
Citation: Park, J.; Hassan, A.U.; Choi,

J. CCFont: Component-Based

Chinese Font Generation Model

Using Generative Adversarial

Networks (GANs). Appl. Sci. 2022, 12,

8005. https://doi.org/10.3390/

app12168005

Academic Editor: José Salvador

Sánchez Garreta

Received: 20 June 2022

Accepted: 9 August 2022

Published: 10 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

CCFont: Component-Based Chinese Font Generation Model
Using Generative Adversarial Networks (GANs)
Jangkyoung Park , Ammar Ul Hassan and Jaeyoung Choi *

School of Computer Science and Engineering, Soongsil University, Seoul 06978, Korea
* Correspondence: choi@ssu.ac.kr

Abstract: Font generation using deep learning has made considerable progress using image style
transfer, but the automatic conversion/generation of Chinese characters still remains a difficult task
owing to the complex character shape and large number of Chinese characters. Most known Chinese
character generation models use the image conversion method of the Chinese character shape itself;
however, it is difficult to reproduce complex Chinese characters. Recent methods have utilized
character compositionality by separating up to three or four components to improve the quality
of generated characters, but it is still difficult to generate high-quality results for complex Chinese
characters with many components. In this study, we proposed the CCFont model (component-based
Chinese font generation model using generative adversarial networks (GANs)) that automatically
generates all Chinese characters using Chinese character components (up to 17 components). The
CCFont model generates all Chinese characters in various styles using the components of Chinese
characters based on conditional GAN. By acquiring local style information from the components,
the information is more accurate and there is less information loss than when global information
is obtained from the image of the entire character, reducing the failure of style conversion and
improving quality to produce high-quality results. Additionally, the CCFont model generates high-
quality results without any additional training (zero-shot font generation without any additional
training) for the first-seen characters and styles. For example, the CCFont model, which was trained
with only traditional Chinese (TC) characters, generates high-quality results for languages that can
be divided into components, such as Korean and Thai, as well as simplified Chinese (SC) characters
that are only seen during inference. CCFont can be adopted as a multi-lingual font-generation model
that can be applied to all languages, which can be divided into components. To the best of our
knowledge, the proposed method is the first to generate a zero-shot multilingual generation model
using components. Qualitative and quantitative experiments were conducted to demonstrate the
effectiveness of the proposed method.

Keywords: Chinese font generation; radicals/components; GAN

1. Introduction

It is a well-known fact that creating new fonts using deep learning is very efficient in
terms of time and labor cost. When a font designer creates a new set of English fonts, they
only need to design 52 uppercase and lowercase Roman characters. However, it is necessary
to design 11,172 characters for Hangul and 70,000 to 100,000 characters for Chinese, which
is labor-intensive and practically impossible. These labor-intensive tasks take around
700 days for Hangul and more than 10 years for Chinese, and it is almost impossible to
design them in the same style, even if a designer makes one character every 30 min and
works 8 h a day [1].

With deep learning based on artificial intelligence, if you design only 256 characters, it
is now possible to create a new set of Korean fonts in 30 min, and this can also be applied to
Chinese characters. Therefore, interest in developing a model that automatically produces

Appl. Sci. 2022, 12, 8005. https://doi.org/10.3390/app12168005 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12168005
https://doi.org/10.3390/app12168005
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6446-4590
https://orcid.org/0000-0002-7321-9682
https://doi.org/10.3390/app12168005
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12168005?type=check_update&version=2

Appl. Sci. 2022, 12, 8005 2 of 20

fonts for various languages has recently increased, and active research is being conducted
on the generation of various characters, including Korean, Chinese, and English [2–5].

Most font generation models use the generative adversarial network (GAN) [6,7] as a
basic frame, and various modified forms are used to achieve great results. However, in the
case of Hangul and Hanja, which have a large number of characters and complex shapes, it
is not easy to change their character style. This is because it is difficult to convert an image
by acquiring style information from the content. In particular, it is difficult to successfully
convert content images into complex Chinese characters [8–10]. Figure 1 shows a sample
failure case for the generation of Chinese characters.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 2 of 20

to Chinese characters. Therefore, interest in developing a model that automatically pro-
duces fonts for various languages has recently increased, and active research is being con-
ducted on the generation of various characters, including Korean, Chinese, and English
[2–5].

Most font generation models use the generative adversarial network (GAN) [6,7] as
a basic frame, and various modified forms are used to achieve great results. However, in
the case of Hangul and Hanja, which have a large number of characters and complex
shapes, it is not easy to change their character style. This is because it is difficult to convert
an image by acquiring style information from the content. In particular, it is difficult to
successfully convert content images into complex Chinese characters [8–10]. Figure 1
shows a sample failure case for the generation of Chinese characters.

Figure 1. A sample case of failures to generate Chinese characters.

To solve this problem, SKFont [11] proposed a three-stage network based on charac-
ter image skeletonization [12] for generating Hangul font images. Additionally, the direct
conversion of relatively simple components has also been attempted [13–21].

Recently, a component-based method for Hangul was introduced that generated
high-quality results [20]. In Hangul, characters can be regenerated with a maximum of
three components. In contrast, in Chinese characters, the number of components varies
for each character, and many exceed 10 components. Therefore, a new model must be
created to apply the component concepts to Chinese characters.

In this study, we proposed a component-based Chinese font generation (CCFont)
model that further separates Chinese character radicals into components and automati-
cally generates high-quality Chinese characters using all components. The CCFont is
trained to separate all the components constituting Chinese characters from the 2003 tra-
ditional Chinese (TC) characters currently used in China and combines them in a new
style. The CCFont model automatically generates not only almost all TC characters (max
17 components) but also all 7445 simplified Chinese (SC) characters of GB/T 2312-1980,
which includes 99.99% of the Chinese characters currently used in China, in real time with
a high-quality new style.

Because our proposed method obtains style information from the components and
not from the glyphs, the model reduces the number of failure cases. It operates in an end-
to-end manner that converts styles using component images of Chinese characters and
can generate high-quality Chinese characters without additional training steps for unseen
font styles.

The CCFont model is executed step by step as follows:
1. Data generation (Character-to-Radical-to-Components Module, CRC-Module);
2. Model training (CCFont Training Module);
3. Generating new character/style Chinese characters (CCFont Generating Chinese

Characters, GC-Module).
The data generation module breaks Chinese characters into components to generate

data for the CCFont Training Module, which receives the data and regenerates the images
through training. For generating a new character, the GC-Module uses the CCFont train-
ing module to generate Chinese characters. Figure 2 depicts an example of Chinese

Figure 1. A sample case of failures to generate Chinese characters.

To solve this problem, SKFont [11] proposed a three-stage network based on character
image skeletonization [12] for generating Hangul font images. Additionally, the direct
conversion of relatively simple components has also been attempted [13–21].

Recently, a component-based method for Hangul was introduced that generated high-
quality results [20]. In Hangul, characters can be regenerated with a maximum of three
components. In contrast, in Chinese characters, the number of components varies for each
character, and many exceed 10 components. Therefore, a new model must be created to
apply the component concepts to Chinese characters.

In this study, we proposed a component-based Chinese font generation (CCFont)
model that further separates Chinese character radicals into components and automatically
generates high-quality Chinese characters using all components. The CCFont is trained
to separate all the components constituting Chinese characters from the 2003 traditional
Chinese (TC) characters currently used in China and combines them in a new style. The CC-
Font model automatically generates not only almost all TC characters (max 17 components)
but also all 7445 simplified Chinese (SC) characters of GB/T 2312-1980, which includes
99.99% of the Chinese characters currently used in China, in real time with a high-quality
new style.

Because our proposed method obtains style information from the components and
not from the glyphs, the model reduces the number of failure cases. It operates in an
end-to-end manner that converts styles using component images of Chinese characters and
can generate high-quality Chinese characters without additional training steps for unseen
font styles.

The CCFont model is executed step by step as follows:

1. Data generation (Character-to-Radical-to-Components Module, CRC-Module);
2. Model training (CCFont Training Module);
3. Generating new character/style Chinese characters (CCFont Generating Chinese

Characters, GC-Module).

The data generation module breaks Chinese characters into components to generate
data for the CCFont Training Module, which receives the data and regenerates the images
through training. For generating a new character, the GC-Module uses the CCFont training
module to generate Chinese characters. Figure 2 depicts an example of Chinese characters
generated (out) by the CCFont model in the style of the target character (tgt) based on
character input (src).

Appl. Sci. 2022, 12, 8005 3 of 20

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 20

characters generated (out) by the CCFont model in the style of the target character (tgt)
based on character input (src).

Figure 2. Example of Chinese characters generated (out) by CCFont model in the style of the target
character (tgt) based on the character input (src).

The CCFont model proposed in this study has the following advantages and contri-
butions:
 Decomposing Chinese characters into components decreases the rendering difficul-

ties significantly.
 Component image conversion, which is much simpler than character shapes, signif-

icantly reduces the number of failure cases and enables high-quality character gen-
eration.

 Up to 17 components can be generated, making it possible to generate almost all Chi-
nese characters (99.99% in use).

 The development of TC and SC Chinese character automatic generation/con-version
model (CCFont) using Chinese character components.

 Experiments demonstrated zero-shot font generation and generated Korean (Han-
gul) and Thai fonts using the CCFont model.
There are two types of Chinese characters, TC and SC. In this paper, we trained our

model with only TC characters and demonstrated that the model is generalized to gener-
ate the unseen SC characters. Additionally, we conducted experiments to demonstrate
that the proposed method can also generate multi-lingual characters such as Korean Han-
gul and Thai characters.

2. Related Works
The style conversion of Chinese fonts remains a challenging task because of the large

number of characters (70,224 characters, GB18010-2005) and complex shapes (some char-
acters have more than 50 strokes) compared to Roman characters. Several models based
on GAN [6,7] have recently been proposed and have demonstrated success in font syn-
thesis tasks [8–12,22–26]. We divided these methods into two categories, many-shot and
few-shot font generation methods, which are discussed in the next section.

