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Dmitrii Nikolaevich Zubarev was born in November 27, 1917, in Moscow, Russia. On the
occasion of his 100th birthday, a honorary colloquium was performed at April 18/19, 2018, at
the Bogoliubov Laboratory of Theoretical Physics at the Joint Institute of Nuclear Research,
Dubna, Russia. Former coworkers and followers (see Figure 5) contributed with talks:

BLASCHKE, David
(Wroclaw)

Nonequilibrium pion distribution in heavy ion collisions
from the Zubarev approach

DADIC, Ivan (Zagreb) Damping rate and collision integral from finite time path
out of equilibrium field theory

HONGO, Masaru
(RIKEN)

Revisiting hydrodynamics from quantum field theory

KUZEMSKY, Alexandr
(JINR)

Neutron scattering on the nonequilibrium statistical
medium and generalized Van Hove’s formula

MOROZOV, Vladimir
(MIREA)

Kinetic theory of correlated quantum systems in the
framework of Zubarev’s nonequilibrium statistical
operator method

PLAKIDA, Nikolay
(JINR)

Charge fluctuations in strongly correlated electronic
systems

REINHOLZ, Heidi
(Rostock)

Dielectric function and dynamical collision frequency
from the Zubarev approach

RÖPKE, Gerd
(Rostock)

Electrical conductivity of charged particle systems and
the Zubarev NSO method

RUDOY, Yurii/
RYBAKOV, Yurii
(Moscow, RUDN)

Generalized form of the Bogoliubov Zubarev theorem
for pressure fluctuations. Possible applications to ultra
relativistic gases.

SEDRAKIAN, Armen
(Frankfurt)

Transport coefficients of QCD from Zubarev formalism

SMOLYANSKY,
Stanislav (Saratov)

Magnetic moment of the e e+ plasma generated from
vacuum under action of a rotating E field

TROPIN, Timur (JINR) On the theoretical description of polymers glass
transition kinetics in a wide range of cooling rates

TURKO, Ludwik
(Wroclaw)

Finite size effects, intermolecular forces and effective
virial expansion

The organizers decided to collect contributions to prepare this Special Issue. Following the
open call, there were, in addition to the contributions from the above speakers, also
contributions from colleagues who could not participate in the seminar:

Preface to ”Nonequilibrium Phenomena in
Strongly Correlated Systems”



x

BECATTINI, Francesco

(Firenze)

Reworking Zubarev’s approach to nonequilibrium

quantum statistical mechanics

HARRISON, Brent

(Cape Town)

Bose–Einstein condensation from the QCD Boltzmann

equation

JUCHNOWSKI, Lukasz

(Wroclaw)

Kinetic approach to pair production in strong fields—

Two lessons for applications to heavy ion collisions

NAZAROVA, Elizaveta

(Wroclaw)

Low momentum pion enhancement from schematic

hadronization of agluon saturated initial state

PROKHOROV, Georgy

(JINR)

Calculation of acceleration effects using the Zubarev

density operator

TOKARCHUK,

Mykhailo (Kiev)

Unification of thermo field kinetic and hydrodynamics

approaches in the theory of dense quantum field systems

Figure 1. Photo taken on April 18, 2018, at the honorary colloquium for D. N. Zubarev’s 100th
birthday. From left to right: Vladimir Morozov (MIREA, Moscow), Heidi Reinholz (Rostock),
David Blaschke (Wroclaw and JINR Dubna), Nikolay Plakida (JINR Dubna), Gerd Röpke
(Rostock), Yurii Rybakov (RUDN, Moscow). Background: Hermann Wolter (Munich).

We will now outline the biography and scientific legacy of D. N. Zubarev; for details see
[1–3].

D. N. Zubarev studied physics at Moscow State University. In 1941, he graduated from
the Department of Physics. His academic advisor was N. N. Bogoliubov, who was also the
promotor of his PhD thesis work. From 1954 to the end of his life, D. N. Zubarev worked at the
V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences. From 1969 to 1971,
he was also head of the Statistical Mechanics and Theory of Condensed Matter Group at the
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Laboratory of Theoretical Physics, JINR, Dubna. He died inMoscow, July 29, 1992, after a traffic
accident.

D. N. Zubarev successfully contributed to statistical physics. In 1957, he obtained, together
with N.N. Bogoliubov and Yu.A. Tserkovnikov, the asymptotically exact solution of the BCS
model Hamiltonian [4], which was an essential contribution to the theory of superconductivity.

Figure 2. Photo taken at an excursion to Mzcheta during the Tiflis Conference on Low
Temperature Physics in 1959. From left to right: Dmitry Vasil’evich Shirkov (JINR Dubna),
Dmitrii Nikolaevich Zubarev (Steklov Inst. Moscow), Anatoly Alekseevich Logunov (JINR
Dubna), Yurii Aleksandrovich Tserkovnikov (Steklov Inst. Moscow), Zygmunt Galasiewicz
(JINR Dubna &Wroclaw), Albert Nikifirovich Tavkhelidze (JINRDubna).
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Figure 3. Photo taken when the group of D. N. Zubarev visited Vladimir in June 1969. From
left to right: John Shepherd (UK), Karl Hartmut Müller (GDR), Celia Shepherd (UK), Wolfgang
Götze (FRG), Gerd Röpke (GDR), Dmitrii Nikolaevich Zubarev.

He considered himself as a “father of methods”, in particular he published the highly cited
review article entitled: “Double time Green Functions in Statistical Physics” [5], and wrote the
well known monography “Neravnovesnaya statisticheskaya termodinamika” [6], translated
from Russian to English by P. J. Shepherd. He made very fundamental contributions to
statistical physics published in many scientific articles, based on a sound mathematical
approach. His very general approach to nonequilibrium processes with applications in
different fields was presented in the Monography [7].

Figure 4. D. N. Zubarev at the 6 th Winter School on Theoretical Physics in Karpacz (Poland)
1969. From left to right, back row: Nikolay Maksimilianovich Plakida, Elmar Grigorievich
Petrov, Dmitrii Nikolaevich Zubarev, ?, W adys awa Rybarska (Nawrocka); front row: ?,
Tadeusz Paszkiewicz, Jerzy St licki, Andrzej P kalski, Valery Leonidovich Pokrovsky.
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As a leading scientist in statistical physics, D. N. Zubarev had many active collaborations
within the former Soviet Union and abroad. Many close relations to colleagues and guests were
long standing and are determined by his open minded, tolerant and clear scientific position,
also his accurate and precise work and discussions. He attracted and educated young scientists,
including G. O. Balabamyan, V. P. Kalashnikov, V. G. Morozov, T. Paszkiewicz, N. M. Plakida,
L. Pokrovsky, S. Tishchenko, M. V. Tokarchuk and others. He also hosted guests from abroad
(see Figure 3), and visited them to give series of lectures, like at the Karpacz Winter School in
Poland 1969 (see Figure 4) and at the Miniworkshop on Quantum Statistics in Ahrenshoop
(GDR) in 1987 (see Figure 5).

Figure 5. D. N. Zubarev and M.V. Tokarchuk during a visit at the University of Rostock in
November 1987, when Dmitri Nikolaevich was giving a lecture series on the NSO method
during a Miniworkshop with the group of Gerd Röpke in Ahrenshoop.

The personality of D. N. Zubarev was formed also by the WWII. On June 25, 1941 he
volunteered for duty in the Eighth Division of the People’s Militia and participated in the
defense of Moscow. At the end of the war D. N. Zubarev was in Berlin with the 47th Army of
the First Belorussian Front. He was awarded the Red Star for participation in mine clearing in
Berlin. Many of his fellow students died during the war. After war, he worked with G. Hertz
who was made head of Institute G, in Agudzery, about 10 km southeast of Sukhumi and a
suburb of Gulrip’shi, on separation of isotopes by discussion in a ow of inert gases. After this
he worked for several years on important defense problems at the “object,” now known as
Arzamas 16. His association during this period with N. N. Bogoliubov and A. D. Sakharov
greatly influenced his scientific career. His wife, Galina Rudolfovna, participated in the
Leningrad blockade.

Despite the very hard history, and under the restrictions of the soviet time, he developed
an open minded and complaisant atmosphere in the contact with physicists around the world.
D. N. Zubarev had an unusual talent for social intercourse, which attracted people to him. He
exhibited the traits of a true Russian intellectual live interest and openness to anything new in
science and in life, honesty and fairness, softness, delicacy, unselfishness and constant
readiness to help people, but at the same time he was strict and uncompromising in the search
for scientific truth and he unfailingly adhered to strict scientific ethics.

D. Blaschke, A.V. Friesen, V. G. Morozov, N. K. Plakida, G. Röpke.
Wroclaw, Dubna, Moscow, Rostock, in July 2020
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Figure 6. Photo taken at the honorary colloquium for D. N. Zubarev’s 100th birthday in the
Conference Hall of the Bogoliubov Laboratory of Theoretical Physics at the JINR Dubna. From
left to right: D. Blaschke (Wroclaw & JINR Dubna), H. Reinholz (Rostock), V.G. Morozov
(MIREA, Moscow), G. Röpke (Rostock), N.M. Plakida (JINRDubna). Background: Bust of N.N.
Bogoliubov.
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Energy Conservation and the Correlation
Quasi-Temperature in Open Quantum Dynamics
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Abstract: The master equation for an open quantum system is derived in the weak-coupling
approximation when the additional dynamical variable—the mean interaction energy—is included
into the generic relevant statistical operator. This master equation is nonlocal in time and
involves the “quasi-temperature”, which is a non- equilibrium state parameter conjugated
thermodynamically to the mean interaction energy of the composite system. The evolution equation
for the quasi-temperature is derived using the energy conservation law. Thus long-living dynamical
correlations, which are associated with this conservation law and play an important role in transition
to the Markovian regime and subsequent equilibration of the system, are properly taken into account.

Keywords: open quantum system; master equation; non-equilibrium statistical operator; relevant
statistical operator; quasi-temperature; dynamic correlations

1. Introduction

In this paper, we continue the study of memory effects and nonequilibrium correlations in open
quantum systems, which was initiated recently in Reference [1]. In the cited paper, the nonequilibrium
statistical operator method (NSOM) developed by Zubarev [2–5] was used to derive the non-Markovian
master equation for an open quantum system, taking into account memory effects and the evolution
of an additional “relevant” variable—the mean interaction energy of the composite system (the open
quantum system plus its environment). This approach allows one to describe systematically the
long-living nonequilibrium correlations associated with the total energy conservation. However,
the price paid for this possibility is the need to solve the system of coupled evolution equations for
the statistical operator of the open system and the additional nonequilibrium state parameters. In the
present paper, our main concern is the time behaviour of the so-called quasi-temperature, which is
a parameter conjugated to the mean interaction energy [1].

The structure of the paper is as follows. In Section 2, we show how a scheme for deriving master
equations in open quantum dynamics can be formulated within NSOM and introduce the auxiliary
“relevant” statistical operator describing correlated nonequilibrium states of the composite system.
This relevant statistical operator is then used in Section 3 to derive the non-Markovian master equation
in the limit of weak interaction between the open system and the environment. Nonequilibrium
correlations associated with the energy conservation introduce additional relaxation terms in the
master equation. These terms contain the state parameter (quasi-temperature) thermodynamically
conjugated to the mean interaction energy. In Section 4, we derive the general evolution equation for the
quasi-temperature and consider its modification in the weak-coupling limit. Finally, conclusions and
outlook are given in Section 5.

Particles 2018, 1, 285–295; doi:10.3390/particles1010023 www.mdpi.com/journal/particles1
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2. The Reduced Statistical Operators and the Relevant Statistical Operator

Let us assume that the open quantum system of interest (S) interacts with another (as a rule,
much larger) system (E)—the environment, and the Hamiltonian of the composite system has the form

H = HS + HE + V ≡ H0 + V, (1)

where HS and HE are the Hamiltonians of the open quantum system and the environment, and V is
the interaction Hamiltonian. For the sake of simplicity, we restrict ourselves to the case when the
composite system (S + E) is isolated and, consequently, HS and HE do not depend on time. It is an easy
matter to generalize the main results and conclusions to the case when the open quantum system (or
the environment) is affected by some alternating fields.

Nonequilibrium states of the open quantum system and the environment are completely described
by the reduced statistical operators

�S(t) = TrE{�SE(t)}, �E(t) = TrS{�SE(t)}, (2)

where the symbol TrE (TrS) means the trace over all degrees of freedom of the environment (of the open
quantum system), and �SE(t) is the statistical operator of the composite system at time t. The evolution
of the composite system is described by the von Neumann equation (in units with h̄ = 1)

∂�SE(t)
∂t

= i[�SE(t), H]. (3)

The first step in deriving the master equation for the reduced statistical operator �S(t) is to apply
the operation TrE to both sides of Equation (3). This gives

∂�S(t)
∂t

− i[�S(t), HS] = −iTrE[V, �SE(t)]. (4)

For this formal equality to have the meaning of a closed evolution equation for the subsystem (S),
the statistical operator �SE(t) is to be expressed in terms of �S.

Let us now consider how a scheme for deriving the master equation can be formulated within
NSOM [3,4]. As usual, we start from the decomposition of the statistical operator �SE(t):

�SE(t) = �rel(t) + Δ�(t), (5)

where �rel(t) is the relevant part of the statistical operator for the composite system. We recall that
the problem posed in NSOM is to derive evolution equations (generalized kinetic equations) for some
set of observables 〈Pi〉t characterizing the nonequilibrium state of the system, where {Pi} is the set
of the corresponding basic dynamical variables, and the average is taken with the nonequilibrium
statistical operator of the system (in the present case with �SE(t)). The problem now is to construct
a proper relevant statistical operator that is a functional of the observables. It is commonly required
that �rel(t) corresponds to the extremum of the information entropy S(t) = −TrS,E{�rel(t) ln �rel(t)}
under the supplementary conditions that the mean values 〈Pi〉t be equal to given quantities and the
normalization condition TrS,E{�rel(t)} = 1. Under these conditions we have [3]

�rel(t) = exp
{
−Φ(t)− ∑

i
Fi(t)Pi

}
. (6)

The Massieu-Planck function Φ(t) is determined by normalization,

2
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Φ(t) = ln Tr exp
{
−∑

i
Fi(t)Pi

}
, (7)

where the parameters Fi(t) (Lagrange multipliers) are found from the self-consistency conditions

〈Pi〉t = Tr{Pi�rel(t)}, (8)

which can be considered as the nonequilibrium equations of state.
The answer to which set of the dynamic variables Pi is preferable depends on the kind of the

system and the required level of its description. For instance, the “hydrodynamic” description
corresponds to taking the densities of conserved quantities as a basic set of the dynamical variables [4].
An extension of this set at the expense of higher derivatives allows one to obtain equations of the
generalized hydrodynamics and to widen the timescale of the description of the system evolution.
Such a scheme underlies the generalized collective mode theory (GCM) [6–8], which has proven its
efficiency at the study of variety of the condensed matter systems.

Conversely, the GCM can be extended by taking into account the “ultraslow” processes (defined
by the time integrals of corresponding densities) [9–11]) , which allows one to approach the problems
of account for slow structural relaxation and study the ageing processes in the glassy forming system
on equal footing with the extended hydrodynamics [12].

Thus, the main criterion for the choice of the dynamic variables of the abbreviated description
of the system is a slowness of their variation on the chosen time scale. A closer examination of this
point is given, e.g., in the books [2–4]. Leaving aside the problems connected with initial correlations,
memory effects, and other special features of quantum dynamics, for a moment, we will consider the
fundamental question about the possibility of deriving a master equation for an open quantum system
within the framework of NSOM. The problem is to find dynamical variables Pi such as their mean
values, calculated with the statistical operator �SE(t), contain the same information about the state of
the open system (S) as the reduced statistical operator �S(t).

To this end, let us consider some complete and orthonormal set G = {|n〉} of quantum states in
the Hilbert space of the open system (S). We introduce the so-called Hubbard operators [13]

Xmn = |m〉〈n|, (9)

which obey the following algebraic properties:

XαXα′ = ∑
α′′

gαα′ ;α′′Xα′′ , [Xα, Xα′ ] = ∑
α′′

cαα′ ;α′′Xα′′ (10)

with the structure constants

gαα′ ;α′′ = δmm′′δnm′δn′n′′ , cαα′ ;α′′ = gαα′ ;α′′ − gα′α;α′′ . (11)

To simplify some notations, we have introduced the ordered pairs of indexes α = (m, n), α′ =
(m′, n′), etc.

Let us show that the matrix elements of the reduced statistical operator �S(t) of the open system (S)
are expressed in terms of the mean values 〈Xmn〉t, where the averaging is performed with the statistical
operator of the composite system (S + E). To do this we write the obvious chain of equalities:

〈Xmn〉t ≡ TrS,E{Xmn�SE(t)} = TrS{Xmn�S(t)} = ∑
k,k′

〈k|Xmn|k′〉〈k′|�S(t)|k〉, (12)
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where relation (2) has been used. Since, in calculating the trace, we may take |k〉 ∈ G and |k′〉 ∈ G,
it follows from the definition (9) that 〈k|Xmn|k′〉 = δkmδk′n. Consequently,

〈Xmn〉t = 〈n|�S(t)|m〉. (13)

Thus, there is a good reason to include the Hubbard operators into the basic set of dynamical
variables {Pi}. Such an approach was used, for instance, in Reference [14] to study the role of initial
correlations for a system consisting of many two-level atoms interacting with a common bath.

Before writing down the explicit form of the relevant statistical operator, we would like to
emphasize that the first term appearing in Equation (5) is by itself an auxiliary operator, but it plays
an important role in NSOM. First, the choice of the relevant statistical operator determines the initial
(or boundary) condition for Δ�(t) (see, e.g., Ref. [1]). Second, the choice of �rel(t) determines the
“structure” of approximations in solving the von Neumann Equation (3), since the scheme of NSOM
works most effectively when the operator Δ�(t) may in a sense be regarded as a small correction to the
relevant part of the statistical operator (5).

To be sure that all slow variables are incorporated in the relevant statistical operator, let us recall
that regardless of the structure of the open system and the properties of the environment, there is
the quantity (namely the average energy of the composite system 〈H〉t) which does not depend on
time and, consequently, is “slowly varying” at all time scales. As shown in Reference [15], taking into
account the energy conservation changes drastically the structure of non-Markovian kinetic equations
even in the Born approximation and ensures the existence of the equilibrium solution for the statistical
operator. Within NSOM, the additional “correlational” terms appearing in a kinetic equation can
be found in an explicit form, if 〈H〉t is included into the set of observables to construct the relevant
statistical operator. It is often convenient to take as a controlled parameter of state not the total energy
of the system but the mean interaction energy since all the remaining contributions to 〈H〉t can be
obtained by redefining the Lagrange multipliers for other basic dynamical variables [15].

Following Reference [1], we take the relevant statistical operator of the composite system in
the form

�rel(t) = exp
{
−Φ(t)− ∑

α

Λα(t)Xα − β∗(t)V − βHE

}
. (14)

As usual, the Massieu-Planck function is determined from the normalization condition
for the operator �rel(t), and the Lagrange multipliers Λα(t), β∗(t) are determined from the
self-consistency conditions

TrS,E{Xα �rel(t)} = 〈Xα〉t, TrS,E{V�rel(t)} = 〈V〉t, (15)

where the averages 〈Xα〉t and 〈V〉t are calculated with the nonequilibrium statistical operator �SE(t) of
the composite system.

The relevant statistical operator (14) has some important properties. For example, if we set β∗ = β,
then �rel coincides with the exact equilibrium statistical operator at temperature T = (kBβ)−1. In this
connection, the quantity T∗ = (kBβ∗)−1 may be interpreted as a correlational quasi-temperature of the
open system. On the other hand, if we put β∗ = 0 (or T∗ = ∞), then the relevant statistical operator (14)
describes the state in which there are no correlations between the open system and the environment,

�
(0)
rel (t) = exp

{
−Φ(0)(t)− ∑

α

Λα(t)Xα − βHE

}
. (16)

This expression can be cast into the form
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�
(0)
rel (t) = �S(t)⊗ �E, (17)

where

�E = exp{−Φ(0)
E − βHE} (18)

is the equilibrium statistical operator of the environment, and the statistical operator of the subsystem
S is defined as

�S(t) = exp
{
−Φ(0)

S (t)− ∑
α

Λα(t)Xα

}
. (19)

As above, the Massieu-Planck function Φ(0)
S (t) is determined from the normalization condition

for the operator on the left-hand side.
The relevant statistical operator (16) can be used to determine the initial condition �SE(0) = �

(0)
rel (0)

if the evolution of the composite system starts from a non-correlated state. However, even in this
simplest case, for all times—not just at time t = 0—the absence of correlations is not true and
consequently nonequilibrium states are not adequate described by statistical operator (16).

3. The Weak-Coupling Master Equation

Starting from the description of nonequilibrium states of the composite system by the relevant
statistical operator (14), one can derive the master equation for �S(t). To explain the scheme of the
derivation, we shall consider the case where the operator V in the Hamiltonian (1) describes weak
interaction between the open quantum system and the environment, i.e., it is possible to expand at
some stage the quantities of interest in a power series in the coupling constant to which the operator V
is proportional.

First we substitute the expression (5) into Equation (4):

∂�S(t)
∂t

− i[�S(t), HS] = −iTrE[V, �rel(t)]− iTrE[V, Δ�(t)]. (20)

Now, following the logic of NSOM, the operator Δ� is to be expressed in terms of �rel. Then the
right-hand side of Equation (20) could, in principle, be considered as a functional of �S and β∗.
For this purpose, we first derive the evolution equation for the operator Δ�(t). Let us substitute the
expression (5) into the von Neumann Equation (3) and then change to the interaction picture by setting

Ã(t) = eitH0 A(t)e−itH0 (21)

for any operator A(t). After simple manipulations we obtain

∂

∂t
Δ�̃(t)− i[Δ�̃(t), Ṽ(t)] = −

(
∂

∂t
�̃rel(t)− i[�̃rel(t), Ṽ(t)]

)
. (22)

Let us assume that the initial condition Δ�̃(0) = Δ�(0) = 0 is satisfied. It means that the evolution
of the composite system starts from the state characterized by the condition �SE(0) = �rel(0). This is
typical when the open quantum system is prepared in a particular way (e.g., by some quantum
measurement [16]). Then Equation (22) can be written in the integral form

Δ�̃(t)− i
∫ t

0
dτ [Δ�̃(τ), Ṽ(τ)] = −

∫ t

0
dτ

(
∂

∂τ
�̃rel(τ)− i[�̃rel(τ), Ṽ(τ)]

)
. (23)
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If the interaction between the open subsystem and its environment is weak, then, as is clear from
Formula (20), in the leading (Born) approximation it is sufficient to calculate Δ�(t) up to terms linear
in V. Apparently, in this approximation the second term on the left-hand side of Equation (23) may be
omitted. Using interaction representation (21) once again, we obtain

Δ�(t) = −
∫ t

0
dτ e−i(t−τ)H0

(
∂�rel(τ)

∂τ
− i[�rel(τ), H]

)
ei(t−τ)H0 . (24)

The commutator in (24) is transformed in a standard way using definition (14) for the relevant
statistical operator, the Kubo identity for non-commuting operators [3] and the self-consistency
conditions (15). As a result, up to terms linear in V, we have

Δ�(t) = −i
∫ t

0
dτ e−i(t−τ)H0 R(τ) ei(t−τ)H0 , (25)

where

R(τ) = [V, �S(τ)�E] + β∗(τ)
∫ 1

0
dx (�S(τ)�E)

x [V, H0](�S(τ)�E)
1−x. (26)

In Equation (26) the superscript, which emerges due to the Kubo identity, denotes the x-th power
of the corresponding statistical operators.

Using Formula (25), we can bring Equation (20) to its final form

∂�S(t)
∂t

− i[�S(t), HS] = −iTrE[V, �rel(t)]−
∫ t

0
dτ TrE[V, e−i(t−τ)H0 R(τ) ei(t−τ)H0 ]. (27)

It follows from the above analysis that both terms on the right-hand side of this equation are
functionals of �S(t′) and β∗(t′), where 0 < t′ ≤ t. However, Equation (27) is not itself a closed
master equation for the reduced statistical operator �S because we need also the evolution equation for
β∗(t) or for the correlational quasi-temperature T∗(t) = (kBβ∗(t))−1. A similar situation arises in the
“standard” kinetic theory when nonequilibrium correlations are taken into account in non-Markovian
kinetic equations. Within the weak coupling approximation, the equation for β∗(t) was derived in the
work [15] where a quantum system of particles with pair interaction was considered. As already noted,
the approach to the dynamics of open systems presented here is formally quite analogous to NSOM in
quantum kinetics, so that the equation for β∗(t) can be derived by applying the scheme described in
the work [15].

4. Equation for the Quasi-Temperature

Let us turn to the self-consistency conditions (15) and differentiate them with respect to time.
Recalling the explicit form (14) of the relevant statistical operator and the definition (7) of the
Massieu-Planck function leads to the set of equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(Xα, V)
dβ∗(t)

dt
+ ∑

α′
(Xα, Xα′)

dΛα′(t)
dt

= −d〈Xα〉t

dt
,

(V, V)
dβ∗(t)

dt
+ ∑

α

(V, Xα)
dΛα(t)

dt
= −d〈V〉t

dt
.

(28)
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We have introduced the time-dependent correlation functions of dynamical variables in the
relevant ensemble,

(A, B) =
1∫

0

dx〈ΔA�x
relΔB�−x

rel 〉rel, ΔA = A − 〈A〉t
rel, (29)

where 〈. . .〉rel ≡ TrS,E{�rel(t) . . .} denotes averaging with the relevant statistical operator (14). It is easy
to check that the correlation function (29) satisfies the symmetry condition (A, B) = (B, A).

The chain of matrix Equations (28) can formally be solved for the derivatives dΛα(t)/dt, yielding
the evolution equation for the quasi-temperature:

C(t)
dβ∗(t)

dt
= ∑

α,α′
(V, Xα) (X, X)−1

αα′
d〈Xα′ 〉t

dt
− d〈V〉t

dt
, (30)

where (X, X) is a matrix whose elements are (Xα, Xα′), and the quantity

C(t) = (V, V)− ∑
α,α′

(V, Xα)(X, X)−1
αα′(Xα′ , V) (31)

may be regarded as a generalized heat capacity.
Let us rewrite the right-hand side of Equation (30) in a more transparent form. First we eliminate

the derivative d〈V〉/dt applying the energy conservation law

d〈HS〉t

dt
+

d〈HE〉t

dt
+

d〈V〉t

dt
= 0, (32)

and then express the derivative d〈HS〉/dt in terms of d〈Xα〉/dt using the fact that, in general, the system
Hamiltonian HS can be written as

HS = ∑
α

EαXα (33)

with Eα ≡ Emn = 〈m|HS|n〉. After the above manipulations, Equation (30) takes the form

C(t)
dβ∗(t)

dt
= ∑

α

(
Eα + ∑

α′
(V, Xα′) (X, X)−1

α′α

)
d〈Xα〉t

dt
+

d〈HE〉t

dt
. (34)

For the time derivatives on the right-hand side of this equation, we have the expressions

d〈Xα〉t

dt
= −i〈[Xα, HS]〉t

S − i〈[Xα, V]〉t
rel + Iα(t),

d〈HE〉t

dt
= −i〈[HE, V]〉t

rel + IE(t),

(35)

where 〈. . .〉t
S means averaging with the reduced statistical operator �S(t), and

Iα(t) = −iTrS,E {[Xα, V]Δ�(t)} , IE(t) = −iTrS,E {[HE, V]Δ�(t)} . (36)

Formulas (35) follow directly from the von Neumann Equation (3) and Equation (5).
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Let us show that the first term on the right-hand side of the evolution Equation (35) for 〈HE〉t is
equal to zero. To this end, we use the obvious identity

TrS,E {�rel(t)[A, ln �rel(t)]} = 0, (37)

which is valid for any operator A. Taking A = HE and recalling the explicit form (14) of the relevant
statistical operator, one readily obtains

TrS,E {�rel(t)[HE, V]} = 0. (38)

Substituting Equation (35) into Equation (34) leads, in general, to a rather cumbersome evolution
equation for the quasi-temperature. However, this equation can be considerably simplified, if the
system-environment coupling is weak. To do this, let us assume that 〈V〉E ≡ TrE (V�E) = 0, where �E

is given by Equation (18). If the initial operator V does not satisfy this condition, then it suffices to
redefine HS and V by replacing HS → HS + 〈V〉E and V → V − 〈V〉E. Then it is easy to check that the
leading terms in the correlation functions (Xα, V) as well as in the mean values 〈[Xα, V]〉t

rel are of the
second order in interaction. In this approximation, Equation (34) reduces to

C(t)
dβ∗(t)

dt
= −i ∑

α

{
Eα〈[Xα, V]〉t

rel + ∑
α′

(V, Xα′) (X, X)−1
α′α 〈[Xα, HS]〉t

S

}
+ ∑

α

Eα Iα(t) + IE(t), (39)

where the generalized heat capacity C(t) is to be evaluated with the relevant statistical operator (16)
for a non-interacting composite system. This gives

C(t) =
1∫

0

dx TrS,E

{
V
(

�
(0)
rel

)x
V
(

�
(0)
rel

)1−x
}

. (40)

Note that the time dependence of the generalized heat capacity (40) arises from that of the relevant
statistical operator (16).

We would like to note that the “coherent” term ∑α Eα〈[Xα, HS]〉t
S in Equation (39) vanishes due

to Equation (33). It can also be shown that within the leading weak coupling approximation the
term in braces in Equation (39) vanishes, so that we finally arrive at the simplified equation for the
quasi-temperature:

C(t)
dβ∗(t)

dt
= ∑

α

Eα Iα(t) + IE(t). (41)

Let us touch upon a physical meaning of the quasi-temperature in more detail. Of course, 1/β∗(t)
cannot be treated as a temperature in its ordinary meaning since it cannot be even measured. Moreover,
the quasi-temperature can even be negative if the system admits the dynamically induced inversion
of the levels’ population [17–19]. However, 1/β∗(t) can really be considered as the generalized
temperature since: (i) it is introduced in a quasi-Gibbsian manner via the relevant statistical operator
similarly (14), like the ordinary temperature is; (ii) it obeys the generalized thermodynamic relation (41),
whose right-hand side is nothing but the derivative of the total kinetic energy of the composite (S + E)
system; (iii) it tends to its asymptotic value at t → ∞ [20], which coincides with the bath temperature.

To conclude this Section, and to explain the essence and the importance of the dynamical
correlations in more detail we would like to note the following. The dynamical correlations are
incorporated in the master Equation (27) by means of the second term of (26), which involves
the quasi-temperature 1/β∗(t). First, the quasi-temperature is defined as the state parameter
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conjugated to the interaction energy, see definition (14) of the relevant statistical operator. On the
other hand, the dynamic equation (41) for the quasi-temperature involves both the generalized
heat capacity (40) (which is expressed in terms of the “energy-energy” non-equilibrium correlation
functions), and collision integrals (36) (which also bring the information about the dynamical
correlations between the system and environment arising from the conservation law (32)).

Moreover, the second term in Equation (26) gives rise to additional contributions to the collision
integrals IS(t) and IE(t) by taking the non-equilibrium correlations into account. These terms are
even called “correlational” ones [3,15,21], and they determine an additional relaxation timescale [20],
which turns out to be much shorter than that of the (S) subsystem dynamics.

5. Conclusions and Outlook

Equation (41) for the quasi-temperature and the master Equation (27) for the reduced statistical
operator provide us with a complete description of open quantum dynamics in the weak coupling
limit. It must be emphasized that both equations are non-local in time due to the structure of the
nonequilibrium correction Δ�(t) to the statistical operator (see Equation (25)).

Note that the interplay between memory effects and correlations may strongly affect kinetic
processes [15,21]. First of all, a transition to the Markovian regime (when the memory effects
become negligible) occurs due to the energy conservation and the long-living dynamical correlations,
accompanying this phenomenon. It is known [3] that the Levinson equation (non-Markovian one)
does not have an equilibrium solution, while the local in time Uehling-Uhlenbeck equation does.
The correlational term eliminates this bottleneck of the quantum kinetic theory by providing a proper
Markovization of the system and tending of the distribution functions to their (quasi)equilibrium limits.
At this stage of the system evolution, the quasi-temperature 1/β∗(t) tends to its equilibrium value
1/β, both correlational parts of the collision integrals (36) and Equation (41) become identically equal
to zero, and the non-Markovian quantum kinetic equation converts to its Uehling-Uhlenbeck form.

From a strictly mathematical point of view, the time non-locality (non-Markovian effects) appears
at the stage of integral presentation of the von Neuman equation regardless of taking the dynamical
correlations into account. It means that the master Equation (27) turns out to be non-Markovian even
if one neglects the second term in (26). Though the Markovian approximation is widely believed [16]
to be justified if the time scale τS, over which the state of the system varies appreciably, is large
compared to the time scale τE, over which the environment correlation functions decay, in the case
of a particular open quantum system the situation can be more diverse. One can formally solve the
(Heisenberg) equations of motions for the environment variables and insert the obtained results into
the dynamic equations for the (S) subsystem variables. The obtained Langevin-type equations are
found to be non-Markovian. However, if the dynamics of the environment variables is not strongly
interconnected with that of the (S) subsystem, and the time behaviour of the bath variables can be
calculated explicitly, one comes to the Markovian kinetic equations without any suggestions about
relaxation times hierarchy. This is exactly the case of the dephasing model [22], where the dynamic
equation for the system coherency does not involve the memory effects.

Secondly, memory effects are most pronounced at the initial stage of the system dynamics.
In particular, their consideration turns out to be indispensable in the presence of ultra-short external
fields [20]. Similar situations in which memory effects and correlations play an important role can
emerge in open quantum systems. For instance, the period between switching of quantum registers
can be comparable or even less than the dephasing time [22].

Finally, there exist various approaches [23–25] to the quantification of memory effects in quantum
open systems, and even to the definition (or redefinition) of the non-Markovianity itself. Usually,
they are based upon a conception of the trace distance between two quantum states, and the obtained
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results are expressed in terms of the rate of change of the above mentioned distance. In this
context, one can propose another look at this issue, which is based, say, on the concept of the
generalized thermodynamics. In particular, one can investigate the transition times from the essentially
non-Markovian regimes to the local in time dynamics (which would manifest itself in tending of the
quasi-temperature to its equilibrium limit) and compare them with other typical timescales for open
quantum systems (e.g., the dephasing time or the thermalization time [22]). The ratio between the above
mentioned times can be treated as a generalized measure of the non-Markovianity. In our opinion,
such an approach would be most promising for small-sized systems, when the environment can hardly
be treated as a thermal bath. It should be noted that our scheme can be directly applied to this case,
when the environment has not been equilibrated yet and is characterized by the non-equilibrium
temperature 1/β(t) which, in general, is not equal to the “correlational” quasi-temperature 1/β∗(t).

Definitely, the consistency and the robustness of our scheme should be verified on particular
models of the open quantum systems. We believe these studies to be very perspective, and we are
going to carry them out in our further researches using some exactly solvable models.
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Abstract: The method of Zubarev allows one to construct a statistical operator for the nonequilibrium.
The von Neumann equation is modified introducing a source term that is considered as
an infinitesimal small correction. This approach provides us with a very general and unified
treatment of nonequilibrium processes. Considering as an example the electrical conductivity,
we discuss the modification of the von Neumann equation to describe a stationary nonequilibrium
process. The Zubarev approach has to be generalized to open quantum systems. The interaction of the
system with the irrelevant degrees of freedom of the bath is globally described by the von Neumann
equation with a finite source term. This is interpreted as a relaxation process to an appropriate
relevant statistical operator. As an alternative, a quantum master equation can be worked out where
the coupling to the bath is described by a dissipator. The production of entropy is analyzed.

Keywords: irreversibility; entropy; linear response theory; electrical conductivity

1. Electrical Conductivity-Phenomenology

Transport processes. The method of the nonequilibrium statistical operator (NSO) invented by
D. N. Zubarev [1] is an important step working out a general approach to the statistical mechanics
of nonequilibrium processes. It covers different fields of nonequilibrium theory, in particular the
thermodynamics of irreversible processes, kinetic theory, linear response theory, open quantum
systems, quantum master equations, and hydrodynamics; see [2,3]. The method of NSO provides us
with a consistent and coherent approach to nonequilibrium statistics. However, it gives also a view
of the sensible points, deriving equations of evolution for irreversible phenomena (e.g., transport
processes and reaction rates) from the reversible basic equations of motion such as Hamilton equations,
Maxwell theory, and quantum field theory.

Let us start with a simple example for a transport process, friction. Friction transforms mechanical
work into heat. It is one of the fundamental processes that are considered to introduce irreversibility
and the production of entropy according to the second law of thermodynamics.

A particular case is electrical conductivity. We consider a system containing two species of
charged particles, the ions (charge Zie) and the electrons (charge −e), for instance a hydrogen plasma
consisting of electrons and protons, or a piece of copper as a system of ions, fixed on lattice sites,
and quasi-free electrons. The system is assumed to be charge neutral, so that the densities are related
as Zini = ne, where nc = 〈Nc〉/Ω0 is the average of the particle number Nc per volume Ω0. Without
loss of generality, we assume in this work Zi = 1. Under the influence of a constant external electrical
field Eext, an electrical current with density j is induced. As an empirical fact, below a critical value of
|Eext|, the current is proportional to the field. For isotropic systems, we have:

j = σEext, (1)
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with the transport coefficient σ being the electrical conductivity. Note that the electrical conductivity is
defined with the screened, intrinsic electrical field, j = σEint. In the case considered here, the intrinsic
electrical field Eint coincides with the external field.

To have an irreversible process, the mechanical work Ω0 j · Eext dt must be transformed to heat Q,

1
Ω0

δQ
dt

= j · Eext =
1
σ

j2, (2)

if no other forms of work are performed by the system. The increase of heat is related to the production
of entropy, dS = δQ/Teq, if the system remains near thermodynamic equilibrium with temperature Teq.

We consider a quasi-stationary situation where the electrical field, in general Eext(r, t), and the
current density, in general j(r, t), are constant with respect to time. Furthermore, we consider the
homogeneous case where both quantities are not depending on position. In addition, the densities nc

of charged particles and the temperature T are considered as constant, also not depending on position.
We denote this as the external conditions that we demand from the experiment.

Open systems. These quasi-stationary, homogeneous conditions with constant electrical current
density, particle number density, and temperature are only possible for open systems. We characterize
them by the finite volume, here a cylinder Ωh

R with the axis parallel to j taken as the z axis, between
z = 0 and z = h, and with radius R. The electrical field Eext = Eextez is also directed along
the z axis. To sustain the constant electrical current, particles must be introduced through the
surface at z = h (with high potential energy Vext(h)) and extracted through the opposite surface
at z = 0 (with lower potential energy Vext(0)). The difference of the potential energy of an electron is
Vext(h)− Vext(0) = ehEext. Without loss of generality, we omit the current of ions.

The particles injected in the open system at high potential energy gain kinetic energy according
to the conservation law in mechanics, before they leave the open system at low potential energy.
However, because of the demand of homogeneity in space, the electron current that leaves the system
transports the same amount of kinetic energy as the incoming electron current. According to the first
law of thermodynamics, mechanical work is transformed to thermal energy. Heat is produced at the
rate per volume (power density) according to Equation (2).

More precisely, to stay in quasi-equilibrium, this amount of energy must be extracted from the
system to a bath. Instead of an isolated, closed system as frequently considered in physics, described
by well-defined dynamical degrees of freedom, we have to consider an open system for the stationary
transport process. The contact with the surroundings (the “bath”, or additional degrees of freedom)
is necessary not only to sustain the current of electrons, but also for the export of heat to sustain
a constant temperature. We assume for the bath thermodynamic equilibrium at the external (bath)
temperature Text. Below, in Section 8, we consider it as a local property Text(r, t). In the case that the
open system is in contact with a material bath, we have thermal conductivity, e.g., by phonon transport.
In a vacuum, the transport of energy is performed by radiation. In particular, the bremsstrahlung may
be the primary process to transform mechanical energy into the energy of radiation. Temperature and
heat for radiation are defined after absorption by a hohlraum, where the Planck spectrum of radiation
is established in equilibrium.

The concept of heat is introduced as a process to export energy to a bath. According to the second
law of thermodynamics, the density of entropy production results as:

1
Ωh

R

dS
dt

=
1

Textσ
j2. (3)

The second law of thermodynamics implies σ > 0 (the flow of a river is never up-hill).
As a more general case, periodic dependence in time and space can be considered, and the

optical conductivity or AC conductivity σ(q, ω) depending on the wave vector q and the frequency ω

is introduced. Because of linearity, a general dependence on space and time, such as the switch-on
situation where the field Eext(t) is proportional to the step function, is treated via Fourier decomposition
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and superposition of the solution for the components. This general case can also be treated with our
approach [4–6], but is not considered in this work, where we focus on the coupling to a bath.

2. Electrical Conductivity-Microscopic Approach

Microscopic model. We construct a microscopic approach to friction and electrical conductivity,
which are typical irreversible processes. This means we start from the well-known equations of motion
for the particles and fields according to quantum mechanics and quantum electrodynamics. These
equations, as well as their classical limits (Newton’s or Maxwell’s equations) describe reversible motion.
We consider a simple microscopic model: Electrons move in a system of heavy ions (at positions Ri)
under the influence of an external field Eext. Within the Lorentz model, the electron–electron interaction
is replaced by a mean field to ensure charge neutrality. The given electron–ion interaction Vei(r) defines
the Hamiltonian that characterizes the model system:

HS = ∑
p

Epa†
pap + ∑

p,q
V(q)a†

p+qap. (4)

where p = {p, σ̂} is the single-electron state with wave vector p. The spin σ̂ is treated implicitly.
Ep = h̄2 p2/2me is the kinetic energy, and V(q) = Ω−1

0 ∑Ni
i

∫
d3r eiq·rVei(r − Ri) is the Fourier

transform of the interaction with all ions at positions Ri.
In addition, the influence of the external field Eext(t) (which in general may depend on time and

space) is described by the contribution (electron charge −e):

Ht
F = eR · Eext(t) (5)

with the electron position operator R = ∑Ne
i ri. This is the sum of the potential energies of all electrons

in the system. The total Hamiltonian Ht = HS + Ht
F determines the motion of the electrons in the

microscopic approach, i.e., the dynamics of the system.
Without electron–ion interaction, the solution of the equation of motion for the electrons is simple.

The momentum h̄p = me ṙ of each electron is changed with time according to h̄ṗi = −eEext. We consider
the cylindrical volume Ωdz

R with height h = dz. An electron incoming at dz with momentum h̄p, pz < 0
and leaving the volume at z = 0 after dt = (−me/h̄pz)dz will have the z component of momentum
h̄pz + eEext(me/h̄pz)dz. This corresponds to an increase of kinetic energy by:

dEkin =
1

2me
2eEextmedz +O(dz2) (6)

equal to the loss eEextdz of potential energy, as given by Equation (5). The acceleration of all incoming
electrons to outgoing electrons makes the average momentum and the corresponding electrical current
dependent on the position, which is in contradiction with the requested homogeneity.

The electron–ion interaction, Equation (4), destroys the increase of the average momentum in
the z direction by scattering, which changes the direction of the momentum. In the adiabatic limit
Mi/me → ∞, we have elastic scattering. The average momentum of the electron system gained by
the electrical field is transferred to the ion system (and is compensated by the ion system because of
charge neutrality). The loss of average momentum of the electron subsystem defines the stationary
current and the conductivity, as calculated below for a given Vei(q). Nevertheless, the Hamiltonian
Ht = HS + Ht

F is not sufficient to describe the process of stationary conductivity because it does not
describe the contact with the bath, in particular how the electrons enter and leave the open system and
how energy is dissipated.

Contact with the bath. The conservation of particle number leads to the balance equation for
the particle current and is described by the incoming and outgoing currents of the open system Ω0.
It is assumed that the process of injection and extraction of electrons to sustain the current in the
open system is not relevant for the calculation of the conductivity. We can circumvent this problem
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considering a larger system Ω̄ where the particle number is conserved. This may be a circuit consisting
of a capacitor, an inductor, and a resistor, driven by periodic external electromagnetic fields, so that
a quasi-stationary state with forced oscillations with ω0 is obtained. Examples are absorbed radiation
by an antenna or the second circuit of a transformer.

