. Influence of h(j) on the shape of reversible j(η) curve having various ratios of wa/wc.

In the case of the irreversible system having wa/wc 6= 1, the information on the anodic
branch will be possible when being in a far polarized state (|η| � 0):

j = jA(j) + jC(j) ≈ jA(j) (or jC(j) ≈ 0). (110)

Let jpA be the minimum jA(j) in the above state. The hA−branch(jA) can be obtained:

hA−branch(jA) = hA−branch(j) = [h(j)]jpA<j ≈
1

fA j− j { fA j /(wa jRed,L)}
=

RT
αa z F

(
1
j
+

1
wa jRed,L − j

)
. (111)

The second term will be close to zero when (wa jRed,L − j)� 0:[
RT

αa z F
1

wa jRed,L − j

]
jpA<j�wa jRed,L

=

[
0.026
αa z

1
wa jRed,L − j

]
jpA<j�wa jRed,L

≈ 0. (112)

Then, Equation (111) is approximated as:

[h(j)]jpA<j�wa jRed,L
≈ RT

αa z F
1
j
=

0.026
αa z

1
j
. (113)

The value of αa z can be calculated by readings of h(j) and j:

αa z ≈
[

0.026
h(j) j

]
jpA<j�wa jRed,L

(j > 0). (114)

Similarly, αc z of the irreversible cathodic branch will be obtained when the system is
cathodically far-polarized (η � 0):

j = jA(j) + jC(j) ≈ jC(j) (or jA(j) ≈ 0). (115)

Let jpC be the maximum jC(j) in the above state. Then, the hC−branch(jC) can be
obtained:

hC−branch(jC) = hC−branch(j) = [h(j)]j<jpC
≈ 1

− fc j− j
{

fc j/
(
−wc jOxz+ ,L

)} =
RT

αc z F

(
1
−j

+
1

j− wc jOxz+ ,L

)
. (116)
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When
(

j− wc jOxz+ ,L

)
� 0, the second term will be close to zero:[

RT
αc z F

1
j− wc jOxz+ ,L

]
wc jOxz+ ,L�j<jpC

=

[
0.026
αc z

1
j− wc jOxz+ ,L

]
wc jOxz+ ,L�j<jpC

≈ 0. (117)

Then, Equation (116) is approximated as:

[h(j)]wc jOxz+ ,L�j<jpC
≈ RT

αc z F

(
1
−j

)
=

0.026
αc z

(
1
−j

)
. (118)

The value of αc z can be calculated as:

αc z ≈
[

0.026
h(j) |j|

]
|jpC|〈|j|�|wc jOxz+ ,L|

(j < 0). (119)

It is important to notice that the wa and wc can influence diffusion currents (jRed,L and
jOxz+ ,L) but not charge current (j0). Arranging Equations (105), (106), (110), and (115), jpA
and jpC will be expressed as:

jpA =

(
αc

jA(ηw)
+

αa

wa jRed,L
− αc

−wc jOxz+ ,L

)−1

, (120)

jpC =

(
αa

jC(ηw)
− αa

wa jRed,L
+

αc

−wc jOxz+ ,L

)−1

. (121)

Each of jpA and jpC is graphically characterized as inflection points on h(j). We can
obtain the relationship between jpA and jpC from Equations (120) and (121):

1
jA(ηw)

=
1

jpA
+

1
−jpC

(122)

We can see that the above relation is essentially same as Equation (37).

3.6.2. Solution Resistance

In the practical analyses, all h(j) must be compensated with physical factors such as
oxide film resistance and solution resistance. For instance, the cathodic branch h(j) of the
irreversible reaction must be compensated by oxide film resistance. It is expressed as:

[h(j)]j<jpC
=

0.026
αc z

(
1
−j

+
1

j− wc jOxz+ ,L

)
+

(
l
κ

)
f

(123)

The experimentally obtained curve always contains the solution resistance (l/κ)s.

[
hexp(j)

]
j<jpC

= [h(j)]j<jpC
+
(

l
κ

)
s
= 0.026

αc z

(
1
−j +

1
j−wc jOxz+ ,L

)
+
(

l
κ

)
f
+
(

l
κ

)
s
= 0.026

αc z

(
1
−j +

1
j−wc jOxz+ ,L

)
+
(

l
κ

)
c
. (124)

where, (l/κ)c is the total cathodic polarization resistance (= (l/κ)f + (l/κ)s). The above

consists of three terms: 0.026
αc z

(
1
−j

)
, 0.026

αc z

(
1

j−wc jOxz+ ,L

)
, and

(
l
κ

)
c
. The first term is related to

the charge transfer process; the second term, to the diffusion transfer process; and the third
term, to the physical factor. Since the (l/κ)c is a constant value, it will graphically emerge
as a horizontal line when |j| becomes large:[

hexp(j)
]
|jpC|<(|j|→large) =

[
0.026
αc z

(
1
−j +

1
j−wc jOxz+ ,L

)
+
(

l
κ

)
c

]
|j|→large

& (l/κ)c (125)
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Employing the above inequality, we can graphically estimate the value of (l/κ)c as a
horizontal line (an asymptote line). In order to visualize the relation between (l/κ)c and
the curve shape, the cathodic branch of the hexp(j) (wc = 1) was drawn using example data
of (l/κ)c = 10−3, 10−2, and 10−1 kΩ cm2. Their concrete expressions are shown below.
Their curves are shown in Figure 13.

h1(j) = [hC−branch(j) + 0]|j|→large =

[
0.019

(
1
−j

+
1

j + 100

)
+ 0
]
|j|→large

> 0 kΩ cm2 (126)

h2(j) =
[

hC−branch(j) + 10−3
]
|j|→large

=

[
0.019

(
1
−j

+
1

j + 100

)
+ 10−3

]
|j|→large

> 10−3 kΩ cm2 (127)

h3(j) =
[

hC−branch(j) + 10−2
]
|j|→large

=

[
0.019

(
1
−j

+
1

j + 100

)
+ 10−2

]
|j|→large

& 10−2 kΩ cm2 (128)

h4(j) =
[

hC−branch(j) + 10−1
]
|j|→large

=

[
0.019

(
1
−j

+
1

j + 100

)
+ 10−1

]
|j|→large

∼= 10−1 kΩ cm2 (129)

Figure 13. Influence of (l/κ)c on the shape of cathodic h(j). There are four example curves with

(l/κ)c = 0 (as a blank), 10−3, 10−2, and 10−1kΩ cm2. Orange dashed line of h(j) = RT
αc z F

(
1
−j

)
=

0.026
(0.7)(2)

(
1
−j

)
= 0.019

(
1
−j

)
, on which the Tafel slope is satisfied, is added as a reference. All data for

drawing are the same values listed in Table 1.

Examining the relation between the curve shape and the horizontal lines, we can see a
clear tendency that the h(j) curve with the larger (l/κ)c has the wider horizontal region. In
addition to that, we can also see a tendency between (l/κ)c and the Tafel slope region; the
larger (l/κ)c, the narrower the Tafel slope region. The latter tendency gives us empirical
advice that, to obtain the errorless Tafel parameters, we should employ an environment
having scanty oxide film resistance and small electrolyte resistance. The above discussion
is also valid for reversible and quasireversible reactions.