Figure 2. Example of Chinese characters generated (out) by CCFont model in the style of the target
character (tgt) based on the character input (src).

The CCFont model proposed in this study has the following advantages and contributions:

• Decomposing Chinese characters into components decreases the rendering difficulties
significantly.

• Component image conversion, which is much simpler than character shapes, significantly
reduces the number of failure cases and enables high-quality character generation.

• Up to 17 components can be generated, making it possible to generate almost all
Chinese characters (99.99% in use).

• The development of TC and SC Chinese character automatic generation/con-version
model (CCFont) using Chinese character components.

• Experiments demonstrated zero-shot font generation and generated Korean (Hangul)
and Thai fonts using the CCFont model.

There are two types of Chinese characters, TC and SC. In this paper, we trained our
model with only TC characters and demonstrated that the model is generalized to generate
the unseen SC characters. Additionally, we conducted experiments to demonstrate that the
proposed method can also generate multi-lingual characters such as Korean Hangul and
Thai characters.

2. Related Works

The style conversion of Chinese fonts remains a challenging task because of the
large number of characters (70,224 characters, GB18010-2005) and complex shapes (some
characters have more than 50 strokes) compared to Roman characters. Several models
based on GAN [6,7] have recently been proposed and have demonstrated success in font
synthesis tasks [8–12,22–26]. We divided these methods into two categories, many-shot
and few-shot font generation methods, which are discussed in the next section.

2.1. Many-Shot Font Generation Methods

Most of these methods consider font generation as an image-to-image translation [27]
problem based on conditional GAN (cGAN) [28]. The conditional GAN is the extension
of vanilla GAN, where the image is generated with some condition c, i.e., c can be a class
label or an image (as in our case). The condition c is added to both the generator and dis-

Appl. Sci. 2022, 12, 8005 4 of 20

criminator for the parameters intended to be controlled. Rewrite [29] proposed a top-down
CNN architecture for generating one font style. Zi2zi [8] extended the one-to-one mapping
function of the pix2pix [27] framework by proposing a one-to-many mapping function that
utilizes category embedding for style injection. Based on zi2zi, DCFont [9] used a separate
style feature extractor to generate Chinese handwriting characters. SCFont [10] extracts
skeletons/strokes from source glyphs and converts them into target styles. Ko et al. [12]
proposed a method for font image skeletonization based on the pix2pix framework. Later,
this method was extended as a three-stage stack network architecture for generating Ko-
rean Hangul fonts [11]. Some methods have also utilized Chinese character radicals for
Chinese character recognition [13,14]. Wen et al. [16] generated handwritten Chinese font
characters by refining strokes of Chinese characters. More recently, RCN [18] was proposed
to generate new Chinese character categories by integrating radicals. All of these methods
produce satisfactory results; however, these methods are unable to generate unseen font
styles without additional finetuning steps on a large number of reference characters. For
example, zi2zi [8], DCFont [9], and SCFont [10] require more than 700 reference characters
of unseen font to learn the new style, which is time consuming and computationally expen-
sive. To overcome these issues, recent methods have focused on generating characters in a
few-shot setting.

2.2. Few-Shot-Learning

In a few-shot setting, the goal is to generate characters in an unseen font style with
just a few reference characters of that style at the test time. Recent few-shot methods have
tackled this font image generation by utilizing the composition of characters. For example,
DM-Font [24] generates Hangul and Thai characters with very few reference characters. It
extracts the component information of Hangul characters and stores it in memory and uses
it whenever necessary. This takes a significant amount of time, and only Hangul stored
in memory can be generated during the inference time. Another problem with DM-Font
is that it cannot generate other language characters, such as Chinese. By improving the
problem of DM-Font, LF-Font [25], which enables Chinese characters, uses a style encoder
and a content encoder for each component to generate Korean and Chinese characters
without fine-tuning. However, due to architecture constraints, LF-Font is unable to perform
multi-lingual font style transfer.

To overcome LF-Font issues, MX-Font [26] proposed multilingual font generation ar-
chitecture by utilizing multi-head encoders for each reference image to separate information
between content and style, enabling work across languages. It has superior performance to
DM-Font and LF-Font and produces high-quality results; however, training a character for
the first time requires repeated exposure. Recently, RD-GAN [17] was proposed based on
Chinese character radicals for zero shot Chinese character style transfer based on radical
decompositions. However, RD-GAN is unable to produce unseen font styles.

More recently, a fine-grained local style from reference style characters is extracted [19].
However, because of the complex structure, such as more than 200 components of Chinese
characters, only experimental results using certain components were presented, and limited
performance was shown for complex characters. CKFont [20] pairs the source character
with the individual components of the target character, obtains style information from
the individual components of the target character, and generates results. As a result, it
is possible to expand and apply not only Hangul but also Chinese and Thai characters,
as it generates all the characters by training to separate and combine components, and it
produces high-quality results in a short time.

Obtaining component images from a character image is extremely limited and chal-
lenging when the character’s shape is complex. We resolved this issue by separating the
component from the shape of the character and then recombining the transformed compo-
nent image by converting the separated component image, yielding positive results. Style
information and content structure are the most important factors in glyph style transfer.
Obtaining accurate style information and continuously transmitting information without

Appl. Sci. 2022, 12, 8005 5 of 20

any loss are critical for image reproduction. To overcome such style information acquisition
and loss, we developed the proposed CCFont model that separates the complex shapes
of Chinese characters into components (decomposition), extracts local styles from these
components separately, and generates characters of the target style by recombining the
extracted component (composition) features. The trained model, in this way, reconstructs
the characters in the introduced method, regardless of the content of the components.
Therefore, it worked successfully for all Chinese characters (TC and SC) that could be
separated into components, as well as Hangul and Thai characters. In other words, the
CCFont model is a new multi-lingual (or cross-lingual) font generation model [26] of the
zero-shot concept [15,17] that works even with characters and styles that the model sees for
the first time.

3. Structure of Chinese Character
3.1. Character-Sets and Strokes (https://en.wikipedia.org/wiki/Chinese_characters, (accessed on
1 June 2022))

The exact number of Chinese characters is unknown because anyone can create char-
acters by combining sounds and meanings. In record, there are 47,035 characters in the
1716 Kangxi Zidian (康熙字典) dictionary. The 1989 Hanyu Da Zidian (漢語大字典) dictio-
nary has 54,678 characters, the 1994 Zhonghua Zihai (中华字海) has 85,568, and the 2004
Yitizi Zidian (異体字字典) contains 106,230 characters. The Japanese 2003 Dai Kan-Wa Jiten
(大漢和辞典), which uses Chinese characters, contains 50,305 characters, and Korea’s 2008
Han-Han Dae Sajeon (漢韓大辭典) contains 53,667 characters.

Owing to the complexity of Chinese characters, it is difficult not only to understand all
Chinese characters but also to write them; therefore, SC characters have been used recently.
SC is a simplified version of the number of strokes and shapes compared to the original TC.

GB2312-1980, published in 1980 by the Chinese government, contains 6763 SC Hanzi
(汉字), currently used in mainland China and Singapore. In 1995, this was extended to GBK,
including TC (20,914 characters), GBK21003 (21,003 characters), GBK26634 (26,634 characters),
and GB18030 (70,244 characters), which were combined with GB2312. In 2013, the Chinese
government classified the number of Chinese characters used into three grades according
to the difficulty of Chinese characters and published 8105 standard characters including
SC (Tōngyòng Guı̄fàn Hànzì Biǎo, 通用规范汉字表). There are 3500 characters in Level 1,
3000 characters in Level 2, and Level 3 has 1605 characters. Furthermore, Levels 1 and 2 are
regulated by common Chinese characters.

Chinese characters can be divided into strokes and their components (radicals). A
stroke is the smallest unit comprising a character. There are six types of basic strokes, as
shown in Figure 3, and a total of 41 types of strokes.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 20

characters, as it generates all the characters by training to separate and combine compo-
nents, and it produces high-quality results in a short time.

Obtaining component images from a character image is extremely limited and chal-
lenging when the character’s shape is complex. We resolved this issue by separating the
component from the shape of the character and then recombining the transformed com-
ponent image by converting the separated component image, yielding positive results.
Style information and content structure are the most important factors in glyph style
transfer. Obtaining accurate style information and continuously transmitting information
without any loss are critical for image reproduction. To overcome such style information
acquisition and loss, we developed the proposed CCFont model that separates the com-
plex shapes of Chinese characters into components (decomposition), extracts local styles
from these components separately, and generates characters of the target style by recom-
bining the extracted component (composition) features. The trained model, in this way,
reconstructs the characters in the introduced method, regardless of the content of the com-
ponents. Therefore, it worked successfully for all Chinese characters (TC and SC) that
could be separated into components, as well as Hangul and Thai characters. In other
words, the CCFont model is a new multi-lingual (or cross-lingual) font generation model
[26] of the zero-shot concept [15,17] that works even with characters and styles that the
model sees for the first time.

3. Structure of Chinese Character
3.1. Character-Sets and Strokes (https://en.wikipedia.org/wiki/Chinese_characters, (accessed on 1 June
2022))

The exact number of Chinese characters is unknown because anyone can create char-
acters by combining sounds and meanings. In record, there are 47,035 characters in the
1716 Kangxi Zidian (康熙字典) dictionary. The 1989 Hanyu Da Zidian (漢語大字典) dic-
tionary has 54,678 characters, the 1994 Zhonghua Zihai (中华字海) has 85,568, and the 2004
Yitizi Zidian (異体字字典) contains 106,230 characters. The Japanese 2003 Dai Kan-Wa
Jiten (大漢和辞典), which uses Chinese characters, contains 50,305 characters, and Korea’s
2008 Han-Han Dae Sajeon (漢韓大辭典) contains 53,667 characters.