Let us consider the induction of electrical fields by the change of magnetic field with time,
expressed via the vector potential Aext(r, t) (Coulomb gauge), so that:

Eext(r, t) = − ∂

c ∂t
Aext(r, t). (7)

The coupling to the external field Aext(r, t) is given by the expression (eh̄/c)p · Aext, so that the
average absorbed power density is −j · Ȧext/c = j · Eext. The expression:

Ht
F =

eh̄
c ∑

p
p · Aext(t)a†

pap (8)

has the advantage that it is expressed in second quantization with respect to momentum states, and the
average current density:

j =
−eh̄

meΩ0
Tr

{
ρ

Ne

∑
i

pi

}
=

−eh̄
meΩ0

∑
p

p〈a†
pap〉 (9)

does not depend on position as demanded for the homogeneous situation. Now, we can relax the
problem of particle exchange with the bath because there is particle conservation for the closed circuit.

However, we cannot eliminate the bath with respect to the absorption of the heat, which is
produced by the electrical current flowing across the resistor. The motion of the electrons in the external
field gives an average increase of kinetic energy. The transfer of electrical energy to mechanical energy
per volume and time is given by j · Eext. However, the external conditions are given so that not only
the current density, but also the temperature is constant. This is in conflict with energy conservation.
For the condition that in the stationary case, the electron system is homogeneous, i.e., the averages
are not varying with position, the export of energy cannot be done by the electron system across the
surface of the system, but needs other mechanisms, denoted as coupling to a thermal bath.

A standard device is the export of energy by coupling to a material thermal bath consisting
of matter, which is characterized by the average kinetic energy according to a temperature Text.
The coupling is mediated by collisions between the ions and can be expressed by phonons.
As a characteristic of the bath, back-reaction is excluded, and coherence and correlations are destructed.
This refers, in particular, to the phase of the phonons. The phase is defined in a coherent state,
also in the classical description of the electron–ion interaction, but not in quantum-statistical thermal
equilibrium, which is described by occupation numbers of the phonon states.

More general, without the need for a material bath, is the radiation field, which is always present.
The emission of photons is a well-known effect for the export of energy, but this is not the solution
of the problem of irreversibility. A photon has a definite energy, and a radio wave a definite phase.
Neither are thermalized. Only the Planck hohlraum radiation is thermalized and is characterized by
the equilibrium temperature Teq. This black-body radiation is given by the Bose occupation numbers
for the single-photon states:

nB(ω, Teq) =
1

eh̄ω/kBTeq − 1
, �(ω, Teq) =

h̄ω3

4π3c2 nB(ω, Teq) (10)

is the spectral radiance of blackbodies, i.e., the power emitted from the emitting surface, per unit
projected area of emitting surface, per unit solid angle, per angular frequency unit. We use in this
work the Planck hohlraum radiation to define heat and Teq. Other degrees of freedom, in particular
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the kinetic energy of the plasma constituents, may be in thermal equilibrium with the black-body
radiation, which defines the bath. Then, the average energy per classical degree of freedom is kBTeq/2.

Flow of energy. Coming back to the DC conductivity, we discuss the flow of energy. The stationary
current with density j induces a magnetic field, and with the constant electrical field Eext, the Poynting
vector is obtained, which describes the flow density of electromagnetic energy from outer space
into the material. The energy current density of the electromagnetic field is given by the Poynting
vector Sext = Eext × Bext. For the cylindrical configuration considered here, this is a radial vector
perpendicular to the z axis. For the current density j, at radius R, the value Bext = πR2 j/2πR results,
so that the energy current of the electromagnetic field into the volume Ωh

R = πR2h comes out as
the surface integral

∫
dO · Sext = jEextR/2 × 2πRh = jEextΩh

R. This verifies the energy conservation:
the power density j Eext absorbed by the electrons moving in the electrical field is imported via the
electromagnetic energy density current Sext. There, it is transformed into mechanical energy, according
to the reversible Maxwell equations of motion for the electromagnetic fields. In the stationary case,
the amount of imported power has to be exported.

We consider the energy export from the system by thermal conduction and thermal radiation.
In both cases, the formation of a Planck spectrum with a definite temperature Text and the
corresponding black-body radiation describes the distribution of the energy with respect to the
quantum states, and this energy can be addressed as heat. The export of energy is also possible in
different forms, such as performing work by evaporating particles with high kinetic energy, phonons
that are not thermalized, or emitting photons out of thermal equilibrium. Thermal conduction can
be realized via the ion system by individual collisions with ions or collective excitations (phonons).
The bottleneck is the transfer of kinetic energy from the light electrons, mass me, to the heavy ions,
mass Mi, owing to collisions. Here, the ratio me/Mi determines the transfer of energy. In the second
case of photon emission, radiation transport does not need contact with a material bath, but the
omnipresent vacuum.

Entropy production. In addition, the production of entropy is of interest, which is related to the
production of heat. We introduced heat as a property of the electromagnetic field, the black-body
radiation. The transfer from external field energy to mechanical energy gives no change in the entropy.
Similarly, the export of energy out of thermal equilibrium is not connected with the entropy production.
Only the transformation to heat gives an increase of entropy. The formation of a Planck spectrum and
the corresponding black-body radiation can be addressed as heat. We need a discussion of the bath,
as well as the coupling of the system to the bath. We focus on the Maxwell field as the bath, but many
relations can also be discussed for a phonon bath.

Bremsstrahlung radiation. We consider in this work radiation transport. The free-free transitions of
electrons moving under the influence of an interaction potential, here the ion potential, lead to the
emission or absorption of the bremsstrahlung. The emission of radiation by a plasma is characterized
by the emission coefficient j(ω), which gives the rate of radiation energy per unit volume, frequency
ω, and solid angle. For a system in thermal equilibrium, the emission coefficient is related to the
absorption coefficient α(ω) by Kirchhoff’s law:

jem(ω) =
h̄ω3

4π3c2
1

eh̄ω/kBTeq − 1
α(ω) (11)

where the spectral power density of blackbody radiation appears, and c is the speed of light.
This expression can be obtained from the Larmor formula for the radiated power of an accelerated
single electron,

P = −dE
dt

=
e2

6πε0c3 (r̈)
2. (12)
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The thermally-averaged emission coefficient for a non-relativistic plasma considering free-free
transitions without particle correlations reads according to Kramers [7]:

jem(ω) =
e6Z2

i neni

24π3
√

6πε3
0c3m3/2

e

e−h̄ω/kBTeq√
kBTeq

ḡff(ω) (13)

with ḡff(ω) ≈ 1. The Gaunt factor ḡff(ω) was introduced by Gaunt [8] in order to account for
quantum-mechanical modifications; see also Section 6 below.

However, the bremsstrahlung radiation emitted during the electron–ion collision has to be
transported across the plasma where self-absorption may occur. If self-absorption can be neglected,
the plasma is optically thin, and the radiation can escape. If the plasma becomes optically thick,
radiation propagates only a short distance before it will be absorbed. At frequencies ω below the
plasma frequency, ω < ωpl =

√
e2ne/ε0me, radiation cannot freely propagate. In the optically-thick

plasma, the upper limit for the emitted radiation is determined by the Planck Formula (10),
see also Section 8. The low-frequency part of the radiation spectrum follows the Raleigh–Jeans
law �(ω, Teq) ≈ ω2kBTeq/4π3c2. It defines the temperature Teq and, via the Planck formula, the heat
deposited in the radiation field.

3. Semiempirical Calculation of the Conductivity of the Adiabatic Lorentz Plasma

Boltzmann equation. In the next step, after discussing microscopic properties of the system and
the bath, we come back to the calculation of the conductivity of the adiabatic Lorentz plasma in
the low-density limit. A semiempirical approach, the Boltzmann equation, considers the transfer
of the ordered, directed motion of electrons to disordered motion owing to collisions. We consider
the single-particle distribution function f1(p, t). Because of homogeneity in space, in the classical
case, there is no dependence on position r. In the quantum case, we have the diagonal elements
f1(p, t) = 〈a†

pap〉t of the density matrix; the spin σ̂ in p = {p, σ̂} is not treated explicitly. The average
is performed with the statistical operator ρ(t). In the inhomogeneous case, the non-diagonal elements
of the density matrix lead to the r dependence of the Wigner function. In equilibrium, neglecting
interaction in the low-density limit, the electron distribution is given by the ideal Fermi gas:

f 0
1 (Ep) =

1

eβ(Ep−μe) + 1
, Ep =

h̄2 p2

2me
, β =

1
kBTeq

. (14)

The electron chemical potential μe is calculated from the electron density ne(t) = Ω−1
0 ∑p f1(p, t).

The electrical current density of electrons, charge −e,

j(t) =
−eh̄

meΩ0
∑
p

p f1(p, t) (15)

is zero in equilibrium.
Owing to external fields and collisions among particles, the distribution function changes with

time. According to Boltzmann [9], we have:

∂

∂t
f1 =

(
∂

∂t
f1

)
D
+

(
∂

∂t
f1

)
St

(16)

which becomes zero for the stationary state. The drift term contains the external force, with v =

h̄p/me following: (
∂

∂t
f1

)
D
= −v

∂

∂r
f1(p)− Fext

∂

h̄∂p
f1(p) = eEext

∂

h̄∂p
f1(p) (17)

18



Particles 2019, 2

for the homogeneous case. Note that a mean-field term can be added to the external force. The internal
interactions are contained in the collision term (∂ f1/∂t)St for which, from the BBGKYhierarchy, an exact
expression can be given containing the two-particle distribution function [10]. As an approximation,
we assume a balance between gain and loss, (∂ f1/∂t)St = G − L. With some phenomenological
considerations, we find in the quantum case the collision term as:(

∂

∂t
f1

)
St
=

∫ d3 p′Ω0

(2π)3

{
f1(p′)wpp′(1 − f1(p))− f1(p)wp′p(1 − f1(p′))

}
, (18)

where wpp′ is the transition rate from the momentum state p′ to the state p. The quantum behavior of
the collisions is taken into account via the Pauli blocking factors (1 − f1(p)).

In the adiabatic limit, the interaction part of the Hamiltonian (4), matrix elements H′
p′p = V(p′ − p)

describe elastic collisions. In Born approximation, the transition rate is given by Fermi’s golden rule,

wp′p =
2π

h̄
|H′

p′p|2δ(Ep − Ep′) = wpp′ . (19)

Relaxation time method. To calculate the electrical conductivity, we make the ansatz that for small
electrical fields, also the deviation of f1(p) from the equilibrium distribution f 0

1 (Ep) is small, and we
assume a linear relation. The deviation from equilibrium is described by the function Φ(p) defined as
(see also [4]):

f1(p) = f 0
1 (Ep)− Φ(p)

d f 0
1 (Ep)

dEp
kBTeq = f 0

1 (Ep){1 + Φ(p)(1 − f 0
1 (Ep))}. (20)

For the equilibrium distribution f 0
1 (Ep), we have the detailed balance condition wpp′ f 0

1 (Ep′)(1 −
f 0
1 (Ep)) = wp′p f 0

1 (Ep)(1 − f 0
1 (Ep′)). Insertion of Equation (20) into the Boltzmann Equation (16) yields

with (18):

eh̄
mekBTeq

Eext · p f 0
1 (Ep)(1 − f 0

1 (Ep)) =
∫ d3 p′Ω0

(2π)3 wpp′ f 0
1 (Ep′)(1 − f 0

1 (Ep))(Φ(p′)− Φ(p)),

where we have used the assumption that Φ(p) ∝ Eext and neglected terms with a higher order of Eext

(linearized Boltzmann equation). With the definition of the relaxation time tensor: τ̂(p)

Φ(p) =
eh̄

mekBTeq
Eext · τ̂(p) · p (21)

the equation reads with eE = Eext/|Eext|:

eE · p =
∫ d3 p′Ω0

(2π)3 wpp′
f 0
1 (Ep′)

f 0
1 (Ep)

eE · [τ̂(p′) · p′ − τ̂(p) · p], (22)

which is an equation for τ̂(p), where eE is the unity vector in the direction of the external electric
field eE = Eext/Eext. The electric current density Equation (15) depends only on the deviation of
the distribution function since f 0

1 (Ep) is an even function in p (isotropy). We obtain by insertion of
Equation (20) into Equation (15):

j =
−eh̄
me

2
∫ d3 p

(2π)3 pΦ(p) f 0
1 (Ep)(1 − f 0

1 (Ep)). (23)
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For isotropic systems, we have τ̂(p) = τtransp(Ep), so that the solution of Equation (22) is:

τtransp(Ep) =

{∫ d3 p′Ω0

(2π)3 wpp′(1 − cos ϑ)

}−1

(24)

as can be verified by insertion, ϑ is the angle between p and p′. The transport relaxation time follows
from h̄/τtransp(Ep) = πni/(2p2)∑q q2V2

ei(q)δ(Ep+q − Ep); see [6] and the result below (35).
Now, the conductivity reads with Equation (19):

σ =
e2h̄2

m2
e kBTeq

2
∫ d3 p

(2π)3 p2
z τtransp(Ep) f 0

1 (Ep)[1 − f 0
1 (Ep)]. (25)

With (24), we have derived an analytic expression for the conductivity of the Lorentz model
solving the Boltzmann equation.

Screened Coulomb interaction. To give explicit expressions, we specify the electron–ion interaction
by the screened Coulomb (Debye) interaction:

VD
ei (r) =

e2

4πε0|r|e
−κ|r|, with κ2 =

e2ne

ε0kBTeq
.

The interaction Hamiltonian H′ in the momentum representation is obtained from Fourier
transformation with q = p′ − p. It has the matrix elements:

H′
p′p =

1
Ω0

∫
d3r eiq·r

Ni

∑
i

VD
ei (r − Ri) = − 1

Ω0

Ni

∑
i

eiq·Ri
e2

ε0(q2 + κ2)
(26)

so that |H′
p′p|2 = Sion(q)ni/Ω0

[
e2/ε0(q2 + κ2)

]2 , with the ion structure factor Sion(q) =

1
Ni

∑Ni
i ∑Ni

j eiq·(Ri−Rj). The inverse relaxation time (24) follows as:

τ−1(Ep) = ni
1

4π

e4

ε2
0

me

h̄3 p3
Λ(p), (27)

with the Coulomb logarithm Λ(p) =
2p∫
0

1
(q2 + κ2)2 q3dq = ln

√
1 + b − 1

2
b

1 + b
, b = 4p2kBTeqε0/(e2ne),

where an uncorrelated ion distribution Sion(q) = 1 is assumed. In the low-density limit at fixed
temperature considered here, the Fermi distribution function is replaced by the Boltzmann distribution
function. For the conductivity, we finally obtain:

σ =
25/2

π3/2

(kBTeq)3/2(4πε0)
2

m1/2
e e2

1
Λ(ptherm)

=
nee2

me
τ̄transp, (28)

where the Coulomb logarithm is approximated by the value of the average p, with h̄2 p2
therm/2me =

3kBTeq/2; see also [6].
Virial expansion. In the more general case where electron-electron collisions are included, we find

for the hydrogen plasma (Z = 1) the following low-density (virial) expansion [11,12]:

σ−1(T, n) = A(T) ln n + B(T) + C(T) n1/2 ln n ± . . . (29)

with:

A(T) = −1
s

e2m1/2
e

(4πε0)2(kBT)3/2 . (30)
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For the Lorentz plasma, the value s = 25/2/π3/2 is an exact result. It is changed if electron-electron
collisions are included, s = 0.591; see [4,11–15]. At low temperatures, the plasma is degenerate,
and the Fermi function for the distribution of the electrons cannot be approximated by the Boltzmann
distribution function. The value of s is changed and becomes s = 3/(4

√
2π) for the limit of strong

degeneracy. The values of the higher virial coefficients B(T), C(T) are determined by many-body
effects and the short-range behavior of the effective interaction. Expressions are given, e.g., in [11],
but their exact values are under discussion.

Boltzmann entropy. The Stosszahlansatz of the Boltzmann equation is a semi-empirical assumption,
which was highly and controversially discussed for a long time. It makes the Boltzmann equation
an irreversible equation of evolution, which is able to describe non-equilibrium processes. It can be
shown, see, e.g., [4], that a particular quantity, the Boltzmann entropy:

SBoltzmann(t) = −kB ∑
p

f1(p, t) ln f1(p, t) ≈ −2 kB

∫ d3 p Ω0

(2π)3 f1(p, t) ln f1(p, t) (31)

(classical case), can increase with time and remains constant in thermodynamic equilibrium. It is
a main puzzle of nonequilibrium statistical physics how this property can arise on the basis of the
reversible equations of motion that define the microscopic approach in physics. It was the merits
of Bogoliubov, Zubarev, and others, to give a bridge between both positions, which is presented in
Section 4.

It is obvious that the Boltzmann entropy (31) is not the thermodynamic entropy defined by
the second law. The evaluation in thermodynamic equilibrium yields in the classical case, where
f 0
1 (Ep) ≈ (ne/2)(2πh̄2/mekBT)3/2 exp(−h̄2 p2/2mekBT) (see Equation (14)), the well-known relation:

SBoltzmann = Seq,class(T, Ω0, Ne) =
3
2

kBneΩ0 − neΩ0
μe

T
=

Uclass
T

− μe
Ne

T
(32)

with Uid
class = (3/2)NekBT valid for the ideal, noninteracting gas, neglecting the contribution

of two-particle correlations, etc. The relation between the Boltzmann entropy and the correct
thermodynamic entropy, which takes the correlations in the system into account, becomes clear
after introducing the relevant entropy in the subsequent section.

Let us come back to the increase of the Boltzmann entropy. Owing to energy conservation, we have
in the external field Eext = Eextez the increase of internal energy of the electron system dUclass/dz =

eNeEext if we shift all electrons by dz. The Boltzmann entropy changes as dSBoltzmann/dt = eNeEextv/T
where v is the mean velocity of the electron system. This value coincides with the imported power
dUclass/dt = Ω0j · Eext. The chemical potential μe, which is connected with the electron density,
remains constant. If we assume that by reason of any unknown strong relaxation process, the electron
system remains near the thermodynamic equilibrium, and the change of internal energy Uclass is
described by the temperature T. Then, the change of the temperature would be:

dT
dt

=
2

3kBne
j · Eext =

2
3kBne

σE2
ext. (33)

However, the properties of the open system are not time dependent in the stationary case.
Because the energy balance is of second order in Eext, it is neglected in linear response theory.
Nevertheless, it is not clear whether the kinetic energy of moving bodies can be denoted as heat
and interpreted as entropy, for instance considering the motion of celestial bodies.

Energy export to ions. To have a stationary state, the gain of internal energy must be transferred
to the bath. We mentioned already the emission and absorption of photons; see Equation (11) and
Section 8 below. Another microscopic model for the energy transfer is the collision with ions. Kinetic
theory describes not only the dissipation of the total electron momentum, but also the transfer of
the kinetic energy of electrons to the ion subsystem. We consider ions with finite mass Mi so that
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recoil effects are possible at collisions, which are no longer elastic. A second model is the excitation of
collective modes of the ion system, the phonons, which may give a different picture.

Considering the energy transfer to the ions, we have a two-temperature situation with Te > Ti.
According to Landau and Spitzer [15], the energy density ekin = (3/2)nekBTe is decreased as:

d
dt

ekin =
3
2

nekB(Te − Ti)
me

Miτ̄
(34)

with the relaxation time (slightly different from the transport relaxation time (24)),

τ̄ =
βh̄2

6neΩ0
∑
p

p2τ(Ep) f 0
1 (Ep)[1 − f 0

1 (Ep)], (35)

with h̄/τ(Ep) = 2πni ∑q V2
ei(q)δ(Ep+q − Ep); see [6]. This compensates the gain nee2E2

extτ̄/me so that:

kB(Te − Ti) =
2Mi
3m2

e
τ̄2e2E2

ext. (36)

As already mentioned, the difference is of second order in Eext and may be neglected in linear
response theory, but it becomes large in the adiabatic limit me/Mi → 0. The exact value of the energy
current may be changed within a more detailed description, but these arguments remain. Furthermore,
the correlations in the ion system given by the pair distribution function, as well as collective modes in
the excitation spectrum leading to dressed states will change the magnitude of the energy transfer to
the (ionic) bath.

4. The Zubarev Method of Nonequilibrium Statistical Operator

The von Neumann equation. Whereas the Boltzmann equation used the semiempirical
“Stosszahlansatz”, the systematic derivation of the kinetic equation for f1(p, t) from a microscopic
description was intended by Bogoliubov [10] using the principle of weakening of initial correlations.
A more general formulation of this important step to work out the theory of non-equilibrium processes
was given by Zubarev [1–3]. To calculate averages 〈A〉t = Tr{ρ(t)A}, we need the statistical operator
ρ(t) = ∑n |ψn(t)〉wn 〈ψn(t)|, which describes the probability distribution wn of microstates |ψn(t)〉
in the thermodynamic macrostate. Let us assume that the equation of motion of each realization,
quantum state |ψn(t)〉, is given by the reversible Schrödinger equation ih̄∂|ψ(t)〉/∂t = Ht|ψ(t)〉.
The Hamiltonian Ht may contain time-dependent external fields (for an isolated system in equilibrium,
usually, the energy eigenfunctions are identified with the eigenstates of ρ, and the time evolution refers
only to the phase of |ψn(t)〉). Then, the von Neumann equation follows as the equation of motion for
the statistical operator,

∂

∂t
ρ(t) +

i
h̄
[
Ht, ρ(t)

]
= 0. (37)

Despite its character as a fundamental equation of motion in statistical physics, the von Neumann
equation has two shortcomings:

(i) To determine ρ(t), the initial value problem has to be solved.
(ii) As a reversible equation of motion, it cannot describe irreversible processes.

The solution of (i) is known for thermodynamic equilibrium, where ρ(t) = ρeq does not depend
on time. We need an additional principle to determine ρeq, the maximum of information entropy:

Sinf[ρ] = −Tr{ρ ln ρ} (38)
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for arbitrary ρ that are consistent with the given conditions Tr{ρ} = 1 (normalization) and the given
constants of motion Cn:

Tr{ρ Cn} = 〈Cn〉. (39)

These are external conditions that describe how we influence the system, for instance preparing
the volume and particle number and coupling this to a thermal bath. These self-consistency conditions
can be implemented in the variational principle using the method of Lagrange multipliers; see [1].
The corresponding maximum value for Sinf[ρ]:

Seq[ρeq] = −kBTr{ρeq ln ρeq} (40)

is the equilibrium entropy of the system at given constraints 〈Cn〉, and kB is the Boltzmann constant.
Well-known solutions of this variational principle are the Gibbs ensembles for thermodynamic

equilibrium. For instance, in the grand canonical ensemble, the average value of energy is realized by
a Lagrange multiplier, which is identified as temperature T, and the average value of particle numbers
Nc is realized by Lagrange multipliers, which are identified as chemical potentials μc. The Lagrange
multipliers are eliminated by solving Equation (39). The corresponding relations are known as the
equations of state.

With respect to Item (ii), the expression Tr{ρ(t) ln ρ(t)} cannot be used to define the entropy in
non-equilibrium, because it cannot increase with time. Using the von Neumann equation,

d
dt

[Tr{ρ(t) ln ρ(t)}] = 0 (41)

follows. The discrepancy with the second law of thermodynamics that entropy may increase with
time for a system in nonequilibrium can be solved according to Zubarev by a modification of the von
Neumann equation.

The relevant statistical operator. Zubarev [1] proposed to extend the concept of information theory
also to construct a relevant statistical operator ρrel(t) for given averages of relevant observables {Bn}
that are not constants of motion, but may change with time. Now, at each time step t, we find the
maximum of information entropy solving:

− δ [Tr{ρrel(t) ln ρrel(t)}] = 0 (42)

with the self-consistency conditions:

Tr {ρrel(t)Bn} ≡ 〈Bn〉t
rel = 〈Bn〉t. (43)

and Tr{ρrel(t)} = 1. We use time-dependent Lagrange multipliers λn(t) to account for the
self-consistency conditions (43). The solution of the variational problem is the generalized
Gibbs distribution:

ρrel(t) = e
−Φ(t)−∑

n
λn(t)Bn

, Φ(t) = ln Tr
{

e
−∑

n
λn(t)Bn

}
, (44)

where, as in the equilibrium case, the Lagrange multipliers λn(t) (thermodynamic parameters) are
determined by the self-consistency conditions (43) and have to be eliminated. With the thermodynamic
potential Φ(t) (Massieux–Planck function), the normalization condition is realized.

In the generalization of the equilibrium cases, the maximum of information entropy can be
considered as the relevant entropy in nonequilibrium:

Srel(t) = −kB Tr {ρrel(t) ln ρrel(t)} . (45)
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Maxwell relations similar to the relations known from equilibrium thermodynamics can be
derived [1]. In addition, we find for the production of relevant entropy (see also [4]),

dSrel(t)
dt

= ∑
n

λn(t)
i
h̄
〈[Ht, Bn]〉t = ∑

n
λn(t)〈Ḃn〉t. (46)

This relation is well known from the thermodynamics of irreversible processes. In contrast to
Equation (41), this expression can have a positive value so that Srel(t) can increase with time.

Coming back to the electrical conductivity as an example for an irreversible process,
the nonequilibrium state is characterized by the current density j, and with the density of heat
production j · Eext = σE2

ext, Equation (2), the density of entropy production is given by:

dSrel(t)
dt

=
Ω0

T
j · Eext =

Ω0

T
σE2

ext. (47)

This result is obtained if the position R of the electrons, which couples to the external field,
is considered as a relevant observable, so that 〈Ṙ〉 = (h̄/me)〈P〉 = −(Ω0/e)j. The Hamiltonian
contains also the external field Eext, which must be compensated to obtain the stationary, homogeneous
case. For this, the value �λ = βEext is needed. It acts like a position-dependent chemical potential
μrel(r), which couples to the local electron density. Other choices of relevant observables are given
below in Section 5.

A well-known example is the Boltzmann entropy (31). This expression is the relevant entropy
in nonequilibrium if the single-particle distribution function f1(p, t) is considered as a relevant
observable. It can increase with time, as proven by the famous H-theorem. However, it is not the correct
thermodynamic entropy, because in thermodynamic equilibrium, the contribution of correlations to
the potential energy is missing.

The introduction of the relevant statistical operator does not solve the problem of nonequilibrium
statistical physics. It is a semiempirical approach, and the selection of the set of relevant observables
{Bn} is arbitrary, but determines the result for the relevant entropy. Srel(t) is not the thermodynamic
entropy because it is based on the arbitrary choice of the set {Bn} of relevant observables, and not all
possible variables are correctly reproduced. The possible increase of the relevant entropy with time (47)
is the effect of coarse graining introducing the reduced set of relevant observables. A main deficit is
that it does not respect the equations of motion; it does not obey the Liouville-von Neumann equation.
The dependence on time is parametric, but not dynamic. An important step to solve the problem of
dynamics is given by the Zubarev method of the Nonequilibrium Statistical Operator (NSO).

The Zubarev solution of the initial value problem. The formal solution of the von Neumann
Equation (37) is easily found,

ρ(t) = U(t, t0)ρ(t0)U†(t, t0). (48)

The unitary time evolution operator U(t, t0) is the solution of the differential equation:

ih̄
∂

∂t
U(t, t0) = HtU(t, t0) , (49)

with the initial condition U(t0, t0) = 1. If the Hamiltonian is not time dependent, we have:

U(t, t0) = e
− i

h̄
H(t−t0)

. (50)

If the Hamiltonian Ht is time dependent, the solution is given by a time-ordered exponent.
However, we do not know the initial state ρ(t0). An answer was given by Zubarev [1]. In the first

step, we can take instead ρ(t0) the relevant statistical operator ρrel(t0) at some initial time t0,

ρt0(t) = U(t, t0)ρrel(t0)U†(t, t0). (51)
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According to the Bogoliubov principle of the weakening of initial correlations [10], the missing
correlations that are not correctly implemented in ρrel(t0) are produced by the dynamical evolution of
the system. This procedure is well known from molecular dynamics simulations where, starting from
an artificial initial configuration, the stationary distribution is approximated after an initial relaxation
time (synchronization). The crucial point is that one should consider the limit t0 → −∞ so that enough
time is available to establish all missing correlations. As known from ergodic theory, at least the
conserved observables have to be correctly implemented in ρrel(t0) because they cannot be produced
dynamically. The more observables {Bn} are correctly described by ρrel(t0), the less time is necessary
to produce the remaining correlations. Notice that the self-consistency conditions (43) valid at t0 are
not automatically valid also at t averaging with ρt0(t), if the time evolution according to Equation (51)
is taken. Below, we discuss the case of incomplete dynamics if the open system is in contact with a bath.

In the second step, instead of selecting a special instant of time t0, the average over the past is
performed. According to Abel’s theorem (see [1–3]), the limit t0 → −∞ can be replaced by the limit
ε → +0 in the expression:

ρε(t) = ε
t∫

−∞
eε(t1−t)U(t, t1)ρrel(t1)U†(t, t1)dt1. (52)

This averaging over different initial time instants means a mixing of phases so that long-living
oscillations are damped out. Finally, we obtain the nonequilibrium statistical operator as:

ρNSO(t) = lim
ε→0

ρε(t) . (53)

This way, ρrel(t1) for all times −∞ < t1 < t serves as the initial condition to solve the
Liouville–von Neumann equation according to the Bogoliubov principle of weakening of initial
correlations. The past that is of relevance, given by the relaxation time τ, becomes shorter, if the
relevant (long-living) correlations are already correctly implemented. The limit ε → +0 is to be
considered as ε � 1/τ. The limit ε → +0 has to be performed after the thermodynamic limit.

Selection of the set of relevant observables. An open issue is the appropriate selection of the set of
relevant observables {Bn} to characterize the nonequilibrium state of the system. The method of the
nonequilibrium statistical operator allows one to extend the set of relevant observables arbitrarily
so that the choice of the set of relevant observables seems to be irrelevant. All missing correlations
are produced dynamically. As a minimum, the constants of motion Cn have to be included because
their relaxation time is infinite, and their averages cannot be produced dynamically. The resulting
ρNSO(t) (53) should not depend on the (arbitrary) choice of relevant observables {Bn} if the limit ε → 0
is correctly performed. However, usually perturbation theory is applied, so that the result will depend
on the selection of the set of relevant observables. The inclusion of long-living correlations into {Bn}
allows one to use lower order perturbation expansions to obtain acceptable results. In the context with
the electrical conductivity, the selection of different sets of relevant observables has been extensively
discussed; see, e.g., [4–6,11–14,16].

Entropy in the Zubarev NSO approach. An intricate problem is the definition of entropy for the
nonequilibrium state. In nonequilibrium, entropy is produced, as investigated in the phenomenological
approach to the thermodynamics of irreversible processes, considering currents induced by the
generalized forces. Such a behavior occurs for the relevant entropy defined by the relevant
distribution (45). A famous example that shows the increase of the relevant entropy (31) with time is
the Boltzmann H (capital eta) theorem, where the relevant observables to define the nonequilibrium
state is the single particle distribution function.

Note that the entropy puzzle cannot be solved by the relevant entropy. Not only the well-defined
thermodynamic entropy in equilibrium is not reproduced. A so-called coarse graining has been
performed. The information about the state is reduced because the degrees of freedom to describe
the system are reduced. This may be an averaging in phase space over small cells. Furthermore,
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the average over different phases of the quantum state, the destruction of quantum interference
(dephasing), and other projection techniques will destroy information. The loss of information then
gives the increase of entropy. This procedure is artificial, depending on our way of describing the
details of a process, or anthropomorphic, related to our technical possibilities to prepare and measure
the state of a system and control the dynamics. In certain situations, such as quantum master equations
(see [17,18]), kinetic theory (see [16]), and linear response theory (see [19]), the choice of relevant
observables becomes quite natural (see also [4]). In general, there is no first principle approach
that gives the decision about how the relevant degrees of freedom have to be selected out. From
a fundamental point of view, this situation is unsatisfactory.

A possible definition of the entropy would be:

SNSO(t) = −kBTr {ρNSO(t) ln ρNSO(t)} . (54)

It is an open question whether the entropy SNSO(t) will increase also in the limit ε → +0. Coming
back to our example of DC conductivity, the stationary state means that ρNSO(t) should not depend on
time t. The entropy in the open system is constant, but there is also a constant production of entropy,
which is not derived from (54).

The extended Liouville–von Neumann equation. We consider a closed system with known
dynamics Ht. The nonequilibrium statistical operator ρε(t), Equation (52), obeys the extended von
Neumann equation:

∂ρε(t)
∂t

+
i
h̄
[Ht, ρε(t)] = −ε(ρε(t)− ρrel(t)). (55)

as can be seen after simple derivation with respect to time. In contrast to the von Neumann
Equation (37), a source term arises on the right-hand side that becomes infinitesimally small in
the limit ε → +0. This source term breaks the time inversion symmetry so that, for any finite value of
ε, the solution ρε(t) describes in general an irreversible evolution with time.

The source term implements the “initial condition” in the equation of motion as expressed by
ρrel(t). Formally, the source term looks like a relaxation process. In addition to the internal dynamics,
the system evolves towards the relevant distribution.

The construction of the source term is such that the time evolution of the relevant variables is not
affected by the source term (we use the invariance of the trace with respect to cyclic permutations),

d
dt

〈Bn〉t = Tr
{

∂ρε(t)
∂t

Bn

}
= −Tr

{
i
h̄
[Ht, ρε(t)]Bn

}
− ε

[〈Bn〉t − 〈Bn〉t
rel
]
=

〈
i
h̄
[Ht, Bn]

〉t
= 〈Ḃn〉t . (56)

The source term cancels because of the self-consistency conditions (43). Thus, the time evolution of
the relevant observables satisfies the dynamical equations of motion according to the Hamiltonian Ht.

Any real system is in contact with the surroundings. The intrinsic dynamics described by the
Hamiltonian Ht is modified owing to the coupling of the open system to the bath. Within the quantum
master equation approach (see Section 6 below), we can approximate the influence term describing the
coupling to the bath by a relaxation term similar to the source term. However, at present, we consider
the source term as a purely mathematical tool to select the retarded solution of the Liouville–von
Neumann equation, and physical results are obtained only after performing the limit ε → 0.

5. Generalized Linear Response Theory

Linearization of the NSO. We use the Zubarev NSO method to calculate the electrical conductivity.
It unifies kinetic theory and linear response theory. An extended discussion of this generalized linear
response theory can be found in the literature [4,6,11,13,14,16], which will not be repeated here.

The main idea is to consider small fluctuations near the thermodynamic equilibrium. In the
relevant statistical operator (44) containing the observables Bn with the Lagrange parameters λn(t),
we extract the conserved observables Cn with the Lagrange parameters β, μe, which determine
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the thermodynamic equilibrium. The remaining observables with Lagrange parameters βFn(t) are
considered as small fluctuations, so that we can expand with respect to Fn(t). In first order, we have:

ρrel(t) = ρeq + β

1∫
0

dλ ∑
n

Fn(t)Bn(ih̄βλ) ρeq. (57)

Here, we made use of the modified Heisenberg picture O(τ) = exp(iHτ/h̄)O exp(−iHτ/h̄) with
τ → ih̄βλ and replacing in the exponents HS by H = HS − μeNe. Note that H does not contain the
external field Ht

F. Because of homogeneity, in ρrel, any position-dependent external field has to be
compensated by a position-dependent chemical potential.

After integration by parts, the NSO (52) with Ht = HS + Ht
F has the form:

ρε(t) = ρrel(t)−
t∫

−∞

dt1eε(t1−t)U(t, t1)

{
i
h̄

[
(HS + Ht1

F ), ρrel(t1)
]
+

∂

∂t1
ρrel(t1)

}
U†(t, t1). (58)

In our case of DC conductivity, where Ht
F = eEext · R (5), we expand up to first order in Eext and

assume Fn ∝ Eext. Since HS commutes with the equilibrium ρeq, the curly bracket is of order O(Eext).
In the stationary state, the statistical operators are not depending on t. With (i/h̄)[HS, R] = P/me,
we arrive at (in this section, we use the notation P = ∑Ne

i h̄pi for the total momentum):

ρε = ρrel − β

0∫
−∞

dt1 eεt1

1∫
0

dλ

[
− e

me
Eext · P(iλβh̄ + t1) ρeq + ∑

n
Fn Ḃn(iλβh̄ + t1) ρeq

]
. (59)

In the stationary case considered here, there is no dependence of Eext(t), ρε(t), ρrel(t), Fn(t)
on time t. After fully linearizing the statistical operator (59) with (57), we have for the electrical
current density:

j =
e

meΩ0
〈P〉 = eβ

meΩ0

{
∑
n

[
(P|Bn)− 〈P; Ḃn〉iε

]
Fn + 〈P; P〉iε · e

me
Eext

}
= σEext. (60)

Here, we introduced the Kubo scalar product (the particle number commutes with the
observables):

(A |B) =
1∫

0

dλTr
{

A e−λβH B eλβH ρeq

}
=

1∫
0

dλ Tr
{

A B(iλβh̄) ρeq
}

, (61)

and its Laplace transform, the thermodynamic correlation function:

〈A; B〉z =

0∫
−∞

dt e−izt(A |B(t)) =
∞∫

0

dt eizt(A(t) |B). (62)

Note that similar expressions can be given for time-dependent (periodic) fields [4,16]. In the
classical limit where the variables commute, additional integrals expanding the exponential
are avoided.

Kubo formula. In particular, for the empty set of relevant fluctuations {Bn} so that ρrel = ρeq, we obtain
the Kubo formula (we choose j, Eext parallel to the z axis so that P = P · ez is the z component of P):

σKubo
DC =

e2β

m2
e Ω0

〈P; P〉iε. (63)

27



Particles 2019, 2

A similar expression can also be given for the dynamical, wave-number vector-dependent
conductivity σ(q, ω), which is related to other quantities such as the response function, the dielectric
function, or the polarization function (see [4,14,16,20]). The relation (63) is a special form of the
Fluctuation-Dissipation Theorem (FDT), which connects the time evolution of equilibrium fluctuations,
here the current, with transport coefficients, here the conductivity.

In the lowest order of perturbation theory, we have the result:

σKubo,0
DC =

nee2

me

1
ε

(64)

which diverges in the limit ε → 0. Perturbation theory cannot be applied immediately to evaluate the
DC conductivity for interacting charged particles. The use of perturbation theory for the Kubo formula
and performing partial summations are discussed in [6]. To avoid perturbation theory, the Kubo
formula can be evaluated numerically, e.g., Molecular Dynamics (MD) simulations. Most recent
approaches use the Kubo–Greenwood formula [6] and treat the electron system via Density-Functional
Theory (DFT). In this approach also, an ε-broadening of the δ-like contributions is needed.

Elimination of the Lagrange parameters Fn. The Lagrange parameters Fn must be eliminated with
Equation (43). After linearization (59), we find the response equations:

〈Bm〉 − 〈Bm〉rel = −∑
n
〈Bm; Ḃn〉iεFn + 〈Bm; P〉iε

e
me

Eext = 0 (65)

to determine the response parameters Fn, and the number of equations coincides with the number of
variables to be determined. The coefficients of this linear system:

∑
n

PmnFn = DmEext (66)

of equations are given by equilibrium correlation functions. Using Cramer’s rule, the response
parameters Fn are found to be proportional to the external field Eext with coefficients that are
ratios of two determinants. The evaluation of the matrix elements that are equilibrium correlation
functions can be performed using different methods such as numerical simulations, quantum statistical
perturbation theories such as thermodynamic Green functions and Feynman diagrams, path integral
methods, etc. Simple expressions for the conductivity are obtained if P is included in the set of relevant
observables {Bn}.

Force-force correlation function. The nonequilibrium state is characterized by the electrical current
density j = e/(meΩ0)〈P〉, which is related to the total momentum P = h̄ ∑i pi,z. This motivates
selecting it as the relevant observable Bn → P. After the solution of the response equation and
performing partial integrations [4,16], the resistance R in the static limit follows as [21]:

R =
1
σ
=

Ω0β

e2N2
e

〈Ṗ; Ṗ〉iε

1 +
β

meNe
〈P; Ṗ〉iε

=
Ω0β

e2N2
e
〈Ṗst; Ṗst〉iε, (67)

where Ṗst = Ṗ − 〈Ṗ; P〉iε

〈P; P〉iε
P is the stochastic part of the force, which is orthogonal (independent)

on P (cf. the Langevin approach to Brownian motion), 〈Ṗst; P〉iε = 0. According to the so-called
second fluctuation-dissipation theorem, the resistivity is given by the equilibrium correlation function of
stochastic forces.

Now, perturbation theory can be applied, and in Born approximation, the Ziman formula,
a standard result of transport theory, is obtained. We conclude that the use of relevant observables
gives a better starting point for perturbation theory. In contrast to the Kubo formula that starts from
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thermal equilibrium as the initial state, the correct current is already reproduced in the initial state and
must not be created by the dynamical evolution.

We give the result for the force-force correlation function in Born approximation:

〈Ṗ; Ṗ〉iε = − ∑
p,p′ ,q,q′

0∫
−∞

dt eεt
1∫

0

dλ e
i
h̄
(Ep−Ep+q)(t−ih̄βλ)

VqVq′qzq′z〈a†
p+qapa†

p′+q′ap′ 〉eq

= ∑
p,q

|Vq|2δ(Ep − Ep+q) fp(1 − fp)πh̄
q2

3
. (68)

For the Debye potential, we obtain the result (28), but with the prefactor s = 3/(4
√

2π).
Despite the excellent results using the Ziman formula in solid and liquid metals where the

electrons are strongly degenerate, we cannot conclude that the result (67) with (68) for the conductivity
is already correct for low-density plasmas (the non-degenerate limit if T remains constant) in the
lowest order of perturbation theory considered here. The prefactor s = 3/(4

√
2π) is wrong. If we go

to the next order of interaction, divergent contributions arise. These divergences can be avoided by
performing a partial summation, which will also change the coefficients in Equation (29), which are
obtained in the lowest order of the perturbation expansion. The divergent contributions can also be
avoided extending the set of relevant observables {Bn} (see Ref. [11]).

Higher moments of the single-particle distribution function. Besides the electrical current, also other
deviations from thermal equilibrium can occur in the stationary nonequilibrium state such as a thermal
current. In general, for homogeneous systems, we can consider arbitrary moments of the single-particle
distribution function:

Pn = ∑
p

h̄pz(βEp)
n/2a†

pap (69)

as set of relevant observables {Bn}. It can be shown that with increasing the number of moments,
the result:

σ = s
(kB)

3/2(4πε0))
2

m1/2
e e2

1
Λ(ptherm)

(70)

(cf. Equation (29)) is improved, as can be shown with the Kohler variational principle; see [13,16].
The value s = 3/(4

√
2π) obtained from the single-moment approach is increasing to the limiting

value s = 25/2/π3/2. For details, see [4,13,14], where also other thermoelectric effects in plasmas
are considered.

Single-particle distribution function and the general form of the linearized Boltzmann equation. Kinetic
equations are obtained if the occupation numbers np of single-(quasi-) particle states |p〉 are
taken as the set of relevant observables {Bn}. In thermal equilibrium, neglecting interactions,
the averaged occupation numbers of the single-electron states are given by the Fermi distribution
function (14), 〈np〉eq = Tr {ρeqnp} = f 0

1 (Ep). We consider the fluctuations of the occupation
numbers Δnp = np − f 0

1 (Ep) as relevant observables. The response equations, which eliminate the
corresponding response parameters Fp(t), have the structure of a linear system of coupled Boltzmann
equations for the quasiparticles (see [16]):

e
me

Eext · [(P|np) + 〈P; ṅp〉iε] = ∑
p′

Fp′Pp′p , (71)

with Pp′p = (ṅp′ |Δnp) + 〈ṅp′ ; ṅp〉iε. The response parameters Fp(t) are related to the averaged
occupation numbers as:

f1(p) = Tr {ρ(t)np} = f 0
1 (Ep) + β ∑

p′
Fp′(Δnp′ |Δnp) . (72)
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The general form of the linear Boltzmann equation (71) can be compared with the
expression obtained from kinetic theory. The left-hand side can be interpreted as the drift term,
where self-energy effects are included in the correlation function 〈P; ṅp〉iε. The collision operator
is given by 〈ṅp′ ; ṅp〉iε. Because the operators np are commuting, from the Kubo identity, it follows
(ṅp′ |np) = (1/h̄β)〈[np′ , np]〉 = 0. More precisely, the collision operator can be expressed in terms of
the correlation function of the stochastic part of fluctuations; cf. Equation (67). The further evaluation
of the conductivity is according to the kinetic approach in Section 3.