3.6.3. The hexp(j) in the Whole Current Range

When the curve shape of h(j) largely depends on the degree of polarization, division
of h(j) is needed for accurate analysis. Using jpA and jpC, we can divide hexp(j) into three
parts:[

hexp(j)
]

jpA<j<wa jRed,L
= hA−branch(j) + (l/κ)a = RT

αa z F

(
1
j +

1
wa jRed,L−j

)
+ (l/κ)a (130)
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[
hexp(j)

]
jpC≤j≤jpA

= [h(j)]jpC≤j≤jpA
+ (l/κ) (131)[

hexp(j)
]

wa jRed,L<j<jpC
= hC−branch(j) + (l/κ)c =

RT
αc z F

(
1
−j +

1
j−wc jOxz+ ,L

)
+ (l/κ)c (132)

[h(j)]jpC≤j≤jpA
in Equation (131) is almost identical to the [h(j)]j≈0 in Equation (108),

but we often encounter that the linear (the first order) approximation is graphically im-
possible. In this case, the second or third order approximation is necessary. Since the
high-order approximation generally becomes complicated, the use of [h(j)]jpC≤j≤jpA

will be
helpful and effective. Its content is detailed as:

[h(j)]jpC≤j≤jpA
=

1(
1/[hA(j)]jpC≤j≤jpA

+ 1/[hC(j)]jpC≤j≤jpA

) . (133)

where the [hA(j)]jpC≤j≤jpA
and [hC(j)]jpC≤j≤jpA

is anodic and cathodic branch polarization
resistance, respectively. They can be expressed by considering the following graphical
relation:

[hA(j)]jpC≤j≤jpA
=

{
hA
(

jpA
)
= h

(
jpA
)

hA
(

jpC
)
→ ∞

(134)

[hC(j)]jpC≤j≤jpA
=

{
hC
(

jpC
)
= h

(
jpC
)

hC
(

jpA
)
→ ∞

(135)

Since [hA(j)]jpC≤j≤jpA
is the deformed curve of hA−branch(jA) and [hC(j)]jpC≤j≤jpA

is
that of hC−branch(jC), the following expressions are available in the experimental reality:

[hA(j)]jpC≤j≤jpA
=

RT
αa z F

wa jRed,L
(

jpA − jpC
)

jpA
(
wa jRed,L − jpC

) ( 1
j− jpC

+
1

wa jRed,L − j

)
(136)

[hC(j)]jpC≤j≤jpA
=

RT
αc z F

wc jOxz+ ,L
(

jpA − jpC
)

jpC

(
jpA − wc jOxz+ ,L

)( 1
jpA − j

+
1

j− wc jOxz+ ,L

)
(137)

The advantage of the above expressions is easy embodiment because the jpA and jpC
can be directly read as inflection points appeared on hexp(j). Fortunately, the hexp(j) of
reversible reaction can be expressed as a single equation shown below:

[
hexp(j)

]
wc jOxz+ ,L≤j≤wa jRed,L

=
RT
z F

(
1

wa jRed,L − j
+

1
j− wc jOxz+ ,L

)
+ (l/κ) (138)

Of course, the reversible hexp(j) can also be obtained using Equation (133). The
reason is that Equation (138) can be obtained by only substituting jpA = wa jRed,L and
jpC = wc jOxz+ ,L. After all, the hexp(j) for all reactions can be summarized as follows;

[
hexp(j)

]
jpA≤j≤wa jRed,L

=
RT

αa z F

(
1
j
+

1
wa jRed,L − j

)
+ (l/κ)a (139)

[
hexp(j)

]
jpC≤j≤jpA

=
1

1/[hA(j)]jpC≤j≤jpA
+ 1/[hC(j)]jpC≤j≤jpA

+ (l/κ) (140)

where, [hA(j)]jpC≤j≤jpA
is Equation (136), and [hC(j)]jpC≤j≤jpA

is Equation (137).

[
hexp(j)

]
wc jOxz+ ,L≤j≤jpC

=
RT

αc z F

(
1
−j

+
1

j− wc jOxz+ ,L

)
+ (l/κ)c (141)

Here, at practical curve analysis, we can use a few distinctive characteristics on the
hexp(j): (1) If we can observe a straight line having a slope of −1, it is an appearance of
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irreversible process corresponding to rds. (2) When a vertical line is found, its current
corresponds to a limiting diffusion current; the anodic vertical line corresponds to the
limiting diffusion of reductant, Red, and the cathodic vertical line to that of oxidant, Oxz+.
(3) When we can find a horizontal line at large |j|, its value corresponds to physical
resistance.

3.7. Determination of Stable Chemical Species on Eexp(j) Using E-pH Diagram

The stable species appearing on Eexp(j) was examined using the E-pH diagram [30].
Since H2 and CO have been directly injected into the test solution, two E-pH diagrams
must be considered. The E-pH diagram of CO/CO2 system superimposed by the H2/H+

system is shown in Figure 14.

Figure 14. Potential pH equilibrium diagram for the carbon–water system superimposed by the
hydrogen system is shown. The orange dashed line indicates the Eeq of CO/CO2 redox reaction. The
region between blue dashed line of a© and b© shows the thermodynamically stable region of water.

Three equilibrium lines, an upper blue dashed line ( b©) of Eeq(H2O/O2) = 1.23−
0.059 pH, a lower blue dashed line ( a©) of Eeq

(
H2/H+

)
= −0.059 pH, and a lowest orange

dashed line of Eeq(CO/CO2) = −0.10− 0.059 pH are depicted in Figure 14. A red vertical
line shows experimental tracks of Eexp(j). The reason why all curves of Eexp(j) follow along
the red vertical line is that a 0.5 mol dm−3 H2SO4 has remained at constant (≈ pH 0.3) due
to the very strong acid. Therefore, the thermodynamically stable chemical species can only
appear on the red vertical line. Their chemical species are H2, H2O (rich H+), CO, and CO2.
The reactions discussed in this paper were restricted to the redox reactions related to the
four species. There is an opinion that the derivatives must be also discussed due to the
unstable CO in the water [30]. For instance, they said that the following chemical reaction
is necessary to be discussed:

CO + H2O = HCOOH. (142)
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Furthermore, they said that, since the HCOOH is also unstable [30], the below oxida-
tion reactions are possible when being anodically polarized:

HCOOH + H2O→ H2CO3 + 2H+ + 2e, (143)

or
HCOOH→ CO2 + 2H+ + 2e. (144)

Although carbon derivatives such as HCOOH and H2CO3 are considered as chemical
attendants in actual operating environments, this paper limits to the redox reactions among
four species (H2, H+, CO, and CO2) for the sake of simple and essential discussion.

3.8. Curve Analysis for Reversible HER in Environment (I)

Stable chemical species and their redox reactions appearing on Eexp(j) in H2 + H2SO4
solution were examined. Since the E-pH diagram showed that the stable species at the
state

(
pH ≈ 0.3, Eocp ≈ 0 V

)
are H2 and H+, the redox reaction is the reversible HER:

H2 � 2H+ + 2e (145)

The reciprocal redox reaction occurs at Eeq; the injected H2 is oxidized to H+, and at
the same time, the H+ is reduced to H2. The h(j) belongs properly to the reaction of the
category (A). The analysis will be carried out employing curve techniques in this category.

3.8.1. Estimation of wa and wc

First, the estimation of wa and wc is examined. The representative tracks of (A)→ (B)
→ (C)→ (D)→ (E)→ (B) in Figure 2 was employed. The polarizing start point (A) stays
on the line a©, on which the reversible HER occurs. When η < 0, the cathodic branch as her
will be increased. Since H+ abundantly exists in the solution, the her exponentially increases
with increase of |η|. When η � 0, the system will be overwhelmed by her (point (B)). When
η > 0, on the contrary, the anodic branch as hor can be observed at (C)→ (D) . Due to the
poor solubility of H2, the anodic current of hor will reach a certain limit. This vertical line
has its root in the limiting diffusion current of H2, jH2,L. We can calculate the theoretical
jH2,L based on two suppositions: (1) a moderate agitation using magnetic stirrer (δH2

dependincg on agitation. It was estimated to ≈ 0.01 cm in this experiment [2,6,7,31]), and
(2) the test solution in the H2-saturated state (≈ 10−3 mol dm−3) [5,32]. Their calculations
are shown as:

jH2,L = z F
DH2

δH2

[H2]sat. ≈ (2)
(

96.5× 103 A s mol−1
)(3.8× 10−5 cm2 s−1

0.01 cm

)(
10−3 mol dm−3

)
≈ 0.73 mA cm−2. (146)

Table 1 tells that the wa jH2,L as an anodic vertical line was:

wa jH2,L ≈ 0.7 mA cm−2. (147)

Then, wa can be calculated as:

wa =
wa jH2,L

jH2,L
=

0.7 mA cm−2

0.74 mA cm−2 = 0.96. (148)

On the other hand, we can estimate the wa/wc ratio by employing Equation (100).
Substituting ηw = 0 V into Equation (100) returns the following:

wa

wc
= exp

(
−z F
RT

ηw

)
= exp

(
−2

0.026
× 0
)
= 1. (149)

The above two results can lead to the conclusion of wa = wc = 0.96. Using wc = 0.96,
we can estimate the wc jH+ ,L:



Catalysts 2021, 11, 1322 26 of 49

wc jH+ ,L = −wc z F DH+

δH+

[
H+
]

bulk

≈ −(0.96)(1)
(

96.5× 103 A s mol−1
)(

7×10−5 cm2 s−1

0.01 cm

)(
10−0.3 mol dm−3

)
= −325 mA cm−2.

(150)

Unfortunately, we cannot find the actual wc jH+ ,L experimentally because it is over-
scaled in Figure 2.