Owing to the complexity of Chinese characters, it is difficult not only to understand
all Chinese characters but also to write them; therefore, SC characters have been used re-
cently. SC is a simplified version of the number of strokes and shapes compared to the
original TC.

GB2312-1980, published in 1980 by the Chinese government, contains 6763 SC Hanzi
(汉字), currently used in mainland China and Singapore. In 1995, this was extended to
GBK, including TC (20,914 characters), GBK21003 (21,003 characters), GBK26634 (26,634
characters), and GB18030 (70,244 characters), which were combined with GB2312. In 2013,
the Chinese government classified the number of Chinese characters used into three
grades according to the difficulty of Chinese characters and published 8105 standard char-
acters including SC (Tōngyòng Guīfàn Hànzì Biǎo, 通用规范汉字表). There are 3500 char-
acters in Level 1, 3000 characters in Level 2, and Level 3 has 1605 characters. Furthermore,
Levels 1 and 2 are regulated by common Chinese characters.

Chinese characters can be divided into strokes and their components (radicals). A
stroke is the smallest unit comprising a character. There are six types of basic strokes, as
shown in Figure 3, and a total of 41 types of strokes.

Figure 3. Basic six strokes of Chinese characters. Figure 3. Basic six strokes of Chinese characters.

The strokes form part of a character but have no meaning. The strokes are useful for
writing and identifying characters, but they are too small to be used as elements to form
an image of a character. Figure 4 shows examples of a large number of strokes and the
complexity of Chinese characters. The characters with the most strokes currently in use are
the 58 characters for BiangBiang noodles, a type of noodle from the Chinese province of
Shaanxi. There are also characters with higher strokes (64, 84, etc.) to denote the complexity
of Chinese characters, but they are seldom used.

https://en.wikipedia.org/wiki/Chinese_characters

Appl. Sci. 2022, 12, 8005 6 of 20

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 20

The strokes form part of a character but have no meaning. The strokes are useful for
writing and identifying characters, but they are too small to be used as elements to form
an image of a character. Figure 4 shows examples of a large number of strokes and the
complexity of Chinese characters. The characters with the most strokes currently in use
are the 58 characters for BiangBiang noodles, a type of noodle from the Chinese province
of Shaanxi. There are also characters with higher strokes (64, 84, etc.) to denote the com-
plexity of Chinese characters, but they are seldom used.

Figure 4. Examples of the complexity of Chinese characters.

3.2. Radicals and Components (http://hanzidb.org/, (accessed on 1 June 2022))

To find a Chinese character in a dictionary, you need an index of Chinese characters,
similar to the Roman alphabet; this is called a radical (piānpáng, 偏旁) or indexing com-
ponent (部首) [20]. The exact number of radicals is unknown and depends on the number
of characters in the character set. There are 214 Kangxi radicals used in China today and
188 in the Oxford Concise English Chinese Dictionary (ISBN 0-19-596457-8). The standard GF
0011-2009 (汉字部首表) has 201 radicals in simplified Chinese characters. The number of
Chinese characters commonly used today is approximately 3500, and there are approxi-
mately 500 unique radicals [17].

Radicals are divided into phonetic and meaning radicals. For example, as shown in
Figure 5 (left), the TC character 媽 mā “mother” in the left part is the radical 女 nǚ “fe-
male”—the semantic component—and the right part 馬 mǎ “horse” is the phonetic com-
ponent. In Figure 5, the left side is traditional, the right side is simplified, and the same
rule applies to both.

Figure 5. The radials are separated to the left and right of the character.

In addition, the same radical may change in shape, as shown in Figure 6, depending
on the location where it is used 心=忄, 手=扌=才, 火=灬, etc. Because the radical shape
changes depending on character position, it is more difficult to change the style of Chinese
characters. We solved this problem by using the image separated into the target character
components and by using the modified radical image as is.

Figure 6. Examples of different shapes of the same components.

Figure 4. Examples of the complexity of Chinese characters.

3.2. Radicals and Components (http://hanzidb.org/, (accessed on 1 June 2022))

To find a Chinese character in a dictionary, you need an index of Chinese charac-
ters, similar to the Roman alphabet; this is called a radical (piānpáng,偏旁) or indexing
component (部首) [20]. The exact number of radicals is unknown and depends on the
number of characters in the character set. There are 214 Kangxi radicals used in China
today and 188 in the Oxford Concise English Chinese Dictionary (ISBN 0-19-596457-8). The
standard GF 0011-2009 (汉字部首表) has 201 radicals in simplified Chinese characters. The
number of Chinese characters commonly used today is approximately 3500, and there are
approximately 500 unique radicals [17].

Radicals are divided into phonetic and meaning radicals. For example, as shown
in Figure 5 (left), the TC character 媽 mā “mother” in the left part is the radical 女 nǚ
“female”—the semantic component—and the right part 馬 mǎ “horse” is the phonetic
component. In Figure 5, the left side is traditional, the right side is simplified, and the same
rule applies to both.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 20

The strokes form part of a character but have no meaning. The strokes are useful for
writing and identifying characters, but they are too small to be used as elements to form
an image of a character. Figure 4 shows examples of a large number of strokes and the
complexity of Chinese characters. The characters with the most strokes currently in use
are the 58 characters for BiangBiang noodles, a type of noodle from the Chinese province
of Shaanxi. There are also characters with higher strokes (64, 84, etc.) to denote the com-
plexity of Chinese characters, but they are seldom used.

Figure 4. Examples of the complexity of Chinese characters.

3.2. Radicals and Components (http://hanzidb.org/, (accessed on 1 June 2022))

To find a Chinese character in a dictionary, you need an index of Chinese characters,
similar to the Roman alphabet; this is called a radical (piānpáng, 偏旁) or indexing com-
ponent (部首) [20]. The exact number of radicals is unknown and depends on the number
of characters in the character set. There are 214 Kangxi radicals used in China today and
188 in the Oxford Concise English Chinese Dictionary (ISBN 0-19-596457-8). The standard GF
0011-2009 (汉字部首表) has 201 radicals in simplified Chinese characters. The number of
Chinese characters commonly used today is approximately 3500, and there are approxi-
mately 500 unique radicals [17].

Radicals are divided into phonetic and meaning radicals. For example, as shown in
Figure 5 (left), the TC character 媽 mā “mother” in the left part is the radical 女 nǚ “fe-
male”—the semantic component—and the right part 馬 mǎ “horse” is the phonetic com-
ponent. In Figure 5, the left side is traditional, the right side is simplified, and the same
rule applies to both.

Figure 5. The radials are separated to the left and right of the character.

In addition, the same radical may change in shape, as shown in Figure 6, depending
on the location where it is used 心=忄, 手=扌=才, 火=灬, etc. Because the radical shape
changes depending on character position, it is more difficult to change the style of Chinese
characters. We solved this problem by using the image separated into the target character
components and by using the modified radical image as is.

Figure 6. Examples of different shapes of the same components.

Figure 5. The radials are separated to the left and right of the character.

In addition, the same radical may change in shape, as shown in Figure 6, depending
on the location where it is used心 =忄,手 =扌 = ,火 =灬, etc. Because the radical shape
changes depending on character position, it is more difficult to change the style of Chinese
characters. We solved this problem by using the image separated into the target character
components and by using the modified radical image as is.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 20

The strokes form part of a character but have no meaning. The strokes are useful for
writing and identifying characters, but they are too small to be used as elements to form
an image of a character. Figure 4 shows examples of a large number of strokes and the
complexity of Chinese characters. The characters with the most strokes currently in use
are the 58 characters for BiangBiang noodles, a type of noodle from the Chinese province
of Shaanxi. There are also characters with higher strokes (64, 84, etc.) to denote the com-
plexity of Chinese characters, but they are seldom used.

Figure 4. Examples of the complexity of Chinese characters.

3.2. Radicals and Components (http://hanzidb.org/, (accessed on 1 June 2022))

To find a Chinese character in a dictionary, you need an index of Chinese characters,
similar to the Roman alphabet; this is called a radical (piānpáng, 偏旁) or indexing com-
ponent (部首) [20]. The exact number of radicals is unknown and depends on the number
of characters in the character set. There are 214 Kangxi radicals used in China today and
188 in the Oxford Concise English Chinese Dictionary (ISBN 0-19-596457-8). The standard GF
0011-2009 (汉字部首表) has 201 radicals in simplified Chinese characters. The number of
Chinese characters commonly used today is approximately 3500, and there are approxi-
mately 500 unique radicals [17].

Radicals are divided into phonetic and meaning radicals. For example, as shown in
Figure 5 (left), the TC character 媽 mā “mother” in the left part is the radical 女 nǚ “fe-
male”—the semantic component—and the right part 馬 mǎ “horse” is the phonetic com-
ponent. In Figure 5, the left side is traditional, the right side is simplified, and the same
rule applies to both.

Figure 5. The radials are separated to the left and right of the character.

In addition, the same radical may change in shape, as shown in Figure 6, depending
on the location where it is used 心=忄, 手=扌=才, 火=灬, etc. Because the radical shape
changes depending on character position, it is more difficult to change the style of Chinese
characters. We solved this problem by using the image separated into the target character
components and by using the modified radical image as is.

Figure 6. Examples of different shapes of the same components. Figure 6. Examples of different shapes of the same components.

Radicals can again be separated into parts (components), which are then divided into
lower subcomponents and divided again until they become basic components that cannot
be further divided. For example, as shown in Figure 7, a character can be divided into one
to two radicals and 1 to 14 components until it cannot be divided further.

http://hanzidb.org/

Appl. Sci. 2022, 12, 8005 7 of 20

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 20

Radicals can again be separated into parts (components), which are then divided into
lower subcomponents and divided again until they become basic components that cannot
be further divided. For example, as shown in Figure 7, a character can be divided into one
to two radicals and 1 to 14 components until it cannot be divided further.

Figure 7. Examples of components from a character.

Basic components are sometimes used repeatedly such as 多, 晶, etc., and the basic
components themselves become characters such as 言, 心, etc.

