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Abstract: Advanced air mobility (AAM) is a broad concept enabling consumers access to on-demand
air mobility, cargo and package delivery, healthcare applications, and emergency services through an
integrated and connected multimodal transportation network. While a number of technical and social
concerns have been raised about AAM, early use cases for emergency response and aeromedical
transport may be key to demonstrating the concept and building public acceptance. Using a five-
step multi-method approach consisting of preliminary scoping, modeling performance metrics,
developing baseline assumptions, analyzing scenarios, and applying a Monte Carlo sensitivity
analysis, this study examines the potential operational and market viability of the air ambulance
market using a variety of aircraft and propulsion types. The analysis concludes that electric vertical
take-off and land (eVTOL) aircraft could confront a number of operational and economic challenges
for aeromedical applications compared to hybrid vertical take-off and land (VTOL) aircraft and
rotorcraft. The study finds that technological improvements such as reduced charge times, increased
operational range, and battery swapping could make the eVTOL aircraft more reliable and cost-
effective for aeromedical transport.

Keywords: advanced air mobility; urban air mobility; emergency response; air ambulance; electric
vertical take-off and land; VTOL; eVTOL

1. Introduction

Advanced air mobility (AAM) is a broad concept enabling consumers access to on-
demand air mobility, cargo and package delivery, healthcare applications, and emergency
services through an integrated and connected multimodal transportation network [1,2].
While AAM may be enabled by the convergence of several factors, a number of challenges
such as community acceptance, safety, social equity, planning, airspace management, and
others could create barriers to mainstreaming [2,3]. While a number of technical and so-
cial concerns have been raised about AAM, early use cases for emergency response and
aeromedical transport may be key to demonstrating the concept and building public accep-
tance [4]. Examples of emergency response use cases include air ambulance, emergency
supply delivery, organ transport, search and rescue operations, firefighting, and other
disaster response and humanitarian applications.

Broadly, the medical transport sector provides a combination of patient ground and air
transportation. The aircraft and vehicles that can be used in a medical emergency mission
and provide medical transport include: (1) ground vehicles, (2) rotorcraft (also known as
rotary-wing and helicopters), and fixed-wing aircraft. As of 2016, there were an estimated
50,000 ground vehicles for short-distance patient transport to medical facilities across
the United States [5]. In comparison, there were 1411 aircraft and rotorcraft providing
aeromedical transport in the U.S as of 2017 [5]. This paper focuses on the air ambulance
use case which includes medical transport to and from a hospital (or other medical facility)
for emergency and non-emergency care.
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2. Literature Review

Around the world, communities are experimenting with the use of advanced air
mobility to serve a variety of medical response and pandemic use cases such as social
distancing reminders, essential equipment and medical supply delivery, and virus detec-
tion [6–9]. Airspace Systems, a California AAM startup, has developed software that can
help public agencies use drones to monitor social distancing and face mask compliance [10].
Similarly, in Elizabeth, New Jersey, the police department has used drones equipped with
an automated message to remind the public to social distance during the pandemic [11]. In
the U.S., the United Parcel Service (UPS) and CVS Pharmacy began using Matternet M2
drones to deliver prescription medications to a retirement community in Florida during a
COVID-19 stay-at-home order in May 2020 [12].

In remote areas, advanced air mobility has the potential to reduce the time to access
medical supplies and testing from hours using surface transportation to 15 min by drone in
some cases [13]. In parts of Africa, the use of drones is becoming a growing part of rural
healthcare delivery. In Rwanda, Zipline has used fixed-wing drones to airdrop medical
supplies and ferry tests from numerous hospitals across the region [14]. In response to the
global pandemic, the company began transporting COVID-19 test samples from remote
parts of Ghana that do not have testing facilities to laboratories in more populated regions
of the country [15]. The service has also expanded access to medical care for patients who
are unable to travel due to COVID-19 restrictions. For example, drones are being used to
deliver cancer drugs to patients in remote villages who are unable to travel to oncology
centers during the pandemic [16].