3.8.2. Determination of z for Reversible HER

Using the readings in Table 1, rough estimation of z is possible. The z is calculated by
Equation (45), which is modified by wa, wc, and l/κ:

z =
R T

F
1

hexp(0)− l/κ

(
1

wa jH2,L
+

2
−wc jH+ ,L

)
≈ 0.026

2.2× 10−2 − 10−3

(
1

0.7
+

2
325

)
= 1.8. (151)

If the 1.8 can be rounded to an integer, the z becomes 2. In order to obtain the more
accurate z, the parallel displacement technique will be helpful. Employing Equation (48),
we can plot the relation between log

{
h
(

j + wa jH2,L
)
− l/κ

}
and log|j|. The results of all

curves are shown in Figure 15.

Figure 15. Relation between
{

hexp(j + 0.7)− 10−3} vs. |j| is plotted. The z was estimated using the
green region data because their data satisfied the Tafel slope. The Tafel slope of −1 is shown with the
orange dashed line as a reference.

We can find that there is a current region satisfying the Tafel slope, which is depicted
as the green-toned region (4 mA cm−2 . |j| . 8 mA cm−2). The relation between the
calculated z and the green-toned |j| were plotted. The results are shown in Figure 16.
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Figure 16. Relation between the calculated z and the current region of 4 mA cm−2 . |j| .
8 mA cm−2.

We can see that the HER occurred on Pt electrode has exactly z = 2. In this calculation,
the precondition of Equation (47) has been confirmed in advance:[

RT
z F

2
j + wa jH2,L − wc jH+ ,L

]
4.|j|.8

=
0.026

2
2

(4 ∼ 8) + 0.7 + 325
. 10−4.1. (152)

It is acceptable in the margin of error that the approximation of . 10−4.1 is ≈ 0.

3.8.3. Confirmation of jA(0) ≈ jd for Reversible HER

When wa = wc = 0.96, the jd is calculated to:

jd =
1

1/
(
wa jH2,L

)
+ 1/

(
−wc jH+ ,L

) =
1

1/0.7 + 1/325
≈ 0.70 mA cm−2. (153)

Another way is possible by employing Equation (122):

[jA(ηw)]ηw=0 = [jA(j)]j=0 =
1

1
j pA

+ 1
−jpC

=
1

1
(wa jH2,L)

+ 1
(−wc jH+ ,L)

=
1

1
0.7 + 1

325
≈ 0.70 mA cm−2. (154)

We can see that jA(0) for reversible HER is confirmed to 0.70 mA cm−2, and it is
exactly the same as the jd (= wa jH2,L). In addition to the above, there is another way to
obtain the jA(0). Its value can be calculated by substituting the experimental readings in
Table 1 into Equation (109):

jA(0) =
0.96αc 0.96αa

1/j0 + (0.96/0.96)αa / 0.74 + (0.96/0.96)αc / 339
≈ (0.96)1

1/∞ + (1)αa / 0.74 + (1)αc / 339
= 0.71 mA cm−2. (155)

We can see that the above jA(0) well agrees with the above two results.

3.8.4. Determination of Kinetic Parameters for Reversible HER

It is reported that the Tafel slope of reversible HER is ≈ 30 mV decade−1, although
the reported values have a scattered tendency [2,3,33]. It has been also pointed out that
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reliable value will be obtained in a low overpotential region [33,34]. Ambiguous problems
have been remained when employing the TEM. The employment of h(j) can bring the clear
conclusion to b = 30 mV decade−1. Since the slope of the differentiated Tafel equation
(Equation (39)) is identical with the slope as a result of the parallel displacement (Equation
(48)), d η/d j ≈ h

(
j + wa jH2,L

)
. Namely,

d η

d j
=

b
2.3

1
|j| =

[
0.026
z |j|

]
z=2

(156)

From the above, the b is as below:

b = 2.3× 0.013 = 0.0299 V decade−1 ≈ 30 mV decade−1. (157)

Using h(j), it is conclusively proved that the Tafel slope of reversible HER is proved to
be 30 mV decade−1.

3.8.5. Agreement between Eexp(j) and Eth(j)

Employing three data (l/κ = 10−3 kΩ cm2, wa jH2,L = 0.7 mA cm−2, and wc jH+ ,L =

−325 mA cm−2), the hth(j) is shown as:

hth(j) = hrev(j) +
l
κ
=

R T
z F

(
1

wa jH2,L − j
+

2
j− wc jH+ ,L

)
+

l
κ
=

0.026
2

(
1

0.7 − j
+

2
j + 325

)
+ 10−3. (158)

The above hth(j) was plotted on the hexp(j) in Figure 3. The result is shown in
Figure 17.

Figure 17. The hth(j) was plotted on the hexp(j). We can see that the red hth(j) is overlaid on the gray
hexp(j).

We can see that the red hth(j) is on the gray hexp(j). In addition to the case of h(j), it
is also necessary to confirm the agreement between Eexp(j) and Eth(j). The Eth(j) can be
obtained by solving the following differentiated equation under an initial condition:

d Eth(j)
d j

= hth(j) =
0.026

2

(
1

0.7 − j
+

2
j + 325

)
+ 10−3 (159)
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Eth(0) = 0 V (initial condition) (160)

The above solution is as below:

Eth(j) = 0.013 ln
(j + 325)2

0.7 − j
0.7

3252 + 10−3 j (161)

The concrete Eth(j) is drawn with red on the gray Eexp(j). The result is shown in
Figure 18.

Figure 18. The curve of Eth(j), which was obtained by solving the differentiated equations, is drawn
with red on the gray Eexp(j).

The result that Eth(j) considerably overlapped with Eexp(j) is conclusive evidence for
the valid approximation.

When the E(j) was embodied, η can be expressed as a function of j:

η = E− Eeq = E(j)− E(0) = 0.013 ln
0.7

3252
(j + 325)2

(0.7− j)
+ 10−3 (= η(j)). (162)

The relation between |η| and |j| is shown in Figure 19.
Figure 19 shows that small overpotential of |η| ≈ 1 mV can flow |j| ≈ 0.1 mA cm−2 to

both of branches. In a case of |η| ≈ 10 mV, a current deference between the branches takes
place; ≈ 0.6 mA cm−2 flowing to the anodic branch and ≈ −2 mA cm−2 to the cathodic
branch. We can see that the current flowing to the cathodic branch is easier than that of the
anodic branch in the case of HER.
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Figure 19. The relation between |η| and |j| is drawn.

3.9. Curve Analysis of hexp(j) in Environment (II)

Figure 1 shows that the Eocp was shifted to noble potential (0.26 ∼ 0.34 V) when CO
was added into the H2 + H2SO4 solution. The stable species at this potential are H+ and
CO2. The injected H2 and CO will be oxidized to H+ and CO2 when they come to contact
with Pt:

H2 → 2H+ + 2e. (163)

CO + H2O→ CO2 + 2H+ + 2e, (164)

Although the CO/CO2 redox reaction is usually slow, it will be stimulated by the
Pt catalysis and raise to a reasonable rate [30]. Being cathodically far polarized, Figure 4
shows that |j| exponentially increases and reaches (G). Since (G) is located at −0.5 V, the
E-pH diagram shows that the stable species are changed to H2 and CO from the previous
H+ and CO2. At (G), the following cathodic reactions will take place:

H2 ← 2H+ + 2e, (165)

CO + H2O← CO2 + 2H+ + 2e. (166)

The former reaction can vigorously occur due to sufficient supply of H+ and the latter
poorly occur due to insufficient supply of CO2. Reversing potential, the anodic current was
observed around (H). Since this point is in the stable region of CO2 and H+, the H2 and CO
(actually Had and COad, discussed later) will be oxidized to H+ and CO2 again.

Had → H+ + e, (167)

COad + H2O→ CO2 + 2H+ + 2e. (168)

Since the repeated reactions shown above influence on the curve shape, their h(j) will
become complicated. In order to be simple h(j), the route of (F)→ (G)→ (H)→ (I)→ (J)
→ (K) in Figure 5 was broadly divided into three parts: (1) (F)→ (G) (downward); (2)
(G)→ (H)→ (I) (upward); and (3) (I)→ (J)→ (K) (downward). If necessary, some of
them were further separated into smaller parts.