4. Training Methodology
In the case of a Chinese character with a complex shape, it is difficult to convert the

style by mapping the character itself; therefore, we used a method of decomposing the
character into components, transforming the decomposed components into styles, and
then recombining the transformed components to generate a new style of character. This
is different from [13–15,17–19], which separated character images into component images.
These models cannot separate component images in the case of complex characters.

Figure 8 shows the process of decomposing the characters into components and com-
posing the characters from the decomposed components. For example, separating the
character of ‘說’ gives compositions of [‘兌’, ‘言’] (level 1), and by separating again ‘兌’
and ‘言’ (level 2) until they can no longer be separated (level 4), 說 is finally divided into
five basic components of [‘丿’, ‘乚’, ‘口’, ‘八’, ‘言’] (decomposition). When the new style of
‘說’ is generated, the newly styled basic components are composed in the opposite direc-
tion (composition).

Figure 7. Examples of components from a character.

Basic components are sometimes used repeatedly such as多,晶, etc., and the basic
components themselves become characters such as言,心, etc.

4. Training Methodology

In the case of a Chinese character with a complex shape, it is difficult to convert the
style by mapping the character itself; therefore, we used a method of decomposing the
character into components, transforming the decomposed components into styles, and
then recombining the transformed components to generate a new style of character. This
is different from [13–15,17–19], which separated character images into component images.
These models cannot separate component images in the case of complex characters.

Figure 8 shows the process of decomposing the characters into components and
composing the characters from the decomposed components. For example, separating
the character of ‘說’ gives compositions of [‘兌’, ‘言’] (level 1), and by separating again
‘兌’ and ‘言’ (level 2) until they can no longer be separated (level 4),說 is finally divided
into five basic components of [‘丿’, ‘ ’, ‘口’, ‘八’, ‘言’] (decomposition). When the new
style of ‘說’ is generated, the newly styled basic components are composed in the opposite
direction (composition).

Appl. Sci. 2022, 12, 8005 8 of 20Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 20

Figure 8. An example of character decomposition and composition.

The sample input image to the CCFont model is shown in Figure 9, where src repre-
sents the source image, tgt represents the target image, and all the basic components of
the tgt image representing the target font style (tgt style-wised components) are demon-
strated.

Figure 9. An example of input images. Src and tgt represents source and target images,
respectively.

The components were provided separately in Python as ‘compositions’ of the ‘CJK-
radlib RadicalFinder’ API (https://pypi.org/project/cjkradlib/, (accessed on 1 June 2022)).
We decomposed and composed Python programs using API.

Most Chinese characters have fewer than 14 components (99.99%), but some have
more than 14 components. In addition, SC character components had fewer than TC com-
ponents. In the examples in Figure 10, the character 鐵 (iron), which is the character with
the greatest number of components among GB2312, is divided into 14 components, as
shown in Figure 10a, and is reduced to four components, shown in Figure 10b, when di-
vided into SC characters. SC radicals significantly reduced the number of components by
converting traditional components into simple and non-separable components, i.e., 訁->
讠, 釒->钅, 飠->饣, etc. Figure 10c shows the TC characteristics with 15, 16, and 17 com-
ponents, which are the three characters with the highest number of components in
GBK21003 (21,003 characters).

Figure 8. An example of character decomposition and composition.

The sample input image to the CCFont model is shown in Figure 9, where src repre-
sents the source image, tgt represents the target image, and all the basic components of the
tgt image representing the target font style (tgt style-wised components) are demonstrated.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 20

Figure 8. An example of character decomposition and composition.

The sample input image to the CCFont model is shown in Figure 9, where src repre-
sents the source image, tgt represents the target image, and all the basic components of
the tgt image representing the target font style (tgt style-wised components) are demon-
strated.

Figure 9. An example of input images. Src and tgt represents source and target images,
respectively.

The components were provided separately in Python as ‘compositions’ of the ‘CJK-
radlib RadicalFinder’ API (https://pypi.org/project/cjkradlib/, (accessed on 1 June 2022)).
We decomposed and composed Python programs using API.

Most Chinese characters have fewer than 14 components (99.99%), but some have
more than 14 components. In addition, SC character components had fewer than TC com-
ponents. In the examples in Figure 10, the character 鐵 (iron), which is the character with
the greatest number of components among GB2312, is divided into 14 components, as
shown in Figure 10a, and is reduced to four components, shown in Figure 10b, when di-
vided into SC characters. SC radicals significantly reduced the number of components by
converting traditional components into simple and non-separable components, i.e., 訁->
讠, 釒->钅, 飠->饣, etc. Figure 10c shows the TC characteristics with 15, 16, and 17 com-
ponents, which are the three characters with the highest number of components in
GBK21003 (21,003 characters).

Figure 9. An example of input images. Src and tgt represents source and target images, respectively.

The components were provided separately in Python as ‘compositions’ of the ‘CJKradlib
RadicalFinder’ API (https://pypi.org/project/cjkradlib/, (accessed on 1 June 2022)). We
decomposed and composed Python programs using API.

Most Chinese characters have fewer than 14 components (99.99%), but some have
more than 14 components. In addition, SC character components had fewer than TC
components. In the examples in Figure 10, the character鐵 (iron), which is the character
with the greatest number of components among GB2312, is divided into 14 components,
as shown in Figure 10a, and is reduced to four components, shown in Figure 10b, when
divided into SC characters. SC radicals significantly reduced the number of components by
converting traditional components into simple and non-separable components, i.e., ->讠,

->钅, ->饣, etc. Figure 10c shows the TC characteristics with 15, 16, and 17 components,
which are the three characters with the highest number of components in GBK21003
(21,003 characters).

https://pypi.org/project/cjkradlib/

Appl. Sci. 2022, 12, 8005 9 of 20Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 20

Figure 10. (a) Decomposition examples of 14 components of 鐵 in TC; (b) four components of 铁 in
SC; and (c) three-character examples of more than 14 components in GBK21003.

According to the Chinese character set, the number of characters, radicals, and com-
ponents vary, as does the number of characters and radicals. Table 1 lists the number of
unique radicals and components for each set of characters. It demonstrates the variation
in character shape, number of characters based on the character set, number of radicals
and components, and minimum number of characters necessary to obtain the component.
As shown in Table 1, GB2312 contained 281 unique components, GBK21003 contained 347
unique components, and GBK26634 contained 346 unique components.

Table 1. Radicals and components of character sets.

Char-Set
Char
Type

Total
Chars

Unique
Radicals

Unique
Components

Min No. of Char for
Unique Components

Common use 2003 chars TC 2003 603 249 212

Common use 3500 chars TC 3500 747 267 250

GB2312 SC 6763 1081 281 242

GBK21003 TC 21,003 2174 347 325

GBK26634 TC 26,634 2136 346 307

In this study, 2000 commercial Chinese characters from standard Chinese GB2312
(up to 14 components) and three characters with 15, 16, and 17 components from
GBK21003 were added. Therefore, the CCFont model was trained with 2003 TC charac-
ters, 603 unique radicals, and 249 basic components, covering up to 17 components
(99.99% of common TC/SC). In other words, the model can regenerate all Chinese charac-
ters with 17 components or fewer. Therefore, the proposed model works for any character
that can be separated into components (in less than 17s). As a result, it applies to Hangul
(three components) and Thai (four components), as well as to TC/SC characters used in
China, Japan, and Korea (CJK). The ability to generate multiple languages with the

Figure 10. (a) Decomposition examples of 14 components of鐵 in TC; (b) four components of铁 in
SC; and (c) three-character examples of more than 14 components in GBK21003.

According to the Chinese character set, the number of characters, radicals, and com-
ponents vary, as does the number of characters and radicals. Table 1 lists the number of
unique radicals and components for each set of characters. It demonstrates the variation
in character shape, number of characters based on the character set, number of radicals
and components, and minimum number of characters necessary to obtain the component.
As shown in Table 1, GB2312 contained 281 unique components, GBK21003 contained
347 unique components, and GBK26634 contained 346 unique components.

Table 1. Radicals and components of character sets.

Char-Set Char Type Total Chars Unique
Radicals

Unique
Components

Min No. of Char for
Unique Components

Common use 2003 chars TC 2003 603 249 212

Common use 3500 chars TC 3500 747 267 250

GB2312 SC 6763 1081 281 242

GBK21003 TC 21,003 2174 347 325

GBK26634 TC 26,634 2136 346 307

In this study, 2000 commercial Chinese characters from standard Chinese GB2312 (up
to 14 components) and three characters with 15, 16, and 17 components from GBK21003
were added. Therefore, the CCFont model was trained with 2003 TC characters, 603 unique
radicals, and 249 basic components, covering up to 17 components (99.99% of common
TC/SC). In other words, the model can regenerate all Chinese characters with 17 components
or fewer. Therefore, the proposed model works for any character that can be separated into
components (in less than 17s). As a result, it applies to Hangul (three components) and Thai
(four components), as well as to TC/SC characters used in China, Japan, and Korea (CJK).

Appl. Sci. 2022, 12, 8005 10 of 20

The ability to generate multiple languages with the CCFont model trained with only TC
characters demonstrates that the computer can generate new characters through deep learning
by executing recombination regardless of the component contents.

5. CCFont Model
5.1. Model Architecture

To generate high-quality converted images from complex-shaped Chinese characters, it
is necessary to accurately extract target-style information features such that no information
is lost during learning.

As shown in Figure 11, we used two encoders for this purpose, which modified a
general GAN structure, one to generate font content information (Ec) and the other to
generate target font style information (Es). This was intended to obtain more precise style
information from the target font components, and the image for each component was
maintained to prevent loss.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 20

CCFont model trained with only TC characters demonstrates that the computer can gen-
erate new characters through deep learning by executing recombination regardless of the
component contents.

5. CCFont Model
5.1. Model Architecture

To generate high-quality converted images from complex-shaped Chinese charac-
ters, it is necessary to accurately extract target-style information features such that no in-
formation is lost during learning.