These case studies represent a handful of emerging examples of how advanced air
mobility has the potential to expand access to healthcare [17,18]. In spite of the large
number of potential aeromedical use cases, air ambulances only serve a small percentage of
critical medical transports [5]. Historically, the high cost of air ambulance service limits the
use of air transportation to patients in remote areas or the most critical medical situations
where minimizing transport time to a hospital is critical to saving a patient’s life [19].

Although existing studies on the use of electric aircraft and other emerging aviation
technologies for aeromedical use are limited, an emerging body of research suggests that
emergency medical AAM services may confront a number of technical and business model
challenges. Yet, these same aeromedical use cases may be important to building public
acceptance of novel aircraft designs and technologies [20]. A study by Chappelle et al. [21]
found that near-term electric aircraft are not expected to meet the technical requirements
of air ambulance service, nor will they likely provide cost savings over existing services
using helicopters. Internationally, Mihara et al. [22] conducted a cost analysis of electric
vertical take-off and land (eVTOL) aircraft for an air ambulance system in Japan. The
study’s scenario analysis concludes that differences in battery capacity can have notable
differences in future cost models due to the relatively high cost of battery replacements.
Mihara et al. [22] also compare the potential viability of eVTOLs to existing helicopters
using a standardized operational concept for air ambulance service. This study builds upon
prior literature by studying the feasibility of eVTOLs for aeromedical use in the United
States.

According to the National Emergency Medical Services Information System (NEMSIS)
and the National Association of State Emergency Medical Service Officials (NASEMSO),
there are an estimated 36 million medical transport trips served by ambulances annually.
However, only approximately 1.5% of these trips (roughly 550,000) are served by air ambu-
lances every year [23,24]. As of 2017, there are 1049 rotary-wing air ambulances operating
from 908 bases across the U.S. serving 84.3% of Americans within a 20 min response time [5].
While historical data indicates that the number of aircraft and bases increased between 2005
and 2015, a number of business and legislative factors have contributed to the consolidation
of service providers. These developments have caused a stabilization in the number of
aircraft while the number of bases continue to increase.
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Both ground and air ambulances have nine service levels, as defined by the U.S. Centers
for Medicare and Medicaid Services (CMS) [25,26]. Each service level has different medical
equipment, crew, and vehicle requirements and can be served either by a ground ambulance
or an air ambulance (either helicopter or fixed-wing aircraft) depending on local emergency
service dispatch protocol. A description of these nine service levels and crew requirements
are summarized in Tables 1 and 2, respectively. A single emergency eVTOL will require four
full time pilots, four full time flight nurses, and four full time paramedics with Commission
on Accreditation of Medical Transport Systems (CAMTS) accreditation and annual training
according to Federal Aviation Administration (FAA) duty hour requirements.

Table 1. Nine ambulance service levels.

CMS Service Level Description

Ground
Ambulance

Basic Life Support (BLS) Non-
Emergent Provision of medical supplies and services

BLS Emergency Provision of BLS services, as specified above, in the context of an
emergency response

Advanced Life Support (ALS) Non-Emergent Provision of medically necessary supplies and services including the
provision of an ALS assessment or at least one ALS intervention

ALS1 Emergent Provision of ALS services in the context of an emergency response

ALS2 (3 Separate
Medications by IV)

Provision of ALS services in the context of an emergency response plus 3
separate medications by IV

Specialty Care Transport (SCT) Interfacility transportation of a critically injured or ill beneficiary
including the provision of medically necessary supplies and services

Specialty Care Transport (SCT) ALS services provided by an entity that does not provide the
ambulance transport

Air
Ambulance

Rotorcraft (Helicopters) BLS or ALS type service for short distances that require rapid air transport

Fixed Wing Aircraft BLS or ALS type service for long distances that require rapid inter-city air
transport

Summarized from [23].

Table 2. Crew service requirements.