Two-particle distribution function, bound states. The question arises whether the conductivity,
in particular the virial coefficient A(T) (29) for the Lorentz plasma, is modified if the set of relevant
observables is further extended. In the next step, we can consider the non-equilibrium two-particle
distributions; see [4,11]. However, the corresponding corrections appear only in higher orders of the
virial expansion (29). It seems that the virial coefficient A(T) is an exact result. However, it is not
clear whether in higher orders of density, singularities appear that can modify this result after partial
summation of singular terms.

Another interesting quantum phenomenon is the formation of bound states. Such two-particle
correlations can also be used to extend the set of relevant observables [22,23]. In particular, in low-density
plasmas, such correlations are difficult to form dynamically and need a long relaxation time because a third
particle is needed to fulfill the conservation laws. However, at fixed T, the concentration of bound states
becomes small in the low density limit according to the mass action law.

We considered the interaction with uncorrelated ions, with structure factor S(q) = 1. Multiple
scattering by ordered ions with structure factor S(q) �= 1 will modify the result (27). In particular, for a
perfect lattice, the electron system is described by Bloch states forming a band structure, and scattering
disappears so that the conductivity becomes infinite (64).

Here, a main problem emerges. The electron Hamiltonian of the adiabatic Lorentz model (4) is
bilinear and can, in principle, be diagonalized. We obtain stationary states as the exact solution, and the
question arises from where dissipation in the system is coming. If an initial state is prepared with
definite momentum by superposition of such exact solutions, the scattering into different directions of
momentum is similar to the spreading out of a wave packet, and dissipation is only possible if the
coherence is destroyed. The scattering by ions changes the total momentum of the electron system,
but this cannot be considered as a dissipative process. In addition, for a closed circuit discussed
above, we do not have asymptotically-free momentum states. Nevertheless, dissipation happens in
real systems.

6. Open Systems

Flow of energy. We presented a nice and consistent approach to the electrical conductivity.
The generalized linear response theory reproduces not only the low-density limit, which is also
correctly described by kinetic theory, but gives the opportunity to treat also dense charged particle
systems. However, the flow of energy is not correctly described. Because this is of second order in the
external field, which determines the deviation from equilibrium, the account of the energy flow will
not modify the results obtained in linear response theory.

Let us consider the system energy HS (4). The dynamics is described by the Hamiltonian
Ht = HS + Ht

F, which includes the field Eext(t). Using the extended von Neumann equation,
we calculate the change of the energy of the electron system:

d
dt

Tr {ρ(t)HS} = Tr
{

ρ(t)
i
h̄
[Ht

F, HS]

}
− εTr {[ρ(t)− ρrel(t)]HS} . (73)

We immediately see the import of electrical power Ω0j · Eext from the first term on the right-hand
side. The second term becomes zero for ε → 0. Consequently, the average system energy is increasing
with time.
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This is in contradiction to the demand of a stationary, homogeneous solution with constant current
density j. Electrons that enter the open system have the same properties (average particle density,
average current density, average energy density, temperature) as electrons that leave the system,
as demanded by homogeneity. As discussed earlier, this contradiction is solved if the coupling to
a bath is taken into account. Then, the dynamical evolution of the system according to Ht = HS + Ht

F
is not complete, and the influence of the bath is missing. We have to treat an open system where energy
can be exported by coupling to a bath. We expect that the details of this coupling are not relevant for
the calculation of the conductivity. However, the bath coupling is of relevance for the production of
entropy. We discuss here the coupling to a system of harmonic oscillators as realized by phonons or
photons. In the subsequent section, we show how the Zubarev method of the NSO may be modified to
include the effects of the bath.

Harmonic-oscillator bath. The system of harmonic oscillators describing the excitations with wave
vector q and polarization eq is given by the Hamiltonian:

Hh.o. = ∑
q

ωqb†
qbq. (74)

As the dispersion relation, we take ωq = c|q| with c as the velocity of light for the photon system
or as the velocity of sound for acoustic phonons. For the interaction of the electron system with the
phonon bath, the standard Froehlich expression:

Hint =
icep

Ω1/2
0

∑
p,q

√
qa†

p+qap(bq − b†
q) (75)

can be taken, with the electron-phonon coupling parameter cep ∝ M−1/2
i . Note that we can also treat

the electron–phonon interaction as a process to produce electrical conductivity [19].
Photon bath. In this work, we focus on the electron–photon interaction Hint = e ∑Ne

i ri · E.
In contrast to Equation (5) where Eext(r, t) denotes an external field, E(r, t) is the operator of the
fluctuating Maxwell field. In Fourier space, in the long-wavelength limit, we have the dipole
approximation, Hint = eR · E(q = 0). The system of harmonic oscillators is strongly coupled to
a thermal bath so that the temperature Text is fixed. The NSO can be investigated [4] with the selection
of relevant observables as degrees of freedom of the system, and the remaining (irrelevant) degrees
of freedom define the bath. The relevant statistical operator is chosen as the direct product of the
thermodynamic equilibrium for the phonon/photon system, ρbath, fixed by the external temperature
Text, and the reduced system statistical operator obtained after tracing out the irrelevant degrees
of freedom. Performing the Born–Markov and rotating-wave approximation, the quantum master
equation is obtained,

∂ρε(t)
∂t

+
i
h̄
[Ht, ρε(t)] = − 1

h̄2

∫ 0
−∞ dτe−ετ [〈HintHint(τ)〉bathρε(t) + ρε(t)〈Hint(τ)Hint〉bath (76)

−Trbath {Hintρε(t)ρbathHint(τ) + Hint(τ)ρε(t)ρbathHint}] .

The notation 〈. . . 〉bath means average with respect to the phonon/photon bath,
ρbath = Z−1

bathe−Hh.o./kBText . A further thermostat is needed to ensure thermodynamic equilibrium with
temperature Text [4]. The evaluation of the right-hand side is given below, Equation (82).

Electromagnetic field. The evaluation of the field averages with the harmonic-oscillator bath ρbath
can be performed. Finally, we give the result for the blackbody radiation [4,24] with the field E(r, t):

Γij(ω) =
∫ ∞

0
dτ ei(ω+iε)τ〈Ei(τ)Ej(0)〉bath = δij

(
1
2

γ(ω) + iS(ω)

)
(77)
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with γ(ω) = 4ω3 [1 + nB(ω)] /(3h̄c3), and the principal value expression and:

S(ω) =
2

3πh̄c3 P
∫ ∞

0
dωqω3

q

[
1 + nB(ωq)

ω − ωq
+

nB(ωq)

ω + ωq

]
. (78)

Note that the Planck distribution (10) satisfies nB(−ω) = −[1 + nB(ω)] such that γ(ω) = 4ω3[1 +
nB(ω)]/(3h̄c3) for ω > 0 and γ(ω) = 4|ω|3nB(|ω|)/(3h̄c3) for ω < 0.

The resulting quantum master equation describing the coupling such as atoms to the radiation
field in dipole approximation, Hint = −eR · E,

∂

∂t
ρε(t)− 1

ih̄
[HS, ρε(t)]− 1

ih̄
[Hinfl, ρε(t)] = D′[ρε(t)]. (79)

has the Lindblad form. We perform the spectral decomposition with respect to the (discrete) eigenstates
|φn〉 of HS,

R(ω) =
∫ ∞

−∞
dt eiω(t−t0) eiHS(t−t0)/h̄Re−iHS(t−t0)/h̄ = R†(−ω)

= 2πh̄ ∑
n,m

δ(ES,n − ES,m + h̄ω)|φn〉〈φn|R|φm〉〈φm| . (80)

The influence Hamiltonian:

Hinfl = e2h̄
∫

dω S(ω)R†(ω) · R(ω) (81)

leads to a renormalization of the system Hamiltonian HS that is induced by the vacuum fluctuations of
the radiation field (Lamb shift) and by the thermally-induced processes (Stark shift). The dissipator of
the quantum master equation reads:

D′[ρε(t)] =
∫ ∞

0
dω

4e2ω3

3h̄c3 [1 + nB(ω)]

[
R(ω)ρε(t)R†(ω)− 1

2
{R†(ω)R(ω), ρε(t)}

]
+

∫ ∞

0
dω

4e2ω3

3h̄c3 nB(ω)

[
R†(ω)ρε(t)R(ω)− 1

2
{R(ω)R†(ω), ρε(t)}

]
(82)

where the integral over the negative frequencies has been transformed into positive frequencies.
The influence term (81) is used to dress the electrons. Only the dissipator (82) is considered for the
export of energy.

This result can be interpreted in a simple way. The application of the destruction operator R(ω)

on a state of the system lowers its energy by the amount h̄ω and describes the emission of a photon.

The transition rate
4ω3

3h̄c3 [1 + nB(ω)] contains the spontaneous emission, as well as the thermal emission

of photons. The term R†(ω) gives the creation of photons with transition rate
4ω3

3h̄c3 nB(ω) describing

the absorption of photons.

7. The Relaxation Term

Dissipator and relaxation. We can introduce the coupling to the thermal bath in different ways.
After we described it by a Lindblad operator (79), based on a detailed description of interaction
processes and performing some approximations, we now discuss whether we can also describe the
influence of the bath by a relaxation term that describes the influence of a bath in a global, macroscopic
way. The use of a relaxation time is very common in nonequilibrium statistical physics; see Section 3.
We introduce the relaxation time as a characteristic, semiempirical quantity, which may be derived
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from a microscopic consideration. We analyze the von Neumann equation with a relaxation term
similar to the source term (55),

∂

∂t
ρη(t)− 1

ih̄
[(HS + Ht

F), ρη(t)] = −η[ρη(t)− ρrel(t)]. (83)

Now, the relaxation parameter (superoperator) η is finite and models the influence of the bath.
The relevant statistical operator ρrel(t) is considered no longer as the memory of the known averages
in the past, to realize the initial, causal conditions. It describes the goal to which the evolution goes,
a teleological distribution. It is determined by the external conditions as discussed below.

The idea is that the irrelevant degrees of freedom are strongly relaxed to a quasi-equilibrium,
similar to the Enskog approach to solve the Boltzmann equation. The influence on the average motion
of the relevant observables is replaced by a transport coefficient similar to the friction force in the
Langevin equation. A more detailed description will relate this macroscopic friction force to the
correlation function of stochastic forces, as known from the Brownian motion.

Ideal gas with friction. Let us consider a simple example for illustration. We have relevant
(the electron variables) and irrelevant (ionic) observables. As discussed above, the relevant part of the
dynamics is described explicitly, whereas the irrelevant one is described globally, e.g., by a relaxation
term. In our simple example, the relevant part of the dynamics is HS,id = ∑i h̄2 p2

i /2me. We disregard

the e–i interaction, but introduce a friction term ηei, of course not as
∂

∂t
ρη(t) = −ηeiρη(t),

but, to conserve normalization, energy, and particle number, we can consider the relaxation term:

∂

∂t
ρη(t)− 1

ih̄
[(HS,id + Ht

F), ρη(t)] = −ηei[ρη(t)− ρeq,id], (84)

with the equilibrium distribution ρeq,id = exp[−βHS,id + βμeNe]/Zeq,id defined by temperature,
chemical potential, zero mean velocity, and the ideal gas Hamiltonian HS,id = ∑p Epa†

pap (Note that Ht
F

is not included. We demand a homogeneous distribution, and the external field would be compensated
by a position-dependent chemical potential.). The norm and particle number are conserved, and for
the average momentum, we have:

d
dt

〈P〉t
η = Tr

{
∂

∂t
ρη(t)P

}
= −eEextNe − ηei〈P〉t

η (85)

with the stationary result j =
−e

meΩ0
〈P〉stat =

e2ne

meηei
Eext so that σ = nee2/(meηei) results; see

Equation (64). Comparing to the microscopic calculation (28), we identify ηei = 1/τ̄transp.
Dynamical collision frequency. We have shown that the phenomenological relaxation time 1/ηei is

related to the microscopic e–i interaction solved in Section 3. We know from the Langevin equation
that transport (friction) coefficients are related to the correlation function of stochastic forces. We have
to consider a stochastic process, and stochastic forces are needed to maintain thermal irregular motion,
cf. Equation (67). We demonstrate this relation for the ideal gas with friction to describe the collisions
with ions.

Within the Zubarev NSO approach, we derive the response of the system to a time-dependent
external field; see [14,20]. Medium modifications of electromagnetic fields in an isotropic plasma are
described by the dielectric permittivity tensor ε̂(q, ω). In the long-wavelength limit q → 0 (relevant
for the emission and absorption of visible light considered here), the transverse and longitudinal
dielectric function are identical. The dielectric function is written in the generalized Drude-like form
with ω2

pl = nee2/(ε0me),

ε(q → 0, ω) = 1 = 1 +
i

ε0ω
σ(q → 0, ω) = 1 −

ω2
pl

ω[ω + iν(ω)]
. (86)
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The dynamical collision frequency ν(ω) is obtained from the frequency-dependent force-force
correlation function; see [25] and Equations (67) and (68).

ν(ω) =
β

Neme
〈Ṗ; Ṗ〉ω+iε . (87)

For the DC conductivity follows σ = ε0ω2
pl/ν(0) = nee2/[meν(0)], so that we identify ηei = ν(0).

Note that this global description of the effect of e–i interaction by a relaxation term is very
crude, but was successfully applied to derive the Mermin dielectric function εMermin(q, ω) [26].
The contribution of e–i interaction for q = 0 is described by the dynamical collision frequency
ν(ω). The extension to finite q was possible taking the conservation laws for particle number, etc.,
into account.

Relaxation of internal energy, ideal gas. The relaxation of the electron momentum owing to e-i
collisions is correctly described. The conservation of the norm and particle number is realized by
construction. For the internal energy US,id(t) = 〈HS,id〉t

η , we have with Equation (84):

d
dt

US,id(t) = jEextΩ0 − ηbath

[
US,id(t)− 3

2
kBTextNe

]
(88)

with the stationary result Ustat =
3
2

kBTextNe + jEextΩ0/ηbath. The values jeq = 0 and Ueq =
3
2

kBTextNe

as demanded by the bath are not reached in the stationary state.
The relaxation coefficient ηbath is different from ηei because elastic e-i collisions, which are

relevant for the relaxation of momentum, will not contribute to the relaxation of internal energy.
Other phenomena like bremsstrahlung emission (see Section 8) give the microscopic process for this
relaxation term. The relaxation parameter η should be considered as the superoperator in the space of
the dynamical variables {Bn} of the system, similar to the relaxation time 1/τtransp(Ep) (24) acting on
states |p〉.

Global energy relaxation. As a simple example for energy relaxation, we discuss temperature
relaxation for a system in local thermodynamic equilibrium. For the ideal classical gas of electrons,
we have the equilibrium distribution (see Equation (14)):

f 0
1 (Ep) =

ne

2

(
2πh̄2

mekBT

)3/2

e
− h̄2 p2

2mekBT . (89)

The change T → Text where Text is the temperature of the bath can be described by the map:

f 0
1 (Ep) = f 0

1

(
h̄2 p2

2me

)
→

(
T

Text

)3/2
f 0
1

(
h̄2 p2Text

2meT

)
. (90)

The equation of evolution for T(t) is obtained from:

∂

∂t
f 0
1 (Ep; T(t)) = −ηbath

[
f 0
1 (Ep; T(t))− f 0

1 (Ep; Text)
]

(91)

so that near T ≈ Text, we find Ṫ(t) = −ηbath[T(t)− Text]. This global relaxation of T scales all momenta
in the same way and can be replaced by a more detailed description within a microscopic approach.

Hamiltonian dynamics. Now, we discuss the NSO method presented in Section 4. The dynamical
evolution owing to the e–i interaction, given by HS, is treated microscopically so that it must be taken
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off the relaxation term. However, this microscopic description is not complete because the interaction
with a bath is not included. We obtain from Equation (56):

d
dt

〈Bn〉t =
i
h̄

Tr{[Ht, Bn]ρη(t)]} − ηbath
[
Tr{ρη(t)Bn} − Tr{ρrel(t)Bn}

]
. (92)

Now, the relaxation coefficient ηbath only describes the interaction with the bath. It is clearly
seen that this relation becomes wrong for lim ηbath → 0 if the dynamics Ht = HS + Ht

F is incomplete,
i.e., not containing the coupling to the bath, and 〈Bn〉t is a prescribed time evolution, which respects
the influence of the bath. In particular, in a stationary state, the averages of the dynamical observables
of the system, including the internal energy 〈HS〉t, should not depend on time. The appropriate choice
of the source term, in particular the relevant operator ρrel(t), can be performed so that double counting
of the Hamiltonian dynamics Ht is avoided.

As discussed above for an isolated, closed system, the source term can be constructed such that
the dynamical evolution is projected out. The condition (43):

〈Bn〉t = 〈Bn〉t
rel (93)

makes the time evolution (56) of the relevant observables Bn purely dynamical, i.e., according to Ht,
and independent of the value of ε. However, in open systems, the dynamical observables of the
system may also be influenced by the bath, so that the Hamiltonian time evolution, neglecting the
influence of the bath, is incomplete, and therefore, it is in conflict with the demanded self-consistency
condition (93).

Maximum production of entropy. We propose another definition of the relevant statistical operator for
open systems in the stationary state. Given properties are only a small number of control observables.
In our case, the relevant operator is characterized by the density ne, the current density j controlled
by the external field Eext, and the internal energy density controlled by the bath temperature Text.
The mean values of further observables are not measured, so that Equation (93) is meaningless. Instead,
an arbitrary number of dynamical observables {Bn} of the system may be considered, and their
averages are determined by the Kohler variational principle [16], where the arbitrary time dependence
of the external field is considered. It can be related to the principle of the extremum of entropy
production given by Prigogine and Glansdorff [1]. The static case ω = 0 has been considered in [4,14].

Coming back to our example of DC conductivity, some control parameters are known in the past
t1 < t: the volume Ω0, the particle density ne, the temperature Text, and the external field Eext, which,
in general, may depend on time t1. A Gibbs ensemble ρeq with HS (remember that Ht

F is compensated
by the chemical potential to have homogeneous solution), and the external conditions Ω0, ne, Text are
compatible with the demanded properties, but not very appropriate to describe the stationary state;
see the discussion of the Kubo formula (63). At least, we expect to have a stationary distribution with
a finite average momentum current density j = (−eh̄/meΩ0)〈P〉, which characterizes the relevant
distribution. We can add further moments or the detailed single-particle distribution function f1(p, t)
as the set {Bn} of relevant observables. The averages of these relevant observables are not prescribed
by the self-consistency relations (93), but by the maximum production of information entropy, as
shown, e.g., by the Kohler variational principle. The principle of maximum information entropy fixes
all remaining (irrelevant) observables, such as missing moments if only a finite number of moments
is taken, or two-particle correlation functions. The construction of the relevant statistical operator
ρrel(t) has to be considered as a variational problem. According to the Kohler variational principle
of the maximum production of relevant entropy at a given external field Eext, we find that the more
relevant observables {Bn} are included, the better (larger) being the result for the conductivity; see the
examples in Section 5.

The approach presented here is known as synchronization or the sequence of different stages of
non-equilibrium. Similar to the Enskog equation, we assume strong equilibration of the higher
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correlation functions (collision time scale), followed by the equilibration of the single-particle
distribution function (free flight time scale) and the position-dependent hydrodynamic scale (transport
and diffusion). The higher correlations are already equilibrated. For the conductivity in the low-density
limit, the single-particle distribution function is sufficient. Higher order distribution functions relax
quickly. An important example is the dressing of free particles to become quasiparticles with self-energy
according to local thermodynamic equilibrium. We can discuss this as a fast synchronization of the
irrelevant observables to the quasi-equilibrium, relevant distribution.

Dynamics and relaxation. It is our main issue to construct the equation of evolution with a relaxation
term avoiding double counting of the dynamical part Ht of the interaction. For our open system,
the time evolution operator U(t, t0), Equation (49), has to be completed to contain also the interaction
with the bath. In the expressions (58) and (59), the interaction with the bath has to be added.
Within a microscopic approach, d〈Bn〉t/dt should also have the contribution of interaction with
the bath. As is well known, a dissipator (76) can be derived so that ρ(t) follows from a quantum
master equation. Because of this additional interaction with the bath, the self-consistency condition (43)
and (93) becomes obsolete for the averages of the relevant observables. Instead, only the external
conditions Eext, Text are given, and the averages of the relevant observables {Bn} are determined from
the maximum production of the relevant entropy.

As before, we approximately introduce a relevant statistical operator ρrel, which is optimized with
respect to the given dynamics HS of the system, i.e., the maximum of production of the relevant entropy
according to the Kohler variational principle. For this, we select out a set of relevant observables {Bn}
and find the corresponding Lagrange parameters Fn solving the linear system ∑n PmnFn = DmEext

of Equation (65). This approximation can be improved taking into account the influence of the bath,
for instance replacing ε by ηbath calculating the correlation functions. Now, we solve the problem of the
intrinsic energy 〈HS〉t, which should be constant in the stationary state. The von Neumann equation
with the friction term (83) gives for the time derivative:

0 = jEext − 3
2

neηbathkB(T − Text) (94)

so that the temperature in the system is T = Text +
2

3ηbathkB
σE2

ext, cf. Equation (36). In linear

response, the temperature difference ΔT = T − Text ∝ E2
ext can be neglected. To estimate ΔT, we need

a microscopic description of the bath coupling as discussed in Section 8.

8. Microscopic Description of the Bath Coupling

Dynamical collision frequency and bremsstrahlung emission. Bremsstrahlung emission has been
considered as a possible process to export the energy from the system to the bath. It is related to
absorption, which is obtained from classical field theory. Quantum field theory is needed to obtain
spontaneous emission, cf. Equations (11)–(13). The dielectric function ε(ω) is connected to the index of
refraction n(ω) and the absorption coefficient α(ω) by n(ω) + (ic/2ω)α(ω) =

√
ε(ω). The absorption

coefficient is related to the bremsstrahlung radiation. In Born approximation, we obtain [14]:

Re ν(ω) =
e4ni

12π2ε2
0me

(
2πme

kBT

)1/2 1
h̄ω

[
eβh̄ω/2 − e−βh̄ω/2

]
K0

(
h̄ω

2kBT

)
. (95)

where K0(z) =
∫ ∞

0 dt cos(z sinh t) is a modified Bessel function. The static ion structure factor is
approximated as Si(q) ≈ 1. Comparing with the Kramers formula (13), the corresponding result for
the Gaunt factor has been obtained. Further changes of Kramers’ expression are obtained from the
account of many-body effects.

As in the case of momentum relaxation described by the relaxation parameter ηei, we estimate
the relaxation parameter ηbath which describes the relaxation of internal energy (94). We consider the
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loss of energy of the electrons owing to bremsstrahlung emission, Equation (13). Integrating over ω,
the total emission power density is [27]:

P[W/m3] = − 1
Ω0

d
dt

〈HS〉 = 1.69 × 10−38Z2
i ne[m−3]ni[m−3] (kBT[eV])1/2 . (96)

This expression gives already the result in the corresponding SI units. For instance, typical
experiments to measure the DC conductivity in dense plasmas [28] are performed at kBT ≈ 2 eV
and free electron density ne ≈ 3 × 1025 m−3. At electrical fields, Eext ≈ 100 V/m linear behavior
j = σEext has been observed, with σ ≈ 2 × 104 [Ω m]−1. Comparison with our results (29) has been
performed in [11]. According to (96), the total emission power density is P ≈ 2 × 1013 W/m3. This loss
of energy owing to bremsstrahlung radiation determines the cooling rate of the plasma and the
temperature of the stationary state according to Equation (94). With jEext = σE2

ext ≈ 2 × 108 W/m3,
the temperature difference ΔT < 1 K between the emitting system and the emitting bath is relatively
small in the stationary case.

However, this estimation is valid only for a plasma that is optically thin, i.e., the radiation
emitted by the electrons can escape from the plasma without reabsorption. In an optically-thick
plasma, emitted radiation is reabsorbed (self-absorption) after a short distance compared to the
size of the plasma. The balance of both emission and absorption processes in the stationary state
leads to a lower efficiency of the energy transfer from the electrons to the radiation field and
a corresponding higher plasma temperature in the stationary state. Then, the energy spectrum is
constrained to the Planck spectrum (10). In particular, below the plasma frequency, electromagnetic
radiation cannot propagate in the plasma. Radiation transport determines the export of energy, and the
temperature of the radiation field Text(r, t) becomes dependent on the position. The constraining
Planck spectrum in the low-frequency limit (Raleigh–Jeans law) can be used to define the temperature.
According to the Stefan–Boltzmann law, the heat is related to temperature as a property of the Planck
spectrum (10), which gives the occupation numbers of photon states, not showing the phase of the
electromagnetic wave.

Quantum structure of electromagnetic fields. As in the case of momentum relaxation ηei, the energy
relaxation ηbath is related to a microscopic process, the interaction of the electrons with the radiation
field. As known from the Brownian motion, behind the relaxation term, which describes the average
motion, there is a stochastic process. This allows one to calculate the relaxation parameter ηbath
from the correlation function of stochastic forces (fluctuation-dissipation theorem); see Equation (67).
Whereas for ηei, the collision frequency ν(0) was considered, which describes the fluctuations of the
Coulomb forces in the charged-particle system, we consider for ηbath the vacuum fluctuations of the
electromagnetic field. In particular, a quantum field theory is needed to describe spontaneous emission
of radiation; for details, see, e.g., [4,24].

Let us consider the quantum fluctuations E(r, t), B(r, t) in thermal equilibrium. The fluctuation
properties of the electrical field are obtained from the Maxwell equations in free space. The vector
potential in the Coulomb gauge leads to wave equations for the transverse vector potential, which
may be solved by a plane wave decomposition with photon creation and annihilation operators
bλ(q), satisfying bosonic commutation relations. The commutator (where [A, B] = AB − BA) and the
anticommutator (where {A, B} = AB + BA) function can be calculated; see [24]. As a result, for the
anticommutator correlation function of the transverse electric field, averaged over the radiation field
in thermal equilibrium at T, one obtains for the vector components with x = {cΔt, Δr}:

〈{Ei(x), Ej(0)}〉 = −(δij −
xixj

r2 )
1

2π2τ3
Tr

×
[

cosh[(r/c − t)/τT ]

sinh3[(r/c − t)/τT ]
+

cosh[(r/c + t)/τT ]

sinh3[(r/c + t)/τT ]

]
(97)
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with r = |Δr|, t = Δt, and τT = h̄/(πkBT) is the thermal correlation time. For r → 0 follows, summing

over i, j, the expression 〈{E(0, t), E(0)}〉 ≈ 6
π2t4 for |t| � τT . This corresponds to vacuum contribution

(T = 0) and diverges near t = 0.
The thermal contribution is:

〈{E(0, t), E(0)}〉th =
1

π2τ4
T

[
6 + 4 sinh2(t/τT)

sinh4(t/τT)
− 6

π2(t/τT)4

]
. (98)

Performing t → 0, we get the energy density of the field in thermal equilibrium as uth =

〈{E(0), E(0)}〉th/2 = 1/(15π2τ4
T), which is the Stephan–Boltzmann law of black-body radiation.

The long-time behavior t � τT results as 〈{E(0, t), E(0)}〉th ≈ 16/(π2τ4
T) exp(−2|t|/τT). We can

consider the local, but low-frequency limit of the spectral density (see, e.g., [4]):

Stherm
EE (r = 0, ω) =

∫
dte−iωt〈{E(0, t), E(0)}〉th ≈ 4

π2τ3
T

1
1 + ω2τ2

T/4
. (99)

We also have:

Γ(ω) = 1/h̄2
∫ ∞

0
dte−i(ω+iε)t〈{E(0, t), E(0)}〉 = γ(ω)/2 + iS(ω). (100)

The thermal contribution has the low-frequency limit limω→0 Stherm
EE (r = 0, ω) = 4/(π2τ3

T), and
the results give:

γ ≈ 4ω2kBT/(3h̄c3), lim
ω→0

Stherm
EE (ω) =

4ζ[3]
3πh̄c3τ3

T
, (101)

with Apery’s constant ζ[3] = 1.20205, cf. Equation (77). In addition to the vacuum fluctuations, we have
thermal fluctuations of the electrical field proportional T3. Considering this low-frequency limit, we can
introduce a local (r = 0) temperature from the fluctuation spectrum of the electromagnetic fields.

Radiation damping. We cannot give here a detailed discussion of quantum electrodynamic processes.
An interesting process is radiation damping. From classical electrodynamics, it is known that charged
particles emit radiation if they are accelerated. Using the Larmor formula (12), the equation of motion
for an electron that contains the interaction with the radiation field is the Abraham–Lorentz equation:

mev̇(t)− Fext(t) = Frad(t) =
e2

6πε0c3 v̈(t) = meτradv̈(t) , (102)

where Fext(t) denotes an external force. The radiation damping term is determined by the characteristic
time τrad = e2/(6πε0mec3) = 6.3 × 10−24s.

The Abraham–Lorentz Equation (102) can also be derived if the radiation degrees of freedom are
eliminated, as discussed above in Section 6; see [24]. Different problems such as runaway solutions
arise; see [4]. The interaction with the radiation field, in particular bremsstrahlung processes, leads
to a loss of quantum coherence, to localization, and to the transition to classical behavior [24].
The bremsstrahlung is emitted during the collision of charged particles. Emission of photons can be
considered as a measuring process to localize the charged particle during the collision process. A more
detailed discussion of the suppression of quantum coherence can be found in [29]. The balance of
emitted and absorbed power in the classical limit is (12):

d
dt

〈HS〉 = − 2e2

3ε0c3

Ne

∑
i

(
d2ri
dt2

)2

+ e
Ne

∑
i

ṙi · Eext(ri, t), (103)
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if reabsorption and coherence effects given by the ionic structure factor are discarded. The emission
and absorption of radiation, as described by a quantum master equation, are some of the possibilities
to solve the problem of the export of entropy.

9. Conclusions

von Neumann equation with the relaxation term. According to the Zubarev NSO method, a source
term −ε[ρ(t)− ρrel(t)] was introduced into the von Neumann Equation (55), with lim ε → 0 after
the thermodynamic limit. This source term is not a physical process, but rather a mathematical trick
to select out the retarded solution of the equation of motion. Infinitesimal source terms to break
a symmetry are known from other fields in physics such as phase transitions, for instance the direction
of magnetization in the Heisenberg model or a phase in the superfluid phase, but also the Planck
“Staubkorn” to establish the blackbody radiation spectrum in a “hohlraum”. For a closed system with
a known Hamiltonian, this source term has a remarkable property. We can select out an arbitrary set of
relevant observables and construct the source term with the corresponding relevant statistical operator
ρrel(t). As a consequence of the self-consistency conditions (43) and (93), the dynamics of the relevant
observables (56) obeys the Hamiltonian dynamics also for finite ε. The invariance of the dynamics of
the relevant observables with respect to the source term with arbitrary ε is a remarkable property of
the extended von Neumann equation.

Open systems and relaxation term. We discussed open systems, in particular diabatic contact
(exchange of energy, but not particles) with a thermal bath. The system is defined by the dynamical
degrees of freedom and a Hamiltonian Ht = HS + Ht

F, which determines the equations of motion of
the system, including the action of external fields Eext(t). In addition to the Hamiltonian dynamics,
instead of the infinitesimal source term, a relaxation term with finite η is introduced in Equation (83)
to model the influence of the bath, e.g., prescribing the temperature Text. This finite source term is
no longer interpreted as the initial conditions in the past to construct a solution of the von Neumann
equation with time evolution Ht, but to give a final state to which the distribution relaxes, at each
time instant in the past. More generally, a final state is given by the external conditions, and the
influence on the system, the coupling to a bath, is globally described by a relaxation term. The form
of the relaxation term, in our case the relevant statistical operator ρrel(t) and the phenomenological
relaxation coefficient η, which, in general, is an operator, has to be chosen in an appropriate way.
Note that alternative expressions for the relaxation term are possible. For instance, also for ln ρ(t),
a von Neumann equation can be given, and a source term −ε[ln ρ(t)− ln ρrel(t)] and a corresponding
relaxation term with ε → η can be proposed.

The Bogoliubov principle of the weakening of initial correlations. According to the Bogoliubov principle
of weakening of initial correlations, the missing correlations to get ρ(t) are produced dynamically.
However, this argument is not valid in the case of an open system considered here, if, in addition to
the Hamiltonian dynamics, the coupling to the bath is taken into account. In contrast to the system
described by a Hamiltonian, the dynamical evolution of the bath is not exactly known. The average
with the NSO (53) will not give the empirical averages even if the relevant statistical operator ρrel(t1)

is replaced by the exact ρ(t1). Only for a closed system with a known Hamiltonian, the Bogoliubov
principle of the weakening of initial correlations is valid. For an open system, the missing correlations
are not only produced by the Hamiltonian dynamics within the system, but are also influenced by the
external, in general time-dependent conditions, which characterize the surroundings, the bath.

The self-consistency conditions. Let us consider an arbitrary, dynamical observable Bn of the system.
If we know the history, i.e., 〈Bn〉t1 in the past t1 < t, the correct time evolution from t1 to t should
also contain the coupling to the bath. For example, this can be expressed in some approximation by
a dissipator term (79). In this work, we propose to use a relaxation time approach to describe the
external influence on the system. The time evolution of the average 〈Bn〉t = Tr

{
ρη(t)Bn

}
is given by

Equation (56) replacing ε → η. In general, the observables of the system are influenced by the bath;
as an example, we considered the internal energy. Therefore, the relevant statistical operator ρrel(t) is
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not determined by the self-consistency conditions (43) and (93), because then the influence of the bath
on the time evolution of the average 〈Bn〉t disappears. We have:

〈Bn〉t = Tr{ρη(t)Bn} �= Tr{ρrel(t)Bn} = 〈Bn〉t
rel (104)

so that another prescription is needed to construct ρrel(t), different from the consideration of closed
systems in Section 4.

The relevant statistical operator. The principle of maximum information entropy at given mean
values of a set of relevant observables {Bn} was used to construct ρrel(t), Equation (44), in Section 4.
We applied this condition also in the case of open systems where some parameter values λn,ext

corresponding to {Bn,ext} are prescribed by the external conditions. Other dynamical observables
{Bn,resp} will show a response to the external conditions. Averages 〈Bn,resp〉t of further observables are
not measured. The self-consistency conditions to eliminate the corresponding response parameters
λn,resp(t) become unfounded. In Section 5, the self-consistency conditions have been replaced by the
condition of stationarity, where the time evolution of 〈Bn〉t is determined only by Ht. We propose
another prescription. The response parameters λn,resp(t) of a given set {Bn,resp} of relevant observables
are determined by the principle of maximum entropy production. As discussed in Section 5, in the
case of linear response, the corresponding Kohler variational principle is equivalent to the solution of
the stationarity conditions with (43) and (93). The selection of a set {Bn,resp} of relevant observables is
a variational ansatz to determine an optimal relevant statistical operator ρrel(t) to which the system
tends to evolve, as a response to the external influences. It is not dependent on the initial conditions
and may be discussed in the context with the experimental evidence of universal dynamics far from
equilibrium during the relaxation process observed recently [30].

Relaxation time. The source term to describe the influence of the bath on the time evolution of
ρ(t), Equation (83), contains the parameter η, which may be interpreted as inverse relaxation time and
is, in general, a superoperator acting in the space of observables {Bn} of the system. As an example,
the electrical DC conductivity σ(ne, T) of the Lorentz model plasma was discussed. Different values
ηei, ηbath were considered for the relaxation of the electron current and the internal energy, respectively.
The values were determined from the calculation of the corresponding microscopical processes,
the e–i interaction, and the bremsstrahlung emission, respectively. For comparison, in kinetic theory,
a relaxation time tensor (21) was introduced, which depends on the wave number p. As known
from a variational principle, a larger set {B̂n} of relevant observables will improve the result for the
calculation of σ using perturbation theory, so that the value of σ increases; see Section 5.

Stochastic processes. In Brownian motion, the friction term is connected with a stochastic process.
As a famous relation, the friction coefficient is related to the fluctuation strength of the stochastic forces.
Therefore, we expect that the von Neumann equation with the relaxation term has to be replaced by
some stochastic process; see [4]. In the case of the relaxation of the electron current, we have considered
the dynamical collision frequency, which is related to the correlation function of stochastic forces from
the e–i interaction. The fluctuations of the electromagnetic fields (vacuum, as well as thermal) are
related to the transition rates for photon emission, in particular the bremsstrahlung emission describing
the export of energy.

Energy flow. The incoming power density is given by the classical electromagnetic fields,
in particular the Poynting vector, which couple to the electrons. We do not need any information about
how these fields are produced. The export of energy, described by the relaxation term, is realized
by the interaction with the bath. Details about the interaction with the bath are not of relevance.
The electron-ion system acts via the force-force correlation function. It mediates and limits the flow of
energy, but does not produce entropy. Mechanical energy is transferred to radiation to be described by
quantum electrodynamics. Reabsorption transforms the radiation spectrum to the Planck distribution
as thermal equilibrium with a fixed temperature Text. The corresponding excitation energy in addition
to the vacuum part, the thermal part, may be denoted as heat. The limiting value ω → 0 of the spectral
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density of the radiation field, the Rayleigh–Jeans law B(ω, T) = ω2kBT/2π2c2, can be used to define
a local temperature.

Heat production and entropy. Electrical conductivity describes a non-equilibrium process. Directed
motion that is obtained from the external field is converted into isotropic, undirected motion after
the interaction with ions. This interaction is a reversible motion, so that it is not connected with the
production of thermodynamic entropy Sth. Irreversibility is connected with the production of entropy.
This means that in the case of electrical conductivity, heat is produced. An interesting process to
transfer energy from the system to the bath is radiation, in particular the bremsstrahlung emission.
The formation of a Planck spectrum can be identified as the production of heat. In equilibrium, heat
cannot be transformed back to work, which means irreversible evolution.

Outlook. The results presented here are only a step toward a more fundamental approach to
describe nonequilibrium processes. The stochastic properties of the electromagnetic fields should be
analyzed more in detail to obtain a solution of the problem of irreversible evolution, including the
electrical conductivity of a plasma. Using the Zubarev NSO method, exact results can be given for the
DC conductivity in the low-density limit similar to a virial expansion, as discussed in the present work.
This approach is extended to describe open systems, in particular the coupling to the radiation field.
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Abstract: In this work, the nonequilibrium density operator approach introduced by Zubarev more
than 50 years ago to describe quantum systems at a local thermodynamic equilibrium is revisited.
This method, which was used to obtain the first “Kubo” formula of shear viscosity, is especially
suitable to describe quantum effects in fluids. This feature makes it a viable tool to describe the
physics of Quark–Gluon Plasma in relativistic nuclear collisions.
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1. Introduction

One of the authors (F.B.) would like to start this paper with a personal recollection. I first ran across
Zubarev’s papers when I was studying the derivation by A. Hosoya et al. [1] of the shear viscosity
in quantum-field theory, a result widely known as “Kubo formula”, like many of the same sort. This
derivation was overtly based on Zubarev’s method of nonequilibrium density (or statistical) operator,
and I surmised that this method must have been a very important and renowned tool in quantum
statistical mechanics. In fact, surprisingly, it could hardly be found in textbooks and in the recent
literature, and I did not quite understand why the founding method of such an important formula
was that overlooked. After some more self-education, I realized that, perhaps part of the problem was
that Zubarev himself did not put the right emphasis on the crucial feature that his proposed operator
should possess: to be stationary, hence well-suited to be used in relativistic quantum-field theory as
a density operator in the Heisenberg representation. A nonequilibrium stationary density operator
sounds somewhat contradictory, but this is not the case if we deal with a system that, at some time, is
known to be in local thermodynamic equilibrium, as we see in more detail in Section 3.

In this work, we would like to not just summarize Zubarev’s method [2–4], but also to make a
critical appraisal and to provide a reformulation thereof that highlights the important features of this
approach in a hopefully clear fashion. I also hope that this work could do justice to Zubarev and his
remarkable achievement.

Notation

In this paper we use natural units, with h̄ = c = K = 1.
The Minkowskian metric tensor is diag(1,−1,−1,−1); for the Levi-Civita symbol, we use

convention ε0123 = 1.
Operators in the Hilbert space are denoted by a large upper hat, e.g., T̂, while unit vectors with

a small upper hat, e.g., v̂. Scalar products and contractions are sometimes denoted with a dot, e.g.,
AμBμ = A · B.

Particles 2019, 2, 197–207; doi:10.3390/particles2020014 www.mdpi.com/journal/particles43
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2. Local Thermodynamic Equilibrium

Zubarev formalism can be used in nonrelativistic as well as in relativistic quantum statistical
mechanics. We can then start from the latter, more general case, which is applicable to relativistic fluids
out of equilibrium [5]. The relativistic version of the nonequilibrium density operator was first put
forward by Zubarev himself and his collaborators in 1979 [6], and later reworked by Van Weert in
Reference [7].

The starting point is the definition of the local equilibrium density operator. In relativity, this
notion needs the specification of a one-parameter family of 3D spacelike hypersurfaces Σ(τ) (see
Figure 1), also known as foliation of spacetime [6–9]. “Time” τ does not necessarily coincide with
the proper time marked by comoving clocks. Local equilibrium density operator ρ̂LE is obtained by
maximizing the total entropy:

S = −tr(ρ̂ log(ρ̂)) (1)

with constrained values of energy–momentum and charge density, which should be equal to the actual
values. In a covariant formulation, these densities are obtained by projecting the mean values of the
stress–energy tensor and current onto the normalized vector perpendicular to Σ:

nμtr
(

ρ̂ T̂μν
)
= nμTμν, nμtr

(
ρ̂ ĵμ

)
= nμ jμ. (2)

where Tμν and jμ are the true values of the stress–energy and current fields. The operators in
Equation (2) are in the Heisenberg representation. In addition to the energy, momentum, and charge
densities, one should include the angular momentum density, but if the stress–energy tensor is the
Belinfante [10], this further constraint is redundant and can be disregarded.

The resulting operator is the Local Equilibrium Density Operator (LEDO):

ρ̂LE =
1

ZLE
exp

[
−

∫
Σ(τ)

dΣ nμ

(
T̂μν(x)βν(x)− ζ(x) ĵμ(x)

)]
(3)

where β and ζ are the relevant Lagrange multiplier functions for this problem, whose meaning
is the four-temperature vector and the ratio between local chemical potential and temperature,
respectively [8], dΣ is the measure of the hypersurface induced by the Minkowskian metric, and
fields β and ζ are the solution of Constraints (2) with ρ̂ = ρ̂LE, namely:

nμtr
(

ρ̂LE T̂μν
)
= nμTμν

LE [β, ζ, n] = nμTμν, nμtr
(

ρ̂LE ĵμ
)
= nμ jμLE[β, ζ, n] = nμ jμ. (4)

These equations indeed define a vector field β, which, in turn, can be used as a hydrodynamic frame,
β [8] or thermodynamic frame [11], by identifying the four-velocity with

u =
β√
β2

= Tβ, (5)

which somehow inverts the usual definition.
It is important to stress that the LEDO in Equation (3) is not stationary because operators are

generally time-dependent. The sufficient condition for stationarity is that β is a killing vector field,
and ζ a constant; in this case, the LEDO becomes the general global thermodynamic equilibrium
operator [12].