3.9.1. Analysis of (F)→ (G)

The hexp(j) of downward (F)→ (G) is picked up and shown again in Figure 20
together with the Eexp(j).
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Figure 20. The (F)→ (G) of Eexp(j) in Figure 4 and hexp(j) in Figure 5 are picked up as representa-
tives. The orange dashed line with the Tafel slope is shown as a reference.

(a) Point Analysis of (F)

Since the stable chemical species at (F) are CO2 and H+, the injected H2 and CO are
changed to H+ and CO2. The redox reactions related to them are shown as:

H2 � 2H+ + 2e
(

j1, Eeq1
)
, (169)

CO + H2O� CO2 + 2H+ + 2e
(

j2, Eeq2
)
. (170)

Since Eeq1(= 0 V) > Eeq2(= −0.1 V), the mixed system will be built up. The following
reactions having mixed potential (Em, Eeq2 < Em < Eeq1) will proceed:

H2 ← 2H+ + 2e
(

jc1, Eeq1
)
, (171)

CO + H2O→ CO2 + 2H+ + 2e
(

ja2, Eeq2
)
. (172)

The net current at Em is expressed as:

j = jA + jC = wa1 ja1 + wc1 jc1 + wa2 ja2 + wc2 jc2 ≈ wc1 jc1 + wa2 ja2 = 0. (173)

In the actual state, the jc1 is prevented from attending because the solution is saturated
with continuous H2 bubbling and there is no space of the H2 solubility. As a result, the her
hardly occurs.

wc1 jc1 ≈ 0. (174)

In the other hand, Equation (172) can occur because the continuous injections of H2
and CO will purge the CO2 from the solution. There is a space for the CO2 solubility. Its
solubility can be estimated using the Nernst equation:

Eeq2 = −0.10− 0.059 pH + 0.03 log
pCO2

pCO
(175)

The relation between CO and CO2 is calculated at Eeq2 = 0.32 V
(
≈ Eocp

)
:

pCO2

pCO
= 10

0.32+0.10+0.059(0.3)
0.03 ≈ 1014 (176)
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The thermodynamic answer tells us that the solution at (F) contains huge amounts of
CO2. However, the huge amount does not mean infinite CO2 solubility. We know that here
is a solubility restriction; the actual CO2 solubility is up to its saturation [32]:

[CO2]bulk ≤ [CO2]sat ≈ 10−1.5 mol dm−3. (177)

The CO2 in the solution is probably over-saturated. As a result, the Pt electrode at (F)
will be entirely surrounded with a plenty of CO and CO2.

(b) Part analysis of (F) → (F1)

The reaction occurring on (F) → (F1) → (F1′) is Equation (172). It is the cathodic
branch of the reversible reaction of Equation (170). A clear vertical line observed on the
way of (F1) → (F1′) is a sign of the CO2 reduction reaction having a diffusion process.
We can analyze Equation (172) using h(j). In order to compare the theoretical hth(j) with
the experimental hexp(j), the hth(j) of the stationary state can be expressed as below:

hth(j) =
RT
z F

(
1

wa2 jCO,L − j
+

1
j− wc2 jCO2,L

)
+

l
κ

. (178)

Employing wc2 jCO2,L = −1.5× 10−3 mA cm−2 (cathodic vertical line, (F1) in Figure 5)
and wa2 jCO,L = 1.2× 10−3 mA cm−2 (anodic vertical line, (I1) in Figure 21 shown later),
l/κ ≈ 80 kΩ cm2 (estimated using actual value of hexp(0)). It is expressed concretely as:

hth(j) =
0.026

2

(
1

1.2× 10−3 − j
+

1
j + 1.5× 10−3

)
+ 80. (179)

Figure 21. Comparisons between hth(j) (pink) and the hexp(j) (gray): a part of (F)→ (F1) , together
with all parts of (F1)→ (F2) and (F2)→ (G) , is also shown, which will be discussed later.

The cathodic part shown above is drawn on the gray (F) → (F1) with pink in
Figure 21, in which the gray hexp(j) is shown for comparison.

The large value of l/κ
(
= 80 kΩ cm2

)
suggests that the Pt electrode surface was

heavily covered with adsorption CO2 and CO. In addition to the large l/κ, there is other
evidence relating to the heavy coverage. Considering the actually observed values of CO
and CO2, the wa and wc can be roughly estimated using the following jCO,L and jCO2,L:



Catalysts 2021, 11, 1322 33 of 49

jCO,L = zF
DCO

δCO
[CO]sat. ≈ (2)

(
96.5× 103 A s mol−1

)(10−5 cm2 s−1

0.01 cm

)(
10−3 mol dm−3

)
= 0.19 mA cm−2, (180)

jCO2,L = −zF
DCO2
δCO2

[CO2]sat. ≈ −(2)
(

96.5× 103 A s mol−1
)(10−5 cm2 s−1

0.01 cm

)(
10−1.5 mol dm−3

)
= −6.1 mA cm−2. (181)

Each of wa2 and wc2 can be calculated using the above results:

wa2 =
wa2 jCO,L

jCO,L
=

1.2× 10−3 mA cm−2

0.19 mA cm−2 = 10−2.2, (182)

wc2 =
wc2 jCO2,L

jCO2,L
=
−1.5× 10−3 mA cm−2

−6.1 mA cm−2 = 10−3.6. (183)

Small wa2
(
= 10−2.2) and wc2

(
= 10−3.6) give confirmatory evidence that the active

surface is almost lost. Close observation of Figure 5 shows that all hexp(j) have peculiar
humps around (F2). Considering the humps, it is natural to divide the (F1) → (G) into
two parts: (F1′) → (F2) and (F2) → (G) .

(b1) Part Analysis of (F1′) → (G)

Since E(j) in Figure 20 shows that the stable chemical species of (F1′) → (G) are CO
and H2, the following two cathodic reactions can occur competitively:

H2 ← 2H+ + 2e−
(

jc1, Eeq1
)
, (184)

CO + H2O← CO2 + 2H+ + 2e−
(

jc2, Eeq2
)
. (185)

(b2) Part analysis of (F1′) → (F2)

The j in this cathodic region can be expressed as:

j = jA + jC ≈ jC = wc1 jc1 + wc2 jc2 . (186)

Considering that CO2 is consumed and poorly supplied, it will be acceptable that the
jc2 (= jCO2,L) is almost constant current. The jc1 can be arranged as:

jc1 = (j− wc2 jc2)/wc1 =
(

j− wc2 jCO2,L
)
/wc1. (187)

Then, the h(j) is expressed as:

h(j) =
d E
d j

=
d E

d (wc1 jc1 + wc2 jc2)
=

1
wc1 djc1 /dE + wc2 djc2 /dE

=
1

wc1 /hc1(jc1) + wc2 /hc2(jc2)
=

1
wc1

hc1(jc1). (188)

The above means that the h(j) of (F1′) → (F2) is identical to hc1(jc1)/wc1. Since the
hc1(jc1) is cathodic part of reversible reaction, the hth(j) is:

hth(j) =
1

wc1
hc1(jc1) +

(
l
κ

)
c
=

1
wc1

{
RT
z F

(
1
− jc1

+
2

jc1 − wc1 jH+ ,L

)}
+

(
l
κ

)
c

(189)

Substituting Equation (187) into the above:

hth(j) =
RT
z F

(
1

wc2 jCO2,L − j
+

2
j− wc2 jCO2,L − wc1

2 jH+ ,L

)
+

(
l
κ

)
c
. (190)
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Employing wc2 jCO2,L = −1.5× 10−3 mA cm−2, wc2 jCO2,L + wc1
2 jH+ ,L ≈ −1.5×

10−2 mA cm−2 (vertical line extrapolated from (F2)), and (l/κ)c ≈ 10−3 kΩ cm2, the hth(j)
is embodied:

hth(j) =
0.026

2

(
1

−1.5× 10−3 − j
+

2
j + 1.5× 10−2

)
+ 10−3. (191)

The above hth(j) having pink is added to the gray (F1) → (F2) in Figure 21. We
can see that the hth(j) is on the hexp(j). The large decrease of (l/κ)c from the previous
80 kΩ cm2 to 10−3 kΩ cm2 is due to the departure of adsorption CO and CO2 from the
electrode surface. It is originated from the H2 evolution and the disappearance of CO2 by
the consumption reaction of Equation (185).

(b3) Part analysis of (F2) → (G)

Since a straight line having a slope of −1 was observed on (F2) → (G) , we can
regard it as an irreversible reaction having rds. Therefore, the total number of reactions
occurring on (F2) → (G) are three. They are mutually competitive reactions.