As shown in Figure 11, we used two encoders for this purpose, which modified a
general GAN structure, one to generate font content information (Ec) and the other to
generate target font style information (Es). This was intended to obtain more precise style
information from the target font components, and the image for each component was
maintained to prevent loss.

Figure 11. CCFont model architecture.

As shown in Figure 11, the CCFont is a concise model that utilizes the composition
and components of Chinese characters in a one-to-many framework. It is a conditional
GAN [30] structure that uses the content image (Xc) and the style image (Xs) of the char-
acter component to be converted as input and has two encoder structures (Ec, Es) to input
them separately using the concatenated vector.

The encoder Ec/Es downsamples the input image into eight layers. Each convolution
layer uses kernel = 4 and stride = 2, followed by instance normalization, with the exception
of the first layer, which uses kernel = 7 and stride = 1. We used LeakyRelu as the activation
function, and all the layers had a skip connection structure.

The resulting latent vectors from the two encoders, Zc and Zs, are merged and used
as inputs to the decoder and then upsampled again through eight convolutional layers to
generate content in a transformed style. Each layer undergoes deconvolution using kernel
= 5, stride = 1, instance normalization, and ReLU functions. All layers have a skip connec-
tion structure, in which the encoder layer and content/style are merged with the upsam-
pled vectors. Finally, the resulting image G(x) is generated through convolution and tanh
functions. The generated result is input to discriminator D, and the GAN loss is calculated
by comparing the source image and the generated result image. Character and style loss
is achieved by comparing the vector generated from the source image with the resulting
image vector, and the quality of the image is improved by comparing the target image
and the generated image (L1 loss).

Figure 11. CCFont model architecture.

As shown in Figure 11, the CCFont is a concise model that utilizes the composition
and components of Chinese characters in a one-to-many framework. It is a conditional
GAN [30] structure that uses the content image (Xc) and the style image (Xs) of the character
component to be converted as input and has two encoder structures (Ec, Es) to input them
separately using the concatenated vector.

The encoder Ec/Es downsamples the input image into eight layers. Each convolution
layer uses kernel = 4 and stride = 2, followed by instance normalization, with the exception
of the first layer, which uses kernel = 7 and stride = 1. We used LeakyRelu as the activation
function, and all the layers had a skip connection structure.

The resulting latent vectors from the two encoders, Zc and Zs, are merged and used
as inputs to the decoder and then upsampled again through eight convolutional layers
to generate content in a transformed style. Each layer undergoes deconvolution using
kernel = 5, stride = 1, instance normalization, and ReLU functions. All layers have a skip
connection structure, in which the encoder layer and content/style are merged with the
upsampled vectors. Finally, the resulting image G(x) is generated through convolution
and tanh functions. The generated result is input to discriminator D, and the GAN loss is
calculated by comparing the source image and the generated result image. Character and
style loss is achieved by comparing the vector generated from the source image with the
resulting image vector, and the quality of the image is improved by comparing the target
image and the generated image (L1 loss).

Appl. Sci. 2022, 12, 8005 11 of 20

5.2. Loss Functions

The total loss function L of the model is expressed as the sum of adversarial loss (LADV),
style loss (Ls), and L1 loss (LL1), as shown in Equation (1). λs and λL1 are hyperparameters
for style and L1 loss during training and serve as weights for each loss.

L = arg minG maxD LADV (G, D) + λs LS (G, D) + λL1 LL1(G) (1)

The loss functions in Equation (1) are as follows:
Adversarial Loss (LADV): The LADV of cGAN is expressed as Equation (2), known

as min-max adversarial loss [6], where G minimizes (generator loss) and D maximizes
(discriminator loss). The discriminator D determines whether the received fake image
(G(x)) is real (true: 1) or fake (false: 0) and maximizes it (D(y) = 1). Generator G generates a
fake image (G(x)) and forces D to predict it as a real image (D(G(x)) = 1), such that G(x) is
minimal (G(x) = 0).

minG maxD LADV (G, D) = Ey [log D(y)] + Ex [log (1 − D(G(x)))], (2)

where y is the real image of the character that corresponds to Yc, and x equals Zc + Zs. By
predicting y as a real image and x as a fake image from G, the discriminator D attempts to
minimize this loss function. In comparison, the generator G attempts to maximize x as a
true image to deceive the discriminator D.

Style Classification Loss (Ls): To create a one-to-many style-converted image, D
determines whether the style is the same as the target style while discriminating the real
from the fake style (D(yS)). To maintain the font style of the image, D predicts the font style
(0–1) and feeds it back to G to reduce loss and lets G generate a font with the correct style.
This concept is the same as adversarial loss, and it applies to character and is the same as
Equation (3), which maximizes D(yS) and minimizes G(xS).

minG maxD LS (G, D) = Ey [log D(yS)] + Ex [log (1 − D(G(xS)))] (3)

L1 Loss (LL1): LL1 makes the two images equal to G, generating a fake image (G(x))
and reducing the mean absolute error (MAE) compared with the pixel in the target image
(Y), which can be expressed as Equation (4):

LL1 = Ex, y [||y − G(x)||] (4)

6. Experiments and Results
6.1. Data Set Preparation (Character-to-Radical-to-Components)

To obtain the basic components of a Chinese character, as depicted in Figure 6, all
characters must be decomposed to level N (for example, N = 12 for 17 components), and to
convert the components into the target style, the target character must be decomposed into
the basic components in advance.

To create a training dataset, 2000 random Chinese characters were extracted from the
Chinese national standard GB2312 (6763 characters, including 99.99% Chinese characters),
along with 15 (霽), 16 (齾), and 17 (钀) component characters from GBK21003 (21,003 charac-
ters) were added, and 19 font styles were used for training. We used 2003 Chinese characters
with a maximum of 17 components and 19 Chinese character font styles.

By using Python CJKradlib RadicalFinder’s API, all characters could be separated into
basic components (up to 17 components), and the style of the separated components is extracted
through the component images of the target character style and combined with the character
content (source character). The images of resolution 256 × 256 × 19 (256 × 4864) with total
number of 38,057 images (2003× 19) and respective component images 160,341 were prepared.

For font style, 19 styles that generally work for all characters were extracted among
the many font styles, and the font list is as follows; 19 styled example characters are shown
in Figure 12.

Appl. Sci. 2022, 12, 8005 12 of 20Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 20

Name of font 1 = Bodhi Song (Ming) Fonts.ttf
Name of font 2 = DroidSansFallbackFull.ttf
Name of font 3 = FZKai-Z03 Regular.ttf
Name of font 4 = Gen Jyuu Gothic Bold.ttf
Name of font 5 = HanyiSentyPailouArch Regular.ttf
Name of font 6 = NotoSansHans-Black.ttf
Name of font 7 = Source Han Sans CN Light.ttf
Name of font 8 = SourceHanSerifCN-ExtraLight.ttf
Name of font 9 = SourceHanSerifCN-Heavy.ttf
Name of font 10 = SourceHanSerifSC-VF.ttf
Name of font 11 = SourceHanSerifTC-Bold.ttf
Name of font 12 = SourceHanSerifTC-ExtraLight.ttf
Name of font 13 = SourceHanSerifTW-VF.ttf
Name of font 14 = Wang han zong Chinese.ttf
Name of font 15 = XinQi Zhang Regular Script.ttf
Name of font 16 = Zhang hai shan Cao ni ma ti.ttf
Name of font 17 = cwTeXMing Medium.ttf
Name of font 18 = fangzheng_heiti.ttf
Name of font 19 = huawenxihe.ttf

Figure 12. Example characters in 19 different styles.

Figure 13 shows examples of styled input images for random characters with one to
nine components.

Figure 13. Input dataset sample by number of 1~9 components

Figure 12. Example characters in 19 different styles.

Figure 13 shows examples of styled input images for random characters with one to
nine components.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 20

Name of font 1 = Bodhi Song (Ming) Fonts.ttf
Name of font 2 = DroidSansFallbackFull.ttf
Name of font 3 = FZKai-Z03 Regular.ttf
Name of font 4 = Gen Jyuu Gothic Bold.ttf
Name of font 5 = HanyiSentyPailouArch Regular.ttf
Name of font 6 = NotoSansHans-Black.ttf
Name of font 7 = Source Han Sans CN Light.ttf
Name of font 8 = SourceHanSerifCN-ExtraLight.ttf
Name of font 9 = SourceHanSerifCN-Heavy.ttf
Name of font 10 = SourceHanSerifSC-VF.ttf
Name of font 11 = SourceHanSerifTC-Bold.ttf
Name of font 12 = SourceHanSerifTC-ExtraLight.ttf
Name of font 13 = SourceHanSerifTW-VF.ttf
Name of font 14 = Wang han zong Chinese.ttf
Name of font 15 = XinQi Zhang Regular Script.ttf
Name of font 16 = Zhang hai shan Cao ni ma ti.ttf
Name of font 17 = cwTeXMing Medium.ttf
Name of font 18 = fangzheng_heiti.ttf
Name of font 19 = huawenxihe.ttf

Figure 12. Example characters in 19 different styles.

Figure 13 shows examples of styled input images for random characters with one to
nine components.

Figure 13. Input dataset sample by number of 1~9 components Figure 13. Input dataset sample by number of 1~9 components.

Figure 14 shows the input representing a styled component for each font style for a
random character.

Appl. Sci. 2022, 12, 8005 13 of 20

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 20

Figure 14 shows the input representing a styled component for each font style for a
random character.

Figure 14. Examples of a character input dataset by font styles.

Figure 15 shows the overall data flow of the CCFont model. Figure 15a shows the
data flow input to the CRC module. It demonstrates each Character-to-Radical-to-Com-
ponents flow by decomposing and adding style information as an input style. This mod-
ule generates content (Xc) and style (Xs), which are fed into encoders (Ec, Es) as inputs
(Xc, Xs), converted to Zc and Zs, and then concatenated (Figure 15b). A new character set
was generated through the decoder.