3. Nonequilibrium Density Operator Revisited

The true density operator in the Heisenberg representation must be stationary by definition,
whereas the LEDO is not. The solution of how to work it out (which is an amendment of Zubarev’s
original idea) is overly simple: if, at some initial time τ0, the system is known to be in local
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thermodynamic equilibrium, the actual, stationary, nonequilibrium density operator (NEDO) is ρ̂LE(τ0).
Therefore, the true mean values of quantum operators should be calculated as:

〈Ô〉 ≡ tr(ρ̂Ô) = tr(ρ̂LE(τ0)Ô)

One can rewrite ρ̂LE(τ0) in terms of the operators at present “time” τ by means of Gauss’ theorem,
taking into account that T̂ and ĵ are conserved. Defining

dΣμ = dΣ nμ,

and dΩ being the measure of a 4D region in spacetime, we have

−
∫

Σ(τ0)
dΣμ

(
T̂μνβν − ĵμζ

)
= −

∫
Σ(τ′)

dΣμ

(
T̂μνβν − ĵμζ

)
+

∫
Ω

dΩ
(

T̂μν∇μβν − ĵμ∇μζ
)

, (6)

where ∇ is the covariant derivative. Region Ω is the portion of spacetime enclosed by two
hypersurfaces Σ(τ0) and Σ(τ) and the timelike hypersurface at their boundaries, where the flux
of (T̂μνβν(x)− ĵμζ(x)) is supposed to vanish (see Figure 1). Consequently, the stationary NEDO reads:

ρ̂ =
1
Z

exp
[
−∫

Σ(τ0)
dΣμ

(
T̂μνβν − ĵμζ

)]
=

1
Z

exp
[
−∫

Σ(τ)dΣμ

(
T̂μνβν − ĵμζ

)
+
∫

Ω dΩ
(

T̂μν∇μβν − ĵμ∇μζ
)]

(7)

This expression is the generally covariant form of the one used in Reference [1] (Equation (2.9) therein),
with the only difference that factor exp[ε(t − τ)] does not appear in the second term. In Section 5, we
see that such a factor is not necessary to obtain the correct “Kubo” formulae.

Figure 1. Spacelike hypersurfaces Σ(τ), Σ(τ0) and their normal unit vector n defining local
thermodynamical equilibrium for a relativistic fluid in Minkwoski spacetime. At timelike boundary Σl ,
the flux is supposed to vanish.

The NEDO can be worked out perturbatively by identifying the two terms in the exponent of
Equation (7):

Â = −
∫

Σ(τ)
dΣμ

(
T̂μνβν − ĵμζ

)
(8)
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and
B̂ =

∫
Ω

dΩ
(

T̂μν∇μβν − ĵμ∇μζ
)

, (9)

and assuming that B̂ is small compared to Â; this happens if the system has small correlation length,
and if the gradients in Equation (9) are small, which is the hydrodynamic limit. We can then use identity

exp[Â + B̂] = exp[Â] +
∫ 1

0
dz exp[z(Â + B̂)]B̂ exp[−zÂ] exp[Â]

The expansion of exp[Â + B̂] can be iterated in the integrand, and one obtains an operator expansion
in B̂. Taking into account that

Z = tr(exp[Â + B̂])

at the lowest order in B̂ (linear response):

ρ̂ � ρ̂LE +
∫ 1

0
dz exp[zÂ]B̂ exp[−zÂ]ρ̂LE − 〈B̂〉LEρ̂LE (10)

which is the starting point to obtain the “Kubo” formulae.
It should be pointed out that the original Zubarev formulae were somewhat different [6]. We work

it out by using Cartesian coordinates and hyperplanes as hypersurfaces. Zubarev modified the
equation for the NEDO in Heisenberg representation

dρ̂

dt
= −ε(ρ̂ − ρ̂LE) (11)

ε > 0 being a real parameter whose limit ε → 0 is to be taken after the thermodynamic limit. The
solution of the above equation at the present time, which can be chosen to be t = 0, reads:

ρ̂(0) = ρ̂LE −
∫ 0

−∞
dt eεt dρ̂LE

dt
(12)

One can now use the general expression for the derivative of an exponential to calculate:

deÂ

dt
=

∫ 1

0
dz ezÂ dÂ

dt
e(1−z)Â

with Â given by Equation (8). This implies

dZLE

dt
=

d
dt

tr(eÂ) = tr

(
dÂ
dt

eÂ

)
= ZLE〈dÂ

dt
〉LE

so that
dρ̂LE

dt
=

∫ 1

0
dz ezÂ dÂ

dt
e−zÂρ̂LE − 〈dÂ

dt
〉LEρ̂LE (13)

If the surface boundary terms vanish, we have

dÂ
dt

= −
∫

d3x
∂

∂t
(T̂0νβν) = −

∫
d3x ∂μ(T̂μνβν) = −

∫
d3x T̂μν∂μβν (14)

By plugging Equations (13) and (14) into Equation (12), we have:

ρ̂(0)− ρ̂LE =
∫ 1

0
dz ezÂ

∫ 0

−∞
d4x eεt T̂μν∂μβνe−zÂ ρ̂LE −

∫ 0

−∞
d4x eεt〈T̂μν〉LE∂μβν ρ̂LE
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Taking Equation (9) into account, the above equation is basically linear Approximation (10) with an
extra factor exp(εt) in the integrand. In a sense, Zubarev Assumption (11) of a small source term in the
density operator evolution equation in the Heisenberg representation leads to the linear approximation
of the fully stationary density operator operator (7). However, it should be emphasized that such an
extra factor is not necessary. The Heisenberg equation for the true density operator is dρ̂/dt = 0 does
not need any modification for the derivation of the Kubo formulae or any other result depending on
local thermodynamic equilibrium, as we will show in Section 5. A fully relativistic viewpoint with the
application of the Gauss theorem makes the derivation of the NEDO expression (7) straightforward,
transparent and simple.

4. Entropy Production

A remarkable consequence of this approach is the derivation of a general equation for the entropy
production rate, which was reported in References [6,7]. Let us start with the assumption that S is an
integral of entropy current sμ:

S(τ) = −tr(ρ̂LE(τ) log ρ̂LE(τ)) =
∫

Σ(τ)
dΣμ sμ

On the other hand, entropy can be expanded by using Equation (3):

S(τ) = −tr(ρ̂LE(τ) log ρ̂LE(τ)) = log ZLE +
∫

Σ(τ)
dΣμ 〈T̂μν〉LEβν − ζ〈 ĵμ〉LE

= log ZLE +
∫

Σ(τ)
dΣμ (Tμνβν − ζ jμ) (15)

where we have used Constraints (2), taking into account that dΣμ = dΣ nμ.
The derivative with respect to τ can be computed by taking advantage of a general expression for

the variation of an integral between two infinitesimally closed hypersurfaces:

dS
dτ

=
∫

Σ(τ)
dΣ(n · U)∇ · s +

1
2

∫
∂Σ(τ)

dS̃μν(sμUν − sνUμ) (16)

where ∂Σ is the 2D boundary of Σ and Uμ = ∂xμ/∂τ; S̃ is the dual of the surface element. Now, assume
that the boundary term does not contribute, and calculate the same derivative by using Expression (15):

dS
dτ

=
d log ZLE

dτ
+

∫
Σ(τ)

dΣ(n · U)∇μ (Tμνβν − ζ jμ)

=
d log ZLE

dτ
+

∫
Σ(τ)

dΣ(n · U)Tμν∇μβν − jμ∇μζ (17)

where we have taken advantage of the conservation of the exact values Tμν and jμ. The remaining task
is to calculate the derivative of log ZLE, which can be done by using its definition

d log ZLE

dτ
=

1
ZLE

d
dτ

tr(exp[Â])

with Â in Equation (8). By using the same formula as the derivative of a τ-dependent integral in
Equation (17), and assuming that the boundary term vanishes:

1
ZLE

d
dτ tr(exp[Â]) = 1

ZLE
tr
(

dÂ
dτ exp[Â]

)
= 〈dÂ

dτ 〉LE = − ∫
Σ(τ) dΣ(n · U)

(
Tμν

LE∇μβν − jμ
LE∇μζ

)
(18)
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By plugging Equation (18) into Equation (17) and comparing with Equation (16), taking into account
that the equation should hold for any τ, we have

∇ · s = (Tμν − Tμν
LE)∇μβν − (jμ − jμLE)∇μζ, (19)

which was found in Reference [6], and tells us that the deviations of the conserved currents actual
values from those at the local thermodynamic equilibrium are responsible for entropy production.

5. Kubo Formulae

Let us now apply the expansion of the NEDO (10) to calculate the mean value of a local operator
Ô at present time t:

〈Ô(x)〉 � 〈Ô(x)〉LE − 〈Ô(x)〉LE〈B̂〉LE +
∫ 1

0
dz 〈Ô(x)ezÂ B̂e−zÂ〉LE (20)

where Â and B̂ are in Equations (8) and (9), respectively. To work out Formula (20), it is customary
to approximate the Â in the z integral on the right-hand side with the global equilibrium expression.
In a covariant fashion, this means making a zero-order approximation of the Taylor expansion of the
thermodynamic fields from point x, where operator Ô is to be calculated:

Â=−∫
Σ(τ)dΣμ

(
T̂μνβν − ĵμζ

)
�−βν(τ, σ)

∫
Σ(τ)dΣμ T̂μν+ζ(τ, σ)

∫
Σ(t)dΣμ ĵμ =−βν(x)P̂ν +ζ(x)Q̂ (21)

where P̂ is the total four-momentum and Q̂ the total charge. Hence,

ρ̂LE � 1
ZLE

exp[ Â ] � 1
Z

exp[−β(x) · P̂ + ζ(x)Q̂] ≡ ρ̂eq(x) (22)

that is, ρ̂eq(x) is the global equilibrium density operator having the same vector at point x and similarly
for ζ as constant inverse temperature four-vector.

Furthermore, we replace the integration region enclosed by the two LTE hypersurfaces at t and
t0 with the spacelike tangent hyperplanes at points x = (τ, σ) and x0 = (τ0, σ), respectively, whose
normal versor is n. This allows to carry out the integration over Minkowski spacetime by using
Cartesian coordinates, that is, time t marked by an observer moving with velocity n, and a vector
of coordinates x for the hyperplanes. These approximations make it possible to replace covariant
derivatives with usual partial derivatives in Cartesian coordinates:∫

Ω
dΩ

(
T̂μν∇μβν − ĵμ∇μζ

)
→

∫
TΩ

d4x
(

T̂μν∂μβν − ĵμ∂μζ
)

(23)

where TΩ is the region encompassed by the two hyperplanes. Thereby, and provided that n(x) = β̂(x),
that is, that the local equilibrium hypersurface is locally normal to the flow velocity defined by the
four-temperature vector [8], Formula (20) can be turned into a more manageable one (see Appendix A
for a summary of the derivation) involving the commutators of operator Ô, with the stress–energy
tensor and current operators

〈Ô(x)〉 − 〈Ô(x)〉LE � iT
∫ t

t0
d4x′

∫ t′
t0
dθ

(
〈[Ô(x), T̂μν(θ, x′)]〉β(x)∂μβν(x′)− 〈[Ô(x), ĵμ(θ, x′)]〉β(x)∂μζ(x′)

)
(24)

where T = 1/
√

β2, and subscript β(x) stands for averaging with the density operator in Equation (22).
It is important to stress the different time arguments for the operators and the thermodynamic fields in
Equation (24).

From Equation (24), it turns out that the deviation from LTE of the mean value of Ô at any time
depends on the whole history of thermodynamic fields β and ζ. However, the correlation length
between Ô(x) and both T̂(x′), ĵ(x′) is typically much smaller than the distance over which the gradients
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of β and ζ have significant variations. This statement amounts to assuming a separation between the
typical microscopic interaction scale and the macroscopic hydrodynamical scale. One would then be
tempted to take the gradients out of the integral in Equation (24). However, much care should be taken
in this because the derivation of Formula (24), more precisely nonequilibrium density operator (7),
required the vanishing of the flux of T̂μνβν − ĵμζ at the boundary timelike hypersurface. If one expands
the perturbation of the thermodynamic fields with respect to their equilibrium value, by definition
those at point x, that is,

δβ ≡ β − βeq = β − β(x) δζ ≡ ζ − ζeq = ζ − ζ(x)

in a Fourier series, the only relevant components in the hydrodynamical limit for Integral (24) are
those with very small frequency ω and wave vector k. At the same time, the vanishing of the flux can
be achieved by enforcing periodicity of the perturbations in x − x′. Taking these requirements into
account, perturbations only include smallest wave four-vector K:

δβν(x′) � Aν
1
2i
(eiK·(x′−x) − e−iK·(x′−x)) (25)

with Aν being a real constant, the amplitude of the smallest wave four-vector Fourier component. The
above form fulfils δβ(x′) = 0 as well as the request of vanishing flux, provided that Ki = π/Li, with Li
being the size of the compact domain in direction i. Hence, after the use of Equation (25), limit K → 0
is to be taken, which is equivalent to the limit of infinite volume. The gradient of Equation (25) (keep
in mind that, in Equation (24), ∂μ = ∂/∂x′μ) can then be written as:

∂μβν � Kμ Aν
1
2
(eiK·(x′−x) + e−iK·(x′−x)) = ∂μβν(x)Re e−iK·(x′−x) = Re ∂μβν(x)e−iK·(x′−x) (26)

Plugging Equation (26) in Equation (24), in limit K → 0, one obtains:

〈Ô(x)〉 − 〈Ô(x)〉LE � ∂μβν(x) lim
K→0

Im T
∫ t

t0

d4x′
∫ t′

t0

dθ 〈[T̂μν(θ, x′), Ô(x)]〉β(x)e
−iK·(x′−x)

−∂μζ(x) lim
K→0

Im T
∫ t

t0

d4x′
∫ t′

t0

dθ〈[ ĵμ(θ, x′), Ô(x)]〉β(x)e
−iK·(x′−x) (27)

As the macroscopic time scale t − t0 and the microscopic time scale inherent in the correlators are so
different, one can take limit t0 → −∞. If functions∫

d3x′ 〈[X̂(θ, x′), Ô(x)]〉β(x)

with X̂ = T̂, ĵ remain finite for θ → −∞, then Equation (27), after integration by parts in t′, can be
turned into:

〈Ô(x)〉 − 〈Ô(x)〉LE � ∂μβν(x)nα ∂

∂Kα

∣∣∣
n·K=0

lim
KT→0

Im iT
∫ t

−∞
d4x′ 〈[Ô(x), T̂μν(x′)]〉β(x)e

−iK·(x′−x)

−∂μζ(x)nα ∂

∂Kα

∣∣∣
n·K=0

Im iT
∫ t

−∞
d4x′ 〈[Ô(x), ĵμ(x′)]〉β(x)e

−iK·(x′−x) (28)

where KT is the projection of K orthogonal to n. This, as it becomes clear later, is the covariant form
of the same formula obtained in Reference [1], with the (important) addition of the current term. In
other words, it is the well-known formula expressing the transport coefficients as derivatives with
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respect to the frequency of the retarded correlators of stress–energy components, the so-called Kubo
formula. Defining:

(X̂, Ŷ) ≡ nα ∂

∂Kα

∣∣∣
n·k=0

lim
kT→0

Im iT
∫ t

−∞
d4x′ 〈[X̂(x), Ŷ(x′)]〉β(x)e

−iK·(x′−x)

= nα ∂

∂Kα

∣∣∣
n·k=0

lim
kT→0

Im iT
∫ 0

−∞
d4x′ 〈[X̂(0), Ŷ(x′)]〉β(x)e

−iK·x′ , (29)

which is bilinear in X̂ and Ŷ, one can write the deviations of the stress–energy tensor from its LTE
value as:

〈T̂μν(x)〉 − 〈T̂μν(x)〉LE ≡ δTμν(x) � (T̂μν, T̂ρσ) ∂ρβσ(x)− (T̂μν, ĵρ) ∂ρζ(x). (30)

Similarly, the deviation of the current with respect to its value at LTE reads:

〈 ĵμ(x)〉 − 〈 ĵμ(x)〉LE ≡ δjμ(x) = ( ĵμ, T̂ρσ) ∂ρβσ(x)− ( ĵμ, ĵρ) ∂ρζ(x). (31)

The next step is to decompose the correlators and the gradients of the relativistic fields into
irreducible components under rotations, a procedure leading to the identification of familiar transport
coefficients: shear and bulk viscosities, thermal conductivities, etc. We are not going to show how
this is accomplished, but we would just like to point out, for the purpose of identifying the transport
coefficients, that the gradients of β can be turned into gradients of velocity field u by using Equation (5).
Having defined

Δμν = gμν − uμuν

and
D = u · ∂ ∇μ

T = ∂μ − uμD,

the transverse gradients of velocity field ∇μ
Tuν can be written as follows:

∇Tμuν = ∇Tμ
βν√

β2
= −1

2
βν(β2)−3/2∇Tμβ2 +

1√
β2

∇Tμβν

=
1√
β2

(
− βνβρ

β2 ∇Tμβρ +∇Tμβν

)
=

1√
β2

Δρν∇Tμβρ, (32)

where we have used Relation (5). Thereby, the Navier–Stokes shear term can be fully expressed in
terms of inverse temperature four-vector β and its gradients. The same transformation can be proven
for the other terms [8].

6. Outlook

The nonequilibrium statistical operator method introduced by D. Zubarev more than 50 years ago
has been a very important achievement in statistical physics and has not received deserved attention.
It can be used in all physical problems where a local thermodynamic equilibrium is reached, and it can
be quite straightforwardly extended to relativistic statistical mechanics. In this work, we presented
an amendment of its original formulation that reproduces known results and makes its application
easier to relativistic hydrodynamics problems. Since it is a fully fledged quantum framework, this
approach is especially suitable for the calculation of quantum effects. Among various applications,
recent evidence of nonvanishing polarization in quark–gluon plasma [13] makes it the ideal tool to
deal with this newly found phenomenon.
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Appendix A. Supplementary Notes on the Derivation of the Kubo Formula

Working out Equation (20) requires Equations (8) and (9). By also using Approximations (21)
and (23), Equation (20) turns into:

〈Ô(x)〉 − 〈Ô(x)〉LE � −
∫ t

t0

dt′
∫

d3x′ 〈Ô(x)〉LE

(
〈T̂μν(t′, x′)〉LE∂μβν − 〈 ĵμ(t′, x′)〉LE∂μζ

)
+

∫ 1

0
dz

∫ t

t0

dt′
∫

d3x′
(
〈Ô(x)e−z(β(x)·P̂−ζ(x)Q̂)T̂μν(t′, x′)ez(β(x)·P̂−ζ(x)Q̂)〉LE∂μβν

− 〈Ô(x)e−z(β(x)·P̂−ζ(x)Q̂) ĵμ(t′, x′)êz(β(x)·P̂−ζ(x)Q̂)〉LE∂μζ
)

(A1)

With [Q̂, T̂(x)] = 0 and [Q̂, ĵ(x)] = 0, one can also write

e−z(β(x)·P−ζ(x)Q̂)X̂(t′, x′) ez(β(x)·P−ζ(x)Q̂) = X̂(t′ + iz
√

β2, x′)

with X̂ = T̂, ĵ, where, in the last expression, we tacitly assumed that n = β̂, i.e., that the local
equilibrium hypersurface coincides, locally around x, with the hypersurface normal to β [8]. Hence,
the last term in the right-hand side of Equation (A1) can be rewritten as:

∫ 1

0
dz

∫ t

t0

dt′
∫

d3x′
(
〈Ô(x)T̂μν(t′ + iz

√
β2, x′)〉LE∂μβν − 〈Ô(x) ĵμ(t′ + iz

√
β2, x′)〉LE∂μζ

)
provided that n = β̂, that is, if the local equilibrium hypersurface locally coincides with the
hypersurface normal to β [8]. Operator X̂ = T̂, ĵ, can be rewritten as

X̂(t′ + iz
√

β2, x′) = X̂(t0 + iz
√

β2, x′) +
∫ t′

t0

dθ
∂

∂θ
X̂(θ + iz

√
β2, x′)

= X̂(t0 + iz
√

β2, x′) +
∫ t′

t0

dθ
1

i
√

β2

∂

∂z
X̂(θ + iz

√
β2, x′) (A2)

and integrating in z:

∫ 1

0
dz〈Ô(x)X̂(t′ + iz

√
β2, x′)〉LE =

∫ 1

0
dz 〈Ô(x)X̂(t0 + iz

√
β2, x′)〉LE

+
∫ t′

t0

dθ
1

i
√

β2

(
〈Ô(x)X̂(θ + i

√
β2, x′)〉LE − 〈Ô(x)X̂(θ, x′)〉LE

)
. (A3)

Now, we use the same approximation of Â as in Equation (21), and LTE mean values are calculated at
equilibrium, with density Operator (22). Thus,

〈Ô(x)X̂(θ + i
√

β2, x′)〉LE − 〈Ô(x)X̂(θ, x′)〉LE � 〈Ô(x)X̂(θ + i
√

β2, x′)〉β(x) − 〈Ô(x)X̂(θ, x′)〉β(x)

= 〈Ô(x)e−β(x)·P̂+ζ(x)Q̂X̂(θ, x′)eβ(x)·P̂−ζ(x)Q̂〉β(x) − 〈Ô(x)X̂(θ, x′)〉β(x)

= 〈X̂(θ, x′)Ô(x)〉β(x) − 〈Ô(x)X̂(θ, x′)〉β(x) = 〈[X̂(θ, x′), Ô(x)]〉β(x)

Substitution into Equation (A3) yields:

∫ 1
0 dz〈Ô(x)X̂(t + iz

√
β2, x′)〉LE � ∫ 1

0 dz 〈Ô(x)X̂(t0 + iz
√

β2, x′)〉β(x) +
1

i
√

β2

∫ t′
t0

dθ 〈[X̂(θ, x′), Ô(x)]〉β(x). (A4)
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Using this result for X̂ = T̂, ĵ allows to turn Equation (A1) into:

〈Ô(x)〉 − 〈Ô(x)〉LE � ∫ t
t0

dt′
∫

d3x′
∫ 1

0 dz
[(

〈Ô(x)T̂μν(t0 + iz
√

β2, x′)〉β(x) − 〈Ô(x)〉β(x)〈T̂μν(t′, x′)〉β(x)

)
∂μβν(

〈Ô(x) ĵμ(t0 + iz
√

β2, x′)〉β(x) − 〈Ô(x)〉β(x)〈 ĵμ(t′, x′)〉β(x)

)
∂μζ

]
+ iT

∫ t
t0

dt′
∫ t′

t0
dθ

∫
d3x′

(
〈[Ô(x), T̂μν(θ, x′)]〉β(x)∂μβν(x′)− 〈[Ô(x), ĵμ(θ, x′)]〉β(x)∂μζ(x′)

)
.

(A5)

In the paper by A. Hosoya et al. [1], in limit t0 → −∞, the first of the two integral terms is
shown to be vanishing, based on the idea that limt0→−∞ X̂(t0 + iz

√
β2, x′) � limt0→−∞ X̂(t0, x′) and

that correlation between operator Ô at time t and X̂ at an infinitely remote past is 0, that is,

lim
t0→−∞

〈Ô(x)T̂μν(t0, x′)〉β(x) � lim
t0→−∞

〈Ô(x)〉β(x)〈T̂μν(t0, x′)〉β(x) = 〈Ô(x)〉β(x)〈T̂μν(t′, x′)〉β(x)

where, in the last equality, we took advantage of the fact that the mean value of any operator is constant
at equilibrium. Therefore, the first integral on the right-hand side of Equation (A5) vanishes, and we
are left only with the second integration, that is, Equation (24).

Let us now define the λ-dependent partition function:

ZLE(λ) = tr
(

exp
[
−λdΣ nμ

(
T̂μνβν − ĵμζ

)])
If we take the derivative with regard to λ, we have

∂

∂λ
log ZLE(λ) =

∫
dΣ nμ

(
〈T̂μν〉LE(λ)βν − ζ〈 ĵμ〉LE(λ)

)
whence

log ZLE(1)− log ZLE(λ0) =
∫ 1

λ0

dλ
∫

dΣ nμ

(
〈T̂μν〉LE(λ)βν − ζ〈 ĵμ〉LE(λ)

)
If we find λ0, such that log ZLE(λ0) = 0, which happens under some reasonable assumptions λ0 = +∞,
and inverting the order of integrations:

log ZLE =
∫

dΣ nμ

∫ 1

λ0

dλ
(
〈T̂μν〉LE(λ)βν − ζ〈 ĵμ〉LE(λ)

)
≡

∫
dΣμφμ, (A6)

which shows that log ZLE is extensive, i.e., it can be written as an integral over the 3D hypersurface
of a current, the thermodynamic potential current. At the same time, the above equation provides a
formula to calculate φμ as an integral in λ.
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Abstract: A derivation of anomaly-induced transport phenomena—the chiral magnetic/vortical
effect—is revisited based on the imaginary-time formalism of quantum field theory. Considering
the simplest anomalous system composed of a single Weyl fermion, we provide two derivations:
perturbative (one-loop) evaluation of the anomalous transport coefficient, and the anomaly matching
for the local thermodynamic functional.
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1. Introduction

Quantum anomaly is one of the most fundamental properties of quantum systems, which keeps
staying in the low-energy regime once it appears in an underlying UV theory [1,2]. As a
consequence, the low-energy dynamics is strongly influenced by the existence of the quantum anomaly.
A well-known example is the chiral anomaly in QCD, which gives rise to the Wess-Zumino term in the
low-energy effective theory of QCD (the chiral perturbation theory) describing the neutral pion decay
into two photons (π0 → γγ) [3–5]. The notion of anomaly can be generalized to discrete symmetries
of systems such as time-reversal symmetry. The anomaly matching argument [6,7] is actively applied
to restrict the possible nontrivial ground states (See Refs. [8–19] for recent applications).

It has been recently noticed that quantum anomaly also appears even in the effective theory
describing the real-time dynamics of nonequilibrium systems, e.g., hydrodynamics and the kinetic
theory, and it affects the macroscopic transport properties in the hydrodynamic regime [20–61] (See also
pioneering works by Vilenkin [62,63]). For example, the simplest anomalous system composed of a
single right-handed Weyl fermion coupled to a background electromagnetic field shows interesting
transport . When this system is put into an environment with a temperature T and a chemical potential
μR, the chiral anomaly induces the dissipationless current along the magnetic field Bi given by

〈 Ĵi
R〉ano = σBBi + σωωi with σB =

μR

4π2 , σω =
μ2

R
4π2 +

T2

12
, (1)

where 〈 Ĵμ
R〉ano denotes the anomalous part of the expectation value of the right-handed current, and σB

(σω) is regarded as the chiral magnetic (vortical) conductivity. The first and second terms in Equation (1)
are called the chiral magnetic effect (CME) and chiral vortical effect (CVE), respectively (See Figure 1).
It is worth pointing out that even in the weak coupling limit, σB and σω do not diverge unlike the
usual conductivity because their existence is protected by the quantum anomaly.

These anomalous transports are believed to be universally present when the system under
consideration contains the chiral anomaly. For example, they are expected to take place in the
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quark-gluon plasma created in high-energy heavy-ion collisions [64–74], astrophysical plasma
including neutrino process [75–80], and Weyl semimetals realized in condensed matter physics [81–90].
While we have not observed clear experimental signal of the anomaly-induced transport in the first
two systems, it has been recently reported that the experimental signals of the CME are achieved in
the Weyl semimetal [91–93].

(a) Chiral Magnetic Effect (b) Chiral Vortical Effect

Figure 1. The schematic picture of the anomaly-induced transport phenomena: (a) Chiral magnetic
effect. (b) Chiral vortical effect.

The theoretical derivation of the anomaly-induced transport phenomena has been remarkably
developed in the past ten years, e.g., the direct field theoretical evaluation [20], the fluid/gravity
correspondence [21–23,25], the phenomenological entropy-current analysis [24], the linear response
theory [26,31,34,50,58], the kinetic theory [27,28,33,36,37,41,42,44,48,49,51–53,55,57,59–61], and the
hydrostatic partition function method and extensions [29,30,32,35,38–40,43,45,46,54]. In this paper,
we review the derivation of the anomaly-induced transport phenomena from the statistical mechanical
viewpoint with the help of the imaginary-time (Matsubara) formalism of quantum field theory [94–97].
In particular, we demonstrate two derivations, which are basically on the same line as the last two
derivations raised above. For that purpose, we consider the simplest anomalous system composed of
a single Weyl fermion coupled to an external electromagnetic field. Although most results given in
this paper has been already known, we give the clear rigorous justification of the hydrostatic partition
function method for the anomalous system based on the statistical ensemble describing systems
in general local thermal equilibrium. This shows that the hydrostatic partition function method
is indeed not restricted to the real hydrostatic situation, but applicable to systems in general local
thermal equilibrium.

The paper is organized as follows: In Section 2, we review the basic setup and formulation
including the Zubarev’s nonequilibrium statistical operator methods [98–100] (See also Refs. [101–104]
for a recent sophisticated revival of a similar idea). In Section 3, we then provide the perturbative
evaluation of the chiral magnetic/vortical conductivity with the help of the (equilibrium) linear
response theory, from which we can read off the constitutive relation for the anomalous current.
In Section 4, we give another nonperturbative derivation based on the anomaly matching for the local
thermodynamic functional. Section 5 is devoted to the summary and discussion.

2. Preliminaries for the Anomaly-Induced Transport Phenomena

In this section, we briefly summarize the formulation to derive the anomaly-induced transport
phenomena based on the imaginary-time formalism [98–104].

2.1. Anomalous (Non-)Conservation Laws for a Single Weyl Fermion

Let us consider the system consisting of a right-handed Weyl fermions ξ under an external U(1)
gauge field Aμ in a (3 + 1) dimensional curved spacetime, whose action has the form:

S [ξ, ξ†; Aμ, e a
μ ] =

∫
d4xeL with L ≡ i

2
ξ†

(
e μ

a σa−→D μ −←−
D μσae μ

a

)
ξ, e ≡ det(e a

μ ), (2)
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where we introduced σa = (1, σi) with the Pauli matrices σi (i = 1, 2, 3). Here e a
μ (e

μ
a) denotes

(inverse) vierbein satisfying gμν = e a
μ e b

ν ηab, ηab = e a
μ e b

ν gμν with the spacetime curved metric gμν and
Minkowski metric ηab = diag(−1,+1,+1,+1). The left and right covariant derivatives are defined as

−→
D μξ ≡ ∂μξ − i(Aμ + Aμ)ξ, ξ†←−D μ ≡ ∂μξ† + iξ†(Aμ + Aμ) with Aμ ≡ 1

2
ω ab

μ Σab, (3)

where we introduced Σab ≡ i(σaσ̄b − σbσ̄a)/4 with σ̄a ≡ (−1, σi), which satisfies σaσ̄b + σbσ̄a = 2ηab.
Furthermore, employing the torsionless condition, we can express the spin connection ω ab

μ = −ω ba
μ as

ω ab
μ ≡ 1

2
eaνebρ(Cνρμ − Cρνμ − Cμνρ) with Cμνρ ≡ e c

μ (∂νeρc − ∂ρeνc). (4)

Although the classical action (2) is invariant under a set of infinitesimal diffeomorphisms, local
Lorentz, and U(1) gauge transformations with parameters χ ≡ {ζμ, αab, θ}:⎧⎪⎪⎪⎨⎪⎪⎪⎩

δχe a
μ = ζν∇νe a

μ + e a
ν ∇μζν + αa

be b
μ ,

δχ Aμ = ζν∇ν Aμ + Aν∇μζν + ∂μθ,

δχξ = ζν∂νξ − i
2

αabΣabξ + iθξ,

(5)

we encounter with the quantum anomaly attached to the Weyl fermion. As a consequence,
the anomalous Ward-Takahashi identities results in the following operator identities corresponding to
the (non-)conservation laws:⎧⎨⎩∇μT̂μ

ν = Fνμ Ĵμ,

∇μ Ĵμ = −1
8

CεμνρσFμνFρσ − λεμνρσRα
βμνRβ

αρσ,
(6)

where we introduced the energy-momentum tensor T̂μ
ν, U(1) covariant charge current Ĵμ defined as

T̂μν =
1
e

δS
δea

μ
eν

a = − i
2

ξ†(σμ−→Dν −←−
Dνσμ)ξ +

1
4

Dρ(η
†{σμ, Σνρ}η) + Lgμν,

Ĵμ =
1
e

δS
δea

μ
= ξ†σμξ.

(7)

The Lorentz invariance implies that the antisymmetric part of the energy tensor vanishes:
Tμν + Tνμ = 0; thus, Tμν can be regarded as symmetric one. We also defined a field strength tensor
for the background electromagnetic field Fμν ≡ ∂μ Aν − ∂ν Aμ, and the Riemann curvature tensor Rμ

νρσ

with the totally antisymmetric tensor εμνρσ satisfying ε0123 = 1/e. For notational simplicity, we drop
the subscript R for the U(1) current. Here C = 1/(4π2) and λ = 1/(768π2) denote the anomaly
coefficients coming from gauge and gravitational sectors, respectively. Since λεμνρσRα

βμνRβ
αρσ contains

four derivatives, it does not contribute to the first-order hydrodynamics that we are interested in.
Therefore, we will omit the gravitational part in the following discussion. Please note that while
the gauge and diffeomorphism invariance provides two (non-)conservation laws, the local Lorentz
invariance results in the symmetric property of the energy-momentum tensor operator. It is worth
emphasizing that Ĵμ in Equation (6) is the covariant current which can be related to the consistent
current Ĵμ

con by

Ĵμ = Ĵμ
con − 1

6
Cεμνρσ AνFρσ. (8)

An analogue of this relation in local thermal equilibrium will appear in Section 4, and it plays an
important role to see how the anomaly matching is realized for the local thermodynamic functional.
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2.2. Zubarev’s Formula: Decomposing Dissipative and Nondissipative Transport

We then briefly review the Zubarev’s nonequilibrium statistical operator method from the modern
viewpoint (See e.g., Refs. [98–104] for recent discussions) and specify from where the anomaly-induced
transport arises. Assuming that the system is initially in local thermal equilibrium, the Zubarev’s
formula provides us the expectation values of conserved current operators Ĵ μ

a ≡ {T̂μ
ν, Ĵμ} over the

initial density operator in the following compact form:

〈Ĵ μ
a(t, x)〉 = 〈Ĵ μ

a(t, x)〉LG
t + Lμν

ab (t, x)∇νλb(t, x) + O
(
(∇λ)2), (9)

where we introduced the intensive local thermodynamic parameters λa ≡ {βμ, ν}, which are related to
the local fluid temperature T = 1/β, four-velocity uμ, and the chemical potential μ through βμ ≡ βuμ,
ν ≡ βμ. We also defined the average over the local Gibbs distribution ρ̂LG[λ; t], which describes
systems in local thermal equilibrium, for an arbitrary operator Ô as

〈Ô〉LG
t ≡ Tr

(
ρ̂LG[λ; t]Ô)

with ρ̂LG[λ; t] ≡ exp
[−Ŝ[λ; t]

]
, Ŝ[λ; t] = K̂[λ; t] + Ψ[λ; t], (10)

where the entropy operator Ŝ[λ; t] is composed of the part including operators Ĵ μ
a and normalization

part for the density operator:

K̂[λ; t] ≡ −
∫

dΣtμ

[
βν(t, x)T̂μ

ν(t, x) + ν(t, x) Ĵμ(t, x)
]

, (11)

Ψ[λ; t] ≡ log Tr exp
[−K̂[λ; t]

]
. (12)

We here employed the fully covariant notion by introducing the constant time (spacelike)
hypersurface defined by its perpendicular surface vector dΣtμ ≡ −d3x

√
γnμ. Choosing a certain

globally defined time-coordinate function t̄(x), the unit normal vector nμ can be expressed as

nμ(x) = −N(x)∂μ t̄(x) with N(x) ≡ (−∂μ t̄(x)∂μ t̄(x)
)−1/2 , (13)

where N(x) is a so-called Lapse function. In addition, introducing the spatial coordinate on the
x̄, we have the induced metric γμν = gμν + nμnν whose spatial part gives γ ≡ detγī j̄ (See e.g.,
Refs. [102,103] for a detailed geometric setup). The introduction of the covariantized notion looks a
little bit complicated, but one can always take the flat limit by setting

(
t̄(x), x̄(x)

)
= (t, x), which results

in e. g. dΣtμ|flat = d3xδ0
μ. Although it might be desirable to distinguish two coordinate systems defined

by (t, x) and (t̄, x̄), we will basically omit overline for the later one for notational simplicity since only
(t̄, x̄)-coordinate system is mainly used. The normalization part Ψ[λ; t] is the local thermodynamic
functional called the Massieu-Planck functional, and plays a central role in Section 4.

The crucial point here is that by construction, we can identify the first term in the right-hand-side
of Equation (9) as the nondissipative transport taking place in locally thermalized system, whereas the
second term as the dissipative correction coming from the deviation from local thermal equilibrium.
In other words, the formula (9) gives a way to decompose the non-dissipative and dissipative
transport at least in the leading-order derivative expansion. The second term is proportional to
the (local) thermodynamic forces ∇νλb, and coefficients in front of them are indeed specified as
transport coefficients such as the bulk/shear viscosity, and conductivity. They are expressed by the
two-point (Kubo) correlation function, which is nothing but the Green-Kubo formula for the transport
coefficient [98–104]. On the other hand, nondissipative part is often assumed to be simply given
by the usual constitutive relation for a perfect fluid. This is the case for parity-invariant systems,
since the nondissipative derivative corrections are accompanied with higher-order derivatives for
parity-invariant systems. Nevertheless, if we consider a system without parity symmetry—like the
Weyl fermion system given in Equation (2)—we generally encounter with first-order nondissipative

58



Particles 2019, 2

derivative corrections in 〈Ĵ μ
a(t, x)〉LG

t . This is the origin of the anomaly-induced transport, and we
will focus on how we can evaluate 〈Ĵ μ

a(t, x)〉LG
t in the remaining part of this paper.

Before closing this section, we put a short comment on the absence of the anomalous contribution
to the entropy production. To see this, using the conservation laws (6), we express the entropy
production operator Σ̂[t, t0; λ] ≡ Ŝ[λ; t]− Ŝ[λ; t0] as

Σ̂[t, t0; λ] =
∫ t

t0

d4xe∇μ ŝμ with ∇μ ŝμ ≡ −(∇νβμ)δT̂μ
ν − (∇μν + βνFμν)δ Ĵμ, (14)

where we defined the local entropy production rate ∇μ ŝμ with δÔ(t) ≡ Ô(t)− 〈Ô(t)〉LG
t . We thus

find that the local equilibrium part of the constitutive relation 〈Ĵ μ
a〉LG

t which also contains the
anomaly-induced transport as first-order derivative corrections, does not contribute to the local entropy
production. This is perfectly consistent with the phenomenological derivation of the anomaly-induced
transport based on the entropy-current analysis given in Ref. [24].

3. Perturbative Evaluation of Anomalous Transport Coefficients

In this section, we provide a simple perturbative derivation of the anomaly-induced transport
given in Equation (1), and calculate anomalous transport coefficients σB and σω at the one-loop level.

3.1. Derivative Expansion of the Local Gibbs Distribution

First of all, we note that the local equilibrium part of the constitutive relation, or 〈Ĵ μ
a(t, x)〉LG

t ,
is a functional of local thermodynamic parameters λa = {βμ, ν} and external fields j ≡ {Aμ, e a

μ } at
a fixed constant time t since the local Gibbs distribution ρ̂LG[λ; t] depends on the configuration of
them. Thus, 〈Ĵ μ

a(t, x)〉LG
t inherently contains the derivative correction coming from the local Gibbs

distribution itself.
Suppose that our system is described by the local Gibbs distribution slightly deviated from the

global equilibrium (Gibbs) distribution only with the magnetic field and fluid vorticity. We also turn
off the external fields and take the flat limit. In that situation, approximating the fluid velocity and the
magnetic field as ⎧⎨⎩uj(x) = (xi − xi

0)∂iuj|x=x0 = (xi − xi
0)εijkωk,

Aj(x) = (xi − xi
0)∂i Aj|x=x0 =

1
2
(xi − xi

0)εijkBk,
(15)

we can expand the local Gibbs distribution on the top of the global Gibbs distribution as

ρ̂LG[λ; t] = 1
Z e−β(Ĥ−μN̂)

[
1 + Tτ

∫ β
0 dτΔŜ(t − iτ)

]
with ΔŜ ≡ 1

2

∫
d3xεijk(xi − xi

0)
(

Ĵ jBk + 2T̂0jωk
)

, (16)

where we defined Ô(t − iτ) ≡ eτ(Ĥ−μN̂)Ô(t)e−τ(Ĥ−μN̂). Here Z ≡ Tr e−β(Ĥ−μN̂) denotes the partition
function for the globally thermalized system, and we use 〈Ô〉eq ≡ Tr(e−β(Ĥ−μN̂)Ô)/Z. Then, noting
that the averaged current in global thermal equilibrium vanishes 〈 Ĵi(t, x0)〉eq = 0, we can evaluate
〈 Ĵi(t, x0)〉LG

t as

〈 Ĵi(t, x0)〉LG
t =

1
2

∫ β

0
dτ

∫
d3xεjkl(xj − xj

0)

×
[
〈 Ĵk(t − iτ, x) Ĵi(t, x0)〉eqBl(t, x0) + 2〈T̂0k(t − iτ, x) Ĵi(t, x0)〉eqωl(t, x0)

]
=

i
2

εjkl

[
∂qj ΔJk Ji (ωn, q)

∣∣
ωn=0, q=0

Bl(t, x0) + 2∂qj ΔT0k Ji (ωn, q)
∣∣
ωn=0, q=0

ωl(t, x0)
]

,

(17)

where we performed the Fourier transformation to proceed the second line. It is now clear that
we only need to evaluate two-point imaginary-time—not real-time—correlation functions, namely
〈 Ĵk(t − iτ, x) Ĵi(t, x0)〉eq and 〈T̂0k(t − iτ, x) Ĵi(t, x0)〉eq, or their low-frequency and wave-number in the
Fourier space.
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3.2. One-loop Evaluation of Anomalous Transport Coefficients

We then evaluate the anomalous transport coefficients with the help of the Matsubara formalism.
Since we expand the local Gibbs distribution on the top of global Gibbs distribution, the Euclidean
action SE[ξ, ξ†, μ] for the right-handed Weyl fermion is simply given by

SE[ξ, ξ†] = −∑
P

ξ†
a(P)

(
G−1

0 (P̃)
)

ab
ξb(P) with G−1

0 (P) ≡ σμPμ, G0(P) =
σ̄μPμ

P2 , (18)

where a, b(= 1, 2) denote the spinor indices, and G0(P) the free propagator for the Weyl fermion.
We also defined P̃μ ≡ (−iωn − μ, p) with the Matsubara frequency ωn ≡ (2n + 1)πT and chemical
potential μ. As usual, we introduced the Fourier transformation

ξ(τ, x) = T ∑
n

∫ d3 p
(2π)3 e−iωnτ+ip·xξ(ωn, p), (19)

with the temperature T ≡ 1/β. Please note that the argument of the propagator in Equation (18) is not
P but P̃, and, thus, it represents the propagator fully dressed by the chemical potential μ. By using
these, we need to evaluate the following diagrams:

P

Q Q

Aμ

P +Q

Aν

and

P +Q
Q Q

Aα δgμν

P

, (20)

where we will take the long-wave-length limit Q ∼ 0.
First, let us evaluate the two-point current-current correlation function given by

P

Q Q

Aμ

P +Q

Aν

= −T0 ∑
n

∫ d3 p
(2π)3 tr

(
(Qσ + P̃σ)P̃ρσ̄ρσμσ̄σσν

(Q + P̃)2P̃2

)
, (21)

where we used the free propagator defined in Equation (18). Here “tr” denotes the trace over the
spinor indices. With the help of the trace formula for the Pauli matrices

tr σ̄μσνσ̄ασβ = −2iεμναβ + 2ημνηαβ − 2ημαηνβ + 2ημβηνα, (22)

we can decompose the two-point functions into the antisymmetric part and other parts. Since we
are interested in the anomalous term which results from the antisymmetric part, we only focus on
that part:

P

Q Q

Aμ

P +Q

Aν

= − iμ
4π2 ε0μνρQρ + (symmetric terms) + O(Q2), (23)
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Next, let us evaluate the two-point momentum-current correlation function. Then, the same
calculus brings about the following result

P +Q
Q Q

Aα δgμν

P

= − 1
4 T0 ∑n

∫ d3 p
(2π)3 (2P̃γ + Qγ)(δ

μ
β δν

γ + δν
βδ

μ
γ) tr

(
(Qσ+P̃σ)P̃ρσ̄ρσβσ̄σσα

(Q+P̃)2 P̃2

)

= iQρ

(
ην0ερμ0α + ημ0ερν0α + δν

j ερμjα + δ
μ
j ερνjα

)(
μ2

16π2 +
T2

0
48

)
+(symmetric terms) +O(Q2).