H2 ← 2H+ + 2e−
(

jc1, Eeq1
)
, (192)

CO + H2O ← CO2 + 2H+ + 2e−
(

jc2, Eeq2
)
, (193)

Had ← H+ + e−
(

jc3, Eeq3, rds, disacussed later
)
. (194)

We can calculate the αc3 z3 using the straight line data of 0.3 . |j| . 1 mA cm−2:

αc3 z3 =
0.026

|j|
[
hexp(j)− 10−3

]
0.3 .|j|.1

≈ 0.62. (195)

Needless to say, the following precondition has been confirmed in advance:

0.026
αc3 z3

1
j− wc3 jH+ ,L

=

[
0.026
0.7

1
j+ > 100

]
0.3 . |j| . 1 < 10−3.4 (≈ 0). (196)

Although the
∣∣∣wc3 jH+ ,L

∣∣∣ cannot be observed in Figure 5, it is certainly > 100 mA cm−2.
The obtained values of αc3 and z3 must simultaneously satisfy the following restrictions:

αc3 z3 = 0.62 (197)

z3 = 1, 2, . . . (integer) (198)

0 < αc3 < 1 (199)

The most preferable combination is αc3 = 0.62 and z3 = 1, because if z3 = 2,
Equation (194) becomes reversible reaction. The result of z3 = 1 means that the rds is
one electron transferred reaction. When the conjugate reductant of the H+ is Had, it is the
well-known reaction having the Tafel–Volmer mechanism:

Had ← H+ + e (200)

The below reaction (Heyrovsky mechanism) is also possible if the result is z =1, only:

H2 ← H+ + Had + e (201)

The net current in this track is shown as:

j = jA + jC ≈ jC = wc1 jc1 + wc2 jc2 + wc3 jc3 (202)
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Taking into account of the limited wc1 jc1

(
= wc1 jH+ ,L

)
and the constant

wc2 jc2

(
= wc2 jCO2,L

)
, the hth(j) is shown as:

hth(j) =
1

wc1 /hc1(jc1)
+ wc2 /hc2(jc2) + wc3 /hc3(jc3)

+

(
l
κ

)
c
=

1
wc3

hc3( jc3) +
(

l
κ

)
c
. (203)

Arranging Equation (202), jc3 is shown as:

jc3 = (j− wc1 jc1 − wc2 jc2)/wc3 (204)

Similarly, the hth(j) is expressed as:

hth(j) =
1

wc3

{
RT

αc3 z3 F

(
1
− jc3

+
1

jc3 − wc3 jH+ ,L

)}
+

(
l
κ

)
c

=
1

wc3


RT

αc3 z3 F

 1

− j− wc1 jc1 − wc2 jc2

wc3

+
1

j−wc1 jc1−wc2 jc2
wc3

− wc3 jH+ ,L


+

(
l
κ

)
c

=
0.026
αc3 z3

(
1

wc1 jH+ ,L + wc2 jCO2,L − j
+

1
j− wc1 jH+ ,L − wc2 jCO2,L − wc32 jH+ ,L

)
+

(
l
κ

)
c
.

(205)

Employing the assumed value of wc1 jH+ ,L+ wc2 jCO2,L ≈ −5× 10−3 mA cm−2 and∣∣∣wc3
2 jH+ ,L

∣∣∣> 100 mA cm−2 , hth(j) can be embodied as:

hth(j) =
0.026
0.62

(
1

−5× 10−3 − j
+

1
j + 5× 10−3 + > 100

)
+ 10−3 ≈ 0.042

(
1

−5× 10−3 − j

)
+ 10−3. (206)

The pink curve above is added to the gray (F2) → (G) . We can see that the hth(j)
is almost on the hexp(j), except around (G). This exception may be caused by a fact that
the (l/κ)c around (G) is not always constant and probably changeable by the vigorous H2
evolution.

3.9.2. Analysis of (G) → (H) → (I)

The representative hexp(j) of upward track of (G) → (H) → (I) is picked up and
shown in Figure 22 together with its Eexp(j).

Considering the zigzag curve around (G1), it is natural to divide (G) → (H) → (I)
into two parts: (G) → (G1) and (G1) → (H) → (I) .

(a) Part analysis of (G) → (G1)

This part consists of the same cathodic reactions of (F2) → (G) , but the electrons
pumped into the system are gradually decreased this time. Similarly, as before, the αc3 z3
can be calculated using the actual current range indicating a line slope of −1. The result is
shown as:

αc3 z3 =
0.026

|j|
[
hexp(j)− 10−3

]
0.1 .|j|.1

≈ 0.55. (207)

The above result of 0.55 is different from the previous result of 0.62. Clear reasons
are unknown, but one of them must be due to change of electrode surface after or before
being attacked by her. In an example case of αc3 ≈ 0.6 and wc1 jH+ ,L + wc2 jCO2,L ≈
−1.5× 10−2 mA cm−2, the previous Equation (206) is changed to the following hth(j):

hth(j) =
0.026
0.6

(
1

−1.5× 10−2 − j
+

1
j + 1.5× 10−2 + > 100

)
+ 10−3 ≈ 0.043

(
1

−1.5× 10−2 − j

)
+ 10−3. (208)
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The above is drawn in pink in Figure 23 in which the gray hexp(j) is shown for
comparison.

Figure 22. The representative (G)→ (H)→ (I) of Eexp(j) and hexp(j) in Figures 4 and 5, respectively,
are shown. The orange dashed line with the Tafel slope is shown as a reference.

Figure 23. Comparison between pink hth(j) and gray hexp(j) is shown. A part of (G)→ (G1) is
shown. Other parts of (G1)→ (H)→ (I1) , (I1)→ (I2) , and (I2)→ (I2′) are also shown, which
will be discussed later.

A similar result that the hth(j) was almost on the hexp(j) except around (G) was
obtained.

(b) Analysis of (G1) → (H) → (I1)
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Considering the zigzag behavior in the cathodic region and the vertical line in the
anodic region, the reactions are supposed to be a mixture of Equations (192)–(194). In this
paper, the main reactions are assumed as the below, which are irreversible reactions:

COad + H2O → CO2 + H+ + Had + e
(

ja4, Eeq4
)
, (209)

H2 ← H+ + Had + e
(

jc5, Eeq5
)
. (210)

Since the above system is a mixed system having large hexp(0), each branch reaction
is categorized to the irreversible. The ja(0) of irreversible reaction almost equals to j0, the
j0 can be calculated using the common Equation (57).

j0 =
0.026

z
(

hexp(0)− l/κ
) =

0.026
(1)× ( 43− 10−3)

= 6× 10−4 mA cm−2. (211)

Employing Equation (56), hth(j) of the anodic branch of Equation (209) (αa4 ≈ 0.28 by
trial and error) and the cathodic branch of Equation (210) (αc5 ≈ 0.6) are embodied as:

[hth(j)]j>0 = [hirrev(j)]j>0 +

(
l
κ

)
a
=

0.026
z4

{
1

j0 + (αa4 − αc4) j

}
+

(
l
κ

)
a
=

0.026
1

(
1

6× 10−4 − 0.45 j

)
+ 10−3, (212)

[hth(j)]j<0 = [hirrev(j)]j<0 +

(
l
κ

)
c
=

0.026
z5

{
1

j0 + (αa5 − αc5) j

}
+

(
l
κ

)
c
=

0.026
1

(
1

6× 10−4 − 0.2 j

)
+ 10−3. (213)

The above hth(j) with pink is added to Figure 23. We can see that the pink hth(j) is on
the gray hexp(j).

(c) Analysis of (I1) → (I2)

The stable chemical species of (I1) → (I2) are H+ and CO2. Since two clear vertical
lines were observed at (I1) and (I2), these anodic reactions relate to two limiting diffusion
processes. The candidate reactions are:

COad + H2O → CO2 + H+ + Had + e
(

ja4, Eeq4
)
, (214)

H2 → H+ + Had + e
(

ja5, Eeq5
)
, (215)

H2 → 2H+ + 2e
(

ja2, Eeq2
)
. (216)

The above j is expressed as:

j = jA + jC ≈ jA = wa2 ja2 + wa4 ja4 + wa5 ja5 . (217)

It is impossible to distinguish ja5 from ja2, but the observed jH2,L is a summa-
tion of them. Considering the constant values of wa4 ja4 + wa5 ja5 = wa4 jCOad,L +

wa5 jH2,L

(
≈ 1.3× 10−3 mA cm−2

)
, the ja2 is arranged as:

ja2 =
(

j− wa4 jCOad,L − wa5 jH2,L
)
/wa2 =

(
j− 1.3× 10−3

)
/wa2. (218)

Similarly, the h(j) is expressed as:

h(j) =
ha2(ja2)

wa2
=

ha2
((

j− 1.3× 10−3)/wa2
)

wa2
. (219)

Since the above ha2(ja2) is the anodic branch of the reversible HERher, its hth(j) is:
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hth(j) =
ha2((j−1.3×10−3)/wa2)

wa2
+
(

l
κ

)
a
= 1

wa2
R T
z2 F

(
1

(j−1.3×10−3)/wa2
+ 2

wa2 jH2,L−(j−1.3×10−3)/wa2

)
+
(

l
κ

)
a

≈ 0.026
2

(
1

j−1.3×10−3 +
2

wa2
2 jH2,L+1.3×10−3−j

)
+
(

l
κ

)
a
.