CMS Service Level Driver 1/Pilot 2 Emergency Medical
Technician (EMT) 3 Paramedic 4 Health

Professional 5 Total

BLS Non-Emergent 1 2 - - 3

BLS Emergency 1 2 - - 3

ALS Non-Emergent 1 1 1 - 3

ALS1 Emergent 1 1 1 - 3

ALS2 (3 Separate
Medications by IV) 1 1 1 - 3

SCT 1 1 - 1+ 3+

PI 1 1 - 1+ 3+

Rotorcraft (Helicopters) 1 1 1 - 3

Fixed Wing Aircraft 1+ 1+ - 1+ 3+
1 Driver: Drives the patients from place to place. 2 Pilot: Required to conduct flight planning, preflight risk
analyses, safety briefings for medical personnel, and the establishment of operations control centers (OCC) for
certain operators to help with risk management and flight monitoring. 3 EMT: Entry-level EMS healthcare
professional trained in BLS, anatomy/physiology, pathophysiology, pharmacology, ECG monitoring, advanced
airway management (supraglottic airways) and spinal immobilization. 4 Paramedic: emergency ambulance
practitioner. Trained in advanced pharmacology, advanced airway management, advanced life support, etc. 5

Health Professional: trained to paramedic level plus IV and IO access, a wide range of medications, tracheal
intubation, manual defibrillator, etc.
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3. Methodological Overview

The authors conducted a literature review of air ambulance service characteristics,
operational assumptions, and potential applications of novel aircraft. Between Summer
2017 and Winter 2019, as part of a National Aeronautics and Space Administration (NASA)
market study, the authors established a study advisory group (SAG) to solicit feedback on
key assumptions from more than 50 public and private sector thought leaders to inform
this research. SAG members included senior professionals and subject matter experts from
NASA, the FAA, the National Transportation Safety Board (NTSB), the North Carolina
Department of Transportation, New York City, the city of Los Angeles, Los Angeles World
Airports, the International Civil Aviation Organization (ICAO), and numerous manufactur-
ers, startups, and academic institutions. Public sector participants included directors of the
FAA’s Aviation Plans and Policy Office, the Office of International Affairs, the Unmanned
Aircraft Systems (UAS) Integration Office, and a former NTSB chairman. Manufacturers
and startups representing a diverse set of planned airframes were also included as part of
the SAG.

Using input from the SAG, the authors developed a five-step process to analyze the air
ambulance market. Collectively, these five steps (described below) included calculating key
business and operational metrics, such as number of flights, potential revenue, operating
costs, transport volumes and distribution, and infrastructure availability (e.g., number,
location, and capacity of hospitals and other medical facilities with helipads/vertipads).

Step 1. Preliminary Scoping

The first step included defining operational concepts for the air ambulance use case.
CMS service level, regardless of ground or air ambulance, consists of six key temporal
phases: (1) dispatch time; (2) chute time; (3) response time; (4) time on scene; (5) transport
time; and (6) return time.

1. Dispatch time is measured from the time a telephone dispatcher receives a call until
they dispatch an ambulance.

2. Chute is the time from when a call is dispatched to the time an ambulance begins to
travel to the location.

3. Response time is measured from the time an ambulance is en route until the ambulance
reaches the scene.

4. The time on scene is measured by the time a unit arrives on scene to the time a unit
departs the scene.

5. Transport time is measured from the moment an ambulance leaves the scene until a
patient arrives at their destination.

6. Return time is the time it takes for an ambulance to leave their destination and return
to service.

Collectively, the entire time period from dispatch to placing an ambulance back in
service is referred to as total call time. The authors assumed that dispatch, chute, and time
on scene are fixed time intervals not affected by the aircraft type. Therefore, only response
time, transport time, and return time can be improved through aircraft enhancements. Each
of these temporal phases and times measured in minutes are shown in Figure 1.
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Source: Data from [27].

Step 2. Inventorying Operational Assumptions

The second step involved developing operational assumptions and modeling key
performance metrics such as crew size and flight profiles. To do this, Section 3.1 outlines
more specific operating assumptions that were used as part of Step 2.

Step 3. Baseline Calculations

Next, the authors calculated the cost of emergency medical service for different aircraft
types proposed to serve the air ambulance market. Each cost, such as capital, mainte-
nance, batteries, electric charging, vertiports, and personnel were individually modeled.
Section 3.1 outlines the specific process used to formulate the baseline calculations for each
aircraft type.