Figure 15. CCFont model data flow diagram. (a) CRC Module; (b) CCFont Generating Novel Char-
acters Module; (c) CCFont Training Module (Generator) and (d) CCFont Training Module (Discrim-
inator).

Figure 14. Examples of a character input dataset by font styles.

Figure 15 shows the overall data flow of the CCFont model. Figure 15a shows the data
flow input to the CRC module. It demonstrates each Character-to-Radical-to-Components
flow by decomposing and adding style information as an input style. This module generates
content (Xc) and style (Xs), which are fed into encoders (Ec, Es) as inputs (Xc, Xs), converted
to Zc and Zs, and then concatenated (Figure 15b). A new character set was generated
through the decoder.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 20

Figure 14 shows the input representing a styled component for each font style for a
random character.

Figure 14. Examples of a character input dataset by font styles.

Figure 15 shows the overall data flow of the CCFont model. Figure 15a shows the
data flow input to the CRC module. It demonstrates each Character-to-Radical-to-Com-
ponents flow by decomposing and adding style information as an input style. This mod-
ule generates content (Xc) and style (Xs), which are fed into encoders (Ec, Es) as inputs
(Xc, Xs), converted to Zc and Zs, and then concatenated (Figure 15b). A new character set
was generated through the decoder.

Figure 15. CCFont model data flow diagram. (a) CRC Module; (b) CCFont Generating Novel Char-
acters Module; (c) CCFont Training Module (Generator) and (d) CCFont Training Module (Discrim-
inator).

Figure 15. CCFont model data flow diagram. (a) CRC Module; (b) CCFont Generating Novel Characters
Module; (c) CCFont Training Module (Generator) and (d) CCFont Training Module (Discriminator).

6.2. CCFont Model Training

The data generated by the CRC module were fed into the CCFont model training
module and trained (Figure 15c,d). It took NVIDIA GTX-2080Ti GPU 12 GB-Memory size

Appl. Sci. 2022, 12, 8005 14 of 20

23 h to train 306,794,188 parameters (10 epochs, 160,341 iterations for each epoch). Com-
pared to a standard deep learning model trained on a high-performance GPU, the training
time for this model was only 23 h, indicating that it is concise and resource-saving.

6.3. Results of Font Generation (Generates Chinese and Multi-Lingual)

The result of generating a new style of Chinese characters using the training module
with the CCFont model is shown in Figure 16. The model was trained only on 2003 TC
characters and successfully generated TC characters as well as SC characters that were seen
for the first time. This result demonstrates that the model creates characters regardless of
the component content by combining them. Through this, we verified that it is possible to
create multiple languages using the TC character model, CCFont.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 20

6.2. CCFont Model Training
The data generated by the CRC module were fed into the CCFont model training

module and trained (Figure 15c,d). It took NVIDIA GTX-2080Ti GPU 12 GB-Memory size
23 h to train 306,794,188 parameters (10 epochs, 160,341 iterations for each epoch). Com-
pared to a standard deep learning model trained on a high-performance GPU, the training
time for this model was only 23 h, indicating that it is concise and resource-saving.

6.3. Results of Font Generation (Generates Chinese and Multi-Lingual)
The result of generating a new style of Chinese characters using the training module

with the CCFont model is shown in Figure 16. The model was trained only on 2003 TC
characters and successfully generated TC characters as well as SC characters that were
seen for the first time. This result demonstrates that the model creates characters regard-
less of the component content by combining them. Through this, we verified that it is
possible to create multiple languages using the TC character model, CCFont.

Figure 16. Sample output images of the TC characters generated.

Figure 16 shows the results of generating 100 TC Chinese characters and 10 font styles
for the first time using the CCFont model, where new characters were created by accu-
rately reflecting the target character’s content and style.

Figure 17 shows the results of generating 300 SC Chinese characters and ten font
styles. Despite being the first SC character, it has successfully generated new characters
and demonstrated that it can be useful for TC-to-SC conversions.

Figure 16. Sample output images of the TC characters generated.

Figure 16 shows the results of generating 100 TC Chinese characters and 10 font styles
for the first time using the CCFont model, where new characters were created by accurately
reflecting the target character’s content and style.

Figure 17 shows the results of generating 300 SC Chinese characters and ten font
styles. Despite being the first SC character, it has successfully generated new characters
and demonstrated that it can be useful for TC-to-SC conversions.

Figure 18 compares the generated results of TC and SC characters for the same charac-
ters and font styles.

Figure 19a shows the result of generating 10 styles for the first 512 Korean characters
seen for the first time, and Figure 19b shows the result of generating two styles for the first
13 Thai characters seen for the first time (zero-shot multi-lingual generation).

Appl. Sci. 2022, 12, 8005 15 of 20Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 20

Figure 17. Sample output images of SC characters (left: output, right: target).

Figure 18 compares the generated results of TC and SC characters for the same char-
acters and font styles.

Figure 18. Generated output of TC and SC comparison by the CCFont model.

Figure 19a shows the result of generating 10 styles for the first 512 Korean characters
seen for the first time, and Figure 19b shows the result of generating two styles for the first
13 Thai characters seen for the first time (zero-shot multi-lingual generation).

Hangul has 14 consonants and 10 vowels, and the sum of the initial (19 consonants)
+ middle (21 vowels) + final (28 consonants) forms 11,172 characters (19 × 21 × 28) [20].
Thai has 44 consonants, seven upper vowels, and nine highest, and four lower vowels
(including cases without each) composed of initial (consonant) + vowel + final (conso-
nant), making a total of 11,088 characters (44 × 7 × 9 × 4) (https://en.wikipe-
dia.org/wiki/Thai_script, (accessed on 1 July 2022)).

Figure 17. Sample output images of SC characters (left: output, right: target).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 20

Figure 17. Sample output images of SC characters (left: output, right: target).

Figure 18 compares the generated results of TC and SC characters for the same char-
acters and font styles.

Figure 18. Generated output of TC and SC comparison by the CCFont model.

Figure 19a shows the result of generating 10 styles for the first 512 Korean characters
seen for the first time, and Figure 19b shows the result of generating two styles for the first
13 Thai characters seen for the first time (zero-shot multi-lingual generation).

Hangul has 14 consonants and 10 vowels, and the sum of the initial (19 consonants)
+ middle (21 vowels) + final (28 consonants) forms 11,172 characters (19 × 21 × 28) [20].
Thai has 44 consonants, seven upper vowels, and nine highest, and four lower vowels
(including cases without each) composed of initial (consonant) + vowel + final (conso-
nant), making a total of 11,088 characters (44 × 7 × 9 × 4) (https://en.wikipe-
dia.org/wiki/Thai_script, (accessed on 1 July 2022)).

Figure 18. Generated output of TC and SC comparison by the CCFont model.

Hangul has 14 consonants and 10 vowels, and the sum of the initial (19 consonants) +
middle (21 vowels) + final (28 consonants) forms 11,172 characters (19 × 21 × 28) [20]. Thai
has 44 consonants, seven upper vowels, and nine highest, and four lower vowels (including
cases without each) composed of initial (consonant) + vowel + final (consonant), making
a total of 11,088 characters (44 × 7 × 9 × 4) (https://en.wikipedia.org/wiki/Thai_script,
(accessed on 1 July 2022)).

https://en.wikipedia.org/wiki/Thai_script

Appl. Sci. 2022, 12, 8005 16 of 20Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 20

Figure 19. Sample images of Hangul and Thai characters generated by the CCFont Model.

In both Hangul and Thai, each character can be decomposed into components, re-
sulting in the generation of each character by inputting the Chinese character component
into a trained model. The content of the generated character is regenerated well, but style
conversion is not performed because the fonts used for each language are different. The
model trained only Chinese characters; however, if any language, including Korean and
Thai, can be decomposed into its component parts, then the CCFont model can work on
it.

7. Evaluation
7.1. Qualitative Evaluation

We selected the zi2zi and MX-Font models for comparison to verify the performance
of CCFont. Each model has a different method of generating characters, but we ran the
related models using the same character and font styles. Figure 20 depicts sample images
for comparing the generation results of each model. Zi2zi and CCFont produced high-
quality visual results, whereas MX-Font lacked style recognition. The reason MX-Font did
not produce good results is because it requires more font styles to train.

Figure 20. Example outputs by the proposed CCFont and the baselines.

Figure 19. Sample images of Hangul and Thai characters generated by the CCFont Model.

In both Hangul and Thai, each character can be decomposed into components, re-
sulting in the generation of each character by inputting the Chinese character component
into a trained model. The content of the generated character is regenerated well, but style
conversion is not performed because the fonts used for each language are different. The
model trained only Chinese characters; however, if any language, including Korean and
Thai, can be decomposed into its component parts, then the CCFont model can work on it.

7. Evaluation
7.1. Qualitative Evaluation

We selected the zi2zi and MX-Font models for comparison to verify the performance of
CCFont. Each model has a different method of generating characters, but we ran the related
models using the same character and font styles. Figure 20 depicts sample images for
comparing the generation results of each model. Zi2zi and CCFont produced high-quality
visual results, whereas MX-Font lacked style recognition. The reason MX-Font did not
produce good results is because it requires more font styles to train.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 20

Figure 19. Sample images of Hangul and Thai characters generated by the CCFont Model.

In both Hangul and Thai, each character can be decomposed into components, re-
sulting in the generation of each character by inputting the Chinese character component
into a trained model. The content of the generated character is regenerated well, but style
conversion is not performed because the fonts used for each language are different. The
model trained only Chinese characters; however, if any language, including Korean and
Thai, can be decomposed into its component parts, then the CCFont model can work on
it.