(220)

For an example, when wa2
2 jH2,L ≈ 2× 10−3 mA cm−2, and (l/κ)a ≈ 140 kΩ cm2, the

above is embodied as:

hth(j) =
0.026

2

(
1

j− 1.3× 10−3 +
2

3.3× 10−3 − j

)
+ 140. (221)

The above is drawn with pink in Figure 20. We can see that the pink hth(j) is on the
gray hexp(j). The large increase of (l/κ)a from 10−3 kΩ cm2 to 140 kΩ cm2 is probably due
to the residue Had and the newly produced Had by Equations (214) and (215).

(d) Analysis of (I2) → (I2′)

The stable chemical species of (I2) → (I2′) are H+ and CO2, too. It is characteristic
that three-digit drop of hexp(j) was observed. Considering the significant decrease, it is
apparent that the Had consuming reaction had occurred. The oxidation reaction of Had
should be newly added to the previous reactions:

Had → H+ + e−
(
ia3, Eeq3

)
, (222)

The j is:

j = jA + jC ≈ jA = wa2 ja2 + wa3 ja3 + wa4 ja4 + wa5 ja5 (223)

Similarly, when the vertical value at (I2) is the constant value of wa2 ja2 + wa4 ja4 +

wa5 ja5 = (wa2 + wa5)jH2,L + wa4 jCOad,L

(
≈ 3.2× 10−3 mA cm−2

)
, the ja3 is expressed as:

ja3 =
(

j− 3.2× 10−3
)

/wa3. (224)

Since the ha3(ja3) is the anodic branch resistance of irreversible reaction, the hth(j) is
expressed when (l/κ)a ≈ 10−3 kΩ cm2 and αa3 z3 ≈ 0.7:

hth(j) =
ha3((j−3.2×10−3)/wa3)

wa3
+
(

l
κ

)
a

.

= R T
αa3 z3 F

(
1

j−3.2×10−3 +
1

wa3
2 jHad,L+3.2×10−3−j

)
+
(

l
κ

)
a

(225)

Under assumption of

1
wa32 jHad,L − j + 3.2× 10−3 ≈ 0, (226)

Equation (225) will be approximated to:

hth(j) ≈ 0.026
0.7

1
j− 3.2× 10−3 + 10−3. (227)

The above hth(j) of (I2)→ (I2′) is drawn with pink in Figure 23. We can see that
the pink hth(j) is on the gray hexp(j). The large drop of (l/κ)a to 10−3 kΩ cm2 from the
previous 140 kΩ cm2 is due to complete disappearance of Had.
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3.9.3. Analysis of (I2′)→ (J)→ (K)

The representative hexp(j) of downward track of (I2′)→ (J)→ (K) is picked up and
shown in Figure 24 together with its Eexp(j).

Figure 24. The representative (I2′)→ (J)→ (K) of Eexp(j) and hexp(j) in Figures 4 and 5, respec-
tively, are shown. The orange dashed line with the Tafel slope is shown as a reference.

The reactions in this track should be the same reactions as that of (G)→ (I2′) . We
can obtain the numerical h(j) using the same equations but different data. Similarly,
it is necessary to divide (I2′)→ (J)→ (K) into five parts: (I2′)→ (I3) , (I3)→ (I4) ,
(I4)→ (J)→ (J1) , (J1)→ (J1′) , and (J1′)→ (K) . The hth(j) divided into five parts is
shown in Figure 25 with pink together with the gray hexp(j) curve.

Figure 25. Comparison between pink hth(j) and gray hexp(j) in (I2′)→ (J)→ (K) is shown. All
divided parts of (I2′)→ (I3) , (I3)→ (I4) , (I4)→ (J)→ (J1) , (J1)→ (J1′) , and (J1′)→ (K) are
also shown together.
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(a) Part analysis of (I2′)→ (I3)

Using the same as Equation (227) but different data, the hth(j) of (I2′)→ (I3) is
embodied as:

hth(j) ≈ 0.026
0.5

1
j− 1.8× 10−3 + 10−3 (228)

The overlap between the hth(j) and the hexp(j) shows the result of good approx-
imation. The different data used are two: αa3 = 0.5 (from the previous value of 0.7)
and (wa2 + wa5)jH2,L + wa4 jCOad,L ≈ 1.8× 10−3 mA cm−2 (from the previous value of
3.2× 10−3 mA cm−2). Clear reasons for the differences are unknown, but one of them may
be due to the appearance or disappearance of Had.

(b) Part analysis of (I3)→ (I4)

The hth(j) in this region is the same as Equation (221), but different data.

hth(j) =
0.026

0.5

(
1

j− 0.35× 10−3 +
1

2.2× 10−3 − j

)
+ 70 (229)

The reason for change of z = 2 to z = 0.5 is by curve fitting result. The actual reaction
may be different from Equations (214)–(216). The further experiments are needed. The
above is drawn with pink in Figure 25. We can see that the pink hth(j) is on the gray hexp(j).
The decrease of (l/κ)a to 70 kΩ cm2 from 140 kΩ cm2 is probably due to the decrease of
the Had.

(c) Part analysis of (I4)→ (J)→ (J1)

The hth(j) in this region is the same as Equations (212) and (213), but different data.
Similarly, j0 can be calculated as:

j0 =
0.026

z
(

hexp(j)− l/κ
) =

0.026
(1)× ( 190− 10−3)

= 1.4× 10−4 mA cm−2. (230)

Employing Equation (56) and the curve fitting, hth(j) of the anodic branch (αa4 ≈ 0.2)
and the cathodic branch (αc5 = 0.995) are expressed as:

[hth(j)]j>0 = [hirrev(j)]j>0 +

(
l
κ

)
a
=

0.026
1

(
1

1.4× 10−4 − 0.6 j

)
+ 10−3, (231)

[hth(j)]j<0 = [hirrev(j)]j<0 +

(
l
κ

)
c
=

0.026
1

(
1

1.4× 10−4 − 0.99 j

)
+ 10−3. (232)

The above hth(j) with pink is added to Figure 25. We can see that the pink hth(j) is on
the gray hexp(j). Around (J1), there was a gap. This gap is caused by irreversible reactions
having values of αa3 = 0.6 and αa5 ≈ 0.995.

(d) Part analysis of (J1′)→ (K)

Using the same Equation (208) and the same data:

hth(j) =
0.026

0.6

(
1

−1.5× 10−2 − j
+

1
j + 1.5× 10−2 + > 100

)
+ 10−3 ≈ 0.043

(
1

−1.5× 10−2 − j

)
+ 10−3 (233)

The above hth(j) curves considerably overlapped with the hexp(j) curves.