Putting these results all together, Equation (17) results in

〈 Ĵi(t, x0)〉LG
t =

μ

4π2 Bi(t, x0) +

(
μ2

4π2 +
T2

12

)
ωi(t, x0), (24)

which is nothing but Equation (1). To summarize the above analysis, we have derived the
anomaly-induced transport—chiral magnetic/vortical effect—for the Weyl fermion by expanding
the local Gibbs distribution. This clearly shows that information on the anomaly-induced transport
is fully contained in 〈Ĵ μ

a(t, x)〉LG
t . Although we performed the direct expansion of the local Gibbs

distribution in this section, there is another way to systematically evaluate 〈Ĵ μ
a(t, x)〉LG

t as we will see
in the next section.

4. Anomaly Matching for Local Thermodynamic Functional

In the previous section, we have explicitly shown that the local equilibrium part of constitutive
relations 〈Ĵ μ

a(t, x)〉LG
t indeed contains the information on the anomaly-induced transport. Although it

is the one-loop perturbative calculation, we expect the result, or the value of anomalous transport
coefficients, is protected by the underlying chiral anomaly, and remain the same even if we take into
account the effect of interactions nonperturbatively. In this section, we provide another way to see
the anomaly-induced transport putting the emphasis on the nonperturbative aspect of the anomaly.
The key quantity is the local thermodynamic functional Ψ[λ, j; t] already defined in Equation (12).

4.1. Basic Properties of Local Thermodynamic Functional

We here summarize basic properties of the Massieu-Planck functional Ψ[λ, j; t]: the exact
path-integral expression of Ψ[λ, j; t] and resulting symmetry properties together with the
variational formula.

4.1.1. Path-Integral Formula and Resulting Symmetry

We will first summarize the key result for the Massieu-Planck functional (See Refs. [102,103] for
the derivation). Using the energy-momentum tensor operator T̂μ

ν and covariant current operator Ĵμ

resulting from (2), we can express the Massieu-Planck functional by the imaginary-time path-integral
in the same way with the usual Matsubara formalism for global thermal equilibrium. After a little bit
tedious calculation (See Ref. [103]), we eventually obtain

Ψ[λ, j; t] =
∫

DξDξ† exp
(
S̃ [ξ, ξ†; Ã, ẽ]

)
, (25)

with the manifestly covariant action S̃ [ξ, ξ†; Ãμ, ẽ a
μ ] given by

S̃ [ξ, ξ†; Ãμ, ẽ a
μ ] =

∫ β0

0
dτd3xẽ

[
i
2

ξ†
(

ẽ μ
a σa

−→̃
D μ −

←−̃
D μσaẽ μ

a

)
ξ

]
with ẽ ≡ det(ẽ a

μ ). (26)
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Here we introduced the thermal (inverse) vierbein ẽ a
μ (ẽ μ

a ) and the external U(1) gauge field Ãμ

in thermally emergent curved spacetime as

ẽ a
0 = eσua, ẽ a

i = e a
i and Ã0 = eσμ, Ãi = Ai, (27)

where recalling βμ(x) ≡ β(x)uμ(x) and ν(x) = β(x)μ(x), we used

eσ(x) ≡ β(x)/β0, μ(x) ≡ ν(x)/β(x), β(x) ≡
√
−gμν(x)βμ(x)βν(x), (28)

with a constant reference inverse temperature β0. We also introduced ẽ ≡ det ẽ a
μ and the covariant

derivative in thermal spacetime as⎧⎪⎨⎪⎩
−→̃
D μξ ≡ ∂̃μξ − i(Ãμ + Ãμ)ξ,

ξ†
←−̃
D μ ≡ ∂̃μξ† + iξ†(Ãμ + Ãμ),

with ∂̃μ ≡ (i∂τ , ∂i), Ãμ ≡ 1
2

ω̃ ab
μ Σab, (29)

where the thermal spin connection is expressed by the thermal vierbein ẽ a
μ through the same relation

in the original spacetime (4).
As is shown in these, we can say that the Massieu-Planck functional is expressed as the

path-integral in the presence of the emergent background curved spacetime and U(1) gauge field.
Figure 2 shows a schematic picture to compare the imaginary-time formalism in global and local
thermal equilibrium.

(a) Global thermal equilibrium (b) Local thermal equilibrium

Figure 2. A comparison of the imaginary-time formalism (a) in global thermal equilibrium and (b) in
local thermal equilibrium. Effects of inhomogeneous local thermodynamic parameters such as the
local temperature is completely captured in terms of the emergent curved geometry. The boundary
condition ± corresponds to the boson or the fermion.

Please note that this background structure is completely determined by configurations of the local
thermodynamic variables λa (and external fields j) on the constant time hypersurface in the original
spacetime. The crucial point here is that all these quantities do not depend on the imaginary-time
coordinate τ, which leads to the Kaluza-Klein gauge symmetry. To see this clearly, we express the line
element ds̃2 ≡ ẽ a

μ ẽ b
ν ηabdx̃μ ⊗ dx̃ν and U(1) gauge connection Ã ≡ Ãμdx̃μ in thermal spacetime as

ds̃2 = −e2σ(dt̃ + aidxi)2 + γ′
ijdxidxj, (30)

Ã = Ã0(dt̃ + aidxi) + Ã′
idxi, (31)

with dt̃ ≡ −idτ. Here we defined the following quantities

ai ≡ −e−σui, γ′
ij ≡ γij+e2σaiaj, Ã′

i ≡= Ãi − Ã0ai. (32)
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Then, in addition to the spatial diffeomorphism invariance—invariance under spatial coordinate
transformation x → x′(x)— we now see the background (30) and (31) is invariant under the
transformation given by ⎧⎪⎪⎨⎪⎪⎩

t̃ → t̃ + χ(x),

x → x,

ai(x) → ai(x)− ∂iχ(x).

(33)

This is nothing but Kaluza-Klein gauge transformation, and ai is identified as the Kaluza-Klein
gauge field. Please note that γij and Ãi = Ai do transform under the Kaluza-Klein gauge
transformation so that γ′

ij and Ã′
i do not. Therefore, it is useful to employ Kaluza-Klein gauge invariant

quantities γ′
ij and Ã′

i rather than γij and Ãi as basic building blocks to construct the Massieu-Planck
functional. Furthermore, since the system is composed of the Weyl fermion, the apparent U(1)
gauge invariance for Ã′

i is anomalously broken. These spatial diffeomorphism, Kaluza-Klein gauge,
and anomalous U(1) gauge symmetries provide a basic restriction to the Massieu-Planck functional.

4.1.2. Variational Formula in the Presence of Quantum Anomaly

We then provide the variational formula for the Massieu-Planck functional Ψ[λ, j; t], and show
all information on 〈Ĵ μ

a(t, x)〉LG
t is fully installed in it. To show this, let us consider the variation

of K̂ defined in Equation (11) under the infinitesimal general coordinate and gauge transformation
with a set of parameters ζμ = εβμ and θ = ε(ν − β · A). (ε denotes an infinitesimal constant.) As a
result, of the combination of diffeomorphism and U(1) gauge transformations, the variation of the
background U(1) gauge field δλ Aμ has the simple expression:

δλ Aμ = £β Aμ +∇μ(ν − β · A) = ∇μν + βνFνμ. (34)

The crucial point here is that K̂ remains invariant under the simultaneous transformation acting
on both operators and external fields: δλK̂ ≡ δ

para
λ K̂ + δ

ope
λ K̂ = 0. This invariance can be shown by

recalling all operators in K̂ are U(1) gauge invariant, and, furthermore, rewriting K̂ as

K̂[t, λa, e a
μ , Aμ] =

∫
d4x

√
γδ(t − t(x))nμ(x)λa(x)Ĵ μ

a(x), (35)

from which we can clearly see diffeomorphism (reparameterization) invariance. Moreover, δ
ope
λ K̂

will also trivially vanish just because δ
ope
λ K̂ = [iK̂, K̂] = 0. As a result, we have the operator identity

δ
para
λ K̂ = 0.

Then, let us investigate δ
para
λ K̂ in detail, whose explicit definition is given by

δ
para
λ K̂ ≡

∫
d4x

[
δK̂

δt(x)
£βt(x) +

δK̂
δλa(x)

£βλa(x) +
δK̂

δe a
μ (x)

£βe a
μ (x) +

δK̂
δAμ(x)

δλ Aμ(x)

]
. (36)

To rewrite the first term of this equation, noting δ(t − t(x))nμ = −Nδ(t − t(x))∂μt = N∂μθ(t −
t(x)) following from the definition of nμ, and performing the integration by parts, we rewrite K̂ in
Equation (35) as

K̂[t, λa, e a
μ , Aμ] = −

∫
d4xeθ(t − t(x))∇μ(λ

a(x)Ĵ μ
a (x))

= −
∫

d4xeθ(t − t(x))
(

T̂μ
ν∇μβν + Ĵμ(∇μν + βνFνμ)− 1

8
CνεμνρσFμνFρσ

)
,

(37)
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where we used e = N
√

γ and employed the operator identity for current operators (6) to proceed the
second line. With the help of Equation (34) together with ∇μβν = e ν

a £βe a
μ + βρω ν

ρ μ followed from the
so-called (torsionless) tetrad postulate ∇μea

ν + ω a
μ be b

ν = 0, Equation (37) enables us to obtain

∫
d4x

δK̂
δt(x)

£βt(x) =
∫

d4x
√

γδ(t − t(x))
[

T̂μ
a£βe a

μ + Ĵμδλ Aμ − 1
8

CνεμνρσFμνFρσ

]
β′, (38)

where we defined β′ ≡ −βμnμ and used the operator identity T̂ab − T̂ba = 0. By using the identity

nαεμνρσFμνFρσ = −4εμνρσnνFρσFαμ. (39)

the last term in the second line of Equation (38) can be further simplified as

∫
d4x

√
γδ(t − t(x))

[
1
8

CνβαnαεμνρσFμνFρσ

]
= −

∫
d4x

√
γδ(t − t(x))

[
1
2

CνβαnνεμνρσFρσFαμ

]
= −

∫
d4x

√
γδ(t − t(x))CνBμδλ Aμ.

(40)

Here we defined the four-magnetic field as Bμ ≡ F̃μνnν = εμνρσnνFρσ/2, and neglected the surface
term accompanied by the integration by parts. We thus obtain the following compact result:

∫
d4x

δK̂
δt(x)

£βt(x) =
∫

d4xβ′√γδ(t − t(x))
[

T̂μ
a£βe a

μ +
(

Ĵμ − Cβ′−1νBμ
)
δλ Aμ

]
. (41)

Equipped with this formula together with £ββμ = 0, and £βν = £β(ν− β · A)+ βμ£β Aμ = βμδλ Aμ,
we are now ready to express δ

para
λ K̂ in Equation (36) by the use of the variation of the vierbein and

gauge field:

δ
para
λ K̂ =

∫
d3x

[(
β′√γT̂μ

a +
δK̂
δe a

μ

)
£βe a

μ +

(
β′√γ

[
Ĵμ − Cβ′−1νBμ

]
+

δK̂
δν

βμ +
δK̂

δAμ

)
δλ Aμ

]
. (42)

Let us then take the average of this operator identity over the local Gibbs distribution ρ̂LG[λ; t].
In the absence of the quantum anomaly, we can simply replace the averaged variation of K̂ with
the variation of the Massieu-Planck functional: 〈δK̂/δj〉LG

t = −δΨ/δj. Nevertheless, since we are
considering the system with the chiral anomaly, we need to be careful when we take the variation of
the charge density coupled to the local chemical potential. Using the relation ∂(e Ĵ0)/∂Aμ =

√
γCBμ

resulting from the covariant anomaly, we can show

δK̂
δAμ

= e Ĵ0βμ +
√

γνCBμ − β′√γ
∂L̂

∂Aμ
. (43)

We can then identify the local Gibbs average of the last term in this equation as the
covariant current in thermal spacetime, which results in the sum of the consistent current and the
Bardeen-Zumino current composed of Ãμ:

β′√γ

〈
∂L̂

∂Aμ

〉LG

t

= N
∫

DξDξ†eS̃ [ξ,ξ†;Ã,ẽ] δS̃
δÃμ

=
δΨ

δÃμ

− C
6

ε̃μνρσ ÃνFρσ, (44)

where N denotes a normalization constant, and we introduced a field strength tensor in thermal
spacetime Fμν ≡ ∂̃μ Ãν − ∂̃ν Ãμ together with the totally antisymmetric tensor ε̃μνρσ ≡ N(β0/β′)εμνρσ.
Using this together with 〈δK̂/δe a

μ 〉LG
t = −δΨ/δe a

μ , we eventually obtain the following identity:
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〈δpara
λ K̂〉LG

t =
∫

d3x

[ (
β′√γ〈T̂μ

a〉LG
t − δΨ

δe a
μ

)
£βe a

μ +

(
β′√γ〈 Ĵμ〉LG

t − δΨ
δÃμ

+ C
6 ε̃μνρσ ÃνFρσ

)
δλ Aμ

]
. (45)

Therefore, noting that that this identity holds for an arbitrary variation of the background
vierbein and gauge field, the identity 〈δpara

λ K̂〉LG
t = 0 provides the variational formula for the

Masseiu-Planck functional

〈T̂μ
a(t, x)〉LG

t =
1

β′√γ

δΨ[λ, j, t]
δe a

μ (x)
, (46)

〈 Ĵμ(t, x)〉LG
t =

1
β′√γ

δΨ[λ, j, t]
δÃμ(x)

− C
6

ε̃μνρσ ÃνFρσ. (47)

We thus conclude that the average values of any conserved current operator over local
thermal equilibrium is fully captured by the single (local thermodynamic) functional known as
the Masseiu-Planck functional. It is worth pointing out that because we deal with the average of the
covariant current 〈 Ĵ(x)〉LG

t , we have the last term in Equation (47) analogous to the Bardeen-Zumino
current [105] (See also Refs. [29,43,47]). In summary, we can identify the Massieu-Planck functional
Ψ[λ, j; t] as a generating functional for a (nondissipative) local equilibrium part of hydrodynamics,
or 〈Ĵ μ

a(t, x)〉LG
t .

Before moving to the path-integral formula for the Massieu-Planck functional, we put a short
comment on the useful “gauge and coordinate choice”, which we call hydrostatic gauge. Since we have
a freedom to choose the local time-direction and time-component of the external gauge field, we can
employ the hydrostatic gauge fixing condition

tμ(x) = βμ(x)/β0, tμ(x)Aμ(x) = ν(x)/β0, (48)

with a constant reference temperature β0. In this special choice of the gauge, the above transformation
does not induce the gauge transformation because θ = ε(ν − β · A) = 0, and furthermore, thanks to
the refined choice of our local time-direction, the fluid looks like entirely at rest. This is the origin of the
name hydrostatic. Nevertheless, note that this does not means the system is in a stationary hydrostatic
state since we do not assume βμ is a killing vector: £βgμν �= 0. The main reason the hydrostatic gauge
gives the most useful gauge is that we can equate the background field in original (real) spacetime with
that in (imaginary) thermal spacetime: e a

μ |hs = ẽ a
μ and Aμ|hs = Ãμ. As a result, the above variational

formula results in (46) and (47) as

〈T̂μ
a(t, x)〉LG

t =
1

β0e
δΨ[λ, j; t]

δe a
μ (x)

∣∣∣∣∣
hs

, (49)

〈 Ĵμ(t, x)〉LG
t =

1
β0e

δΨ[λ, j; t]
δAμ(x)

∣∣∣∣
hs
− C

6
εμνρσ AνFρσ

∣∣
hs , (50)

which enable us to regard the Massieu-Planck functional as a usual generating functional.

4.2. Anomaly Matching for Local Thermodynamic Functional

Based on the obtained formulae, we now discuss the anomaly-induced transport from the point
of view of the anomaly matching for the Massieu-Planck functional.

Before moving to the anomaly-induced transport, let us briefly see how we can derive
the constitutive relation for a perfect fluid. Employing the simplest power counting scheme
λ = O(∇0), j = O(∇0), we perform the derivative expansion of the Massieu-Planck function
as follows:

Ψ[λ, j; t] = Ψ(0)[λ, j; t] + Ψ(1)[λ, j; t] + O(∇2), (51)
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where the superscript represents the number of spatial derivatives acting on parameters λ and j.
Then, the symmetry argument reviewed in the previous subsection tells us that we cannot use the
Kaluza-Klein and U(1) gauge fields in the leading-order derivative expansion. As a result, the general
form of the leading-order Massieu-Planck functional Ψ(0)[λ, j; t] is expressed as

Ψ(0)[λ, j; t] =
∫ β0

0
dτd3xẽp(β, ν) =

∫
d3xβ′√γp(β, ν), (52)

where p(β, ν) is a certain function depending on β and ν. By taking the variation with respect to the
vierbein and gauge field, we are able to obtain the leading-order constitutive relation as

〈T̂μν(t, x)〉LG
(0) = (e + p)uμuν + pgμν + O(∇1), 〈 Ĵμ(t, x)〉LG

(0) = nuμ + O(∇1). (53)

This is nothing but the constitutive relation for the perfect fluid with e, n, p being the energy
density, charge density, and fluid pressure, respectively.

Then, the next problem is to specify the first-order derivative correction of the Massieu-Planck
functional Ψ(1)[λ, j; t], which is present (absent) in the absence (presence) of the parity symmetry.
Since our system is composed of the right-handed Weyl fermion, and thus, there is no parity symmetry,
the first-order correction is not prohibited. In this case, two (anomalous) gauge symmetries again
plays a central role to extract information on the anomaly-induced transport contained in Ψ(1)[λ, j; t].
In the following, after giving a bottom up view relying on the one-loop result in the previous
section, we switch to a top down view of the anomaly matching, from which we can derive the
anomaly-induced transport beyond the one-loop level.

4.2.1. Chiral Anomaly in Thermal Spacetime

At one-loop level, we have already derived the anomaly-induced transport given in Equation (24).
On the other hand, we also have the variational formula (47) in a general gauge, or (50) in the
hydrostatic gauge. Let us take the hydrostatic gauge. Then, the combination of the above results
enables us to obtain the following functional differential equation for Ψ(1):

1
β0

δΨ(1)
ano[λ, j; t]
δAi(x)

∣∣∣∣∣
hs

+
μ

12π2 Bi − 1
12π2 ε0ijk Ak∂jμ =

μ

4π2 Bi +

(
μ2

4π2 +
T2

12

)
ωi, (54)

where we take the flat limit and assume global thermal equilibrium with a constant temperature β0 in
the variational formula. This equation can be easily solved as

Ψ(1)
ano[λ, j; t]

∣∣∣eq

hs
=

β0

12π2

∫
d3xμAiBi + β0

∫
d3x

(
1

4π2 μ2 +
1
12

T2
)

Aiω
i

=
β0

12π2

∫
d3xε0ijkμAi∂j Ak +

β0

2

∫
d3xε0ijk

(
1

4π2 μ2 +
1

12
T2

)
Ai∂juk

(55)

up to irrelevant constants. On the other hand, we have already clarified that the Massieu-Planck
functional need to respect both U(1) and Kaluza-Klein gauge invariance. This constraint then enables
us to guess the full result on Ψ(1) for general local thermal equilibrium though Equation (55) is obtained
by matching with the one-loop result for linear perturbations on the top of global thermal equilibrium.
By using the U(1) and Kaluza-Klein gauge covariant quantities—Ã′

i and ai, respectively—together
with Ã0 = eσμ, we specify the first-order derivative correction as

Ψ(1)
ano[λ, j; t] =

Cβ0

3

∫
d3xeε0ijk Ã0 Ã′

i∂j Ã′
k +

Cβ0

6

∫
d3xeε0ijk Ã2

0 Ã′
i∂jak,− C1

2β0

∫
d3xeε0ijk Ã′

i∂jak, (56)
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with C1 ≡ 1/12. Please note that Ã0 and Ã′
i defined in Equations (27) and (32) are manifestly

Kaluza-Klein gauge invariant quantities.
Let us then confirm the consistency for this result based on the anomaly matching for the

Massieu-Planck functional itself. For that purpose, we consider the time-independent gauge
transformation given by δθ Ã0 = 0, δθ Ãi = ∂iθ(x). Under this gauge transformation, the Fujikawa
method [2] says that the anomalous shift of the Massieu-Planck functional is given by the
consistent anomaly:

δθΨ[λ, j; t] = −Cβ0

3

∫
d3xθeε0ijk∂i Ã0∂j Ãk. (57)

On the other hand, one can directly show that the first two term of Ψ(1)
ano[λ, j; t] in Equation (56)

correctly reproduces this anomalous shift as

δθΨ(1)
ano[λ, j; t] =

Cβ0

3

∫
d3xeε0ijk Ã0∂iθ∂j Ã′

k +
Cβ0

6

∫
d3xeε0ijk Ã2

0∂iθ∂jak

= −Cβ0

3

∫
d3xθeε0ijk∂i Ã0∂j(Ãk − Ã0ak)− Cβ0

3

∫
d3xθeε0ijk Ã0∂i Ã0∂jak + (surface terms)

= −Cβ0

3

∫
d3xθε0ijk∂i Ã0∂j Ãk + (surface terms). (58)

Therefore, we see that the anomalous transport coefficients C proportional to the chemical
potential μ is indeed related to the anomaly coefficient attached to the Weyl fermion.

Nevertheless, the last term in Equation (56), which brings about the CVE proportional to T2, is not
restricted by the chiral anomaly. From the symmetry point of view, this is just because the last term in
Equation (56) remains invariant under the U(1) gauge transformation. This corresponds the fact that
the entropy production argument with chiral anomaly leads to the existence of both chiral magnetic
and vortical effect [24], in which only the anomalous transport coefficients proportional to the chemical
potential are determined. Then, the natural question is “Does the CVE proportional to T2 have any relation
with the quantum anomaly?”

4.2.2. Global Anomaly for Kaluza-Klein Gauge Transformation

It was pointed out the T2 term of the chiral vortical coefficient is related to the gravitational
contribution to the chiral anomaly [26,56]. However, unlike the chiral magnetic coefficient discussed
in this section, it is not clear that how the CVE relates to the εμνρσRα

βμνRβ
αρσ, because the number of

derivative in εμνρσRα
βμνRβ

αρσ is higher than that in εμνρσFμνFρσ. In other words, εμνρσRα
βμνRβ

αρσ does

not directly contribute to the first-order hydrodynamics. An alternative explanation of T2 term is that
the chiral vortical coefficient is related to a global anomaly [45,46,106]. Here, we show the relation
between the global anomaly and chiral vortical effect.

As a warm up exercise, let us first consider the global anomaly attached to the Weyl fermion in
1 + 1 dimensions, which possesses the chiral anomaly given by

∂μ Ĵμ = −1
2

C2DεμνFμν with C2D ≡ 1
2π

, (59)

where Ĵμ again denotes the covariant current in 1 + 1 dimensional system. In this case, there are no
chiral magnetic and vortical effects because there is no transverse direction, and thus, no magnetic field
and vorticity. However, there exist nonvanishing 〈 Ĵz〉 and 〈T̂0

z〉 caused by chiral and global anomalies.
The direct calculation at equilibrium shows
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〈T̂0
z〉eq =

∫ ∞

0

dpz

2π
pz
[
nF(|pz| − μ) + nF(|pz|+ μ)

]
=

μ2

4π
+

π

12
T2,

〈 Ĵz〉eq =
∫ ∞

0

dpz

2π

pz

|pz|
[
nF(|pz| − μ)− nF(|pz|+ μ)

]
=

μ

2π
.

(60)

On the other hand, the same procedure given above leads to the variational formula in
(1 + 1) dimensions:

〈T̂μ
a〉LG

t =
1

β′√γ

δΨ[t; λ]

δe a
μ (x)

,

〈 Ĵμ〉LG
t =

1
β′√γ

δΨ[t; λ]

δÃμ(x)
− 1

2
C2D ε̃μν Ãν,

(61)

where ε̃μν = N(β0/β′)εμν. Then, the matching condition for the momentum density and current
results in

1
β0

δΨano

δe z
0

= − 1
β0

δΨano

δaz
=

C2D
2

μ2 + πC1T2, (62)

1
β0

δΨano

δAz
+

C2D
2

μ = C2Dμ. (63)

Solving Equations (62) and (63), we find

Ψano =
C2Dβ0

2

∫
dzÃ0 Ã′

z − π
C1

β0

∫
dzaz. (64)

This gives the anomalous part of the Masseiu-Planck functional. To detect anomalies,
we compactify the spatial direction with the length L. Here we will show Ψano has two types
of anomalies. One is the chiral anomaly: Under U(1) gauge transformation Ãz → Ãz + ∂zθ(z),
the anomalous shift of Ψ arises:

δθΨano = −C2Dβ0

2

∫
dzθ∂z Ã0, (65)

which correctly reproduces the consistent anomaly in thermal spacetime. The other is the global
anomaly associated with the Kaluza-Klein gauge transformation:{

t̃ → t̃ + χ(z),

az → az − ∂zχ(z),
(66)

where Ã′
z remains invariant. Under this transformation, Ψano also acquires the anomalous shift

given by

δχΨano = π
C1

β0

∫
dz∂zχ(z), (67)

which is just a boundary term, so that Ψano is invariant under local transformation with χ(0) =

χ(L). However, if we consider global transformation, χ(z) = −2iβ0z/L, which corresponds to the
imaginary-time shift τ → τ + 2zβ0/L that keep the boundary condition, we have an additional phase

Ψano → Ψano − 2πiC1, (68)
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which can be understood as the global anomaly associated with the large diffeomorphism.
This anomalous phase is related to the three-dimensional gravitational Chern-Simons term through the
anomaly inflow mechanism, which is also related to the gravitational contribution to chiral anomaly in
3 + 1 dimensions [107,108].

This argument can be generalized to higher dimensions. In (3 + 1) dimensions, Ψano is given in
Equation (56). To detect the global anomaly, we compactify the space to S1 × S2, where we choose z as
the coordinate on S1. Under the large diffeomorphism, τ → τ + 2zβ0/L, the term contributing to the
T2 part of CVE transforms as

Ψano → Ψano − 2πiC1

∫ d2x
2π

eε0ijz∂i Ã′
j. (69)

This is the global mixed anomaly between U(1) gauge and large diffeomorphism. Therefore, we
see that the chiral vortical coefficient proportional to T2, which is nothing but C1, is related to the
mixed global anomaly. Nevertheless, it should be noted that the mixed global anomaly only fixes
a “fractional” part of T2 term. This is because a shift C1 → C1 + n with n ∈ Z does not change the
partition functional [54].

5. Summary and Discussion

In this paper, we have discussed two approaches to derive the anomaly-induced transport
phenomena for the system composed of a Weyl fermion: perturbative evaluation of the chiral
magnetic/vortical conductivity with the help of the (equilibrium) linear response theory, and the
nonperturbative determination of anomalous parts of the local thermodynamic functional on the
basis of the anomaly matching. Both derivations are based on the imaginary-time formalism of
the quantum field theory, and we have seen that the obtained anomalous constitutive relations
correctly describe the chiral magnetic/vortical effect. Although it is not so clear in the first
derivation, the second derivation shows that the chiral magnetic/vortical effect results from the
first-order derivative corrections of the local thermodynamic functional, and thus, they are clearly
nondissipative in nature. This is perfectly consistent with the known result obtained from the
hydrostatic partition function method [29–32,35,38–40,43,45,46], and we rigorously clarify why that
method works well. This local equilibrium part of the constitutive relation also complete the application
of Zubarev’s nonequilibrium statistical operator method to derive the hydrodynamic equation for the
parity-violating (anomalous) fluid.

There are several interesting questions related to the current work. It has been already pointed
out that the coefficient in front of the T2-term of the CVE will be renormalized in the presence
of dynamical gauge fields such as the gluon in the QCD plasma [109]. It may be interesting to
examine which part of the anomaly matching argument associated with the large diffeomorphism
(Kaluza-Klein gauge) transformation should be modified due to the existence of the dynamical gauge
field. Another important issue associated with the inclusion of dynamical electromagnetic field is
its dynamics. When we consider the dynamics of the electromagnetic field rather than treating it as
the background one, we encounter with several interesting phenomena such as the chiral plasma
instability [110–114], and mixing of some hydrodynamic modes (chiral magnetic wave) to be the
massive collective excitation (chiral plasmon) [48,65,115,116]. It is desirable to systematically describe
them based on the generalization of magnetohydrodynamics for the chiral plasma by formulating
chiral magnetohydrodynamics. Chiral magnetohydrodynamics is just recently formulated based
on e.g., the phenomenological entropy-current analysis [117] (See also Refs. [118–124]), but less is
clarified from the underlying quantum field theory. Combined with the recent development of the
magnetohydrodynamics itself from the field theoretical viewpoint [125–130], it may be interesting to
formulate chiral magnetohydrodynamics based on the Zubarev’s nonequilibrium statistical operator
method equipped with the path-integral formula for the local thermodynamic functional reviewed in
this paper.
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Abstract: A formulation of nonequilibrium thermo-field dynamics has been performed using the
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consistent description of the kinetics and hydrodynamics of the dense quantum field system with
strongly-bound states are derived.

Keywords: nonequilibrium thermo-field dynamics; kinetics; hydrodynamics; kinetic equations;
transport coefficients; bound states; quark-gluon plasma

1. Introduction

The problem of accounting for the bound states (clusters) [1,2] formed by particles is particularly
important in the development of the theories of nonequilibrium processes of thermal quantum field
systems, such as nuclear matter [3–16]. Kinetic and hydrodynamic processes in a hot, compressed
nuclear matter, which appears after ultrarelativistic collisions of heavy nuclei [7,14,16–21], are mutually
connected, and therefore, the bound states between nucleons should be considered. This is of great
importance for the analysis and correlation of final reaction products. Obviously, a nucleon-nucleon
interaction investigation based on a quark-gluon plasma is a sequential microscopic approach to the
dynamical description of reactions in a nuclear matter. The problems of a dense quark-gluon matter
were discussed in detail in [4,5,12,13,22–27].

In his recent works [1,2,19], G. Röpke noted the importance of constructing a nonequilibrium
theory in which along with hydrodynamic parameters, a cluster distribution function is taken into
account, similarly to the case of the classical theory of non-equilibrium processes of dense gases and
liquids [28–31].

In modern theoretical studies of the nonequilibrium properties of quark-gluon plasma [12,13,23,24],
which is one of the states of nuclear matter, one of the most widely-used statistical concepts is the
entropy of Tsallis and Renyi [32–42]. This is due to the fact that the results of experimental data on
the distribution of high-energy hadrons over transverse momentums [32] are described by the power
distributions and are characterized by temperature oscillations and possible fractal structures [43]. At
the same time, the important problem of the construction of kinetic and hydrodynamic equations
for nuclear matter of high density and high temperature is not sufficiently addressed for these
systems. However, within the framework of the Gibbs statistics, the equations of hydrodynamics
and thermodynamics were already considered in many papers using the method of Zubarev’s
nonequilibrium statistical operator [44–53], the projection operator method [54,55], and kinetic
equations [56–59]. Thus, we propose an approach to solve these problems based on the nonequilibrium
thermo-field dynamics [60–62] in the formulation of the method of the nonequilibrium statistical
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operator [63–65]. We use the thermo-field formalism proposed by Umezawa, Matsumoto, and
Tachiki [66,67], mainly because it accounts for the quantum field nature of the interaction of the
particles in the synthesis with Gibbs statistics.

Below, in the Section 2 of this paper, we consider the nonequilibrium thermo-field dynamics in
the formulation of the nonequilibrium statistical operator method [68–71] in Renyi statistics. We use
the statistics of Renyi, which has the power distribution. When the Renyi parameter is q = 1, we obtain
the results of Gibbs statistics. In addition, Renyi entropy is additive in contrast to the Tsallis entropy.

Next, in the Section 3, generalized equations for the consistent description of kinetic and
hydrodynamic processes, which take into account the bound states that emerge in the thermal quantum
field system, will be presented.

2. Nonequilibrium Statistical Operator in Thermo-Field Space

We use the nonequilibrium statistical operator method in the thermo-field formulation [63,64],
where the mean values corresponding to the observables can be found using the nonequilibrium
thermo-vacuum state vector |�(t)〉〉:

〈A〉t = 〈〈1|A�(t)〉〉 = 〈〈1|Â|�(t)〉〉, (1)

where Â is a superoperator acting on the state |�(t)〉〉. The nonequilibrium thermo-vacuum state vector
|�(t)〉〉 satisfies the Schrödinger equation [63]:

∂

∂t
|�(t)〉〉 −

∣∣∣ 1
ih̄
[H, �(t)]

〉〉
= 0, (2)

or:
∂

∂t
|�(t)〉〉 − 1

ih̄
Ĥ|�(t)〉〉 = 0. (3)

Here, the total Hamiltonian Ĥ takes the form:

Ĥ = H − H̃, (4)

where 〈〈1|Ĥ = 0 and H = H(â+, â), H̃ = H(∗)(ã+, ã) are superoperators constructed from the creation
and annihilation of superoperators of the thermal Liouville space [63,66,67]. The superoperators H
and H̃ are accordingly defined by the relations:

|H�(t)〉〉 = H|�(t)〉〉, |�(t)H〉〉 = H̃|�(t)〉〉. (5)

The superoperators â+l , âj , ã+l and ãj satisfy the same commutation relations as the operators

a+l , aj of the corresponding statistics:

[âl , â+j ]σ = [ãl , ã+j ]σ = δl j, [âl , ãj]σ = [â+l , ã+j ]σ = 0, (6)

[âl , âj]σ = [â+l , â+j ]σ = 0, [ãl , ãj]σ = [ã+l , ã+j ]σ = 0,

where [A, B]σ = AB − σBA, σ = +1 for bosons and σ = −1 for fermions. The annihilation
superoperators âl and ãl are defined by their action on the ground state, the supervacuum [60–62]:

âl |00〉〉 = ãl |00〉〉 = 0, (7)

where |00〉〉 = |0〉〈0|〉〉 is the supervacuum. In this case, we have the relations âl |0〉 = al |0〉 = 0 and
〈0|ãl = 0. In other words, the supervacuum |00〉〉 is the orthogonalized state of two vacuum states 〈0|
and |0〉. Taking commutation relations (6) and definitions (7) into account, we can represent the unit
vectors |1〉〉 = |∑l |l〉〈l|〉〉 and 〈〈1| = 〈〈∑l |l〉〈l|| in the form
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|1〉〉 = exp
{

∑
l

â+l ã+l
}
|00〉〉,

〈〈1| = 〈〈00| exp
{

∑
l

ãl âl

}
.

(8)

Using these vectors, we write the relations between the actions of the superoperators â+l , âj, ã+l ,
and ãj:

âl |1〉〉 = ã+l |1〉〉, 〈〈1|â+l = 〈〈1|ãl ,
â+l |1〉〉 = σãl |1〉〉, 〈〈1|âl = 〈〈1|ã+l σ.

(9)

Hence, in the thermo-field dynamics formalism [60–62], the number of operators is doubled by
introducing the operators A(â+, â) and Ã(ã+, ã), which satisfy the conditions:

Ã1 A2 = Ã1 Ã2, ˜̃A = A,˜c1 A1 + c2 A2 = c∗1 Ã1 + c∗2 Ã2,
|A〉〉 = Â|1〉〉,

|A1 A2〉〉 = Â1|A2〉〉,
(10)

where the asterisk denotes complex conjugation. A more detailed description of the properties
of the superoperators â+l , âj, ã+l , and ãj and the thermal Liouville space was presented in [60–62].
The nonequilibrium thermo vacuum state vector is normalized: 〈〈1|�(t)〉〉 = 〈〈1|�̂(t)|1〉〉 = 1, where
�̂(t) is the nonequilibrium statistical superoperator, which depends on â+l and âj, �̂(t) ≡ � (â+, â; t).
The superoperator �̃(t) ≡ �+(ã+, ã; t) depends on ã+l , ãj.

In the nonequilibrium statistical operator method in the thermo-field formulation [63,64],
the nonequilibrium thermo-vacuum state vector as a solution of the Schrödinger Equation (3) with a

source −ε
(
|�(t)〉〉 − |�rel(t)〉〉

)
, with the projection taken into account, can be found in the form:

|�(t)〉〉 = |�rel(t)〉〉+
t∫

−∞

dt′ eε(t′−t)T(t, t′)
[
1 −Prel(t′)

] 1
ih̄

Ĥ|�rel(t′)〉〉. (11)

Here, T(t, t′) = exp+

{ ∫ t
t′ dt′

[
1−Prel(t′)

] 1
ih̄ Ĥ

}
is the evolution operator with the projection taken

into account, where exp+ is the ordered exponential, ε → +0 after the thermodynamic limit transition.

Prel(t)
(| . . .〉〉) = |�rel(t)〉〉 + ∑

n

δ|�rel(t)〉〉
δ〈〈1| p̂n|�(t)〉〉 〈〈1| p̂n| . . .〉〉 (12)

− ∑
n

δ|�rel(t)〉〉
δ〈〈1| p̂n|�(t)〉〉 〈〈1| p̂n| . . .〉〉〈〈1| . . .〉〉

is the Kawasaki–Ganton projection operator, which acts only on the state vectors | . . .〉〉 and has the
operator properties Prel(t)|�(t′)〉〉 = |�rel(t)〉〉, Prel(t)|�rel(t′)〉〉 = |�rel(t)〉〉, Prel(t)Prel(t′) = Prel(t).
The relevant thermo-vacuum state vector |�rel(t)〉〉 = �̂rel(t)|1〉〉, is normalized in accordance with
the relation 〈〈1|�rel(t)〉〉 = 〈〈1|�̂rel(t)|1〉〉 = 1, where �̂rel(t) is the relevant statistical superoperator.
The relevant thermo-vacuum state vector of the system can be defined as follows. We assume that
〈pn〉t = 〈〈1| p̂n|�(t)〉〉 is the set of observed variables describing the nonequilibrium system state,
where pn are the operators constructed on the respective creation and annihilation operators a+l and al .
The relevant statistical operator �rel(t) is determined from the extremum of the Renyi entropy functional:

LR(t) =
1

1 − q
ln〈〈1|(|�′(t)〉〉)q − α〈〈1|�′(t)〉〉 − ∑

n
F∗

n (t)〈〈1| p̂n|�′(t)〉〉
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under the additional condition that the mean values 〈pn〉t are given with the normalization condition
〈〈1|�̂(t)|1〉〉 = 1 preserved. The Lagrange parameters α and F∗

n (t) are determined from the respective
normalization condition and self-consistency conditions:

〈. . .〉t
rel = 〈〈1| . . . |�rel(t)〉〉, 〈pn〉t = 〈pn〉t

rel = 〈〈1| p̂n|�rel(t)〉〉. (13)

The relevant statistical operator �rel(t) then becomes:

�rel(t) =
1

ZR(t)

[
1 − q − 1

q ∑
n

F∗
n (t)δ p̂n(t)

] 1
q−1

, (14)

where q is the Renyi parameter, δ p̂n(t) = p̂ − 〈〈1| p̂n|�(t)〉〉, and:

ZR(t) =
〈〈

1
∣∣∣[1 − q − 1

q ∑
n

F∗
n (t)δ p̂n(t)

] 1
q−1

〉〉
, (15)

is the partition function. The sum over n can denote the summation over the wave vector k, the kind
of particles, and a whole series of quantum numbers, such as spin. From (14) at q = 1, we obtain the
relevant statistical operator corresponding to Gibbs statistics [63]:

�rel(t) = exp
{
− Φ(t)− ∑

n
F∗

n (t)pn

}
, (16)

where Φ(t) = ln Sp exp {−∑n F∗
n (t)pn} is the Massieu–Planck functional. Substituting (14) in (11),

we now obtain the nonequilibrium thermo-vacuum vector:

|�(t)〉〉 = |�rel(t)〉〉+ ∑
n

∫ t

−∞
dt′eε(t′−t)T(t, t′)

∣∣∣ 1∫
0

dτ�τ
rel(t

′)Jn(t′)�rel(t)1−τ(t′)
〉〉

F∗
n (t

′), (17)

where Jn(t) = [1 −P(t)] 1
q ψ−1(t) ˙̂pn are the operators of the generalized flows describing the

dissipative processes ˙̂pn = − 1
ih̄ Ĥ p̂n in the system. The projection operator P(t) acts on operators and

has the structure:

P(t)(. . .) = 〈〈1| . . . |�rel(t)〉〉+ ∑
m

δ

[∫ 1

0
dτ�τ

rel(t)ψ
−1(t)

(
Fm(t) (18)

+∑
n

f−1
mn (t)δ p̂n

)
�−τ

rel

]〈〈
. . .

∣∣∣∫ 1

0
dτ�τ

rel(t)δ p̂n�−τ
rel (t)�rel(t)

〉〉
,

where δ[. . .] = [. . .]−〈〈1|[. . .]|�rel(t)〉〉 and fmn(t) =
δ〈〈1| p̂m |�(t)〉〉

δFn(t)
. The operator ψ(t) has the form ψ(t) =

1 − q−1
q ∑n F∗

n (t)δ p̂n(t). Using the nonequilibrium thermo-vacuum state vector |�(t)〉〉 given by (17),
we obtain the transport equations for the nonequilibrium means 〈〈1| p̂n|�(t)〉〉 in the thermo-field
representation. For this, we use the identity:

∂

∂t
〈〈1| p̂n|�(t)〉〉 = 〈〈1| ˙̂pn|�(t)〉〉 = 〈〈1| ˙̂pn|�rel(t)〉〉+ 〈〈Jn(t)|�(t)〉〉. (19)

Averaging the last term on the right-hand side with |�(t)〉〉 given by (17), we obtain the transport
equations for the means 〈〈1| p̂n|�rel(t)〉〉:

∂

∂t
〈〈1| p̂n|�(t)〉〉 = 〈〈1| ˙̂pn|�rel(t)〉〉 (20)

+∑
n′

∫ t

−∞
dt′ eε(t′−t)

〈〈
˙̂pnT(t, t′)

∣∣∣∫ 1

0
dτ �τ

rel(t
′)Jn′(t′)�1−τ

rel (t′)
〉〉

F∗
n′(t′).
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Transport Equation (20) takes the memory effects into account and can be used to describe
nonequilibrium processes in quantum Bose and Fermi systems in concrete cases in the framework of
the nonequilibrium thermo-field dynamics of extensive statistics. In particular, a system of relativistic
transport equations for a consistent description of the kinetic and hydrodynamic processes in a
quark-gluon system was derived in [64] using the nonequilibrium statistical operator method in the
thermo-field representation in Gibbs statistics. The advanced approach in terms of Renyi statistics
can be generalized to the case of relativistic systems, and this observation is important [33,35–42].
This subject will be described in forthcoming works.

3. Thermo-Field Transport Equation Taking into Account Bound States

We will consider a quantum field system in which bound states can appear between the particles.
Let us introduce annihilation and creation operators of a bound state (Aα) with the A-particle:

aAα(p) = ∑
1,...,A

ΨAαp(1, . . . , A)a(1) . . . a(A),

a+Aα(p) = ∑
1,...,A

Ψ∗
Aαp(1, . . . , A)a+(1) . . . a+(A),

(21)

where ΨAαp(1, . . . , A) is a self-function of the A-particle bound state, α denotes internal quantum
numbers (spin, etc.), p is a particle momentum, and the sum covers the particles. Annihilation and
creation operators a(j) and a+(j) satisfy the following commutation relations:

[a(l), a+(j)]σ = δl,j, [a(l), a(j)]σ = [a+(l), a+(j)]σ = 0, (22)

where the σ-commutator is determined by [a, b]σ = ab − σba with σ = ±1: +1 for bosons and −1
for fermions.