7. Evaluation
7.1. Qualitative Evaluation

We selected the zi2zi and MX-Font models for comparison to verify the performance
of CCFont. Each model has a different method of generating characters, but we ran the
related models using the same character and font styles. Figure 20 depicts sample images
for comparing the generation results of each model. Zi2zi and CCFont produced high-
quality visual results, whereas MX-Font lacked style recognition. The reason MX-Font did
not produce good results is because it requires more font styles to train.

Figure 20. Example outputs by the proposed CCFont and the baselines. Figure 20. Example outputs by the proposed CCFont and the baselines.

The CCFont also had a failure case, which is considered to be a font-style problem.
For example, as shown in Figure 21, failure cases appeared consistently only in font
styles 3 and 5.

Appl. Sci. 2022, 12, 8005 17 of 20

Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 20

The CCFont also had a failure case, which is considered to be a font-style problem.
For example, as shown in Figure 21, failure cases appeared consistently only in font styles
3 and 5.

Figure 21. Failure examples (font styles 3 and 5).

Another reason arises from the component separation of images in Python programs.
In the case of the character 向, the basic components show difficulties in regenerating the
character because the Python program creates an image that is significantly different from
the original character. In the character ‘向, the original image has (′) on top, but the Python
separation program displays {‘character’: ‘向’, ‘compositions’: [‘丿’, ‘冂’, ‘口’]}. Because the
separated image of ‘丿’ is quite different from the shape of the original component, it
causes difficulties in the recombination of character, as shown in Figure 22. The same phe-
nomenon occurs in characters whose basic components provided by Python are different
from the actual images, and failure cases occur depending on the font style compatibility.
This can be inferred from the fact that the Thai vowel shape (ก ิ<=> ก, ◌ิ) is generated with-
out failure. In addition, there is a problem with compatibility owing to the font style of
different characters for each country.

Figure 22. Failure examples of a character. Out, src, and tgt represent output, source, and target
images, respectively.

7.2. Quantitative Evaluation
For quantitative comparison, we chose L1 and L2, Structural Similarity Index (SSIM)

as our pixel-by-pixel difference metrics and FID (Frechet Inception Distance) scores [30]
for distribution difference metrics. The results are presented in Table 2. Unseen TC 300
Chinese characters and fonts were used in each model to generate these results, and the
values were calculated by comparing them with the ground truth. The zi2zi model re-
quires fine-tuning, whereas the MX-Font and CCFont models do not. We also evaluated
the CCFont model for both TC and SC characters.

Table 2. Quantitative comparative evaluation of the proposed method and the baselines.

INDEX L1-Loss ↓ L2-Loss ↓ SSIM ↑ FID ↓ Ref
zi2zi 0.5104 0.4224 1.1619 104.8 w/o finetuning

MX-Font 0.5388 0.5360 0.3276 132.5 w/o finetuning
CCFont 0.2728 0.2689 0.8808 29.2 w/o finetuning

As shown in Table 2, the L1/L2 loss of the CCFont was the smallest. In contrast, the
structural similarity of the zi2zi model was the highest, mainly because it requires extra
fine-tuning, which is computationally expensive and time-consuming. The CCFont is

Figure 21. Failure examples (font styles 3 and 5).

Another reason arises from the component separation of images in Python programs.
In the case of the character向, the basic components show difficulties in regenerating the
character because the Python program creates an image that is significantly different from
the original character. In the character ‘向, the original image has (′) on top, but the Python
separation program displays {‘character’: ‘向’, ‘compositions’: [‘丿’, ‘冂’, ‘口’]}. Because the
separated image of ‘丿’ is quite different from the shape of the original component, it causes
difficulties in the recombination of character, as shown in Figure 22. The same phenomenon
occurs in characters whose basic components provided by Python are different from the
actual images, and failure cases occur depending on the font style compatibility. This
can be inferred from the fact that the Thai vowel shape (กิ<=> ก,

1

<=> ก, ิ) is genn additiog to

the f

) is generated without
failure. In addition, there is a problem with compatibility owing to the font style of different
characters for each country.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 20

The CCFont also had a failure case, which is considered to be a font-style problem.
For example, as shown in Figure 21, failure cases appeared consistently only in font styles
3 and 5.

Figure 21. Failure examples (font styles 3 and 5).

Another reason arises from the component separation of images in Python programs.
In the case of the character 向, the basic components show difficulties in regenerating the
character because the Python program creates an image that is significantly different from
the original character. In the character ‘向, the original image has (′) on top, but the Python
separation program displays {‘character’: ‘向’, ‘compositions’: [‘丿’, ‘冂’, ‘口’]}. Because the
separated image of ‘丿’ is quite different from the shape of the original component, it
causes difficulties in the recombination of character, as shown in Figure 22. The same phe-
nomenon occurs in characters whose basic components provided by Python are different
from the actual images, and failure cases occur depending on the font style compatibility.
This can be inferred from the fact that the Thai vowel shape (ก ิ<=> ก, ◌ิ) is generated with-
out failure. In addition, there is a problem with compatibility owing to the font style of
different characters for each country.

Figure 22. Failure examples of a character. Out, src, and tgt represent output, source, and target
images, respectively.

7.2. Quantitative Evaluation
For quantitative comparison, we chose L1 and L2, Structural Similarity Index (SSIM)

as our pixel-by-pixel difference metrics and FID (Frechet Inception Distance) scores [30]
for distribution difference metrics. The results are presented in Table 2. Unseen TC 300
Chinese characters and fonts were used in each model to generate these results, and the
values were calculated by comparing them with the ground truth. The zi2zi model re-
quires fine-tuning, whereas the MX-Font and CCFont models do not. We also evaluated
the CCFont model for both TC and SC characters.

Table 2. Quantitative comparative evaluation of the proposed method and the baselines.

INDEX L1-Loss ↓ L2-Loss ↓ SSIM ↑ FID ↓ Ref
zi2zi 0.5104 0.4224 1.1619 104.8 w/o finetuning

MX-Font 0.5388 0.5360 0.3276 132.5 w/o finetuning
CCFont 0.2728 0.2689 0.8808 29.2 w/o finetuning

As shown in Table 2, the L1/L2 loss of the CCFont was the smallest. In contrast, the
structural similarity of the zi2zi model was the highest, mainly because it requires extra
fine-tuning, which is computationally expensive and time-consuming. The CCFont is

Figure 22. Failure examples of a character. Out, src, and tgt represent output, source, and target
images, respectively.

7.2. Quantitative Evaluation

For quantitative comparison, we chose L1 and L2, Structural Similarity Index (SSIM)
as our pixel-by-pixel difference metrics and FID (Frechet Inception Distance) scores [30] for
distribution difference metrics. The results are presented in Table 2. Unseen TC 300 Chinese
characters and fonts were used in each model to generate these results, and the values were
calculated by comparing them with the ground truth. The zi2zi model requires fine-tuning,
whereas the MX-Font and CCFont models do not. We also evaluated the CCFont model for
both TC and SC characters.

Table 2. Quantitative comparative evaluation of the proposed method and the baselines.

INDEX L1-Loss ↓ L2-Loss ↓ SSIM ↑ FID ↓ Ref

zi2zi 0.5104 0.4224 1.1619 104.8 w/ finetuning
MX-Font 0.5388 0.5360 0.3276 132.5 w/o finetuning
CCFont 0.2728 0.2689 0.8808 29.2 w/o finetuning

As shown in Table 2, the L1/L2 loss of the CCFont was the smallest. In contrast,
the structural similarity of the zi2zi model was the highest, mainly because it requires
extra fine-tuning, which is computationally expensive and time-consuming. The CCFont is
slightly lower than the zi2zi model, and it shows that it is still a very high-quality result
compared to the MX-Font. CCFont showed the best FID score, indicating that the lower the
score, the closer it was to the original. Figure 23 shows a bar graph of the values in Table 2.

Appl. Sci. 2022, 12, 8005 18 of 20

Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 20

slightly lower than the zi2zi model, and it shows that it is still a very high-quality result
compared to the MX-Font. CCFont showed the best FID score, indicating that the lower
the score, the closer it was to the original. Figure 23 shows a bar graph of the values in
Table 2.

Figure 23. L1/L2 loss and SSIM comparison by models.

As shown in Figure 23, the L1/L2 loss value of CCFont was the best, and there was a
significant difference between the models in terms of the degree of similarity. The result
of zi2zi was the best, and the result of CCFont can be considered very good, as no addi-
tional training for unseen fonts was performed. MX-Font, which requires a large number
of font styles, had a very low SSIM score because it has fewer font styles.

Figure 24 compares the FID scores for each model and shows that CCFont had the
lowest scores, closest to the original image.

Figure 24. FID comparison of the three models.

8. Conclusions
In this study, we proposed a CCFont model that can convert high-quality Chinese

character styles using Chinese character components and can generate Hangul and Thai
with zero-shot without any additional training. CCFont is an automatic Chinese character
generation model with a simple structure that conserves time and resources and produces
high-quality results. To generate new Chinese fonts, it separates up to 17 Chinese charac-
ters and converts most Chinese characters into styles in a short amount of time. It is pos-
sible to generate not only TC Chinese characters but also SC Chinese, Korean, and Thai

Figure 23. L1/L2 loss and SSIM comparison by models.

As shown in Figure 23, the L1/L2 loss value of CCFont was the best, and there was a
significant difference between the models in terms of the degree of similarity. The result of
zi2zi was the best, and the result of CCFont can be considered very good, as no additional
training for unseen fonts was performed. MX-Font, which requires a large number of font
styles, had a very low SSIM score because it has fewer font styles.

Figure 24 compares the FID scores for each model and shows that CCFont had the
lowest scores, closest to the original image.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 20

slightly lower than the zi2zi model, and it shows that it is still a very high-quality result
compared to the MX-Font. CCFont showed the best FID score, indicating that the lower
the score, the closer it was to the original. Figure 23 shows a bar graph of the values in
Table 2.

Figure 23. L1/L2 loss and SSIM comparison by models.