3.10. Analysis of Quasireversible HER (Environment (III))

When the CO injection is stopped, the test solution will be gradually occupied by H2.
Complete restoration to the reversible reaction will depend on whether the Pt surface is
thoroughly clean or not.
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3.10.1. Estimation of wa at CO Stopped

Figure 6 shows the shape changes of Eexp(j) when the CO injection is stopped. We
can see that the first Eexp(j) followed the irregular track of (M)→ (N)→ (O)→ (P), but
the second and subsequent curve converged to the regular track of (P) → (Q) → (R).
Considering the solution saturated with H2, main reaction is the HER:

H2 � 2 H+ + 2e
(

j1, Eeq1
)
. (234)

The cathodic branch curve shape in Figure 6 is very similar to that in Figure 2, so we
can deduce that the cathodic branch contains reversible her process. Focusing on the anodic
branch, on the other hand, an apparent tendency of sequential changes of ja1 was observed,
especially at the potential range of 0.3 V ≤ E ≤ 0.7 V. Careful reading leads to the fact that
the value of ja1 at 0.7 V increased with the increase of cycle number (N). The increased wa
can be calculated as:

wa =
[wa ja1]at 0.7 V

jH2,L
=

3× 10−2 ∼ 5× 10−2

0.74
= 0.04 ∼ 0.07 (235)

The increasing wa as increasing N is another sign that the hor gradually recovers
from the contaminated state. We can see that there is an interesting fact when calculating
jA(0). Comparing the hexp(0) ≈ 0.02 kΩ cm2 in Figure 3 against the hexp(0) ≈ 0.03 ∼
0.06 kΩ cm2 in Figure 7, the jA(0) ratio between them is calculated below:

jA(0)in Figure 3

jA(0)in Figure 7
=

[
R T
z F

1
(hexp(0)−l/κ)

]
in Figure 3[

R T
z F

1
(hexp(0)−l/κ)

]
in Figure 7

=

(
hexp(0)− l/κ

)
in Figure 7(

hexp(0)− l/κ
)

in Figure 3
=

(0.03 ∼ 0.06)− 10−3

0.022− 10−3 = 1.4 ∼ 2.8 (236)

When the above ratio is averaged and assumed to 2, it is the same ratio of jA(0)
between the reversible (jA(0) ≈ jd) and the quasireversible (jA(0) ≈ jd/2). Taking into
account the experimental facts, the jA(0) ratio and the curve shape resembling, the reaction
in the environment (III) can be categorized to the quasireversible. This means that the
CO-contaminated Pt surface is gradually changed to be clean after several N.

3.10.2. Determination of Kinetic Parameters in the CO-Stopped Solution

In previous sections, we discussed that redox reaction in the H2SO4 + H2 + CO-CO
solution is the quasireversible. Some curves are probably on the way of the recovery
process from the irreversible to the reversible. Figure 26 shows the enlarged current region
at j ≈ 0. Arrows and numbers of (1)~(12) are the polarization direction and the N, except
for the first cycle.

It is clear that the linear relation holds in the range of |j| ≤ 0.02 mA cm−2. The
values of αc and z are calculated by employing the hexp(0), the calculated slopes, and
jA(0) = 0.46 mA cm−2 (by graphical determination, detailed in later 3.10.3):

z =
R T

F
1

jA(0)
(
hexp(0)− l/κ

) =
0.026

(0.46)
(
hexp(0)− 0.001

) (237)

slope =
(

hexp(0)− l
κ

)(
2 αa

wa jH2,L
+ 2 αc

wc jH+ ,L
+ 1−2 αa

jA(0)

)
≈
(
hexp(0)− 10−3)( 2(1−αc )

0.7 + 2 αc
−325 + 1−2(1−αc )

0.46

)
(238)

The relation between the calculated values (αc and z) and the N was plotted. The
results are shown in Figure 27.
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Figure 26. Relationship between hexp(j) and the enlarged j. We can find that there is a linear relation

at |j| ≈ 0 mA cm−2
(
≤ 0.02 mA cm−2

)
.

Figure 27. Relationship between the calculated values (αc and z) and the cycle number (N) is shown.
We can see that the αc and the z converge to 0.6 and 2, respectively, at N = 12.

We can see that the αc and the z are about 0.5 and 2 at N = 12. In detail, we can find an
interesting fact that the αc of the odd N was smaller than that of the even N. The reason is
not so clear, but the αc is changeable and may be deeply influenced by polarization history.
Further confirmations are needed.

3.10.3. Graphical Determination of jA(0)

Employing the determination way of jA(0) discussed in Section 3.5, we can graphically
read its value. One of the tracks (as a representative; (P)–(Q)–(R) of N = 12) was employed.
It is the green curve shown in Figure 28.
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Figure 28. The track of log h(j) vs. log| j | of N=12 in Figure 7 is selected as a representative for the
graphical estimation. The hA0(j0) is drawn in pink with chain curve. The chain line of wa jH2,L is
added for easy reading.

The hA0(j0) of Equation (75) and the wa jH2,L

(
= 0.7 mA cm−2

)
are added to Figure 28

with pink chain curve. The horizontal straight line of hexp(0)− 10−3 (≈ 0.03 kΩ cm2 at
N = 12) meets the hA0(j0) at (C1) and the wa jH2,L at (C2). Three crossed points are
shown as:

j0 ≈ 1.4 mA cm−2 : (C1), (239)

wa jH2,L = 0.7 mA cm−2 : (C2), (240)∣∣∣wc jH+ ,L

∣∣∣: (C3)
(

cannot observed, assumed to > 102 mA cm−2
)

. (241)

Substituting the above readings into Equation (7), we can calculate the jA(0):

jA(0) =
1

1/j0 + 1/ jRed,L + 1/− jOxz+ ,L
=

1
1/(≈ 1.4) + 1/0.70 + 1/ > 102 ≈ 0.46 mA cm−2. (242)

Employing the jA(0) and the hexp(0), the z can be roughly calculated to:

z =
RT
F

1
jA(0) h(0)

=
0.026

(0.46)(0.03)
= 1.77 ≈ 2. (243)

The rough agreement of jA(0)
(
≈ 0.46 mA cm−2

)
with jd/2

(
= 0.70 mA cm−2/2 =

0.35 mA cm−2
)

can also lead to the conclusion that the redox reaction in a H2SO4 + H2 +
CO-CO solution is a quasireversible reaction.

3.10.4. Agreement between Eexp(j) and Eth(j)

Employing αc = 0.6, l/κ = 10−3 kΩ cm2, (l/κ)a = 10−3 kΩ cm2,(l/κ)c = 10−3 kΩ cm2,

wa jH2,L = 0.7 mA cm−2, and
∣∣∣wc jH+ ,L

∣∣∣> 102 mA cm−2
(
≈ 325 mA cm−2

)
, the quasire-

versible hth(j) is calculated using Equations (133)–(137). The calculated result is shown
below:

hth(j) = hquasi(j) +
l
κ
=

0.0024
16.5 − j

+
0.018

0.53 − j
+

0.014
j + 4.60

+
0.0063
j + 338

+ 1.5× 10−3. (244)
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Taking into account the realistic restrictions, (1) hth(j) has two terms corresponding
to the anodic and cathodic branchs, (2) the numerator is near to 0.013 (=0.026/2), and (3)
hth(0) = hexp(0)

(
≈ 0 kΩ cm2

)
, the above hth(j) is approximated as below:

hth(j) = 0.013
(

1
0.53 − j

+
1

j + 4.60

)
+ 1.5× 10−3. (245)

The above hth(j) above was plotted on the hexp(j) in Figure 3. The result is shown in
Figure 29.

Figure 29. The hth(j) was plotted on the hexp(j). We can see that the red hth(j) is almost overlaid on
the gray hexp(j).

We can see that the red hth(j) is almost on the gray hexp(j). In addition to the h(j)
curve agreement, it is needed to confirm the agreement between Eexp(j) and Eth(j). In
the case of quasireversible reaction, it is necessary for the complete agreement that the
Eth(j) is divided into three parts. They are obtained by solving the following differentiated
equations under initial conditions:

(1) wc jH+ ,L ≤ j ≤ jpC

(
−325 mA cm−2 ≤ j ≤ −1.74 mA cm−2

)
d Eth(j)

d j
= hth(j) = 0.027 ln

(
1

0.437− j
+

1
j + 322

)
+ 10−3, (246)

Eth
(

jpC
)
= Eth(−1.74) = −0.028 V (an initial condition). (247)

The above solution is as below:

Eth(j) = −0.16 + 0.027 ln
(

j + 325
0.437 − j

)
+ 10−3 j. (248)

(2) jpC ≤ j ≤ jpA

(
−1.74 mA cm−2 ≤ j ≤ 0.437 mA cm−2

)
d Eth(j)

d j
= hth(j) = −0.028 + 0.013 ln

(
j + 4.60
0.53− j

)
+ 1.5× 10−3, (249)

Eth(j) = 0 V (an initial condition). (250)
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The solution is:

Eth(j) = −0.063− 0.0024 ln(16.5− j)− 0.018 ln(0.53− j) + 0.014 ln(j + 4.60) + 0.063 ln(j + 338) + 1.5× 10−3 j. (251)

(3) jpA ≤ j ≤ wa jH2,L

(
0.437 mA cm−2 ≤ j ≤ 0.70 mA cm−2

)
d Eth(j)

d j
= hth(j) = 0.046

(
1

0.70− j
+

1
1.74 + j

)
+ 10−3, (252)

Eth
(

jpA
)
= Eth(0.437) = 0.024 V (an initial condition). (253)

The result is shown as:

Eth(j) = −0.074 + 0.046 ln
(

1.74 + j
0.70− j

)
+ 10−3 j. (254)

The concrete Eth(j) is drawn with red on the gray Eexp(j). The result is shown in
Figure 30.