The Hamiltonian of such a system can be written in the form:

H = ∑
A,α

∫ dpdq

(2πh̄)6
p2

2mA
a+Aα

(
p − q

2

)
aAα

(
p +

q

2

)
(23)

+
1
2 ∑

A,B
∑
α,β

∫ dpdp′dq

(2πh̄)9 VAB(q)a+Aα

(
p +

q − p′

2

)
n̂Bβ(q)aAα

(
p − q − p′

2

)
,

where VAB(q) is interaction energy between A- and B-particle bound states and q is a wavevector.
Annihilation and creation operators aAα(p) and a+Aα(p) satisfy the following commutation relations:

[aAα(p), a+Bβ(p
′)]σ = δA,Bδα,βδ(p − p′),

[aAα(p), aBβ(p
′)]σ = [a+Aα(p), a+Bβ(p

′)]σ = 0.
(24)

n̂Bβ(q) in (23) is a Fourier transform of the B-particle density operator:

n̂Bβ(q) =
∫ dp

(2πh̄)3 a+
Bp− q

2
a

Bp+ q
2

.

As parameters of a reduced description for the consistent description of the kinetics and
hydrodynamics of a system, where bound states between the particles can appear, let us choose
nonequilibrium distribution functions of A-particle bound states in thermo-field representation:

〈〈1|n̂Aα(r, p)|�(t)〉〉 = fAα(r, p; t) = fAα(x; t), x = {r, p}. (25)
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Here, fAα(x; t) is a Wigner function of the A-particle bound state where:

n̂Aα(r, p) ≡ n̂Aα(x) =
∫ dq

(2πh̄)3 e−
1
ih̄ q·r â+Aα

(
p − q

2

)
âAα

(
p +

q

2

)
(26)

is the Klimontovich density operator; and the average value of the total energy density operator:

〈〈1|Ĥ(r)|�(t)〉〉 = 〈〈1|H(r)�(t)〉〉. (27)

By this
∫

dr H(r) = H, Ĥ(r) is a superoperator of the total energy density, which is constructed
on annihilation and creation superoperators âAα(p) and â+Aα(p). The latter satisfy commutation
relations (24). Following [63], one can rewrite relevant statistical operator �̂rel(t), |�rel(t)〉〉 = �̂rel(t)|1〉〉
and with (14) from q = 1 for the mentioned parameters of a reduced description in the form:

�̂rel(t) = exp

{
−Φ∗(t)−

∫
dr β(r; t)

(
Ĥ(r)− ∑

A,α

∫ dp

(2πh̄)3 μAα(x; t)n̂Aα(x)

)}
, (28)

where Lagrange multipliers β(r; t) and μAα(x; t) can be found from the self-consistency conditions,
respectively:

〈〈1|Ĥ(r)|�(t)〉〉 = 〈〈1|Ĥ(r)|�rel(t)〉〉, (29)

〈〈1|n̂Aα(x)|�(t)〉〉 = 〈〈1|n̂Aα(x)|�rel(t)〉〉, (30)

Φ∗(t) is the Massieu–Planck functional, and it can be defined from the normalization condition:

Φ∗(t) = ln

〈〈
1

∣∣∣∣∣exp

{
−
∫

dr β(r; t)

(
Ĥ(r)− ∑

A,α

∫ dp

(2πh̄)3 μAα(x; t)n̂Aα(x)

)}〉〉
. (31)

Using now the general structure of nonequilibrium thermo-field dynamics (20), one can obtain a
set of generalized transport equations for A-particle Wigner distribution functions and the average
interaction energy:

∂

∂t
〈〈1|n̂Aα(x)|�(t)〉〉 = 〈〈1| ˙̂nAα(x)|�q(t)〉〉 (32)

+
∫

dr′
t∫

−∞

dt′ eε(t′−t)ϕAα
nH(x, r′; t, t′)β(r′; t′)

+∑
B,β

∫
dx′

t∫
−∞

dt′ eε(t′−t)ϕ
AαBβ
nn (x, x′; t, t′)β(r′; t′)μBβ(x′; t′),

∂

∂t
〈〈1|Ĥ(r)|�(t)〉〉 = 〈〈1| ˙̂H(r)|�q(t)〉〉 (33)

+
∫

dr′
t∫

−∞

dt′ eε(t′−t)ϕHH(r, r′; t, t′)β(r′; t′)

+∑
B,β

∫
dx′

t∫
−∞

dt′ eε(t′−t)ϕ
Bβ
Hn(r, x′; t, t′)β(r′; t′)μBβ(x′; t′),
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where x′ = {r′, p′}, dx′ = (2πh̄)−3dr′ dp′. Here,

ϕ
Aα
Bβ
nn (x, x′; t, t′) =

〈〈
1
∣∣∣∣ ĴnAα

(x, t)T(t, t′)
∣∣∣∣ 1∫

0
dτ �τ

rel(t
′)JnBβ

(x′; t′)�1−τ
rel (t′)

〉〉
, (34)

ϕAα
nH(x, r′; t, t′) =

〈〈
1
∣∣∣∣ ĴnAα

(x, t)T(t, t′)
∣∣∣∣ 1∫

0
dτ �τ

rel(t
′)JH(r

′; t′)�1−τ
rel (t′)

〉〉
, (35)

ϕ
Bβ
Hn(r

′, x′; t, t′) =

〈〈
1
∣∣∣∣ ĴH(r, t)T(t, t′)

∣∣∣∣ 1∫
0

dτ �τ
rel(t

′)JnBβ
(x′; t′)�1−τ

rel (t′)
〉〉

, (36)

ϕHH(r, r′; t, t′) =

〈〈
1
∣∣∣∣ ĴH(r, t)T(t, t′)

∣∣∣∣ 1∫
0

dτ �τ
rel(t

′)JH(r
′; t′)�1−τ

rel (t′)
〉〉

(37)

are generalized transport cores, which describe dissipative processes. In these formulae:

JH(r; t) =
(

1 − P(t′)
)

Ḣ(r),

JnAα
(r, p; t) =

(
1 − P(t′)

)
ṅAα(x)

(38)

are generalized flows, Ḣ(r) = − 1
ih̄ [H, H(r)], ṅAα(r, p) = − 1

ih̄ [H, nAα(x)], and P(t) is a generalized
Mori projection operator in thermo-field representation. It acts on operators:

P(t)P = 〈〈|P̂|�rel(t)〉〉+
∫

dr
δ〈〈1|P̂|�rel(t)〉〉

δ〈〈1|Ĥ(r)|�(t)〉〉
(

H(r)− 〈〈1|Ĥ(r)|�(t)〉〉
)

(39)

+ ∑
A,α

∫ dr dp

(2πh̄)3
δ〈〈1|P̂|�rel(t)〉〉

δ〈〈1|n̂Aα(x)|�(t)〉〉
(

nAα(x)− 〈〈1|n̂Aα(x)|�(t)〉〉
)

and has all the properties of a projection operator:

P(t)H(r) = H(r), P(t)P(t′) = P(t),

P(t)nAα(r, p) = nAα(r, p),
(

1 − P(t)
)

P(t) = 0.

The obtained transport equations have the general meaning and can describe both weak and
strong nonequilibrium processes of a quantum system taking into consideration bound states. In
the calculation of the transport cores (34)–(37) in each case, the problem arises due to the fact that
the relevant thermo-vacuum state is not the ground state for the superoperators âAα(P), â+Aα(P) and
ãAα(P), ã+Aα(P). The essence of this problem is to construct a dynamic mapping of superoperators
âAα(P), â+Aα(P) and ãAα(P), ã+Aα(P) by some superoperators of “quasiparticles”, for which the relevant
thermo-vacuum state is the ground one.

In the next step, we will construct such annihilation and creation superoperators, for which the
relevant thermo-vacuum state vector is a vacuum state. Analyzing the structure of relevant statistical
superoperator (28), one can mark out some part that would correspond to the system of non-interacting
quantum A-particles. Let us write �̂rel(t) in an evident form and separate terms that are connected
with the interaction energy between the particles:

�̂rel(t) = exp
{
−Φ∗(t)−

∫
dr β(r; t) (40)

× ∑
A,α

∫ dp

(2πh̄)3

[
p2

2mA
n̂Aα(x)− μAα(x; t)n̂Aα(x)

]
−

∫
drβ(r; t)Ĥint(r)

}
.
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Using operator equality (A and B are some operators):

eA+B =

⎡⎣1 +
1∫

0

dτ eτ(A+B) B e−τA

⎤⎦ eA,

the relation for �̂rel(t) can be rewritten in the following form:

�̂rel(t) =

⎡⎣1 −
∫

dr β(r; t)
1∫

0

dτ �̂τ
rel(t)Ĥint(r)

(
�̂0

rel(t)
)−τ

⎤⎦ �̂0
rel(t), (41)

where:

�̂0
rel(t) = exp

{
Φ(t)−

∫
dr β(r; t) ∑

A,α

∫ dp

(2πh̄)3

[
p2

2mA
n̂Aα(x)− μAα(x; t)n̂Aα(x)

]}
, (42)

or:

�̂0
rel(t) = exp

{
Φ(t)−

∫
dr β(r; t) ∑

A,α

∫ dp

(2πh̄)3 bAα(x; t)n̂Aα(x)

}
, (43)

where bAα(x; t) =

[
p2

2mA
− μAα(x; t)

]
. Relevant statistical superoperator �̂0

rel(t) is bilinear on

annihilation and creation superoperators âAα(P) and â+Aα(P), as well as on the non-perturbed part
of Hamiltonian H̄0. One can write the total relevant superoperator as some non-perturbed part of
�̂0

rel(t) and the part that describes the interaction of quantum particles in the relevant state. Further,
we introduce the following designation:

�̂rel(t) = �̂0
rel(t) + �̂′rel(t), (44)

where:

�̂′rel(t) = −
∫

dr β(r; t)
1∫

0

dτ �̂τ
rel(t)Ĥint(r)

(
�̂0

rel(t)
)−τ

�̂0
rel(t). (45)

Relevant thermo-vacuum states |�̂rel(t)〉〉 and |�̂0
rel(t)〉〉 are not vacuum states for annihilation and

creation superoperators âAα(P), â+Aα(P), ãAα(P), ã+Aα(P). However, for |�̂0
rel(t)〉〉, one can construct new

superoperators γ̂Aα(P), γ̂+
Aα(P), γ̃Aα(P), γ̃+

Aα(P) as a linear combination of superoperators âAα(P),
â+Aα(P) and ãAα(P), ã+Aα(P) in order to satisfy the conditions:

γ̂Aα(P; t)|�0
rel(t)〉〉 = 0, 〈〈1|γ̂+

Aα(P; t) = 0,

γ̃Aα(P; t)|�0
rel(t)〉〉 = 0, 〈〈1|γ̃+

Aα(P; t) = 0.
(46)

To achieve this, let us consider an action of annihilation superoperators âAα(P; t), ãAα(P; t) on
relevant state |�0

rel(t0)〉〉:

âAα(P; t)|�0
rel(t0)〉〉 = fAα(P; t − t0)ã+Aα(P; t)|�0

rel(t0)〉〉, (47)

ãAα(P; t)|�0
rel(t0)〉〉 = σ fAα(P; t − t0)â+Aα(P; t)|�0

rel(t0)〉〉,

where superoperators âAα(p; t), â+Aα(p; t), ãAα(p; t), â+Aα(p; t) are in the Heisenberg representation:

âAα(P; t) = e−
1
ih̄ H̄0t âAα(P) e

1
ih̄ H̄0t, ãAα(P; t) = e−

1
ih̄ H̄0t ãAα(P) e

1
ih̄ H̄0t,

â+Aα(P; t) = e−
1
ih̄ H̄0t â+Aα(P) e

1
ih̄ H̄0t, ã+Aα(P; t) = e−

1
ih̄ H̄0t ã+Aα(P) e

1
ih̄ H̄0t,
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and satisfy commutation relations:[
âAα(P; t), â+Bβ(P

′; t)
]

σ
= δA,Bδα,βδ(P − P′),[

ãAα(P; t), ã+Bβ(P
′; t)

]
σ
= δA,Bδα,βδ(P − P′),[

âAα(P; t), ãBβ(P
′; t)

]
σ
=

[
â+Aα(P; t), ã+Bβ(P

′; t)
]

σ
= 0.

It is necessary to note that superoperators Ĥ(r), n̂Aα(x) are built on superoperators âAα(p +
q
2 ), â+Aα(p − q

2 ), ãAα(p + q
2 ), ã+Aα(p − q

2 ). Therefore, for convenience, here, a unit denotation was
introduced for arguments like P = p ± q

2 . This should be taken into account in further calculations
where obvious expressions are needed.

According to the general relations of [63,64], we can introduce new operators γ̂Aα(P; t), γ̂+
Aα(P; t),

γ̃Aα(P; t), γ̃+
Aα(P; t) via superoperators âAα(P; t), â+Aα(P; t), ãAα(P; t), ã+Aα(P; t):

γ̂Aα(P; t) =
√

1 + σnAα(P; t, t0)

[
âAα(P; t)− nAα(P; t, t0)

1 + σnAα(P; t, t0)
ã+Aα(P; t)

]
,

γ̃+
Aα(P; t) =

√
1 + σnAα(P; t, t0)

[
ã+Aα(P; t)− σâAα(P; t)

]
. (48)

The relations (48) satisfy the conditions (46). Here:

nAα(p, q; t, t0) = nAα(P; t, t0) = 〈〈1|ã+Aα(P; t)ãAα(P; t)|�0
rel(t0)〉〉

= 〈〈1|ã+Aα(p − q

2
; t)ãAα(p +

q

2
; t)|�0

rel(t0)〉〉,

is a relevant distribution function of A-particle bound states in momentum space p, q, which is
calculated with the help of relevant thermo-vacuum state vector

∣∣�0
rel(t0)〉〉 (43). Function fAα(P; t − t0)

in the formulae (47) is connected with nAα(P; t, t0) by the relation:

fAα(P; t − t0) =
nAα(P; t, t0)

1 + σnAα(P; t, t0)
.

Superoperators γ̂Aα(P; t), γ̂Aα(P; t), γ̃+
Aα(P; t), and γ̃+

Aα(P; t) satisfy the “canonical” commutation
relations: [

γ̂Aα(P; t), γ̂+
Bβ(P

′; t)
]

σ
= δA,Bδα,βδ(P − P′),[

γ̃Aα(P; t), γ̃+
Bβ(P

′; t)
]

σ
= δA,Bδα,βδ(P − P′),[

γ̂Aα(P; t), γ̃Bβ(P
′; t)

]
σ
=

[
γ̂+

Aα(P; t), γ̃+
Bβ(P

′; t)
]

σ
= 0.

(49)

Inversed transformations to superoperators âAα(P; t), ã+Aα(P; t) are easily obtained from (48):

âAα(P; t) =
√

1 + σnAα(P; t, t0)

[
γ̂Aα(P; t) +

nAα(P; t, t0)

1 + σnAα(P; t, t0)
γ̃+

Aα(P; t)

]
,

ã+Aα(P; t) =
√

1 + σnAα(P; t, t0)
[
γ̃+

Aα(P; t) + σγ̂Aα(P; t)
]

. (50)

γ̂Aα(P; t), γ̂+
Aα(P; t), γ̃Aα(P; t), γ̃+

Aα(P; t) could be defined as some operators of annihilation and
creation of A-quasiparticle bound states, for which relevant thermo-vacuum state

∣∣�0
rel(t0)〉〉 (43)

is a vacuum state. In such a way, we obtained relations of dynamical reflection of superoperators
âAα(P; t), â+Aα(P; t), ãAα(P; t), ã+Aα(P; t) to new superoperators of “quasiparticles” γ̂Aα(P; t), γ̂+

Aα(P; t),
γ̃Aα(P; t), γ̃+

Aα(P; t). Now, we can consider some particular strategy for the calculation of the transport
cores by switching to the superoperators of “quasiparticles” γ̂Aα(P; t), γ̂+

Aα(P; t), γ̃Aα(P; t), γ̃+
Aα(P; t).
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Here, we can use series expansions over the interaction of the relevant superoperator (44). These issues
require a separate, detailed study.

A set of transport Equations (32) and (33) together with dynamical reflections (48) and (50) of
superoperators in the thermo-field space constitute the basis for a consistent description of the kinetics
and hydrodynamics of a dense quantum system with strongly-bound states. Both strong and weak
nonequilibrium processes of a nuclear matter can be investigated using this approach, in which
the particle interaction is characterized by strongly-bound states, taking into account their nuclear
nature [3–6].

Weak nonequilibrium processes can be described when the fluctuations of the parameters
δβ(r; t) = β(r; t)− β, δμAα(x; t) = μAα(x; t)− μAα are small, where β and μAα are equilibrium values
for temperature and chemical potential, respectively. In this case, the system of Equations (32) and (33)
will have a similar structure, but is closed with respect to 〈〈1|δn̂Aα(x)|�(t)〉〉, 〈〈1|δĤ(r)|�(t)〉〉, where
δn̂Aα(x) = n̂Aα(x)− 〈〈1|n̂Aα(x)|�0〉〉, δĤ(r) = Ĥ(r)− 〈〈1|Ĥ(r)|�0〉〉, |�0〉〉 is the equilibrium thermo
vacuum state vector of the systems.

In addition, by designing a system of equations on moments 1, P of the distribution function,
we obtain, respectively, the equation of the thermo-field hydrodynamic for the dense quantum-field
systems. These questions require separate consideration and will be investigated in future work.

4. Conclusions

We generalized the nonequilibrium thermo-field dynamics in the framework of Zubarev’s
nonequilibrium statistical operator method [63] within the framework of Renyi statistics.
The non-Markov transport equations in the thermo-field presentation in Renyi statistics are obtained,
which can be used to describe the nonequilibrium processes in quantum Bose and Fermi systems.
In the case of q → 1 [72,73], when Renyi statistics are transformed into non-extensive Tsallis statistics,
we obtain the corresponding generalized transport equations with non-additive entropy for the system.
Based on this approach and Gibbs statistics, the generalized equations of the consistent description
of kinetics and hydrodynamics for dense quantum field systems with strongly-bound states were
obtained. We obtained the relations of the dynamic mapping of the superoperators âAα(P; t), â+Aα(P; t),
ãAα(P; t), ã+Aα(P; t) with the new superoperators of “quasiparticles” γ̂Aα(P; t), γ̂+

Aα(P; t), γ̃Aα(P; t),
γ̃+

Aα(P; t), for which the relevant thermo vacuum state of the non-interacting particles is the ground
one. This is important for the calculation of the transport cores.

Using this approach, one can investigate both strong and weak nonequilibrium processes of
nuclear matter, when the interaction between particles of the latter is characterized by strongly-bound
states of an internucleon nature [4,5].
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Abstract: We present a new derivation of second-order relativistic dissipative fluid dynamics for
quantum systems using Zubarev’s formalism for the non-equilibrium statistical operator. In particular,
we discuss the shear-stress tensor to second order in gradients and argue that the relaxation terms
for the dissipative quantities arise from memory effects contained in the statistical operator. We also
identify new transport coefficients which describe the relaxation of dissipative processes to second
order and express them in terms of equilibrium correlation functions, thus establishing Kubo-type
formulae for the second-order transport coefficients.

Keywords: relativistic fluid dynamics; statistical operator; non-equilibrium states; transport coefficients;
correlation functions

1. Introduction

Fluid dynamics is a powerful tool to describe low-frequency and long-wavelength phenomena in
statistical systems [1]. It finds numerous applications in astrophysics, cosmology, heavy-ion physics,
and other areas. In particular, it has been successfully applied to describe the collective behavior of hot
and dense strongly interacting matter created in heavy-ion collision experiments at Relativistic Heavy
Ion Collider (RHIC) and Large Hadron Collider (LHC). In these experiments, a new state of matter,
the quark-gluon plasma (QGP), was discovered, which behaves almost like a perfect fluid.

There are two main approaches which can be used to derive the equations of motion of fluid
dynamics and the pertaining transport coefficients from the underlying microscopic theory. For weakly
interacting systems, one commonly relies on kinetic theory based on the Boltzmann equation for
the quasi-particle distribution function [2–5]. For strongly interacting quantum systems, where the
quasi-particle picture breaks down and/or the quantum nature of the fields itself is important,
kinetic theory is no longer applicable, and a full quantum-statistical approach based on the Liouville
equation for the non-equilibrium statistical operator is required.

In this work, we adopt the method of the non-equilibrium statistical operator (NESO) [6,7] to
obtain the relativistic fluid-dynamical equations of motion for strongly correlated matter, such as the
QGP, in the non-perturbative regime. The method was applied to quantum fields [8] and has been
since extended to treat systems in strong magnetic fields [9]. It is based on a generalization of the Gibbs
canonical ensemble to non-equilibrium states, i.e., the statistical operator is promoted to a non-local
functional of the thermodynamic parameters and their space-time derivatives. Assuming that the
thermodynamic parameters are sufficiently smooth over the correlation lengths characterizing the
system, the statistical operator is expanded into a series in gradients of these parameters to the desired
order. The fluid-dynamical equations for the dissipative fluxes emerge then after statistically averaging
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the relevant quantum operators. An advantage of the NESO method is that the transport coefficients
of the system are automatically obtained in the form of Kubo-type relations, i.e., they are related to
certain correlation functions of the underlying field theory in the strong-coupling regime. There exist a
number of formulations of relativistic fluid dynamics in terms of near-equilibrium quantities which
are related to the NESO method employed by us; for recent work, see References [10–12].

This contribution provides a concise presentation of our recent work on the derivation
of second-order dissipative fluid dynamics via the NESO method [13,14]. As is well known,
relativistic fluid dynamics describes the state of a fluid in terms of its energy-momentum tensor
and currents of conserved charges, which in the relevant low-frequency and long-wavelength limit
can be expanded around their equilibrium values. The zeroth-order expansion corresponds to ideal
(non-dissipative) fluid dynamics. At first order, dissipative relativistic fluid dynamics emerges from a
truncation that keeps the terms of linear order in gradients [1,15]. Second-order relativistic theories
have also been constructed [16,17] to avoid the acausality of the first-order theory and the resulting
numerical instabilities. In second-order theories, the dissipative fluxes satisfy relaxation equations,
which describe the process of their relaxation towards their Navier–Stokes values at asymptotically
large times. While the general structure of second-order fluid dynamics is known, different results have
been obtained for the coefficients entering these equations (see, e.g., References [18,19]). The various
versions of second-order fluid dynamics and the pertaining relaxation equations are reviewed and
compared to each other, e.g., in the review articles [2,4,5], to which we refer the reader for more
detailed expositions.

This work is structured as follows. Section 2 gives a brief summary of Zubarev’s formalism for
the NESO [6,7]. Section 3 recapitulates Navier–Stokes theory and the Kubo formulae for the first-order
transport coefficients. The second-order transport equations are discussed in Section 4 and a summary
is given in Section 5. We work in flat space-time described by the metric tensor gμν = diag(+,−,−,−).

2. Non-Equilibrium Statistical Operator and Correlation Functions

The fluid-dynamical state of a relativistic quantum system is described by the operators of the
energy-momentum tensor T̂μν(x) and the conserved particle current N̂μ(x). For example, in the case
of Dirac fermions, the particle current is given by N̂μ = ˆ̄ψγμψ̂, where ψ̂ is the Dirac field operator,
and γμ are the Dirac matrices. The equations of relativistic fluid dynamics consist of the covariant
conservation laws for these quantities

∂μT̂μν(x) = 0, ∂μN̂μ(x) = 0. (1)

Here, we assume that the fluid consists of only one particle species. The generalization to the case
of several conserved species is straightforward and is given elsewhere [13].

In general, the fluid-dynamical description is applicable, if the actual state of a given system does
not deviate too much from local thermodynamic equilibrium. This allows one to introduce a fictitious
local-equilibrium reference state, characterized by space-time dependent thermodynamic parameters,
such as temperature T(x) ≡ β−1(x), chemical potential μ(x), and fluid 4-velocity uν(x). The deviation
of the actual state from this fictitious reference state is then taken to be proportional to gradients
of these fields. The assumption that the deviation from local equilibrium is small is equivalent to
assuming that these fields are slowly varying functions of the space-time coordinates x ≡ (x, t).
Note that, in this context, “slowly” means that the characteristic macroscopic scales over which the
fluid-dynamical quantities change in space and time should be much larger than the characteristic
microscopic scales of the system, e.g., for quasi-particles the mean free path between collisions. In terms
of the thermodynamic parameters defined above, we define new auxiliary functions

βν(x) = β(x)uν(x), α(x) = β(x)μ(x). (2)
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Now, consider the NESO given by Huang et al. [9]:

ρ̂(t) = Q−1e−Â+B̂, Q = Tre−Â+B̂, (3)

where

Â(t) =
∫

d3x
[

βν(x)T̂0ν(x)− α(x)N̂0(x)
]
, (4)

B̂(t) =
∫

d3x1

∫ t

−∞
dt1eε(t1−t)Ĉ(x1), (5)

Ĉ(x) = T̂μν(x)∂μβν(x)− N̂μ(x)∂μα(x), (6)

with ε → +0 taken after the thermodynamic limit. The NESO satisfies the quantum Liouville equation
with an infinitesimal source term ε, which for positive values selects the retarded solution [6,7].
The operators Â(t) and B̂(t) correspond to the equilibrium and non-equilibrium parts of the statistical
operator, where the operator Ĉ(x) stands for the thermodynamic “force” as it involves the gradients of
the thermodynamic variables, i.e., temperature, chemical potential, and fluid 4-velocity. We also define
the local-equilibrium statistical operator as

ρ̂l(t) = Q−1
l e−Â, Ql = Tre−Â, (7)

which is the analog of the Gibbs distribution involving local thermodynamic parameters.
Before proceeding, we remark that the thermodynamic variables are well-defined quantities

only in an equilibrium state, but not for a non-equilibrium state. The reason they appear at all
in our discussion is the introduction of a fictitious local-equilibrium state, from which the actual
non-equilibrium state should not deviate too much. The freedom in choosing this fictitious state can
be exploited to determine the parameters α(x), β(x), and the fluid 4-velocity uν(x) characterizing
this state. For this purpose, we first define the operators of the energy and particle densities via
ε̂(x) = uμ(x)uν(x)T̂μν(x) and n̂(x) = uμ(x)N̂μ(x). These simply imply that ε̂(x) and n̂(x) are
the time-like eigenvalues of the energy-momentum tensor and the particle current, respectively,
measured by a local observer comoving with a fluid element. The local values of the Lorentz-invariant
thermodynamic parameters β(x) and α(x) can now be fixed by requiring that the average values of
the operators ε̂(x) and n̂(x) match the local-equilibrium values of these quantities. These so-called
Landau matching conditions [6,7] are then written as

〈ε̂(x)〉 = 〈ε̂(x)〉l , 〈n̂(x)〉 = 〈n̂(x)〉l , (8)

where for an arbitrary operator X̂(x) the non-equilibrium and local-equilibrium statistical averages
are defined as

〈X̂(x)〉 = Tr[ρ̂(t)X̂(x)], 〈X̂(x)〉l = Tr
[
ρ̂l(t)X̂(x)

]
. (9)

Finally, the fluid 4-velocity uμ can be determined by relating it to a particular physical current.
For example, in the Landau–Lifshitz frame, the 4-velocity is parallel to the fluid 4-momentum or,
equivalently, to the energy flow, i.e., uμ〈T̂μν〉 = 〈ε̂〉uν [1]. In the Eckart frame, the fluid velocity is
associated with the particle flow via 〈N̂μ〉 = 〈n̂〉uμ [15]. However, in the following, we keep the fluid
velocity generic without specifying any particular reference frame.

The next step is to expand the NESO around the local-equilibrium value in Equation (7) treating
the non-equilibrium part, which is described by the operator B̂, as a perturbation

ρ̂ = ρ̂l + ρ̂1 + ρ̂2, (10)
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where the first-order term is given by

ρ̂1(t) =
∫

d4x1

∫ 1

0
dτ

[
Ĉτ(x1)− 〈Ĉτ(x1)〉l

]
ρ̂l , (11)

while the second-order term is

ρ̂2(t) =
1
2

∫
d4x1d4x2

∫ 1

0
dτ

∫ 1

0
dλ

[
T̃{Ĉλ(x1)Ĉτ(x2)} − 〈T̃{Ĉλ(x1)Ĉτ(x2)}〉l

−〈Ĉλ(x1)〉l Ĉτ(x2)− Ĉλ(x1)〈Ĉτ(x2)〉l + 2〈Ĉλ(x1)〉l〈Ĉτ(x2)〉l

]
ρ̂l . (12)

Here, T̃ is the anti-chronological operator acting on the variables τ and λ and we used the short-hand
notations ∫

d4x1 =
∫

d3x1

∫ t

−∞
dt1eε(t1−t), X̂α = e−αÂX̂eαÂ, α ∈ τ, λ. (13)

The expansion of Equation (10) implies that the statistical average of any operator X̂(x) can be
decomposed into three terms

〈X̂(x)〉 = 〈X̂(x)〉l + 〈X̂(x)〉1 + 〈X̂(x)〉2, (14)

where the first-order term is given by

〈X̂(x)〉1 =
∫

d4x1

(
X̂(x), Ĉ(x1)

)
, (15)

with (
X̂(x), Ŷ(x1)

)
=

∫ 1

0
dτ〈X̂(x)

[
Ŷτ(x1)− 〈Ŷτ(x1)〉l

]〉l (16)

being the two-point correlation function between two arbitrary operators [8,9]. The second-order term
in Equation (14) can be written as

〈X̂(x)〉2 =
∫

d4x1d4x2

(
X̂(x), Ĉ(x1), Ĉ(x2)

)
, (17)

where we introduced the three-point correlation function of the operators X̂, Ŷ, and Ẑ as

(
X̂(x), Ŷ(x1), Ẑ(x2)

)
=

1
2

∫ 1

0
dτ

∫ 1

0
dλ〈T̃X̂(x)

[
Ŷλ(x1)Ẑτ(x2)− 〈T̃Ŷλ(x1)Ẑτ(x2)〉l

− 〈Ŷλ(x1)〉l Ẑτ(x2)− Ŷλ(x1)〈Ẑτ(x2)〉l + 2〈Ŷλ(x1)〉l〈Ẑτ(x2)〉l

]
〉l . (18)

3. Relativistic Fluid Dynamics at First Order in Gradients

To examine specific dissipative processes, i.e., heat conduction, particle diffusion, and shear and
bulk stresses, the energy-momentum tensor and the particle current are decomposed as

T̂μν = ε̂uμuν − p̂Δμν + q̂μuν + q̂νuμ + π̂μν, (19)

N̂μ = n̂uμ + ĵμ, (20)

where the fluid velocity uμ is normalized as uμuμ = 1, and Δμν = gμν − uμuν is the projection operator
onto the 3-space orthogonal to uμ. The energy-momentum tensor in Equation (19) is assumed to be
symmetric with respect to its indices. We remind that uμ and Δμν appearing in these expressions
are classical fields, i.e., c-numbers, whereas the rest of the quantities are (microscopic) quantum
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operators, the physical identification of which is as follows: ε̂ is the operator of the energy density;
n̂ is the operator of particle (number) density; p̂ is the operator of the pressure; and the dissipative
terms π̂μν, q̂μ, and ĵμ are the shear-stress tensor, the energy-diffusion flux, and the particle-diffusion
flux, respectively.

The tensor decompositions in Equations (19) and (20) have the most general form that can be
constructed from the fluid velocity and the tensor Δμν. The operators of the physical quantities
on the right-hand sides of Equations (19) and (20) can be written as certain projections of the
energy-momentum tensor and the particle current,

ε̂ = uμuνT̂μν, n̂ = uμN̂μ, p̂ = −1
3

ΔμνT̂μν, (21)

π̂μν = Δμν
αβT̂αβ, q̂μ = uαΔμ

β T̂αβ, ĵν = Δν
μN̂μ, (22)

where

Δμνρσ =
1
2
(
ΔμρΔνσ + ΔμσΔνρ

)− 1
3

ΔμνΔρσ (23)

is a traceless rank–four projector orthogonal to uμ. The dissipative quantities satisfy the conditions

uν q̂ν = 0, uν ĵν = 0, uνπ̂μν = 0, π̂
μ
μ = 0. (24)

In local equilibrium, the averages of these operators vanish [20]:

〈q̂μ〉l = 0, 〈 ĵμ〉l = 0, 〈π̂μν〉l = 0, (25)

and one recovers the limit of ideal fluid dynamics. The local-equilibrium pressure is given by the
equation of state, i.e., 〈 p̂〉l ≡ p = p(ε, n), which closes the set of ideal fluid-dynamical equations
of motion.

Consider next fluid dynamics at first order in gradients. Quite generally, the fluid-dynamical
quantities πμν, qμ, and jμ are obtained as the statistical averages of the corresponding operators over
the NESO according to Equations (14)–(18). Keeping only the first-order terms in Equation (14), we
obtain the relativistic Navier–Stokes equations

πμν = 2ησμν, Π = −ζθ, Jμ = κ

(
nT
h

)2
∇μα, (26)

where πμν ≡ 〈π̂μν〉, the bulk viscous pressure Π ≡ 〈 p̂〉 − 〈 p̂〉l is the difference between the first-order
average of the pressure operator and the local-equilibrium value of pressure, h = ε + p is the enthalpy
density, and

Jμ = jμ − n
h

qμ (27)

is the irreversible particle flow, i.e., the particle flow with respect to the energy flow [16,17]. On the
right-hand sides of Equation (26), σμν = ∂<αuβ> is the shear tensor, where angular brackets denote the

projection with the projector in Equation (23), i.e., A<μν> = Δαβ
μν Aαβ, θ = ∂μuμ is the expansion

scalar, and ∇α = Δαβ∂β is the covariant spatial derivative. The coefficients η, ζ, and κ are the
transport coefficients of the shear and bulk viscosities, and the thermal conductivity, respectively.
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These transport coefficients can be expressed through two-point correlation functions via the following
Kubo formulae [8–10]

η =
β

10

∫
d4x1

(
π̂μν(x), π̂μν(x1)

)
, (28)

ζ = β
∫

d4x1

(
p̂∗(x), p̂∗(x1)

)
, (29)

κ = − β2

3

∫
d4x1

(
ĥμ(x), ĥμ(x1)

)
, (30)

where

p̂∗ = p̂ − γε̂ − δn̂, ĥμ = q̂μ − h
n

ĵμ, (31)

and

γ =

(
∂p
∂ε

)
n

, δ =

(
∂p
∂n

)
ε

. (32)

The correlation functions in Equations (28)–(30) are evaluated in a uniform background, i.e., as if
the system was in global thermodynamical equilibrium. They can be expressed in terms of the two-point
retarded equilibrium Green functions as [8,9]

η = − 1
10

d
dω

ImGR
π̂μνπ̂μν(ω)

∣∣∣∣
ω=0

, (33)

ζ = − d
dω

ImGR
p̂∗ p̂∗(ω)

∣∣∣∣
ω=0

, (34)

κ =
1

3T
d

dω
ImGR

ĥμ ĥμ(ω)

∣∣∣∣
ω=0

, (35)

where, for any two operators X̂ and Ŷ,

GR
X̂Ŷ(ω) ≡ −i

∫ ∞

0
dteiωt

∫
d3x〈[X̂(x, t), Ŷ(0, 0)

]〉l . (36)

Equations (33)–(35) represent a particularly suitable form for the Kubo formulae, which lends itself to
evaluation using the methods of equilibrium finite-temperature field theory.

Before closing this section, it is useful to clarify the relation between the expansions in powers of
the thermodynamic forces and in powers of the Knudsen number K = l/L, where l and L are typical
microscopic and macroscopic length scales, respectively. To obtain the relations in Equation (26) from
Equation (15), we used Curie’s theorem. It states that, in an isotropic medium, the correlations between
operators of different rank vanish [21]. The integrands in Equations (28)–(30) are mainly concentrated
within the range |x1 − x| � l, where l is the mean correlation length, which in the weak-coupling limit
is of the order of the particle mean free path. The fluid-dynamical regime implies l � L, where L is the
typical length scale over which the parameters βν and α vary in space. Therefore, the thermodynamic
forces ∂μβν and ∂μα involved in Equation (6) can be factored out from the integral in Equation (15)
with their average values at x, i.e., the non-locality of the thermodynamic forces can be neglected in
this approximation. Because |σρσ| � |uρ|/L, the relations in Equation (26) obtained from the gradient
expansion in Equation (10) of the NESO are consistent with the expansion scheme in powers of the
Knudsen number.
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4. Relativistic Fluid Dynamics at Second Order in Gradients

We have computed systematically all second-order corrections to the dissipative quantities
πμν, Π, and J μ based on Equations (14)–(18) [13,14]. Before presenting the results, we note that the
second-order contributions arise not only from Equation (17), which is quadratic in the thermodynamic
force Ĉ, but also from Equation (15), where the non-local nature of the thermodynamic forces in space
and time should be carefully taken into account. The non-local effects generate finite relaxation terms
in the fluid-dynamical equations, which are required for causality. To see that these corrections are of
second order in the Knudsen number, note that they involve the differences of the thermodynamic
forces, e.g., ∂μβν, at the points x1 and x (see Equations (6) and (15)). Therefore, we can approximate
∂μβν(x1)− ∂μβν(x) � ∂λ∂μβν(x)(x1 − x)λ ∼ K∂μβν(x), because x1 − x ∼ l and ∂ ∼ L−1, as already
done in Section 3. Thus, these corrections contain an additional power of the Knudsen number K as
compared to the first-order expressions in Equation (26) and, therefore, are of second order.

Here, we restrict ourselves to the second-order expression for the shear-stress tensor and compare
it with the results of References [18,22].

4.1. Second-Order Corrections to the Shear-Stress Tensor

As explained above, we now keep the NESO at second order in small perturbations from
local equilibrium and, in addition, we retain terms which are of second order in the gradients of
thermodynamic forces. In this manner, we find the shear-stress tensor at second order as

πμν = 2ησμν − 2ητπ(σ̇μν + γθσμν) + λπσα<μσα
ν> + 2λπΠθσμν + λπJ ∇<μα∇ν>α, (37)

where σ̇μν ≡ ΔμνρσDσρσ, with D = uμ∂μ being the comoving derivative, and τπ , λπ , λπΠ, and λπJ

represent four new coefficients associated with the second-order corrections to the shear stress. The first
term on the right-hand side of Equation (37) is easily recognized as the first-order (Navier–Stokes)
contribution. The second-order terms collected in the parentheses (i.e., those ∝ τπ) represent the
non-local corrections to Equation (15), whereas the last three terms stand for the nonlinear corrections
arising from the three-point correlation functions in Equation (17). The first non-local correction
describes memory effects due to its non-locality in time. The relevant transport coefficient τπ , which has
the dimension of time, measures how long the information remains in the “memory” of the shear-stress
tensor πμν. Therefore, it is natural to associate it with the relaxation time of the shear stresses towards
their asymptotic Navier–Stokes values. The second term involves a product of σμν with θ = ∂μuμ and
can be regarded as a (scalar) measure of the spatial “non-locality” in the fluid-velocity field. This term
describes how the shear-stress tensor is distorted by uniform expansion or contraction of the fluid.

We find that the relaxation time τπ is related to the frequency derivative of the corresponding
first-order transport coefficient, i.e., the shear viscosity, by a Kubo formula

ητπ = −i
d

dω
η(ω)

∣∣∣∣
ω=0

=
1

10
d2

dω2 ReGR
π̂μνπ̂μν(ω)

∣∣∣∣
ω=0

, (38)

where η ≡ η(0) is given by Equation (33), the retarded Green’s function GR
π̂μνπ̂μν is defined

in Equation (36), and the frequency-dependent shear viscosity η(ω) is given by Equation (33)
for non-vanishing ω. Similar expressions for the relaxation times were obtained previously in
References [18,22–24].

The physical meaning of the Equation (38) for τπ is easy to understand. As mentioned above,
the relaxation terms originate from the non-local (memory) effects encoded in the non-equilibrium
statistical operator. In the case where these memory effects are neglected (first-order theory),
the proportionality between πμν and σμν is given by the zero-frequency (static) limit of the shear
viscosity, as seen from Equations (26) and (33). The memory effects imply a time delay, which translates
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into a frequency dependence of the shear viscosity [25]. At leading order, this is accounted for by the
first-order frequency derivative of η(ω) as Equation (38) demonstrates.

The last three terms in Equation (37) contain all combinations of the thermodynamic forces
σμν, θ, and ∇μα which are allowed by the symmetries to quadratic order. These are θσμν, σρ<μσ

ρ
ν>,

and ∇<μα∇ν>α. The second-order transport coefficients associated with these terms can be expressed
via three-point correlation functions according to

λπ =
12
35

β2
∫

d4x1d4x2

(
π̂ν

μ(x), π̂λ
ν (x1), π̂

μ
λ(x2)

)
, (39)

λπΠ = − β2

5

∫
d4x1d4x2

(
π̂μν(x), π̂μν(x1), p̂∗(x2)

)
, (40)

λπJ =
1
5

∫
d4x1d4x2

(
π̂μν(x), Ĵ μ(x1), Ĵ ν(x2)

)
, (41)

where Ĵ μ is the operator corresponding to the 4-current (27). In analogy to the leading-order
coefficient η, which is given by the two-point correlation of the shear-stress tensor, the second-order
coefficient λπ is given by the three-point correlation of the shear-stress tensor. The coefficient λπΠ

describes the nonlinear coupling between shear- and bulk-viscous processes and is given by a
three-point correlation function between two shear-stress tensors and the bulk viscous pressure.
Finally, the coefficient λπJ describes the nonlinear coupling between the shear and the diffusion
processes. Similarly, this coefficient is given by a three-point correlation function between two diffusion
currents and the shear-stress tensor. Note that, in Equation (37), the term ∝ λπΠ and the second
term in parenthesis have the same gradient structure, but they have different origins and physical
interpretation. The term ∝ τπ originates from non-local effects in the statistical distribution, whereas the
term ∝ λπΠ stands purely for the nonlinear coupling between the bulk- and the shear-viscous effects.
In this sense, it is natural to regard as nonlinear only the term ∝ λπΠ, but not the term ∝ τπ . A similar
classification of the second-order terms was suggested earlier in Reference [19].

4.2. Comparison with Previous Studies

For the sake of simplicity we consider here a fluid without conserved charges. In this case,
Equation (32) implies γ ≡ c2

s , where cs is the speed of sound, and Equation (37) reduces to

πμν = 2ησμν − 2ητπ(σ̇μν + c2
s θσμν) + λπσα<μσα

ν> + 2λπΠθσμν. (42)

Baier et al. [18] found in this case and for conformal fluids

πB
μν = 2ησμν − 2ητπ

(
σ̇μν +

1
3

θσμν

)
+ λ1σα<μσα

ν>, (43)

where we have neglected terms proportional to the vorticity tensor wαβ = (∇αuβ −∇βuα)/2. (Note that
Baier et al. [18] and Romatschke [22] used a metric convention opposite to ours, and their definition
of the shear viscosity differs from ours by a factor of 2). Because c2

s = 1/3 for a conformal fluid,
we recover from Equation (42) the term proportional to τπ in Equation (43). Furthermore, because
conformal invariance implies a vanishing bulk viscous pressure, the correlations involving the operator
p̂∗ (see Equations (29) and (31)) vanish, i.e., λπΠ = 0 in this case. Finally we see that λ1 ≡ λπ .

In the case of non-conformal fluids, the second-order expression for the shear-stress tensor was
found, e.g., in Reference [22] in the absence of conserved charges. Again, neglecting the vorticity tensor
and assuming flat space-time,

πR
μν = 2ησμν − 2ητπ

(
σ̇μν +

1
3

θσμν

)
+ λ1σα<μσα

ν> − 2
3

ητ∗
πθσμν + λ4∇<μ ln s∇ν> ln s. (44)
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The term ∝ τ∗
π has the same gradient structure as the non-local term −2ητπθσμν/3.

Comparing Equation (44) with our expression in Equation (42), we identify τ∗
π = τπ(3c2

s − 1)− 3λπΠ/η,
and λ4 = 0.

We also note that Equation (37) does not contain terms proportional to the vorticity. To derive
such terms, one needs to include an initial non-zero angular momentum in the local-equilibrium
distribution [26].