As shown in Figure 23, the L1/L2 loss value of CCFont was the best, and there was a
significant difference between the models in terms of the degree of similarity. The result
of zi2zi was the best, and the result of CCFont can be considered very good, as no addi-
tional training for unseen fonts was performed. MX-Font, which requires a large number
of font styles, had a very low SSIM score because it has fewer font styles.

Figure 24 compares the FID scores for each model and shows that CCFont had the
lowest scores, closest to the original image.

Figure 24. FID comparison of the three models.

8. Conclusions
In this study, we proposed a CCFont model that can convert high-quality Chinese

character styles using Chinese character components and can generate Hangul and Thai
with zero-shot without any additional training. CCFont is an automatic Chinese character
generation model with a simple structure that conserves time and resources and produces
high-quality results. To generate new Chinese fonts, it separates up to 17 Chinese charac-
ters and converts most Chinese characters into styles in a short amount of time. It is pos-
sible to generate not only TC Chinese characters but also SC Chinese, Korean, and Thai

Figure 24. FID comparison of the three models.

8. Conclusions

In this study, we proposed a CCFont model that can convert high-quality Chinese
character styles using Chinese character components and can generate Hangul and Thai
with zero-shot without any additional training. CCFont is an automatic Chinese character
generation model with a simple structure that conserves time and resources and produces
high-quality results. To generate new Chinese fonts, it separates up to 17 Chinese characters
and converts most Chinese characters into styles in a short amount of time. It is possible to
generate not only TC Chinese characters but also SC Chinese, Korean, and Thai characters,
and it can be applied to all fonts that can be separated into unattended components,
including Japanese.

We also demonstrated that converting style images using component images can
reduce failure cases, produce high-quality images, and save time and resources because
of the concise structure of the model. In addition, we compared our results with those
of relevant models to demonstrate better performance. In SSIM, the CCFont model was

Appl. Sci. 2022, 12, 8005 19 of 20

slightly inferior to the finetuned zi2zi model but superior to the MX-Font model, and the
FID score was the best of the three models.

In contrast to structural issues, some of the failure cases can be attributed to the incom-
patibility of different fonts between countries and the method of separating components.
This aspect needs to be developed and improved in the near future.

Author Contributions: Conceptualization, Software, Writing, J.P.; methodology, A.U.H.; supervision,
J.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Institute of Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2016-0-00166).

Data Availability Statement: Some or all data, models, or code that support the findings of this
study are available from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cha, J. Few-Shot Handwriting Copycat AI, DEVIEW 2020 Session. 2020. Available online: https://deview.kr/data/deview/

session/attach/1400_T4 (accessed on 1 June 2022).
2. Jeon, J.; Ji, Y.; Park, D.; Lim, S. Evaluation of Criteria for Mapping Characters Using an Automated Hangul Font Generation

System based on Deep Learning. J. Korea Multimed. Soc. 2020, 23, 850–861.
3. Ko, D.; Lee, H.; Suk, J.; Hassan, A.; Choi, J. Hangul Font Dataset for Korean Font Research Based on Deep Learning. KIPS Trans.

Softw. Data Eng. 2021, 10, 73–78.
4. Weidman, S. Deep Learning from Scratch; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2019.
5. Foster, D. Generative Deep Learning; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2020.
6. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial

Nets. In Proceedings of the Advances in neural information processing systems 27 (NIPS 2014), Montreal, QC, Canada,
8–13 December 2014.

7. Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X. Improved techniques for training GANs. In
Proceedings of the Advances in Neural Information Processing Systems 29 (NIPS 2016), Barcelona, Spain, 5–10 December 2016.

8. Tian, Y. zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks. Available online: https://github.com/kao-
nashityc/zi2zi (accessed on 1 June 2022).

9. Jiang, Y.; Lian, Z.; Tang, Y.; Xiao, J. DCFont: An end-to-end deep Chinese font generation system. In Proceedings of the SIGGRAPH
Asia 2017, Bangkok, Thailand, 27–30 November 2017. Technical Briefs.

10. Jiang, Y.; Lian, Z.; Tang, Y.; Xiao, J. SCFont: Structure guided Chinese font generation via deep stacked networks. In Proceedings
of the AAAI Conference on Artificial Intelligence and Innovative, Applications of Artificial Intelligence Conference and AAAI
Symposium on Educational Advances in Artificial Intelligence (AAAI), Honolulu, HI, USA, 27 January–1 February 2019;
pp. 4015–4022.

11. Ko, D.; Hassan, A.; Suk, J.; Choi, J. SKFont: Skeleton-driven Korean font generator with conditional deep adversarial networks.
Int. J. Doc. Anal. Recognit. (IJDAR) 2021, 24, 325–337. [CrossRef]

12. Ko, D.; Hassan, A.; Majeed, S.; Choi, J. Skelgan: A font image skeletonization method. J. Inf. Processing Syst. 2021, 17, 1–13.
13. Ma, L.L.; Liu, C.L. A new radical-based approach to online handwritten Chinese character recognition. In Proceedings of the 2008

19th International Conference on Pattern Recognition, Tampa, FL, USA, 8–11 December 2008.
14. Wang, T.Q.; Yin, F.; Liu, C.L. Radical-Based Chinese Character Recognition via Multi-Labeled Learning of Deep Residual

Networks. In Proceedings of the 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR),
Kyoto, Japan, 9–15 November 2017; pp. 579–584.

15. Zhang, J.; Zhu, Y.; Du, J.; Dai, L. Radical analysis network for zero-shot learning in printed Chinese character recognition. In
Proceedings of the 2018 IEEE International Conference on Multimedia and Expo (ICME), San Diego, CA, USA, 23–27 July 2018;
pp. 1–6.

16. Wen, C.; Chang, J.; Zhang, Y. Handwritten Chinese font generation with collaborative stroke refinement. arXiv 2019,
arXiv:1904.13268.

17. Huang, Y.; He, M.; Jin, L.; Wang, Y. RD-GAN: Few/Zero-Shot Chinese Character Style Transfer via Radical Decomposition and
Rendering. In Computer Vision–ECCV 2020; Springer: Cham, Switzerland, 2020.

18. Xue, M.; Du, J.; Zhang, J.; Wang, Z.R.; Wang, B.; Ren, B. Radical Composition Network for Chinese Character Generation. In
Document Analysis and Recognition–ICDAR 2021; Lladós, J., Lopresti, D., Uchida, S., Eds.; Springer: Cham, Switzerland, 2021.

19. Tang, L.; Cai, Y.; Liu, J.; Hong, Z.; Gong, M.; Fan, M.; Han, J.; Liu, J.; Ding, E.; Wang, J. Few-Shot Font Generation by Learning
Fine-Grained Local Styles. arXiv 2022, arXiv:2205.09965.

20. Park, J.; Hassan, A.; Choi, J. Few-Shot Korean Font Generation based on Hangul Composability. KIPS Trans. Softw. Data Eng.
2021, 10, 473–482.

https://deview.kr/data/deview/session/attach/1400_T4
https://deview.kr/data/deview/session/attach/1400_T4
https://github.com/kao-nashityc/zi2zi
https://github.com/kao-nashityc/zi2zi
http://doi.org/10.1007/s10032-021-00374-4

Appl. Sci. 2022, 12, 8005 20 of 20

21. Hassan, A.; Ahmed, H.; Choi, J. Unpaired font family synthesis using conditional generative adversarial networks. Knowl. Based
Syst. 2021, 229, 107304. [CrossRef]

22. Ko, D.; Hassan, A.; Majeed, S.; Choi, J. Font2Fonts: A modified Image-to-Image translation framework for font generation. In
Proceedings of the SMA 2020: The 9th International Conference on Smart Media and Applications, Jeju, Korea, 17–19 September 2020.

23. Ko, D.; Hassan, A.; Suk, J.; Choi, J. Korean Font Synthesis with GANs. Int. J. Comput. Theory Eng. 2020, 12, 92–96. [CrossRef]
24. Cha, J.; Chun, S.; Lee, G.; Lee, B.; Kim, S.; Lee, H. Few-shot compositional font generation with dual memory. In Computer

Vision–ECCV 2020; Springer: Cham, Switzerland, 2020.
25. Park, S.; Chun, S.; Cha, J.; Lee, B.; Shim, H. Few-shot font generation with localized style representations and factorization. Proc.

AAAI Conf. Artif. Intell. 2021, 35, 2393–2402.
26. Park, S.; Chun, S.; Cha, J.; Lee, B.; Shim, H. Multiple Heads are Better than One: Few-shot Font Generation with Multiple

Localized Experts. arXiv 2021, arXiv:2104.00887.
27. Isola, P.; Zhu, J.; Zhou, T.; Efros, A. Image-to-image translation with conditional adversarial networks. In Proceedings of the

Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.
28. Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784.
29. Available online: https://github.com/kaonashi-tyc/Rewrite (accessed on 1 June 2022).
30. Parmar, G.; Zhang, R.; Zhu, J. On Buggy Resizing Libraries and Surprising Subtleties in FID Calculation. 2021. Available online:

https://github.com/bioinfjku/TTUR (accessed on 1 July 2022).

http://doi.org/10.1016/j.knosys.2021.107304
http://doi.org/10.7763/IJCTE.2020.V12.1270
https://github.com/kaonashi-tyc/Rewrite
https://github.com/bioinfjku/TTUR

	Introduction
	Related Works
	Many-Shot Font Generation Methods
	Few-Shot-Learning

	Structure of Chinese Character
	Character-Sets and Strokes (https://en.wikipedia.org/wiki/Chinese_characters, (accessed on 1 June 2022))
	Radicals and Components (http://hanzidb.org/, (accessed on 1 June 2022))

	Training Methodology
	CCFont Model
	Model Architecture
	Loss Functions

	Experiments and Results
	Data Set Preparation (Character-to-Radical-to-Components)
	CCFont Model Training
	Results of Font Generation (Generates Chinese and Multi-Lingual)

	Evaluation
	Qualitative Evaluation
	Quantitative Evaluation

	Conclusions
	References