Step 4. Monte Carlo Sensitivity Analysis

Fourth, the authors performed a Monte Carlo sensitivity analysis simulating 10,000
randomly generated air ambulance missions. Section 4 summarizes the methodology used
to conduct the Monte Carlo simulation.

Step 5. Scenario Analysis

In the final step, the authors developed scenarios using different operating models,
such as battery recharging during patient disembarkation and battery swapping. Section 4.1
explains the specific methodology used to model each scenario.

The methodological assumptions and findings from each of these steps in the analytical
process are described in greater detail in Sections 3.1 and 4, respectively. All data used in
the analysis were from 2018 unless otherwise noted.

3.1. Methodological Assumptions

For this analysis, the authors introduced gasoline hybrid electric (referred to as ‘hy-
brid’) and eVTOL aircraft into the air ambulance marketplace. Based on a literature review
and information obtained from the study advisory group, the authors assumed an average
cruise speed of 402 km per hour (kph)/250 miles per hour (mph) for hybrid aircraft, 241
kph/150 mph for eVTOLs, and 160 kph/100 mph for conventional helicopters.

The air ambulance flight profile consists of three primary mission phases (shown in
Figure 2). This includes: Response (A-F), Transport (H-M), and Return to Service (N-R).
The authors assumed that each of these sub-missions are flown with similar profiles (i.e.,
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Taxi, Hover Climb, Climb, Cruise, Descend, Hover Descend, and Taxi). While on-scene,
it was assumed that the air ambulance is operating in a taxi configuration (e.g., idle on
the ground). However, it is important to note that this methodology does not account for
minor operational variations such as an eVTOL landing while on scene versus hovering in
place to load a patient using a litter (rescue basket). These types of operational decisions
are influenced by a number of unique circumstances such as weather, clearance to land,
patient condition, risk to aircrew, and other factors. Total flight time represents the sum of
response, transport, and return time. After completing the patient transport to the hospital,
the air ambulance returns to its base (N-R) and is prepared to return to service (R-Q). For
helicopters, return to service preparation time includes the time to refuel, whereas for
eVTOLs, this period refers to the time required to recharge batteries for the next mission.
The authors assumed that for hybrid aircraft, take-off landing is flown on electric (battery)
power while remaining phases of flight are flown using a gas turbine engine.
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Figure 2. Flight profile for the air ambulance use case.

For this analysis it was assumed that eVTOL and hybrid aircraft transport one patient
between an incident scene and the hospital. It was assumed that each aircraft would fly an
average cruise altitude between 500 to 5000 feet above ground level. Per FAA duty hour
requirements, a single emergency eVTOL and hybrid was required to have four full time
pilots, four full time flight nurses, and four full time paramedics with CAMTS accreditation.
Key operational assumptions used in this analysis are shown in Table 3.

Table 3. Key operational assumptions.

Parameter Sub Parameter Minimum Maximum Data Source

Aircraft
Assumptions

Cruise Speed (for eVTOL) 1 125 mph 175 mph [21]

Cruise Speed (for Hybrid) 2 200 mph 300 mph [28]

Equivalent Number of Seats 2 5 8 [29]

Reserve (mins) 20 30 [30]

Range (miles) 50 + Reserve 200 + Reserve [28]

Battery Capacity (kWh) 100 kWh 150 kWh [31]

Annual number of Transports 3 300 400 [5]