4.3. Relaxation Equation for the Shear-Stress Tensor

A relaxation-type equation for πμν can now be derived from Equation (37). For this purpose,
we replace the first-order expression 2σρσ → η−1πρσ in the second term on the right-hand-side of
Equation (37), as has also been done in References [18,27,28]. This substitution is justified up to second
order in space-time gradients. We then obtain

−2ητπσ̇μν � −τππ̇μν + τπ βη−1
(

γ
∂η

∂β
− δ

∂η

∂α

)
θπμν � −τππ̇μν + 2τπ β

(
γ

∂η

∂β
− δ

∂η

∂α

)
θσμν, (45)

where π̇μν = ΔμνρσDπρσ. The terms in brackets contain the corresponding partial derivatives of η,
which in general are not small and should not be neglected. In Equation (45), we employed the relations
Dβ = βθγ and Dα = −βθδ [9]. Combining Equations (37) and (45) and introducing the coefficient

λ = λπΠ − γητπ + τπ β

(
γ

∂η

∂β
− δ

∂η

∂α

)
, (46)

we finally obtain

τππ̇μν + πμν = 2ησμν + 2λθσμν + λπσρ<μσ
ρ
ν> + λπJ ∇<μα∇ν>α. (47)

The time-derivative term on the left-hand side describes the relaxation of the shear-stress tensor
towards its Navier–Stokes value on the characteristic time scale τπ . Indeed, for vanishing right-hand
side the relaxation is exponential, πμν ∝ exp(−t/τπ), with a characteristic relaxation time scale τπ .
We would like to stress that the exponential relaxation over a time scale τπ is a direct consequence of
the substitution 2σρσ → η−1πρσ made above; it is not a manifestation of a specific relaxation process
on the microscopic level. However, a direct way to obtain such a relaxation term is via the method of
moments applied to the Boltzmann equation [3]. In this case, the time scale τπ is an intrinsic property
of the collision kernel in the Boltzmann equation.

5. Summary

This work concisely presents the derivation of second-order relativistic dissipative fluid dynamics
within Zubarev’s NESO formalism – a method which is well-suited for treatments of strongly correlated
systems. The simple case of a one-component fluid without electromagnetic fields or vorticity in flat
space-time was considered here.

Our analysis shows that the second-order dissipative terms arise from: (i) the quadratic terms
in the Taylor expansion of the statistical operator; and (ii) the linear terms of the same expansion
which include memory and non-locality in space. In particular, we find that the type-(ii) terms
describe the relaxation in time of the dissipative fluxes, which is essential for the causality of the
fluid-dynamical theory.

Using the NESO method and the example of the shear-stress tensor, we demonstrated that
the second-order transport coefficients can be expressed in terms of certain two- and three-point
equilibrium correlation functions. A discussion of the transport coefficients associated with other
thermodynamic fluxes can be found elsewhere [14]. Furthermore, we have shown that Kubo-type
formulae for the relaxation times of the dissipative fluxes can be obtained within the NESO formalism
(see Equation (38)). These are given by the zero-frequency limit of the derivatives of the corresponding
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first-order transport coefficients with respect to the frequency. These can be computed from the theory
of quantum fields in equilibrium at non-zero temperature as, for example, was done by us for the QGP
within the Nambu–Jona–Lasinio model [29,30].
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Abstract: The fruitfulness of the method of a non-equilibrium statistical operator (NSO) and generalized
linear response theory is demonstrated calculating the permittivity, dynamical conductivity, absorption
coefficient, and dynamical collision frequency of plasmas in the degenerate, metallic state as well as
classical plasmas. A wide range of plasma parameters is considered, and a wide range of frequencies of
laser radiation acting on such plasmas is treated. New analytical expressions for the plasma response are
obtained by this method, and several limiting cases are discussed.
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1. Introduction

The non-equilibrium quantum statistical operator (NSO) was proposed by D.N. Zubarev [1], and its
100-year anniversary was celebrated recently. The NSO method is an important step in working out
a unified, general approach to nonequilibrium phenomena such as transport and relaxation processes.
Different approaches to describe nonequilibrium processes, such as kinetic theory, linear response theory,
and quantum master equations, are obtained within a very general approach, after specifying the relevant
degrees of freedom that characterize the non-equilibrium state of the system. Recent reviews of the NSO
method and its applications can be found, e.g., in [2–6].

The NSO method has been successfully applied to many problems related to the transport and optical
properties of charged particle systems, such as warm dense matter (WDM). Reviews of the calculations of
dynamical response of dense plasmas are found, e.g., in [7,8]. A main advantage of the approach is that
special approaches, valid in limiting cases, can be generalized to describe more complex situations. For
instance, kinetic theory has been worked out for low-density systems where the single-particle distribution
function is relevant to describing the non-equilibrium state of the system, and correlations can be neglected.
In contrast, linear response theory has been worked out to describe systems at arbitrary densities, but
near thermodynamical equilibrium. A unified theory that covers both limiting cases has been worked out
using the NSO method, see [9]. In particular, the correct frequency dependence of the response functions
has been found, in contrast to conventional kinetic theory. A further advantage of the approach is that
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non-equilibrium properties of quantum as well as classical plasmas can be considered consistently on
the same footing. Altogether, the NSO method allows one to study the transport and optical properties
of plasmas at arbitrary densities and temperatures, including the region of WDM where correlations are
strong, in particular between ions, and where the electrons become degenerate. The response to classical
Maxwell fields, represented by a time-dependent external field in the Hamiltonian, can be investigated in
a wide range of frequencies of the external field. This refers also to the response of WDM that is irradiated
by laser fields, in particular the frequency-dependent absorption coefficient. To include a spontaneous
emission of photons, a quantum description of the Maxwell fields is necessary.

In this paper, we present briefly the NSO method and its application to the permittivity of metallic
plasmas, which is described by a Hamiltonian accounting for electron–phonon interactions and Umklapp
processes, as well as the application to the permittivity of plasmas without a long-range order of ions,
which is described by a Hamiltonian accounting for electron–ion and electron–electron interactions.
We continue our previous investigations to work out a systematic quantum statistical approach to the
response properties of WDM [10–14] with an application to aluminum, considering additional processes
of interaction in the strongly coupled Coulomb system. We derive analytical expressions for the dynamical
collision frequency and related quantities, in particular the absorption coefficient. The behavior of these
response properties, such as temperature dependence and frequency dependence, is discussed in special
limiting cases.

These results are of interest for the investigation of material at extremal conditions, e.g., high-particle
and high-energy densities. If a solid metallic target is irradiated by powerful laser pulses, the electron
component of such a target undergoes modifications of its properties, changing from the state of a
metallic “plasma” to a state of a classical non-degenerate plasma. This transition of the electron system
from a degenerate state to a classical behavior is consistently described in our approach. In addition,
the ion system may change from a solid state, where the ion positions are strongly correlated forming
a lattice, to a liquid or a plasma state, where the long-range order of ion positions is destructed. In
the present work, we neglect the short-range order of the ion system in the liquid or plasma state, so
that the electron–ion interaction is considered as independent scattering at the individual ions. For the
electron–ion interaction in the solid state of matter, the coherent part of multiple scattering by the ionic
lattice leads to the formation of electron band (Bloch) states. The deviation of ions from the lattice position
is described as phonon excitation, and the electron–phonon interaction together with Umklapp processes
is considered in this work as responsible for the dynamical conductivity of the solid metal, in addition to
electron–electron collisions. Such transitions from collective electron–phonon interactions in a solid to
individual electron–ion interactions in the disordered ion configuration directly opens up the question
about the switching between the respective Hamiltonians. A more general approach is possible using the
concept of the dynamical structure factor which reflects not only the configuration of the ions but also the
dynamical behavior, including collective excitations, of the ion system. This problem, however, requires a
separate investigation and is not considered in the present work.

With respect to the application to aluminum plasmas, recent experiments in the WDM region [15,16]
to measure the dynamical conductivity are also treated by density-functional theory (DFT) for electrons
combined with molecular dynamics (MD) calculations for the ions [17]. These calculations have the
advantage that optimal single-electron orbitals are calculated, and these orbitals reflect the electron
structure of the aluminum ion, improving our effective electron–ion (e − i) interaction potential. In
addition, the static ionic structure factor is calculated so that a short-range order in the liquid or plasma
phase is implemented in the calculation of the dynamical conductivity. However, the choice of the
density functional for the correlation energy remains an open problem of these DFT-MD calculations. A
shortcoming of the DFT-MD approach is that electron–electron (e − e) collisions are not properly included
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in this mean-field theory, in contrast to our generalized linear response approach, where the contribution
of e − e collisions is taken into account, see also [18].

A systematic improvement of our approach is the use of optimal single-electron orbits and e − i
interaction potentials. In addition, the dynamical ion structure factor that causes not only multiple
scattering of the electrons, but also the excitation of the ion system, in particular phonons, should be
considered in a systematic approach. These improvements in our calculations that establish a closer
connection to DFT-MD simulations are a subject of future work.

2. A Brief Description of the Method

The plasma permittivity ε(ω) of an electromagnetic field with the frequency ω is directly related to
the dynamical conductivity σ(ω) according to ε(ω) = 1 + iσ(ω)/(ε0ω) or, using Gauss units instead of SI
units, as follows:

ε(ω) = 1 + 4πiσ(ω)/ω. (1)

Here and below we consider isotropic media in the case of weak spacial dispersion or the
long-wavelength (with respect to plasma perturbations) limit. In this case, the permittivity does not
depend on the wave vector of perturbations. The longitudinal permittivity coincides with the transverse
one: ε‖ = ε⊥ = ε [19].

For the calculation of σ(ω), one should determine the (quantum) statistically averaged electric
current, arising as the system’s response to external electromagnetic fields. Such calculation can be done
using the NSO ρ̂ = ρ̂rel + ρ̂irrel, which can be constructed as a sum of the so-called relevant statistical
operator ρ̂rel describing the quasi-equilibrium and the irrelevant statistical operator ρ̂irrel, which represents
the nonequilibrium contribution.

The relevant statistical operator is introduced as a generalized Gibbs ensemble, derived from the
principle of the maximum of entropy:

ρ̂rel(t) = Zrel(t)−1 exp
[−β(Ĥ − μN̂) + ∑n Fn(t)B̂n

]
Zrel(t) = Tr

[−β(Ĥ − μN̂) + ∑n Fn(t)B̂n
] (2)

where Ĥ is the Hamiltonian of the system. N̂ = ∑p â†
pâp is the particle number operator, where â†

p and
âp are the creation and annihilation operators of the electrons in state p. For the chosen set of relevant
observables {Bn}, n = 1 . . .N , we request

Tr
{

B̂nρ(t)
}
= 〈B̂n〉t = Tr

{
B̂nρ̂rel(t)

}
, (3)

meaning that the observed statistical averages 〈...〉t at time t are correctly reproduced by the averages
with the relevant statistical operator ρ̂rel(t). The Lagrange parameters Fn(t) are then determined by the
set of requested expressions (3) as response parameters. Similar conditions on 〈N̂〉 and 〈Ĥ〉 determine
μ as chemical potential and β = 1/Te, respectively, where Te is the electron temperature. (We give the
temperature in energy units, kB = 1, instead of SI units where β = 1/kBTe.)

If N = 0 (i.e., an empty set of relevant observables), the operator ρ̂rel (2) is identical with the statistical
operator for the grand canonical ensemble [3]. In that case, the well-known Kubo formula [20] for the
electrical conductivity follows immediately [4,5].

The choice of relevant observables can be arbitrary. Different choices lead to the same results if
non-perturbative approaches such as infinite diagram summations or numerical calculations of correlation
functions are used [5,8,21]. However, the account of only a finite number of terms within a perturbation
expansion can lead to even divergent results. Therefore, it is necessary to choose the set of relevant
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observables in a way that the relevant statistical operator [5] already ensures a close approximation of the
considered system.

According to [9] (see also [4,8,21]), the NSO ρ̂(t) is determined by the dynamical evolution of the
system with Hamiltonian Ĥtot = Ĥ + Ĥext(t):

ρ̂(t) = lim
η→+0

η
∫ t

−∞
dt′e−η(t−t′)Û(t, t′)ρ̂rel(t′)Û†(t, t′) (4)

where Û(t, t′) is the time evolution operator, which solves the equation

ih̄∂tÛ(t, t′) = ĤtotÛ(t, t′) , Û(t′, t′) = 1 (5)

with Ĥext(t) being the Hamiltonian of the external perturbation. Due to Equation (4), correlations from
the initial state are further built up, which is determined by the relevant statistical operator ρ̂rel(t) (2).

For a high frequency electromagnetic field with an electric field strength E(t) acting on matter,
the external perturbation Ĥext(t) can be written in dipole approximation as

Ĥext(t) = −eR̂ · E(t), R̂ = ∑a r̂a, ˙̂R = P̂1Σ/m (6)

where m is the electron mass, and e is the electron charge. P̂1Σ = ∑νP̂1,ν is the operator of the total
momentum of electrons, which is the sum of momentums of electrons from different energy zones ν.
It coincides with the first moment of the density matrix, see Equation (11) below.

In linear response theory, which we assume to be applicable, an expansion of the relevant ρ̂rel(t),
Equation (2), and the irrelevant ρ̂irrel(t) = ρ̂(t)− ρ̂rel(t) statistical operators with respect to the external
perturbation and the response parameters Fn(t) are considered, see [5,9]. Together with Equation (3) and
using the Kubo identity, this gives rise to the following system of equations:

〈δB̂n〉 = ∑m(B̂n; δB̂m)Fm (7)

∑
m

[
−iω

{
(B̂n; B̂m) + 〈 ˆ̇Bm; δB̂m〉z

}
+ (B̂n; ˆ̇Bm) + 〈 ˆ̇Bn; ˆ̇Bm〉z

]
Fm = β

e
m

{
(B̂n; P̂1Σ) + 〈 ˆ̇Bm; P̂1Σ〉z

}
E (8)

where z = ω + iη; δB̂n = B̂n − 〈B̂n〉0, and 〈B̂n〉0 is the statistical average of B̂n with the equilibrium statistical
operator of the grand canonical ensemble ρ̂0 = Z−1

0 exp[−(Ĥ − μN̂)/Te] with Z0 = Tr{e−(Ĥ−μN̂)/Te}.
In Equations (7) and (8), expressions such as (Â; B̂) and

〈
Â; B̂

〉
z denote Kubo scalar products of

operators Â and B̂ and the Laplace transform of the Kubo scalar product of these operators, respectively.
The latter are called equilibrium correlation functions. They are defined by expressions

(Â; B̂) =

β∫
0

dτ Tr
{

Â(−ih̄τ)B̂+ρ̂0
}

(9)

〈
Â; B̂

〉
z =

∞∫
0

dteizt (Â(t); B̂
)

(10)

where the operator Â is taken in Heisenberg representation Â(t) = eiĤt/h̄ Âe−iĤt.
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For further treatment of Equations (7) and (8), it is necessary to define the set of relevant observables
Bn. For the description of the permittivity of plasmas, it is convenient to choose the moments of the density
matrix as the set of relevant observables:

B̂n = P̂n = ∑
pν

h̄pνn̂p,ν(Ep,ν/Te)
(L−1)/2, n ≡ {L, ν} (11)

where n̂p,ν = â+p,ν âp,ν, pν = m ∂Ep,ν/∂p, and

Ep,ν = p2/(2m mν) + E0,ν (12)

where mν and E0,ν are the effective electron mass (normalized to electron mass m) and the energy of the
bottom of the ν-th zone, respectively. Here, for generality, we consider moments of the density matrix
stipulated by different powers of electrons momentum p (labeled by the index “L“) and by different energy
zones (labeled by the index “ν“). The index “n” of observables comprises both L and ν; â+p,ν and âp,ν are
creation and annihilation operators for single-electron states with momentum p in the ν-th band.

The equilibrium correlation functions occurring in Equations (7) and (8) will be evaluated below.
Here we only mention that (B̂n; ˆ̇Bm) = 0 because the commutator [B̂n, B̂m] vanishes. In the lowest order of
interaction, which is proportional to e2, one can show [22] that the terms in (8) containing only one operator
ˆ̇Bn can be omitted in comparison to the leading order. In an isotropic system, we take the electrical field as

well as the current density in the z direction so that only the absolute value is of relevance. Equations (7)
and (8) are rewritten as the following system of equations for the dimensionless response parameters Fm

in terms of the dimensionless correlation functions Nnm and Cnm:

〈P̂n〉 = enE
ωa.u.

∑m
NnmFm (13)

∑
m

[
Cnm − iω̃Nnm

]
Fm = ∑

μ

Nn{1μ} (14)

where Nn{1μ} has the second index with L = 1 and band index μ,

Nnm =
(P̂n; P̂m)

mnTe
, Cnm(ω) =

〈 ˆ̇Pn; ˆ̇Pm〉ω+iη

mnTeωa.u.
,

Fm = Fm
e E

mTe
. (15)

n is the particle number density of electrons in the conduction band (free electron density). ωa.u. is
the atomic unit of the frequency, so that h̄ωa.u. = EH = me4/h̄2 ≈ 27.2 eV is the Hartree energy unit,
and ω̃ = ω/ωa.u. is the dimensionless frequency. The indexes m, n = {L, ν} contain L, the power of the
momentum, and ν, the number of the energy band.

The electrical current 〈 Ĵ〉 = σ E can be calculated using the relation Ĵ = eP̂1Σ/m.
Inserting expression (13), we derive the permittivity (1) as a Drude-like formula

lim
k→0

ε(k, ω) = ε(ω) = 1 −
ω2

pl

ω [ω + iν(ω)]
, (16)
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with ω2
pl = 4πne2/m and an effective collision frequency ν(ω), which can be expressed in terms of

dimensionless response parameters and correlation functions Nnm and Cnm, as defined in (15), according
to

ν(ω) = ν1(ω)rω(ω) (17)

ν1(ω) = ωa.u.
C11

N11
, rω(ω) =

N11

C11

1 + iω∗ ∑
m,ν

N{1,ν}mFm

∑
m,ν

N{1,ν}mFm
(18)

where the index “1” means n = 1 = {1, 1}, i.e., L = 1 in Equation (11), and ν = 1 is the conduction
band. ν1(ω) is the complex effective collision frequency of electrons for Drude-like transitions (within the
conduction band) and in single-moment approximation, while rω (18) is the so-called renormalization factor,
which takes into account the influence of higher moments of the density operator [8,12,22] and, in the case
considered here, the influence of transitions between different bands. Inserting the solution of the system
of Equations (14) for Fm into Expressions (18), we obtain the complex effective collision frequency in terms
of the correlation functions Nnm and Cnm.

In our further considerations we look at the two following cases:

(a) L = 1, ν = 1, 2 . . ., i.e., the case of different energy bands, but only the 1st moment of the density
operator. Then n = {L, ν} = {1, ν} = ν. Inserting the definition of moments (13) for P{1,ν} into
Expression (15) for Nνμ, using the Kubo identity and expressing the electron momentum p via ṙ,
one can show [3] that

Nνμ = δν,μnν/n (19)

where nν is the number of electrons in the ν-th band.
(b) L = 1, 2 . . . , ν = 1, i.e., the case of a single conduction band and different moments of the density

operator. Then n = {L, ν} = {L, 1} = L.

Expressions for the correlation functions Nlm, l, m ≥ 1 can be found elsewhere (see, e.g., [3,18]):

Nlm =
Γ[(l + m + 3)/2]

Γ(5/2)
I(l+m−1)/2(εμ)

I1/2(εμ)
, l, m ≥ 1 (20)

where εμ = μ/Te is dimensionless chemical potential,

εμ = X1/2

(
2ε3/2

F /3
)

, (21)

with the Fermi integrals Iν(y) = Γ(ν + 1)
∫ ∞

0 xν[ex−y + 1]−1dx; εF = EF/Te = Θ−1, where Θ is
the degeneracy parameter, and EF = h̄2/(2m)(3π2n)2/3 is the Fermi energy; the dimensionless
chemical potential εμ in (21) is expressed via the inverse Fermi integral X1/2(x), which refers to the
Fermi integral I1/2(x). Particularly, from (20) one has

N11 = 1, N31 =
5
2

I3/2(εμ)

I1/2(εμ)
, N33 =

35
4

I5/2(εμ)

I1/2(εμ)
. (22)

In the non-degenerate case, Iν(εμ) = eεμ for all ν and N31 = 5/2, N33 = 35/4, see [9].

In previous works [9,22], correlation functions with only the first and third moments of the density
matrix (11) in the sum (18) were considered. It was shown that this leads to an accuracy of a few % for
the calculation of the renormalization factor. Therefore, restricting our approximation to only two bands
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or two moments of the density matrix in Cases (a) and (b), respectively, and using the solution of Equation
(14), the renormalization factor can be written in terms of respective correlation functions:

r(ω) =
1
C11

1 + iω̃Qω

Qω

Qω =
A22−2N22A21+N2

22A11
A11A22−A2

21
for Case (a)

Qω =
A33−2N31A31+N2

31A11
A11A33−A2

31
for Case (b)

Alm = Clm − iω̃Nlm, l, m ≥ 1.

(23)

Here, Expressions (19) and (22), respectively, have been used.
According to the definitions (10), (11) and (15), the correlation functions Cnm(ω) can be expressed in

terms of correlation functions of electron creation and annihilation operators as

Cnm(ω) =
−β

mnωa.u.
∑pν ,pμ

pν,z pμ,z × (Ep,ν/Te)
L−1

2 (Ep,μ/Te)
M−1

2 〈[Ĥ, n̂p,ν]; [Ĥ, n̂p,μ]〉ω+iη (24)

where n = {L, ν}, and m = {M, μ}. The further calculation of the correlation functions Cnm requires the
specific Hamiltonian Ĥ.

In the general case, the four-particle correlation function of creation and annihilation operators,
arising after respective elementary transformations of the correlation function 〈[Ĥ, n̂p,ν]; [Ĥ, n̂p,μ]〉ω+iη
with known Hamiltonian Ĥ, can be expressed via thermodynamic Green functions [3,8]. Green function
techniques allow one, in principle, to take into account all orders of interactions via the summation of
respective Feynman diagrams [3,8,22]. Below we consider the first Born approximation, which follows
at the lowest order with respect to the interaction either directly from the definition of the correlation
functions in (24), or from the four-particle Green functions expressed as a product of single-particle Green
functions, which are related to the correlation functions. As a result, we obtain concise and simple analytic
results. It shall be noted that it can be reasonable to calculate the renormalization factor (18) in the Born
or screened Born (see below) approximation and take into account strong-coupling effects only in the
calculation of the collision frequency ν1(ω) (17), (18), see [18].

Below we look at two different cases:

(A) We consider individual interactions of electrons with each other and with randomly distributed
ions. This is the case for ion temperatures higher than the melting one, where the long-range order
of the ion lattice is destructed. The short-range order is described by the ionic structure factor.
As an example, we can consider a metallic solid sample irradiated by intense short-pulse laser
beams. The ion lattice disappears after a heating process longer than the characteristic melting time
τm, which is of the order of the time between ion collisions. This time is given by the interatomic
distance ra ∼ (4πnat/3)−1/3 divided by the sound velocity vs ∼

√
ZTe/mat, where nat, mat are the

concentration and the mass of the heavy particles, respectively, so that

τm =
ra

vs
= km A5/6

at

√
T1

ZTe
�−1/3

km ≈ 7.5 fs, T1 = 1 eV. (25)
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Here, Aat is the atomic number, and � is the mass density of matter in g/cm3. For example,
for aluminum, τm ≈ 11 fs with Z = 3, � = 2.71 g/cm3 and Te = 20 eV. We will not discuss the
phenomenon of melting here, but we consider it as an example of a disordered configuration of ions.

(B) In the solid state, the interaction of the electrons with a perfect ionic lattice is already taken
into account, introducing the band structure with the dispersion relation Ep,ν, Equation (12).
Only deviations from the perfect lattice lead to scattering of the electron quasiparticles. We consider
here the collective interactions of electrons with ion lattice vibrations (electron–phonon interaction).
In addition, we have electron–electron collisions that will not contribute to the conductivity because
of the conservation of the total momentum at the Coulomb interaction. However, Umklapp processes
are possible, and they lead to a transfer of momentum from the electron system to the ion lattice.

2.1. The Case of Individual Electron–Electron and Electron–Ion Interactions

For this case, the Hamiltonian accounting for only the electronic degrees of freedom can be written as

Ĥ = ∑
p

Epâ†
pâp + ∑

pk
Vei(k)â†

p+k âp

+
1
2 ∑

p1 p2k
Vee(k)â†

p1+k â†
p2−k âp2 âp1 , (26)

with Ep = h̄2 p2/(2m). Only a single conduction band is considered in this subsection. The interactions
between ions and electrons Vei(k) = V(k) are given by the Coulomb potential. V(k) =

−Zv(k) and Vee(k) = v(k) = 4πe2/k2 is the potential of the e − e interaction. The ions can be treated
in adiabatic approximation via the static ion structure factor Sii [23], which reflects the ion configuration.
The ion component will be described in terms of an average charge number Z with the particle density
ni = n/Z due to charge neutrality. The ion temperature is denoted as Ti.

In a more general case, pseudo-potentials Vps
ei (k) should be considered to take into account the

structure of complex ions, the screening of the Coulomb potential, and the influence of bound and
free electrons on their interaction with free electrons [12,24]. In particular, the expression for |Vei|2,
which appears in Born approximation can be rewritten as

|Vei(k)|2 = |Vps
ei (k)|2Sii(k). (27)

One can use the following expression for the individual e − i interaction Vps
ei (k) [12]:

Vps
ei (k) = V(k)[1 +κ2

ei/k2]−1 cos(krcut), (28)

where the prefactor V(k) is the electron–ion Coulomb potential. The second term on the r.h.s. is owing to
the account of statical screening by the free electrons (the contribution of ions to screening is already taken
into account by the ion structure factor Sii). It can be derived [12,25] in the low-frequency limit from the
more sophisticated Lennard–Balescu approximation by summing up ring diagrams [8,22], leading to a
characteristic inverse screening radius. It is κee = (4πne2/Te)1/2 in the classical limit. The third term is
due to an empty-core model pseudo-potential [24,26], where rcut is a free parameter that can be fitted to
match experimental data on transport and optical properties.

Similarly, in calculations within Born approximation, it is reasonable to replace the electron–electron
Coulomb potential by a screened Coulomb potential:

Vee(k) = v(k)[1 +κ2
ee/k2]−1 (29)

108



Particles 2019, 2

where the electron–electron Coulomb potential v(k) is statically screened with the screening parameter κee.
Substituting (26)– (29) into the correlation function 〈[Ĥ, n̂p,ν]; [Ĥ, n̂p,μ]〉ω+iη , one gets from (24), the

following expressions for the real and imaginary parts of the correlation functions Ceq
nm (where superscript

“eq“ denotes electron–electron (“q“=“e“) or electron–ion (“q“=“i“) contributions to the full correlation
function Cnm = Cee

nm + Cei
nm), see [12]:

C′eq
nm = αq/(3πw)×

∫ ∞

0
f eq(y)dyReq

nm

(
w
y

, y
)

ln

[
1 + eεμ−(w/y−y)2

1 + eεμ−(w/y+y)2

]
(30)

C′′eq
nm =

αq

3π2w

∞∫
0

f eq(y)dy

[
∑

l=±1
Ieq,l

nm (y)− 2Ieq,0
nm (y)

]
(31)

where αi = Z, αe = 1/
√

2, and C′eq
nm and C′′eq

nm denote real and imaginary parts of correlation
functions, respectively;

I eq,l
nm =

∞∫
0

dξ

ξ ∑
σ=±1

σReq
nm

(
ξ + σ

lw
y

, y
)

× ln
[
1 + eεμ−[ξ+σ(y+lw/y)]2

]
, (32)

with l = 0,±1. The factors Req
nm are the following polynomials for n, m = 1, 3, see [9]:

Rei
11 = 1

Rei
31(x, y) = Rei

13(x, y) = 1 + y2 + 3x2

Rei
33(x, y) = 2 + 2y2 + y4 + 2x2(5 + 3y2) + 9x4

Ree
11 = Ree

31 = Ree
13 = 0

Ree
33(x, y) = 1 + 19x2/4. (33)

Similar expressions can be given for the higher order polynomials, see [7,23]. The following
dimensionless units are used hereafter:

k̃ = k/kλ̄, y = k̃/(2
√

2), k−1
λ̄

= λ̄= h̄/
√

mTe;
r̃ = kλ̄r; w = h̄ω/(4Te)

(34)

(r is any quantity having the dimension of a coordinate).
The functions f eq(y) occurring in Equation (30) are

f ei(y) = f ei
scr(y) cos2(2

√
2yr̃cut)Sii(y), f ee(y) = f ee

scr(y) (35)

where f ei
scr(y) and f ee

scr(y) are screening functions,

f ei
scr(y) = y3/[y2 + κ2

ei/8] f ee
scr(y) = y3/[y2 + κ2

ee/4]. (36)

Here,
κ2

ei = min
{

k̃2
D, k̃2

max

}
κee = k̃D

k̃2
max = Ck̃max

8εF/(18πZ)2/3, k̃2
D = [R̃2

D(1 + 2εF/3)]−1
(37)

109



Particles 2019, 2

where R̃D = RD/λ̄ is the dimensionless Debye radius, RD = Vth/ωpl, Vth =
√

Te/m, and Ck̃max
≈ 1 is

constant. Expressions for the ion–ion structure factor can be found in [12,27,28].
The value of k̃D leads to a proper interpolation between the degenerate and non-degenerate limits

of screening and ensures a good agreement between Lennard–Balescu calculations and screened Born
calculations everywhere, except for some frequency regions in the vicinity of the plasma frequency ωpl [12].
The parameter k̃max gives a respective restriction of screening for strongly coupled plasmas [12,29] at
distances of the order of the interatomic distance

R0 = (4πni/3)−1/3. (38)

In the vicinity ω ∼ ωpl, a more precise expression for the screening function f ei
scr can be derived by

comparing it with the Lennard–Balescu expression for the dynamical collision frequency ν1(ω), see [12]:

f ei
scr = fdyn(y, w) = ε∗RPA(y, w)/[yε′RPA(y, 0)|εRPA(y, w)|2] (39)

where εRPA is the RPA (random phase approximation) permittivity, ε∗RPA is its complex conjugate, and ε′RPA
is its real part;

εRPA(y, w) = 1 +
√

ω̃au

8
√

2π

1
y3

[
− ∑

l=±1
I l

11(y) +iπ ln

(
1 + exp[εμ − (w/y − y)2]

1 + exp[εμ − (w/y + y)2]

)]
(40)

I l
11 =

∞∫
0

dξ

ξ ∑
σ=±1

σ ln
[
1 + eεμ−[ξ+σ(y+lw/y)]2

]
. (41)

l = 0,±1.
Taking in mind that in the considered case of dynamical screening the screening function fscr(y, w) (39)

is a complex function (note that in the case of statical screening f ei
scr is dependent only on y, rather than

on y and w), one can rewrite the expressions for real and imaginary parts of the correlation functions
stipulated by electron–ion interactions as

C′ei
nm = C′ei

nm( f ′dyn)− C′′ei
nm( f ′′dyn)

C′′ei
nm = C′′ei

nm( f ′dyn) + C′ei
nm( f ′′dyn)

(42)

where designations C′ei
nm( f ′dyn) and C′′ei

nm( f ′dyn) (where superscripts “ei“ designate e − i interactions) mean
that in the respective Expressions (30) and (31) for the real and imaginary part of the correlation function,
respectively, the real part of the screening function (39) is substituted by f ei

scr in (36), and similarly
designations C′ei

nm( f ′′dyn) and C′′ei
nm( f ′′dyn) indicate the substitution of the imaginary part of fdyn (39) by f ei

scr
in (36).

With the same arguments as for static screening (36), one can suppose that f ′dyn should be replaced by

fscr,min = y3/[y2 + k̃2
max/8] (43)

where k̃max is given by (37) if f ′dyn < fscr,min.
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It should be noted that the restriction of screening at distances ≈ R0 occur at Γei,g > 1/3, where

Γei,g =
Γei

εF

[
4(1 + e−εμ(εF))/(3

√
π)

]2/3 (44)

is the generalized electron–ion coupling parameter for plasma at arbitrary degeneracy [12], and Γei =

Ze2/(R0Te) is the classical plasma coupling parameter. In the non-degenerate case (εF � 1), the relation
(44) gives the conventional expression Γei,g ≈ Γei = Ze2/(R0Te), while in the case of strongly
degenerate (εF � 1) plasmas, the generalized coupling parameter depends on the Fermi energy,
Γei,g ≈ (9π/16)1/3Ze2/(R0EF) ≈ 1.21Ze2/(R0EF).

2.2. Collective Electron–Phonon Interactions and Electron–Electron Interactions via Umklapp Processes

For ion temperatures Ti < Tm or when a lattice is heated to Ti > Tm during times t < τm, where τm is
given by (25), one can assume that the electrons interact with lattice vibrations (phonons). In addition,
electron–electron interactions can contribute to the change in the energy of the electron gas through
electron momentum transfer to the lattice (Umklapp processes). This situation can be described by the
Hamiltonian

Ĥ = ∑
k,i,σ

Ek,i â+k,i,σ âk,i,σ + ∑
q,λ

h̄ωq,λ b̂+q,λ b̂q,λ

+ ∑
k,q,i,i′ ,λ,σ

gk(q, i, i′, λ)â+k+q,i,σ âk,i′ ,σ(b̂
+
q,λ + b̂−q,λ)

+
U
2n ∑

k,k′ ,q,g,i,σ̂
a+k+q−g,i,σ â+k′−q,i,−σ âk′ ,i,−σ âk,i,σ

(45)

where the first two terms on the r.h.s. of (45) represent electron and phonon kinetic energies, respectively.
The third term represents the electron–phonon interaction in the Fröhlich form [30]. The fourth term
represents the electron–electron interaction accounting for Umklapp processes in the Hubbard [31] form,
where g is the wave vector of the inverse lattice. i, i′ are electron band numbers, λ is the phonon mode
number, σ is the spin quantum number, â+k,i, âk,i, b̂+q,λ, b̂−q,λ are the creation and annihilation operators
of electrons and phonons, respectively, Ek,i and ωq,λ are the energy of electrons in the i-th band, given
by (12) and the frequency of phonons in λ-th mode, respectively, and gk(q, i, i′, λ) is the coefficient of the
electron–phonon interaction. U is the single-site approximation to the Coulomb interaction of electrons
with opposite spin orientations.

This effective Hamiltonian (45) can be derived from a more fundamental Hamiltonian describing the
Coulomb system consisting of electrons and ions. The phonon excitations are obtained from the dynamical
structure factor, and the Hubbard term is obtained from the e − e interaction. For our exploratory
calculations, we consider the case of electrons interacting with a single phonon mode of longitudinal
optical (LO) phonons with a frequency independent of the wave vector [30]. LO phonons have been
considered for simplicity. One can expect that a consideration of acoustical phonons (see, e.g., [32]) gives
similar results for ion temperatures greater than the Debye one.

We also disregard in this subsection interband transitions between different bands n, i and consider
only the contribution due to free–free transitions of electrons with effective mass mi = m∗ in the conduction
band (the consideration of a two-level system for the case of electron–phonon interactions is given in
the subsequent subsection). Besides that, we disregard cross terms from contributions of different types
of interactions (normal and Umklapp processes) when calculating the correlation functions of the first
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moment of the density operator. Calculating commutators in (24) and making respective transformations,
one obtains in the Born approximation

C11 = Ce−ph + CU (46)

where

Ce−ph =
iε−3/2

F
2π5/2

wLO

ω̃1/2
a.u.

m2∗Ceph

∞∫
0

ydy
∞∫

−∞

dx

×
[

1
w − x + wLO + iη

+
1

w + x − wLO + iη

]

× (e4x − 1)−1 − (e4αwLO − 1)−1

x − αwLO

× ln

[
1 + exp[εμ − (y − x/y)2]

1 + exp[εμ − (y + x/y)2]

]
(47)

is the contribution due to electron–phonon interactions, derived earlier in [13], where Ceph is a constant of
the order of unity, α = Te/Ti; w = h̄ω/(4Te), ω̃au = h̄ωau/Te, wLO = h̄ωLO/(4Te) with the frequency of the
longitudinal optical phonons ωLO, and η is an infinitesimal small value.

The contribution of Umklapp processes to the correlation function is given by the second term in
Equation (46),

CU =
9im∗

4
U2T2

e

E3
FEH

∑
g

g2 JΩ(g)JE(W, εB, εμ) (48)

JΩ(g) =
1

(4π)4

∫∫∫∫
dΩ dΩ′dΩ1dΩ′

1 × δ
(
k1 + k′

1 − k − k′ − g
)

(49)

JE(W, εB, εμ) =

εB−εμ∫∫∫∫
−εμ

nx1 nx′1
nxnx′ dx1dx′1dx dx′

x1 + x′1 − x − x′ + W + iη
× ex1+x′1 − ex+x′

x1 + x′1 − x − x′ . (50)

In (49), the vectors g, k1, k′
1, k, and k′ are taken dimensionless, as the ratio to the absolute value of the

Fermi wave vector kF = kF = (3π2n)1/3. The integration in (49) is performed on solid angles for each of
the respective wavevectors k1, k′

1, k, k′. Therefore, the integral (49) is dependent only on g. Furthermore,
W = h̄ω/Te = 4w; εB = EB/Te, and EB is the energy of electrons on the surface of the 1st Brillouin zone
boundary. In (50), nx = 1/[1 + ex] is the Bose distribution function.

The integral over dx in Equations (47) and (48) can be performed applying the Sokhotski–Plemelj
formula ∫ ∞

−∞

f (x)
x + iη

dx = −iπ f (0) + P
∫ ∞

−∞

f (x)
x

dx,

where P denotes the principal value of the integral. In this case, real and imaginary parts of the correlation
function can easily be derived. Below we consider the real parts of the correlation functions (46):
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C′
e−ph =

ε−3/2
F

2π3/2

m2∗CephwLO

ω̃1/2
a.u.

× ∑
σ=±1

(e4[wLO+σw] − 1)−1 − (e4wLOα − 1)−1

wLO(α − 1)− σw

×
∞∫

0

ydy ln

⎡⎢⎢⎢⎢⎣
1 + exp

{
εμ −

[
y − wLO + σw

y

]2
}

1 + exp

{
εμ −

[
y +

wLO + σw
y

]2
}
⎤⎥⎥⎥⎥⎦

(51)

and

C′
U =

9
4

CUNgḡ2m∗
U2T2

e

E3
FEH

J′E

J′E =
4

W

2εΔ−2εμ∫
−2εμ

dt
[

1
et−W − 1

− 1
et − 1

]

× ln

[
et/2 + e−B/2

et/2−B/2 + 1

]
ln

[
et/2−W/2 + e−B/2

et/2−B/2−W/2 + 1

] (52)

where εΔ = ΔE/Te, where ΔE is the energetic distance between the Fermi surface and the Brillouin zone
boundary, B = εμ + εΔ.

While deriving Equation (52) from Equation (48), the substitution x = (t + r)/2, x′ = (t − r)/2, x1 =

(t1 + r1)/2, x′1 = (t1 − r1)/2 was done, the integrals over r and r1 were calculated explicitly, and the
δ-function was accounted for while integrating over t1. To derive Expression (49), the approximation

∑g g2 JΩ(g) ≈ CU ḡ2Ng

is made. CU is a constant of the order of 1, which can be found, e.g., from optical measurements,
as in [10,33,34]. Ng is the number of different wavevectors of the inverse lattice in the first Brillouin zone,
which coincides with the number of nearest neighbors in the inverse lattice for the point g = 0. ḡ2 is the
average value of g2 in the first Brillouin zone.

2.3. Interband Transitions in a Two-Level System

In this subsection, we consider expressions for the force–force correlation functions of first order
moments C{1,ν}{1,μ} = Cνμ for different energy bands ν, μ = 1, 2. The expressions will be derived for the
case of collective electron–phonon interactions, when the electronic system Hamiltonian is described by (45)
with the account of only the first three terms, i.e., without Umklapp processes. With this Hamiltonian
and with an electron–phonon coupling function for longitudinal optical phonons, one can obtain from
Equation (24) the following expression for correlation functions Cνμ similarly, as was done above:

(i) for the correlation functions related to intra-band electron transitions:

Cνν = −im2∗κ

∞∫
0

ydy
∞∫

−∞

dxXνν(x)ΔFνν(x, y)− ∑
μ �=ν

C0
μν (53)
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where κ =
ε−3/2

F
2π5/2

wLO

ω̃1/2
a.u.

Ceph; C0
μν stands for the indirect influence of interband transitions:

C0
μν = im2∗κ/4

∞∫
0

dy
∞∫

−∞
dx

{
Xμν(x)

×
[(

x2

y3 +
2x
y

+ y
)

ΔFμν(x, y) +
m−1∗

y
ΔF̃μν(x, y)

]
+Xνμ(x)

×
[(

x2

y3 − 2x
y

+ y
)

ΔFνμ(x, y) +
m−1∗

y
ΔF̃νμ(x, y)

]}
(54)

where

Xμν(x) =
[

1/ϕνμ(x, α)

w + iη + ϕνμ(x, 1)
+

1/ϕνμ(x, α)

w + iη − ϕνμ(x, 1)

]
×
[

1
e4x+4wμν − 1

− 1
e4αwLO − 1

]
(55)

where ϕνμ(x, t) = x + wνμ − twLO, wνμ = 1
4 (Eν − Eμ)/Te;

ΔFμν(x, y) = F1(Aμ
−(x, y))− F1(Aν

+(x, y)),

ΔF̃μν(x, y) = F2(Aμ
−(x, y))− F2(Aν

+(x, y))

Aμ
±(x, y) = exp

[
(x/y ± y)2 + (Eμ − μ)/Te

]
F1(t) = ln

(
1 + 1

t

)
, F2(t) = ln2(t) + 2 Li2(−t).

(56)

(Note that in the above expression, in the term Eμ − μ, the second value μ denotes the chemical
potential, and the index μ in the first term Eμ denotes the energy band).

(ii) for the correlation functions related to interband electrons transitions:

C
μ �=ν
μν = im2∗κ/4

∞∫
0

dy
∞∫

−∞
dx

{
Xμν(x) ×

[(
x2

y3 − y
)

ΔFμν(x, y) +
m−1∗

y
ΔF̃μν(x, y)

]
+ the same with μ ↔ ν

}
. (57)

3. Calculations and Discussion

We perform exploratory calculations of the absorption coefficient of aluminum plasmas with the solid
density � = 2.71 g/cm3 and the average ion charge Z = 3 (step-like density profile), irradiated by lasers
with different wavelengths shown in Figures 1 and 2. The dielectric function (16) was determined for two
cases: an ordered lattice with an account of collective electron–phonon interactions and Umklapp processes
by means of Expressions (46), (51), and (52), assuming Ti < Tmelt or t < τm (25), and a disordered lattice,
with an account of individual electron–ion and electron–electron interactions by means of Expressions (23),
(30), and (31), with respect to a Percus–Yevick-like model [16] for Sii, with the restrictions of screening (37)
(see also [12]).

The effective mass m∗ was calculated according to the Huttner model [35], see also [11]. The value of
Ceph ≈ 5.73 in (47) was chosen to reproduce the low-frequency cold reflectivity of aluminum [11,33] for
the laser wavelength λ = 0.4 μm. The value of ωLO was determined by the position of the maximum of
the phonon spectrum for aluminum [36] as h̄ωLO ≈ 0.006 eV. Furthermore, the following parameters have
been used: CU = 1.5, U = 2 eV, ΔE = 7.3 eV, and ḡ2 = 2. The value Ng = 8 is chosen, assuming the fcc
lattice structure and the bcc inverse lattice structure for aluminum.
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Figure 1. Absorption coefficient (first row) as well as real (second row) and imaginary (third row) parts
of the complex collision frequency of electrons (46), as a function of the electron temperature Te, for a
solid-density aluminum plasma (� = 2.71 g/cm3) and laser radiation of different wavelengths λ (left
column: 80 nm; center: 0.4 μm; right: 10 μm). Curves are shown for different ion temperatures (see
legend), calculated for the case of an ordered lattice by Models (46), (51), and (52) (with an account
of electron–phonon interactions and Umklapp processes, labeled by “e-ph”), as well as for the case of
a disordered lattice (electron–ion and electron–electron interactions, labeled by “e-i”). Curves with the
markers “*” and “�” are according to the models cited in the text (see legend).