Figure 30. The curve of Eth(j), which is obtained by solving the differentiated equations, is drawn
with red. The cathodic part of Eth(j) is on the gray Eexp(j).

The curve technique using h(j) shows that the cathodic part of Eth(j) completely
overlaps with Eexp(j). In contrast, the anodic part of Eth(j) shows almost a line compared
to the curve of Eexp(j). When considering wa as a function of η or time, the anodic part of
Eth(j) will probably show better agreement with Eexp(j). Some mentioned above will be
further studied and reported elsewhere.

4. Experimental Section
4.1. Specimens

Two platinum wires (99.98% Pt, NILACO Ltd., Tokyo, Japan) were employed for
working and counter electrodes. Each wire was 0.3 mm in diameter and 50 cm in length.
The electrodes were formed on a spiral shape. The counter electrode had a geometric area
of 4.7 cm2. The working electrode had an exposure area of 3 cm2 by masking an insulating
area with silicon resin. They were ultrasonically cleaned in warm acetone and immersed in
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a HNO3 solution for 180 s at an ambient temperature. They were rinsed thoroughly with
deionized water before every test.

4.2. Test Solution

Chemical grade sulfuric acid (98% H2SO4, Wako Pure Chemical Industries, Tokyo,
Japan), high purity hydrogen gas (99.99999% H2, Air-Water Inc., Tokyo, Japan), and carbon
monoxide gas (99.95% CO, Air-Water Inc., Tokyo, Japan) were employed. The test solution
was saturated with H2 and injected with CO under atmospheric pressure. The solution was
deionized water having 1 dm3. During experiments, the solution was always maintained
in the H2-saturated condition by continuous H2 bubbling. The solution pH and electrolyte
conductivity of the test solution were about 0.3 and ≥20 S m−1, respectively. The dissolved
oxygen concentration in the solution was always <0.4 ppm.

4.3. Measurements

Measurements were carried out under the H2-saturated solution at around 298 K.
The CO gas was injected/stopped in a 0.5 mol dm−3 H2SO4 solution. An automatic
electrochemical instrument (Hokuto Denko Inc., HZ7000, Tokyo, Japan) was employed for
CV. The Ag/AgCl electrode in the saturated KCl solution (DKK-TOA Co., HS-305D, Tokyo,
Japan) was used as a reference electrode. All of the electrode potentials were converted to
V vs. SHE and simplified to V in this paper unless otherwise noted. The distance between
the working and reference electrodes was <1 cm. The E(j) curve was not corrected for the jR
drop because the physical factors such as solution resistance can be compensated using the
curve technique, which was detailed in Section 3.6.2. A slow scan rate of 0.3 mV s−1 was
selected for the steady state measurement because the E(j) unaffected by time is supposed
to be the steady state curve [5,34]. Since the resulting data had frequent scattering tendency,
smoothing was necessary. Using a commercial software (Igor Pro 6, 6.2.2.0, WaveMetrics,
Lake Osawego, OR, USA, 2011), the experimental E(j) was mathematically smoothed.
Arranging mathematical formulas, commercially available software (Mathematica ver.10)
was used.

5. Conclusions

In order to analyze the CO poisoning effect, a few curve techniques were employed
to investigate the hydrogen electrode reaction (HER = hor + her) occurring on the Pt
electrode in a 0.5 mol dm−3 H2SO4 solution saturated with H2 when CO-injected or not.
Using the curve techniques, the followings were confirmed: HER before CO injection
showed typical reversible reaction, having z = 2. After CO injection, her was changed
to an irreversible reaction, having z = 1 and αc ≈ 0.6. When CO injection was stopped,
HER gradually changed to quasireversible from an irreversible reaction. The h(j) of HER
before/after the CO injection were analyzed not only algebraically but also graphically.
It was found that HER poisoned with CO would change to a reversible, irreversible, or
quasireversible reaction depending on CO content in the solution. It was also found that
the kinetic parameters transferring among reversible, irreversible, and quasireversible
could be determined by employing h(j).
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Appendix A. List of Symbols

J(η) is the net current as a function of overpotential (mA).
Ja(η) is the anodic branch current as a function of overpotential (mA).
Jc(η) is the cathodic branch current as a function of overpotential (mA).
S is the geometrical surface of electrode (cm2).
Sa is the effective area where the Ja(η) flows (cm2).
Sc is the effective area where the Jc(η) flows (cm2).
wa is the weighting factor that has suitably weighted value in proportion to the surface of
the anode (-).
wc is the weighting factor that has suitably weighted value in proportion to the surface of
the cathode (-).
j(η) is the net current density as a function of overpotential (mA cm−2).
ja(η) is the anodic branch current density as a function of overpotential (mA cm−2).
jc(η) is the cathodic branch current density as a function of overpotential (mA cm−2).
jpa(η) is the minimum ja(η) in the state of j(η) = ja(η) + jc(η) ≈ ja(η) (mA cm−2).
jpc(η) is the maximum jc(η) in the state of j(η) = ja(η) + jc(η) ≈ jc(η) (mA cm−2).
η is the overpotential between an applied potential, E and the Eeq (V).
η = E− Eeq (A1).
Eeq is the equilibrium electrode potential (V vs. SHE).

Eeq = E0 + R T
z F ln {Oxz+}bulk

{Red}bulk
= E∅ + R T

z F ln [Oxz+]bulk
[Red]bulk

(A2).

E0 is the standard electrode potential (V vs. SHE).
E∅ is the formal electrode potential (V vs. SHE).
z is the number of electrons transferred (-).
F is the Faraday’s constant (F = 96.5× 103 A s mol−1).

R is the gas constant
(

R = 8.31 J mol−1 K−1
)

.

T is the absolute temperature (K).
{Red}bulk is the activity of reductant (Red) in the bulk solution (-).{

Oxz+}
bulk is the activity of oxidant (Oxz+) in the bulk solution (-).

[Red]bulk is the concentration of the Red in the bulk solution (mol dm−3).[
Oxz+]

bulk is the concentration of the Oxz+ in the bulk solution (mol dm−3).
f a is αa z F/RT (V−1).
f c is αc z F/RT (V−1).
αa is the anodic transfer coefficient (-).
αc is the cathodic transfer coefficient (-) (= 1− αa).
f is z F/RT (V−1).
f = f a + f c = z F/RT (V−1) (A3).

jRed,L is the limiting diffusion current density of the Red,
(

mA cm−2
)

.

jRed,L = z F DRed
δRed

[Red]bulk = z F kRed[Red]bulk (A4)

jOxz+ ,L is the limiting diffusion current density of the Oxz+,
(

mA cm−2
)

.

jOxz+ ,L = − z F DOxz+
δOxz+

[
Ox+

]
bulk = −z F kOxz+

[
Oxz+]

bulk (A5).

DRed is a diffusion coefficient of the Red (cm2 s−1).
DOxz+ is a diffusion coefficient of the Oxz+ (cm2 s−1).
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δRed is the Nernst diffusion layer thickness concerning the Red (cm).
δOxz+ is the Nernst diffusion layer thickness concerning the Oxz+(cm).
kRed is the rate constant of the Red (cm s−1).
kOxz+ is the rate constant of the Oxz+ (cm s−1).

ja(0) is the total exchange current density
(

mA cm−2
)

.

j0 is the exchange current density for charge transfer process
(

mA cm−2
)

.

j0 = z F k∅ [Red]αc
bulk

[
Oxz+]αa

bulk (A6).
k∅ is the standard heterogeneous rate constant (cm s−1).
(l/κ)f is the polarization resistance relating to oxide film or product layer (= lf/κf, kΩ cm2).
lf is the thickness of oxide film or product layer (cm).
κf is the conductivity of oxide film or product layer ((kΩ cm)−1).
(l/κ)s is the polarization resistance relating to solution (= ls/κs, kΩ cm2).
ls is the distance between the anodic site and the cathodic site (cm).
κs is the conductivity of the solution ((kΩ cm)−1).

The units used in this paper satisfy the requirements of coherent system [35,36].
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