Crew/Payroll
Assumptions

Pilot Salary (USD per year) 60,000 100,000

[32]
Paramedic (USD per year) 50,000 75,000

EMT (USD per year) 60,000 90,000

Mechanic Salary (USD per year) 4 50,000 90,000
1 Cruise Speed is used to calculate Trip Speed, which is a parametric function of average distance, Landing and
Take-off Speed and Cruise Speed. 2 Based on helicopter market to accommodate one patient. 3 Standard unit for
Air Ambulance utilization. 4 Air ambulances generally have one full-time mechanic on-site.
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The authors analyzed the technical feasibility of the air ambulance use case using
nine types of VTOL aircraft shown in Table 4. Each cost such as capital, maintenance,
batteries, electric charging, vertiports, and personnel were individually modeled. The cost
per transport for each aircraft type is calculated as a sum of direct operating cost (DOC)
and indirect operating cost (IOC). DOC includes capital, energy, battery, crew, maintenance,
and insurance costs, while IOC is estimated as a percentage range (10 to 30%) of DOC. Each
cost component of the DOC is individually modeled according to Figure 3. The number
of aeromedical transports required and performed were modeled using hourly demand
distributions for each of the different scenarios. Due to range requirements, only electric
and hybrid versions of tilt rotor and tilt wing were found to be suitable.

Table 4. Aircraft/Rotorcraft performance assumptions.

Propulsion
Type Classification Min Cruise

Speed (mph)
Max Cruise

Speed (mph)
Min Range

(miles)
Max Range

(miles)

Electric

Multi Rotor 40 60 30 50

Tilt Rotor 110 190 90 150

Lift and Cruise 110 190 50 80

Tilt Wing 110 190 170 290

Tilt Duct 110 190 110 180

Compound
Helicopter 110 190 90 150

Hybrid
Multi Rotor 40 60 50 80

Tilt Rotor 200 300 Same as Helicopter

Commercial
Multi Rotor 40 60 70 110

Helicopter 80 130 330 550
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4. Analysis and Findings

A preliminary analysis found that the total transport time for ground transportation
was faster for distances less than 32 to 40 km (km) (20 to 25 miles) than eVTOLs as shown
in Figure 4. Based on current technological and economic assumptions, the study finds that
eVTOLs are not likely to compete with ground ambulances for medical transportation less
than 40 km (25 miles). However, the study finds that hybrids could compete for market
share with ground ambulances for distances between 24 and 32 km (15 to 20 miles).
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The authors also compared hybrid and eVTOL aircraft to fixed wing aircraft as shown
in Figure 5. Due to differences in range between hybrid and eVTOL aircraft versus fixed
wing aircraft, the study finds that hybrids and eVTOLs are not likely to compete with the
fixed-wing market without improvements in range. While the study finds that hybrids
may be suitable for specialty care transport, given that this service represents less than
one percent of ambulance trips and requires a larger aircraft with more crew, the study
concludes that eVTOL and hybrids will only compete with helicopters in the near-term.
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Monte Carlo was performed on all the operating assumptions highlighted in Table 3,
aircraft-related assumptions in Table 4, and additional simulation assumptions in Table 5.
For example, some of the additional assumptions applied included parameters on opera-
tions, costs, and other factors that could influence the business model such as personnel
costs, energy costs, and profit margins. After performing 10,000 iterations of the Monte
Carlo simulation, it was observed that the median cost of operating an eVTOL air ambu-
lance is approximately 9000 USD per medical transport. The median cost of operating
a hybrid air ambulance is 9800 USD per medical transport compared to 10,000 USD per
transport for a rotary-wing helicopter [5] (Figure 6). In comparison, a medical transport
using a ground ambulance costs approximately 500 USD per a transport. However, a high
degree of uncertainty was observed primarily due to the assumptions associated with pay-
roll and number of transports. In summary, eVTOLs and hybrid aircraft are not necessarily
the more cost-effective option for aeromedical use cases when operated similarly to air
ambulances using helicopters.

Table 5. Monte Carlo simulation assumptions.

Parameter Min Max

Cruise Altitude (ft) 500 5000
Medical Equipment Weight (lb) 200 400
Pilot Training (USD per year) 10,000 30,000

Paramedic and EMT Training (USD per year) 10,000 20,000
Indirect Operating Cost (% of DOC) 5% 50%

Bad Debt (% of Operating Cost) 10% 20%
Electricity Price (USD/kwh) 0.1 0.3

Profit Margin (% of Cost) 10% 30%
Disembarkation Time (in mins) 3 5
Climb Descend Distance (miles) 1 2

Energy Conversion Efficiency (%) 90% 98%
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Figure 7 summarizes the categorical fixed and operational costs for eVTOL, hybrid,
and rotary-wing aircraft. Fixed costs account for approximately 80% of the overall cost of
transport. As such, improvements in aircraft efficiency do not notably improve the cost per
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medical transport. Fixed costs can be reduced if they are spread over a greater number of
medical transports (e.g., increasing aircraft utilization). However, for an eVTOL aircraft, the
number of transports will also be impacted by battery recharging times that increase total
call time and reduce availability of eVTOL compared to hybrid and gas-powered aircraft
and rotorcraft. Both increased aircraft utilization and increased aircraft unavailability time
due to charging are particularly unfavorable for the air ambulance use case because both
can notably reduce dispatch reliability.
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4.1. Revised Concept of Operations and Battery Swapping Scenarios

The analysis finds that an eVTOL air ambulance battery range and weight (approxi-
mately 3500 pounds) reduces the ability for this aircraft to serve longer medical transports.
Assuming a conservative average charging capability of 125 kilowatts (kW), the study
finds that an eVTOL’s time required to bring the aircraft back to service would be ~3.34
h (200 min), which is significantly higher than rotorcraft (which is typically 30 min). To
achieve the same total call time as rotorcraft, eVTOLs would need to reduce the time
required to return back to service by 145 min. The total call time of eVTOLs is 275 min
compared to 130 min for helicopters. The authors applied two different scenarios to address
this challenge.

The first scenario proposes a revised operational concept. In the original operational
concept, the patient was transported from the scene to the medical facility, however the
aircraft does not begin charging until the patient disembarks the aircraft. In this scenario,
the authors explored the potential to start battery charging during patient disembarkation
(approximately five minutes).

The second scenario proposes swapping batteries when the eVTOL returns to the base
after each mission to reduce downtime associated with recharging. Battery swapping was
estimated to take approximately five minutes and the cost of an extra battery was added
to the cost calculations. It was assumed that staff and equipment required to swap the
batteries are included as part of IOCs. In this scenario, total call time was compared for
eVTOLs, hybrid, and rotorcraft. While dispatch, chute, and scene time were estimated
to remain the same for all three aircraft, without battery swapping return time increased
significantly for eVTOLs. However, with the addition of battery swapping, eVTOLs and
hybrid aircraft can be utilized approximately 35% more than existing rotorcraft, potentially
reducing cost per transport by about 30% (Figure 8).
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4.2. eVTOL and Hybrid Aircraft Dispatch Reliability and Market Potential

The authors used the study findings to assess the suitability of eVTOLs and hybrid
aircraft for the existing rotary-wing aeromedical market using demand modeling. To do
this, the authors established a dispatch reliability model to calculate the probability of
events for which an eVTOL or hybrid ambulance was unavailable. The dispatch reliability
is calculated by the total number of events in which an air ambulance is available divided
by the total number of events where an air ambulance would be dispatched if available.
The demand model for aeromedical service estimates the effective number of transports
required compared to those that could be performed, hourly demand distribution, and
dispatch reliability for modeling for different scenarios (Figure 9). As previously noted,
with the exception of a battery swapping scenario, the increase in total call time for eVTOL
aircraft decreased the number of transports these aircraft could complete, increasing overall
costs. To achieve a comparable cost level to existing rotorcraft, eVTOLs would have to
perform a greater number of transports. However, hybrid aircraft and eVTOLs with battery
swapping capabilities reduced total call time, making them a potentially more attractive
economic replacement for existing rotorcraft. For modeling purposes, the authors assumed
an average weekly distribution across all bases in the U.S. On average, demand was
generally lowest between 12 AM and 6 AM, and typically peaked between 12 PM and 6 PM
each day of the week. The late night accounted for approximately 10% of total aeromedical
trips compared to 40% during the mid-day period. Finally, the authors estimated dispatch
reliability by calculating the probability of events where an eVTOL or hybrid aircraft would
be unavailable.
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Aeromedical transport follows established dispatch protocols to maximize the safety
and benefits of air ambulances. Common factors that influence a dispatcher’s use of an
air ambulance include the need to minimize patient transport time to a medical facility, a
patient requiring time critical care from a medical facility that is further away, and a patient
requiring critical care support not available through ground ambulances. Dispatchers may
also opt for an air ambulance when an area is not appropriate for ground transportation
or lacks EMS coverage. However, in order for a dispatcher to use an aeromedical service,
passenger weight must be within allowable limits, there must be a landing facility at or
near the destination medical center, and both current and forecast weather conditions must
be suitable for the air transport. Because eVTOLs require an increased number of transports
to become economically viable, an increased number of transports also increases the
probability that an aircraft is not available for other calls, reducing the dispatch reliability
for eVTOLs. The probability model estimates a dispatch reliability of approximately 90%
for eVTOLs, which is considerably lower than the desired industry goal of approximately
99% (Figure 10). However, when distributing demand on an hourly basis, the model found
that the dispatch reliability of eVTOLs drops to 10% between 12 AM and 6 AM compared
to 100% dispatch reliability for rotary-wing and hybrid aircraft.
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As noted earlier, to achieve the same level of dispatch reliability as rotorcraft, eVTOLs
need to reduce its total call time by 145 min. Therefore, to achieve this, reduced charging
times would be necessary to reduce the time required for eVTOLs to return back to service
for another mission. One way to achieve reduction in charging times would be to use
super chargers with higher power available. As indicated earlier, this research uses 125
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kW chargers that leads to charging times of 200 min. Therefore, battery recharging times
would need to be reduced by a factor of four for eVTOLs (to 50 min) to reduce eVTOLs
total call time to 125 min (Figure 11). The reduction in total call time coupled with similar
dispatch reliability and cost per ambulance trip is required for eVTOLs to effectively
compete with rotorcraft in the aeromedical market. Theoretically, while eVTOLs with
battery swapping capabilities and hybrid aircraft could serve this market, innovations
that reduce charge times and/or simplify the process of swapping batteries are needed for
eVTOLs to effectively provide air ambulance service. However, swapping heavy batteries
would require specialized equipment and training (e.g., industrial battery handling and
lifting accessories).
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5. Conclusions

Although a number of technical and social concerns have been raised about AAM, early
use cases for emergency response and aeromedical transport may be key to demonstrating
early use cases and building public acceptance of emerging aviation technologies. However,
the ability for AAM to serve aeromedical trips will be highly dependent on technological
capabilities, economics, operational concept, and the ability to provide fast and reliable
medical transport in a large variety of scenarios.

This study concludes that the application of eVTOL aircraft in an aeromedical setting
could confront a number of operational and economic challenges compared to hybrid
VTOL aircraft and more traditional helicopters. The study concludes that the cost of air
ambulance operation is primarily driven by personnel requirements irrespective of aircraft
type. In order for eVTOLs to be a suitable replacement for existing aircraft, they must
reduce costs, improve operational capability, or both. However, the analysis shows that
battery range and weight limits the ability for eVTOL to serve longer medical transports.
The analysis also concludes that an eVTOL’s charging time required to bring an aircraft
back to service reduces the ability for this aircraft to provide reliable aeromedical transport
that is comparable with hybrid and gas-powered aircraft currently serving the marketplace.

In order to maintain a high-level of operational readiness, this exploratory study
suggests that aircraft manufacturers and air ambulance service providers may need to
emphasize technological improvements and changes in operational procedures that re-
duce charge times, increase electric range, and explore other innovations such as battery
swapping and alternative fuel aircraft. Additionally, the deployment of mixed aircraft
fleets with different capabilities may be able to help bridge the gap as more reliable and
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cost-effective aircraft for aeromedical use become available. Finally, eVTOLs may be able to
enter the aeromedical market by serving non-emergency uses (e.g., patient and medical
personnel transport, delivery of medical supplies, etc.). These uses require fewer personnel
and could allow eVTOLs to enter the marketplace at a lower cost than existing aircraft.
More research is needed to study the potential opportunities and challenges of using VTOL
aircraft powered by alternative fuels such as hydrogen for aeromedical transportation.
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