Figure 1 shows the dependence of the absorption coefficient A, Equation (2), the real and imaginary
parts of the effective collision frequency ν(ω) (17) on the electron temperature. Ordered (electron–phonon)
and disordered ion lattices (e− i) are considered at different wavelengths of laser radiation (λ = 0.08, 0.4, 10
μm). The results for λ = 0.4 μm are compared with a semi-empirical model by Povarnitsyn et al. [33,37]
and with calculations of the absorption coefficient taken from the work of Cauble et al. [38].

The most essential feature of the dependence of the effective collision frequency on electron
temperature, for the case of ordered ion lattice with electron–phonon interactions and Umklapp processes,
is that for Te > EF (EF ≈ 11.6 eV for solid-density aluminum) the real part ν′ is decreasing as

ν′ ∼ T−4
e
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according to the asymptotic behavior of Expressions (52), see [14]. This is much faster than the scaling

ν′ ∼ T−3/2
e

for the case of electron–ion interaction in a high-temperature plasma [12]. This is shown by the solid and
marked curves in Figure 1.

It should be noted that, in the case of an ordered ion lattice, unlike the case of a disordered ion lattice,
the temperature dependence of the real part of the effective collision frequency as well as the absorption
coefficient shows a clear peak in the vicinity of the Fermi temperature for all wavelengths. The maximum
values of A, calculated by Models (46), (51), and (52) for an ordered ion lattice, are relatively close to that
of the semi-empirical model [33] and to the values of A, calculated by Models (23), (30), and (31) for a
disordered lattice.

It should also be noted that under the conditions of Figure 1 the contribution of Umklapp
processes (52) exceeds the contribution of the electron–phonon contribution (51). The influence of
different ion temperatures is mainly owing to the dependence of the effective electron mass m∗ on the ion
temperature Ti, as calculated according to the Huttner model [35] (compare the thin and thick solid curves
in Figure 1).

Figure 2. The absorption coefficient and the real part of the complex collision frequency of electrons (46) in
a solid-density aluminum plasma are shown as a function of the laser frequency h̄ω for ion temperatures
Ti = 0.04 eV and different electron temperatures Te (see legend). Thick curves (left column) refer to the
case of an ordered lattice with electron–phonon interactions and Umklapp processes, and thin curves (right
column) refer to a disordered lattice with electron–ion and electron–electron interactions.

The imaginary part of ν(ω) calculated by a consequent quantum statistical model (for semi-empirical
models, it can be calculated by equating the respective expressions for permittivity to the Drude-like
expression (16), see [12]) is small for laser frequencies h̄ω � EF or for h̄ω � EF, while for h̄ω ∼ EF its
value can be considerable, see the subfigure at the left corner of Figure 1.

For h̄ω � EF and h̄ω < Te, Re ν(ω) (and hence the value of the density of absorbed power of laser
radiation, which is proportional to Im ε ∼ Re ν(ω)) is weakly dependent on ω, see Figure 2. For h̄ω � Te
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and h̄ω � EF, the value of Re ν(ω) is increasing with ω (the rate of the increase is proportional to ω2)
for Umklapp processes in an ordered ion lattice, see [13]). For h̄ω � Te and h̄ω � EF, the value of
Re ν(ω) is decreasing with ω, see Figure 2. The rate of such a decrease is proportional to ω−3/2 for the
case of a disordered ion lattice [12] and to ω−1 for the case of an ordered ion lattice [13]. One should
note here that the contribution of interband transitions to the dielectric function should be taken into
account for quantum energies exceeding the gap between the conductivity band and inner electron energy
levels [17]. As described above, the respective theoretical approach can be elaborated on the basis of the
nonequilibrium statistical operator method. Note also that in the case of a disordered ion lattice (individual
electron–ion and electron–electron interactions), Expressions (30) and (31) for the correlation functions
give rise to the Ziman–Evans formula [39,40] for the electric conductivity in the limit ω → 0 [12].

4. Conclusions

The NSO method allows one to describe consistently the dielectric function of WDM in a wide range
of frequencies and plasma parameters. Different kinds of electron–ion interactions, in particular in systems
with a disordered distribution of ions (individual electron–ion and electron–electron interactions) and
systems with an ordered ion configuration, described as an ion lattice (with collective electron–phonon
interactions and Umklapp processes), are successfully treated using this method.

A main peculiarity of the absorption of irradiated laser energy in the case of an ordered ion lattice,
owing to collective electron–phonon interactions and Umklapp processes, is a much stronger (∼ T−4

e )
decrease of the real part of the effective collision frequency at electron temperatures exceeding the Fermi
temperature, if compared to the case of individual electron–ion and electron–electron interactions (where
Re ν ∼ T−3/2

e for Te > EF). An essential feature of the electron–phonon interaction and the Umklapp
process is that they show, as a function of the electron temperature, a clear peak structure of the absorption
coefficient and of the real part of the effective collision frequency at Te ∼ EF. In addition, in both cases of
ordered and disordered ion lattices, the real part of the effective collision frequency as a function of the
photon energy shows a peak structure: Re ν(ω) is nearly independent of ω for h̄ω � EF and h̄ω < Te, but
Re ν(ω) is rising with ω (∼ ω2 for the case of ordered ion lattice) for h̄ω � Te, h̄ω � EF, and Re ν(ω) is
decreasing with ω (∼ ω−1 for the case of ordered ion lattice and ∼ ω−3/2 for the case of disordered ion
lattice) for h̄ω � Te and h̄ω � EF.

The NSO method can be also applied for the description of interband contributions to the dielectric
function, which are essential for photon energies exceeding the energy gaps between the conduction
band and electron bands corresponding to excited electron energy levels. The relation to DFT calculation
[17], which provides us with ab initio calculations of optimal single-electron states and replaces the
approximation for the electron–ion potential used in our calculations, is of high interest. In addition, our
approach allows one to take into account the contribution of electron–electron collisions to the dielectric
function, which is not possible in mean-field approaches such as DFT. More detailed investigations of this
case, as well as the calculation of the imaginary part of the effective collision frequency for the case of an
ordered ion lattice with electron–phonon interactions and Umklapp processes, will be the subject of our
future work.
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Abstract: We discuss how the non-equilibrium process of pion production within the Zubarev
approach of the non-equilibrium statistical operator leads to a theoretical foundation for the
appearance of a non-equilibrium pion chemical potential for the pion distribution function for
which there is experimental evidence in experiments at the CERN LHC.
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1. Introduction

The thermal statistical model [1–6] for chemical freeze-out of hadron species gives a successful
description of a set of particle ratios produced in heavy-ion collisions (HIC) at different center of
mass energies ranging from the energies provided by the Schwerionensynchrotron (SIS-18) at GSI
Darmstadt over those of the Alternating Gradient Synchrotron (AGS) at BNL Brookhaven and the
Super Proton Synchrotron (SPS) at CERN Geneva up to the highest energies at the Relativistic
Heavy Ion Collider (RHIC) at BNL and the Large Hadron Collider (LHC) at CERN. It came
therefore as a surprise that for LHC at

√
s = 2.76 TeV the measured proton abundances [7,8]

do not agree with the most common version of the thermal mode (the inclusion of resonance
formation due to (multi-)pion-nucleon interaction and further correlations in the continuum within
the Beth–Uhlenbeck approach [9,10] improves the agreement with the experiment) based on the
grand canonical ensemble [3,4]. As a possible explanation of this effect it has been suggested that the
freeze-out may take place off chemical equilibrium [11–13]. Hereby, a key feature is the enhancement
of low-transverse momentum pion spectra above the expectation from equilibrium statistical models
which was seen already at lower energies in pion spectra at SPS and clearly seen in the RHIC and
the LHC data. The effect can be seen as a precursor of pion Bose–Einstein condensation due to high
phase space occupation at low momenta and has consequently been parametrized by adopting a pion
chemical potential very close to the pion mass [14,15]. This concept is based on the assumption that
the total pion number is dynamically fixed on a time scale between the pion chemical freeze out tπ,cfo
and the thermal freeze-out (or simply freeze-out) tfo, tπ,cfo < t < tfo, where at tπ,cfo the pion number
becomes frozen and at tfo the momentum distributions stop to change [16]. Thereby, for pions, we
assume dominance of elastic collisions over inelastic ones. We will assume that for pions the time
typical for absorptive processes tπ,abs, which change the pion particle number, is tπ,abs > tfo.
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In the present paper, we want to elucidate the non-equilibrium evolution of the initial fireball
and the emergence of a non-equilibrium chemical potential for hadrons, in particular for the pions.
The theoretical background shall be provided by the Zubarev formalism of the non-equilibrium
statistical operator (NSO) [17] which introduces a generalization of the thermodynamical Gibbs
ensemble by including non-equilibrium observables into the derivation of the statistical operator of
the non-equilibrium, see also [18]. This is facilitated by extending the set of Lagrangian multipliers
by the additional non-equilibrium chemical potentials for the hadrons will appear in the NSO. If the
non-equilibrium chemical potential for the pions coincides with the pion effective mass, Bose–Einstein
condensation will occur, and strong effects are expected on the measured pion spectra [19,20].

Many formulations have been given for the approach to equilibrium [21,22] and the kinetics of
Bose–Einstein condensation, see for instance Refs. [23–27]. New ansätze have been developed, e.g., in
References [28,29] with a state that is a fixed point and the evolution towards it is universal. Via this
fixed point, the system develops then dynamically.

Such a behavior is long known in the context of the Zubarev formalism, which is able to
describe, for example, the transition from the kinetic stage to the hydrodynamic stage. The short-time
evolution goes to a relevant statistical operator with local time-dependent thermodynamic parameters.
The long-time scale evolution is given by the time dependence of these thermodynamic parameters
approaching thermodynamic equilibrium.

2. The Nonequilibrium Statistical Operator Method

HIC at ultrarelativistic energies are violent non-equilibrium processes which need, in principle,
a genuine non-equilibrium approach. At present, simple approximations are used such as transport
models based on the kinetic equations for single-particle distribution functions. Transport codes
based on the relativistic Boltzmann–Uehling–Uhlenbeck (BUU) or Vlasov–Uehling–Uhlenbeck (VUU)
equations have been worked out [23–25,30]. However, a non-equilibrium single-particle distribution
is not sufficient to describe correlations in the evolving system. As example, cluster formation in an
expanding fireball requires the inclusion of higher order correlation functions to describe bound states
like hadrons or nuclei. Alternatively, the freeze-out concept assumes nuclear statistical equilibrium
(NSE) during the expansion of the fireball, which is justified if the time τtherm for the relaxation to
thermodynamic equilibrium is small compared to the variation time τexp = q/q̇ of a parameter q
describing the thermodynamic state of the expanding system. The treatment of thermodynamic
equilibrium is able to include all equilibrium correlations, in particular cluster formation. At freeze-out,
t = tfo, collision processes that change the composition and the distribution die out. For t > tfo,
baryon distributions evolve according to the mean-field description of the expansion. Note that,
at least under conditions of the LHC and highest RHIC energies for soft pions (with energies and
momenta smaller than mπ), the time scales characterizing elastic and inelastic (absorptive) processes
are such that τπ,el � tfo < τπ,abs. Thereby, we may speak about the evolution of μπ(t) till thermal
freeze-out. Although the expanding fireball approach with time dependent temperature T(t) and
chemical potentials μc(t) for all hadrons including pions is rather reasonable, it is just an approximation
to a more sophisticated many-body non-equilibrium approach given below.

A systematic general approach to non-equilibrium is given by the NSO ρ(t) which is the solution
of the von Neumann equation with a given initial state [17],

ρ(t) = lim
ε→0

ε
∫ t

−∞
dt′eε(t−t′)U(t, t′)ρrel(t′)U†(t, t′), (1)

where for a Hamiltonian H which is not time-dependent holds U(t, t′) = exp[(i/h̄)H(t − t′)], and the
limit ε → 0 has to be taken after the thermodynamic limit. Instead of a distribution ρinitial(t0) at
an initial time t0, according to Zubarev, a relevant statistical operator ρrel(t′) has been introduced
that contains all relevant information of the system in the past t′ < t. This relevant information
characterizes the state of the system in non-equilibrium and will be discussed below. The missing
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irrelevant correlations ρirrel(t) = ρ(t)− ρrel(t) are assumed to be formed dynamically by the action of
the time evolution operator U(t, t′).

The non-equilibrium state of the system is characterized by observables Bn in addition to the
conserved observables such as total energy and particle numbers. The relevant information is given
by the averages 〈Bn〉t = Tr{ρ(t)Bn} of the relevant observables Bn. The maximum of the information
entropy Sinf = −Tr{ρrel(t) ln ρrel(t)} at given averages is the generalized Gibbs distribution

ρrel(t) =
1

Zrel(t)
e−∑n Fn(t)Bn ; Zrel(t) = Tre−∑n Fn(t)Bn (2)

where the Lagrange multipliers Fn(t) are determined by the self-consistency conditions

〈Bn〉t
rel = 〈Bn〉t (3)

with 〈Bn〉t
rel ≡ Tr{ρrel(t)Bn}. With respect to the selection of the set of relevant observables, Bn, it

should contain all conserved quantities which cannot be changed owing to the dynamics of the system.
In an ergodic system, all other correlations are produced dynamically. We can include any set of
observables to the relevant ones. In particular, if we include all slowly varying observables in the set
of relevant observables {Bn}, we can expect that a shorter time is necessary to produce the missing
non-equilibrium correlations. This means that Eq. (2) already gives a good approximation for ρ(t) at
finite ε so that memory effects are less important.

According to the NSO method, the equations of evolution (generalized kinetic equations) are
obtained from

d
dt
〈Bn〉t = lim

ε→0

iε
h̄

∫ t

−∞
dt′eε(t′−t)Tr

{
ρrel(t′)eiH(t′−t)/h̄[H, Bn]eiH(t−t′)/h̄

}
, (4)

where we inserted the time derivative of the NSO (1) and used the self-consistency conditions (3).
The correct reproduction of the relevant information in the past gives the possibility to form the

irrelevant correlations very fast so that a perturbation expansion is possible. Although the expression (1)
is correct for any choice of relevant observables after performing the limit ε → 0, an appropriate choice
of the set of relevant observables {Bn} allows us to make expansions quickly convergent so that, for
instance, the Markov approximation can be performed (We speak here about memory effects associated
with dying initial correlations. There are memory effects related to processes described by diagrams
with more than two vertices in the non-equilibrium Greens function technique. These effects can be
neglected only for dilute gases, but, in general, they are important. They result in the famous T3 ln T
correction to the specific heat of 3He, cf. [31,32]. Since this correction is quite comparable (numerically)
to the leading term in the specific heat (∝ T), one may claim that liquid 3He is a liquid with quite
strong memory effects from the point of view of kinetics). In Section 4, we discuss this issue in detail.
It is our main goal to show that the optimal path for the non-equilibrium evolution (i.e., a sufficient
broad choice of relevant observables Bn) must be found to provide us with a precise description already
in low orders of perturbation theory.

A correct description of the evolution is also necessary for the expanding fireball if the freeze-out
approximation is used. We cannot assume that the system at freeze-out is strictly in thermodynamic
equilibrium. A simple relaxation-time ansatz is not sufficient, but a more detailed description of the
time evolution is necessary. An important feature of the evolution is that a perturbation expansion in
powers of the interaction which is often used cannot give the formation of bound states or quantum
condensates in any finite order of perturbation theory. The introduction of the relevant NSO provides us
with the description of those phenomena. In particular, we show that the formation of an intermediate
pion Bose–Einstein condensate can be described in our approach. It is an advantage of the Zubarev
approach that initial correlations are included via the relevant statistical operator ρrel(t), in contrast to
the kinetic theory which is based on the single-particle distribution function.
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3. Model for Pions in Heavy-Ion Collisions at Ultra High Energies

To explain our approach denoted as the NSO method, we discuss the pion production in heavy-ion
collisions. After an initial stage where hadrons are formed, we consider a fireball consisting of pions,
nucleons N, Δ resonances, and further hadronic states such as N∗ and K mesons containing strangeness
degrees of freedom. In occupation number representation, a+p,c, ap,c are the creation/annihilation operators
of a particle in the quantum state p, c given by the species c (including spin) and momentum p.
The Hamiltonian H = H0 + H′ contains the kinetic part

H0 = ∑
p,c

√
p2 + m2

c a+p,cap,c = ∑
p,c

Ep,c a+p,cap,c (5)

and the interaction part H′. At highest RHIC and LHC energies, the fireball is dominated by pions.
Approximately, one may speak of a pure pion gas. Thus, further within our model, we consider only
special processes, which concern the pion distribution, c, that runs over pion species. We split the
interaction into an elastic part describing collisions which conserve the pion number, Hcol, and an
inelastic part describing reactions, Hreac, where the pion number is changed, H′ = Hcol + Hreac.

Expressions for the meson–meson interaction are found in the literature [16,30]. π −π interactions
at high energies are predominantly elastic implying that at low density the number of pions is
effectively conserved. We assume elastic π − π scattering of the form

Hcol =
1
2 ∑

p1 ,p2 ,p′
1 ,p′

2 ;c,d
λc,d(p1, p2; p′

1, p′
2)a†

p1 ,ca†
p2 ,dap′

2 ,dap′
1 ,c. (6)

We assume that at t < tπ,cfo a state overpopulated by soft pions is formed, for t > tπ,cfo the
collisions conserve the particle number, but evolve the distribution function to a thermal equilibrium
distribution with a corresponding short relaxation time τcol. These collision processes may happen
via a virtual states such as the ρ and σ mesons or other resonances. We note that the matrix
element λπ,π(p1, p2; p′

1, p′
2) of the π − π interaction can be taken in a separable form [33,34] so

that the Bethe–Goldstone equation for the T-matrix of the π − π scattering in the pion gas can be
solved straightforwardly, resulting in in-medium scattering phase shifts and cross sections with
resonances [34–36] as well as the corresponding equation of state [37,38].

Interactions of pions with baryons can also be described as particle number conserving 2 → 2
processes with a Hamiltonian of the form (6). See, for example, the recent work [39] on the ANL-Osaka
model which provides an excellent description of existing π − N scattering data. These processes
contain, in particular, the Δ and N resonances that become very important for heavy-ion collision
experiments with lower c.m. energies at SPS, SIS-18, and the future FAIR and NICA experiments.
For our discussion of results from the LHC experiment in the present work, the processes involving
baryons are not important and will not be treated explicitly here.

If the particle number is fixed, neglecting processes described by Hreac, a pion gas in
thermodynamic equilibrium may form a Bose–Einstein condensate at high phase space occupation
densities and sufficiently low temperatures. It is possible that the expanding fireball will meet such
parameter values of the pion phase space during the non-equilibrium evolution.

There are also processes which change the particle numbers of the different species which
contribute to the interaction part of the Hamiltonian Hreac. As an example, we have π + π ⇀↽ 4π [40]
or the formation of other mesons such as π + π → K̄ + K which decay in other channels, see
Lin and Ko [30]. As shown there, because of the threshold for these reactions and the small cross
sections compared to the elastic collisions, the corresponding relaxation time τreac to establish chemical
equilibrium is large. This is a slow process not of relevance for the time scales considered here. Other
reactions involving resonant correlations such as Δ ⇀↽ N + π contribute to collision processes via
virtual states and conserve the particle number, but also have a small branching ratio for a number of
non-conserving processes. These reactive collisions which change the pion number are assumed to be
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weak in comparison to the quasielastic collisions and can be discarded for the short-time evolution,
but are relevant for the evolution on long time scales to produce chemical equilibrium.

The π − π collision term was treated in Boltzmann equation calculations by Welke and
Bertsch [30]. Strong pion interaction processes which change the pion number have been considered,
e.g., in Reference [40].

In addition, other work has been performed using transport codes to describe the time evolution
of the pion distribution function and to solve the low-pT enhancement puzzle. We discuss here the
more general NSO approach to give an approach which goes beyond the single-particle distribution
function considered in the transport codes which are based on kinetic equations.

4. The Relevant Statistical Operator

Our main point is the selection of the set of relevant observables Bn which determines the
convergence and the accuracy of the non-equilibrium description. We discuss three examples, the
Kubo case considering only conserved quantities, the kinetic theory considering the single-particle
occupation numbers, and the formation of a condensate where amplitudes are added. In principle,
all three choices for the set of relevant observables should give the same results if the limit ε → 0 is
correctly performed. However, because we use perturbation expansions and Fermi’s Golden rule,
these approximations lead to different results.

4.1. Kubo Case

Within the NSO method, there is no prescription for the choice of the set {Bn} of relevant
observables. Only conserved observables have to be included because their averages cannot be
changed dynamically.

A minimum set of relevant observables of the pion–nucleon system (Kubo case) is the energy
H that is conserved. The number of pions is not strictly conserved. Because the pion number
is not prescribed, in equilibrium, no corresponding chemical potential μπ can be introduced.
Formally, one takes μπ = 0 similar to the photon system. Thus, in the Kubo case, one supposes
that τπ,abs � tfo (contrary to the case studied by us in this paper). The number of baryons Nb is
conserved. In addition, the charge has to be considered as conserved quantity. With this selection
of relevant observables, we obtain from the maximum principle for the relevant entropy the grand
canonical distribution

ρ
(0)
rel (t) =

1

Z(0)
rel (t)

e−β(t)(H−∑α μα(t)Nα) . (7)

Because the system is expanding, the thermodynamic averages are also changing with time and
also the corresponding Lagrange parameters. We can adopt the blast wave model [41–45] to describe
the expansion of the fireball. If we assume that the velocity is proportional to the distance from the
center, the density is decreasing with time. Assuming adiabatic expansion, the entropy is constant, but
the temperature is also decreasing. This hydrodynamical model may serve as an approximation to
describe the time dependence of the average density and energy and, according to the self-consistency
conditions (3), μα(t) and β(t).

Starting from a non-equilibrium state, we consider the relaxation to the local thermodynamic
equilibrium. The time behavior of the observables Nc and HMF

c of the particle number of the species c
and its mean-field energy (see below) are given by

d
dt
〈Nc〉t =

i
h̄
〈[H, Nc]〉t

rel −
1
h̄2

∫ 0

−∞
dt′eεt′Tr{ρrel(t)[H(t′), [H, Nc]]} , (8)

d
dt
〈HMF

c 〉t =
i
h̄
〈[H, HMF

c ]〉t
rel −

1
h̄2

∫ 0

−∞
dt′eεt′Tr{ρrel(t)[H(t′), [H, HMF

c ]]} . (9)
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Evaluating the correlation functions in Born approximation for the pion system, we observe a
behavior different from the one that would be consistent with the assumption of μπ = 0. Because
the particle numbers Nπ are conserved with respect to the elastic collisions Hcol, only the inelastic
collisions Hreac contribute. This makes the time derivative (8) small. In contrast, the thermalization
process (9) is dominated by Hcol so that the exchange of energy between the different components c
and the momentum states is a fast process.

We can calculate the corresponding relaxation times τ−1
i = −[d〈Bi〉t/dt]/〈Bi〉t for the

observables of local thermodynamic equilibrium and compare it with the expansion time scale
τ−1

exp = ∂μuμ ≈ −n−1
b [dnb/dt]. The freeze-out time tfo is given by the condition that the increasing τi(t)

becomes equal to τexp.
It is evident that this is a very global approach. We cannot assume that at any freeze-out

time tfo the system is well approximated by the equilibrium distribution (7). A more detailed
description of the non-equilibrium state is necessary, in particular if there exist long-living correlations.
Indeed, the relaxation to thermodynamic equilibrium (7) also implies the achievement of the total pion
number in equilibrium which is determined only by T and μπ = 0 in thermodynamic equilibrium.
Because the processes which change the pion number are weak under conditions at RHIC and LHC
which we focus on, the corresponding relaxation times are long and the Kubo case is not valid for
our considerations. To have an appropriate description of the non-equilibrium process, these slow
modes should be included in ρrel(t). At freeze-out, we therefore expect that not the thermodynamic
equilibrium but a more general non-equilibrium distribution is seen.

4.2. Pion Number as a Relevant Observable

Long-living correlations have to be implemented in the set of relevant observables to improve
the convergence of the perturbation expansion, and to apply the Markov approximation. For the
pion system considered here, we have elastic collisions which conserve the particle numbers and in
general inelastic reactions where the particle numbers of the constituents c are changed. Because the
conserving interaction Hcol leads to cross sections which are large compared with cross sections for the
non-conserving interaction Hreac, the pion number Nπ is an observable which changes slowly with
time and should be included in the set of relevant observables so that the index α in Equation (7) goes
over all pion species c. The new condition

〈Nπ〉t
rel = 〈Nπ〉t (10)

is not given by the external condition of the expanding fireball but must be calculated self-consistently
solving the corresponding equation of evolution (8).

A new feature of the relevant distribution including the pion number is the possibility of a
singularity when the self-consistency conditions (3) are solved. As well known from the ideal Bose
gas, we have to treat the occupation of the ground state separately so that below a critical temperature
we have 〈Nπ〉 = 〈Nnorm

π 〉 + 〈Ncond
π 〉 with the normal component Nnorm

π = ∑p>0 a+p,πap,π and the
condensate Ncond

π = a+0,πa0,π . The corresponding relevant operator reads

ρBose
rel (t) =

1
ZBose

rel (t)
e−β(t)[H−∑c μc(t)Nnorm

c ]−F0,π(t)a+0,π a0,π . (11)

The new Lagrange parameter F0,π(t) follows from the self-consistency relation (10) in perturbation
expansion with respect to H′ as

〈Ncond
π 〉t

rel =
1

eβ(t)[E0,π−μπ(t)]+F0,π(t) − 1
, (12)
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which is a macroscopic number if the temperature is below the critical one. The normal component
〈Nnorm

π 〉t
rel is only a function of β(t) as is well known; we have E0,π − μπ(t) = 0 in the condensate

state. Then, the Bose condensate 〈Ncond
π 〉t

rel is a macroscopic number so that F0,π(t) is infinitesimally
small. Below, we improve this shortcoming introducing coherent states.

We can also solve the evolution equations (8) with the relevant statistical operator (11).
The corresponding relaxation times are given by the interaction part H′. However, they are very
different. As before, the elastic collisions thermalize the kinetic energies of the components (9) leading
to the relaxation time τtherm.

To describe chemical relaxation (8), we can simplify the von Neumann equation as

∂

∂t
ρ(t) =

1
ih̄

[
(H0 + Hreac), ρ(t)

]
− 1

τtherm

(
ρ(t)− ρBose

rel (t)
)

. (13)

This is possible if the thermalization is very fast compared to the formation of the chemical
equilibrium. The solution is given by Equation (1) after replacing ε by 1/τtherm and H′ by Hreac.

With respect to the evolution of the fireball, we have the result that full thermodynamic
equilibrium must not necessarily occur at the freeze-out time. The reaction rates become small during
the expansion so that the relevant distribution (11) at tfo is seen. In contrast to the thermodynamic
equilibrium (7), a Bose–Einstein condensate of pions is possible.

4.3. Kinetic Equations

We can further improve the relevant statistical operator considering the occupation numbers
np,c = a+p,cap,c of the single-particle states as relevant observables. Formally, instead of Nc, each
single-particle state is taken similar to a new species. The time dependence of the mean occupation
of this state leads to the kinetic equations. For details of the derivation, see, e.g., Reference [46],
Equation (4.100).

We consider the time evolution of the pion distribution function 〈np,c〉t as the diagonal part of the
Wigner distribution function [46]. The relevant statistical operator has the form

ρkin
rel (t) =

1
Zkin

rel (t)
e−∑p,c sp,c(t)a+p,cap,c (14)

with the corresponding self-consistency conditions to eliminate the Lagrange parameters sp,c(t),

〈np,c〉t =
1

esp,c(t) − 1
. (15)

For the time evolution, the following kinetic equation is obtained from (4) after integration by
parts and using (3), see also [46]

d
dt
〈np,c〉t =

1
h̄2

∫ 0

−∞
dt′eεt′Tr

{
[H, np,c]e(i/h̄)Ht′ [H, ρkin

rel (t)]e
−(i/h̄)Ht′

}
(16)

if we neglect the explicit time dependence of ρkin
rel (t). In the approximation of binary collisions, we get

the quantum statistical Boltzmann equation

d
dt 〈np1 〉t

coll = 2π
h̄ ∑p2,p′

1,p′
2

δ(Ep1 + Ep2 − Ep′
1
− Ep′

2
)δp1+p2−p′

1−p′
2
|t(p1p2, p′

1p′
2) + t(p1p2, p′

2p′
1)|2

×
{
〈np′

1
〉t〈np′

2
〉t[1 + 〈np1 〉t][1 + 〈np2 〉t]− 〈np1 〉t〈np2 〉t[1 + 〈np′

1
〉t][1 + 〈np′ 〉t]

} (17)

where the two-particle T-matrix is given by the interaction potential in Born approximation [46].
Near thermodynamic equilibrium,

〈np,c〉eq =
1

eEp,c/T−μc/T − 1
, (18)
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we can approximate the Boltzmann equation in relaxation time approximation as:

d
dt
〈np,c〉t = − 1

τp,c
(〈np,c〉t − 〈np,c〉eq) , (19)

where the relaxation time τp,c is calculated from a microscopic collision process. This approach of a
relaxation time τcol of collisions as the thermal average over τp,c [46] or the corresponding collision
frequency is used in the relevant literature (see, e.g., [30]). Note that the relaxation time ansatz (19) with
p-dependent relaxation time does not obey, in general, the conservation of particle number. According
to Mermin [47], this defect is removed if the relaxation occurs not to the equilibrium state but to a
relevant operator which accounts for the conservation of particle number, see also [48].

Thermal freeze-out is obtained at the time tfo when τcol(tfo) = τexp(tfo), where the scattering time
scale for a given particle species c, working in favor of equilibration, can be computed locally from the
local densities nd, thermal (relative) velocities vcd, and total scattering cross sections σcd between the
particles c and d [42–44] after momentum average

1
τcol

= ∑
d
〈vcdσcd〉nd . (20)

4.4. Nonequilibrium State with Condensate Formation

Alternatively, we can construct another relevant operator with the single-particle occupation
numbers np,c, but containing also non-diagonal parts and, in addition, also single construction
operators ap,c and a+p,c. Corresponding expressions are known from the theory of coherent states
which are of interest to describe Bose–Einstein condensates. We can construct the relevant entropy
with arbitrary powers of the creation and annihilation operators, corresponding to a very general
expansion of the entropy operator in occupation number representation.

As a simple case, we construct the relevant statistical operator

ρcoh
rel (t) =

1
Zcoh

rel (t)
e∑p,c [F∗

p,c(t)ap,c+Fp,c(t)a+p,c−sp,c(t)a+p,cap,c ] = e−S(2)(t) (21)

with the corresponding expression for the partition function Zcoh
rel (t). Higher order contributions

such as a+p,ca+p,c are also possible, as well as non-diagonal terms (describing systems which are not
homogeneous in space) but will not be considered here. A similar approach has been used for
superfluidity in strongly coupled fermion systems [49]. Note that this bilinear form of the entropy
S(2)(t) may be extended including higher than second order terms in a+p,c and ap,c. This is necessary to
describe, e.g., total energy conservation or the formation of bound states.

We have to eliminate the Lagrange multipliers F∗
p,c(t), Fp,c(t), sp,c(t) using the self-consistency

conditions (3). The evaluation of correlation functions becomes quite simple if the relevant statistical
operator (7) is diagonal in the occupation number representation. We transform ap,c = bp,c + Bp,c(t)
where bp,c obey the usual commutation relations for bosons, and Bp,c(t) = Fp,c(t)/sp,c(t) is a c-number.
We obtain the diagonal form

S(2)(t) = ∑
p,c

[sp,c(t)b+p,cbp,c − |Fp,c(t)|2/sp,c(t)] (22)

for the bilinear relevant entropy S(2)(t), the c-number term can be canceled with Zcoh
rel (t).

Then, the evaluation of 〈np,c〉rel is quite simple and yields the well-known result

〈b+p,cbp,c〉t
rel =

1

esp,c(t) − 1
= fp,c(t), 〈b+p,c〉t

rel = 〈bp,c〉t
rel = 0, (23)
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which is the Bose distribution for the ideal quantum gas, but with non-equilibrium parameter
sp,c(t) ≥ 0 which are determined by the given averages. The mean occupation numbers follow
as 〈np,c〉t

rel = [esp,c(t) − 1]−1 + |Bp,c(t)|2. In addition, we find 〈ap,c〉t
rel = Bp,c(t). With these relations,

the Lagrange parameters in Equation (21) can be eliminated.
As before, the dynamics of the many-particle system is described by the Hamiltonian

H = H0 + Hcol + Hreac, defined in Equations (5) and (6). We extract the mean-field terms (MF) from
the interaction (1 = {p, c})

H = ∑
1

EMF(1, t)a+1 a1 +
1
2 ∑

12
ΔMF

pair(12, t)a+1 a+2 + c.c. +
1
2 ∑

121′2′
V(12, 1′2′)a+1 a+2 a2′ a1′ − (MF) (24)

with EMF(1, t) = E(1) + ∑2 V(12, 12)ex〈n2〉t and ΔMF
pair(12, t) = ∑1′2′ V(12, 1′2′)〈a2′ a1′ 〉t. We will

not consider pairing so that ΔMF
pair(12, t) = 0. In the case of fermions, pairing was considered

in Reference [49], which can also transformed to the bilinear form (22) applying the Bogoliubov
transformation. In the case of a Bose gas considered here, the mean-field terms contain also averages
〈a+2 a2′ a1′ 〉t of the condensate mode so that

HMF(t) = ∑
1

EMF(1, t)a+1 a1 +
1
2

ΔMF
cond(1, t)a+1 + c.c. (25)

with ΔMF
cond(1, t) = ∑21′2′ V(12, 1′2′)〈a+2 a2′ a1′ 〉t.

According to the NSO method, the kinetic equations are obtained from the equations of
evolution (4) for the relevant observables

d
dt
〈Bn〉t = lim

ε→0

iε
h̄

∫ t

−∞
dt′eε(t′−t)Tr

{
e−S(2)(t′)eiH(t′−t)/h̄[H, Bn]e−iH(t−t′)/h̄

}
. (26)

We apply perturbation theory with respect to the deviation ΔH from the mean-field expression which
can be incorporated into sp,c(t) = βc(t)[EMF

p,c (t)− μc(t)] + δ fp,c(t) = f MF
p,c (t) + δ fp,c(t). The new Lagrange

parameters βc(t), μc(t) are introduced to describe the total particle number Nc and mean-field energy HMF
c

of the species c. The perturbation expansion is performed with respect to ΔS(t) = S(2)(t)− S0(t) with
S0(t) = β(t)[HMF(t)− ∑c μc(t)Nc], where β(t) is determined by the average of the total energy H. We
have (S(2)(t) commutes with S0(t) in the lowest order of perturbation theory)

d
dt
〈a+1 〉t = lim

ε→0

iε
h̄

∫ 0

−∞
dt′eεt′ e−iμ1t′/h̄Tr

{
e−S(2)(t′+t)

[
E(1)a+1 +

1
2 ∑

1′22′
V(1′2′, 12)a+1′ a

+
2′ a2

]}
(27)

and the corresponding equations of evolution for the other relevant observables Nc, HMF
c , ap,c.

To evaluate the trace, we perform the transformation of the relevant statistical operator (7) to the
diagonal form (22) and have

d
dt
〈a+1 〉t =

i
h̄

EMF(1, t) lim
ε→0

ε
∫ 0

−∞
dt′eεt′ e−iμ1t′/h̄F∗

1 (t + t′), (28)

where it was assumed that the mean-field energy EMF(1, t) = E(1) + ∑2 V(12, 12)ex f2(t) depends only
weakly on time so that it can be extracted from the integral which is determined by the collisions.
In addition, we suppose that a condensate mode is only in the state p1, c1 and V(11, 11) = 0 with 1
denoting the state of lowest mean field energy. In the stationary state, we assume a periodic dependence
on time, F1(t) = F0

1 eiωt. Then, the integral can be performed with the result ω = μ1/h̄. The amplitude
〈a1〉t = F(t) depends periodically on time. We obtain the condition h̄ω = μ1 = EMF(1) for a stationary
solution, considering the lowest order (mean-field approximation). Similar results hold for 〈a+1 〉t.
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For the other relevant observables, the time derivative vanishes in the lowest order of perturbation
expansion with respect to the interaction.

To obtain the evolution of the averages, one has to consider higher orders of the interaction. It is
convenient to use the following expression for the NSO obtained from (1) after integration by parts

ρ(t) = ρrel(t)− lim
ε→0

∫ t

−∞
eε(t′−t)U(t, t′)

{
i
h̄
[H, ρrel(t′)] +

∂

∂t′ ρrel(t′),
}

U(t′, t)dt′. (29)

so that, for the averages,

d
dt
〈Bn〉t =

i
h̄

Tr{ρrel(t)[H, Bn]}

+
1
h̄2

∫ 0

−∞
dt′eεt′Tr

{
[H, Bn]eiHt′/h̄

(
[H, ρrel(t′)] +

h̄∂

i∂t′ ρrel(t′)
)

e−iHt′/h̄
}

. (30)

In Markov approximation, the time dependence of ρrel(t′) is neglected, and we have the
Boltzmann-like form of the equations of evolution; see also (8), (9), which is obtained after cyclic
permutation within the trace. In our case, we cannot assume that the time dependence of F1(t) ∝
exp(iωt) is slow; only after the transformation to the diagonal form may the remaining s1(t) be slow.

Using Wick’s theorem, the evaluation of the first term of the r.h.s. of (30) is immediately done
if we transform to the diagonal form of the relevant statistical operator. The second term describes
the collision between the pions and gives the relaxation to the intermediate relevant state showing
the condensate distribution. The evaluation of the time dependence of occupation numbers 〈np,c〉t

coincides with the expression (17) but replacing 〈np,c〉t by fp,c(t) + |Bp,c(t)|2.
The time evolution of the amplitude follows in Born approximation as

d
dt 〈a+1 〉t = i

h̄ EMF
1 B∗

1 (t) +
π
2h̄ B∗

1 (t)∑1′22′ |Vex(12, 1′2′)|2δ(Ep1 + Ep2 − Ep′
1
− Ep′

2
)δp1+p2−p′

1−p′
2

×{ f1′ f2′ (1 + f2)− f2(1 + f2′ )(1 + f1′ )} .
(31)

Stationary solution is the grand canonical distribution with the chemical potential given by
the pion number density. If the pion chemical potential approaches the lowest pion energy state,
a quantum condensate will be formed which is described by a coherent state. The time evolution of
the condensate is characterized by the collision time τcond.

4.5. Quantum Master Equation

The non-equilibrium evolution of the pion system can also be treated considering it as an open
system coupled to a bath. We can consider the gluon system as the bath in the stage of evolution where
the pions are formed from the hot quark–gluon plasma, or we can consider the interaction between
pions (e.g., via ρ mesons) as a bath. We also can consider the pion Bose–Einstein condensate as the
relevant subsystem interacting with the normal pion gas. A quantum master equation is derived that
contains a Lindblad term [17], and a solution can be performed using coherent states. We will not
discuss this interesting approach here but mention that the treatment of open many-particle systems is
also possible within the Zubarev NSO method, leading to quantum master equations [17]. See, for
instance, Reference [50] for the treatment of heavy quarkonia kinetics in a quark–gluon plasma.

5. Discussion

We refer to the central 200 AGeV 16O+Au data of the NA35 Collaboration, see [30]. For more recent
data, see also the discussion of Reference [51]. Assuming hadronization (formation time) at t0 ∼ 1 fm/c
and temperature of about 160 MeV, the equilibrium pion density at μπ = 0 is nπ,normal ≈ 0.15 fm−3,
in contrast to the observed density nπ(t0) ∼ 1 fm−3. This motivates the consideration of a strong
macroscopic occupation of the lowest momentum state, forming a pion Bose–Einstein condensate.
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We use the hydrodynamical expansion under conservation of the initial entropy S0 which
determines the temperature evolution according to s(T)V(τ) = S0 = const., where for the entropy
density we use a fit to lattice QCD data from Reference [52].

For the expansion of the fireball, we can adopt a Bjorken like picture where in the first stage
(t < 10 fm/c) we have one-dimensional expansion with nπ(t) ∼ nπ(t0)t0/t, and afterwards
three-dimensional expansion where nπ(t) ∝ t−3. The expansion rate τ−1

exp = |ṅ|/n ∼ 1/t drops
down as 1/t.

The relaxation τcol = 1/[〈σv〉n(t)] is estimated by a thermal average of the elastic π − π cross
section σ ≈ 23 mb [30], determined by scattering phase shift data. The thermal average 〈σv〉 ∼
7 −−10 mb is nearly not depending on time, so that the collision time drops down proportional to 1/t
in the first stage, but proportional to 1/t3 in the later stage which induces the freeze-out which occurs
at t ≈ 10 fm/c, where this transition occurs. The relaxation of the condensate mode 〈a+1 〉 differs from
that of the normal modes. A slower relaxation entails that this mode freezes out while the normal part
is further thermalizing.

For a recent discussion of the chemical freeze-out in the phase diagram on the basis of a kinetic
criterion, see Reference [53] and references therein.

The experimental data are well reproduced by the fit of a pion (and kaon) distribution with
a non-equilibrium chemical potential as a Lagrangian multiplier in CERN SPS [14]. The thermal
freeze-out process of pions and kaons at LHC conditions is characterized by just two parameters,
the freeze-out time τfo and the transverse size rmax, whereby the shape of the transverse momentum
spectra is described with only one parameter, rmax/τfo because the volume at freeze-out V = πτfor2

max
fixes the overall normalization [13]. For an excellent simultaneous fit of pion, kaon, and proton spectra
in most central Pb+Pb collisions at

√
s = 2.76 TeV, including the low-momentum enhancement of

pions, a non-equilibrium chemical potential of pions μπ = 134.9 MeV is required which is very
close to the neutral pion mass mπ = 134.98 MeV. The other parameters are Tkin = 138 MeV,
τfo = 7.68 fm/c and rmax = 11.7 fm, according to [13]. A scenario as described by the Zubarev
approach to the non-equilibrium statistical operator, with a fast relaxation to an intermediate relevant
operator describing a Bose–Einstein condensate of pions and the slow relaxation to full thermodynamic
equilibrium seems to be realistic with these estimates of time scales.

A detailed numerical calculation within the presented approach, e.g., on the basis of a separable
model Hamiltonian for π − π scattering as discussed in Section 3 is the subject of ongoing work that
shall be reported in a subsequent publication.

6. Conclusions

There are different models to describe the low momentum enhancement of pions observed in
HIC at SPS, RHIC, and LHC energies. We discuss this effect as a signature of a quantum condensate of
the high-density pion gas. As an origin for the high phase space density of pions, one may think of
an initial state in the form of a color glass condensate state (gluon saturation) which gets converted
to a pion gas by particle number conserving process as described, e.g., [54,55].

After the hadronization time, a hadron gas is formed, which, under LHC conditions, mainly
consists of pions. The time evolution of the fireball is governed by particle-conserving binary
collisions; processes that change the pion number are weak and influence only the long-time evolution.
In the oversaturated pion gas, the cross sections of pion rescattering processes are relatively large.
As a consequence, the pion distribution function quickly relaxes to local thermodynamic equilibrium
(here denoted as relevant distribution) which slowly evolves to full equilibrium.

The expansion of the fireball produced in HIC changes not only the parameter of the local
thermodynamic equilibrium but influences also the relaxation time, and freeze-out happens if the
relaxation rate becomes smaller than the expansion rate. A general description of this non-equilibrium
process is given here within the Zubarev method of the non-equilibrium statistical operator.
As discussed in the literature, it appears that one can capture the essence of the effect with fixed

131



Particles 2020, 3

point dynamics. The relevant statistical operator may be considered as a transient distribution
proposed also recently from other approaches [28,29]. Here, we formulate this behavior using the
Zubarev concept of a relevant statistical operator. The system quickly relaxes to a relevant distribution
(pre-equilibrium state) which evolves slowly to equilibrium, but is frozen out at the freeze-out time.
This relevant distribution at tfo describes the composition to be observed in the experiments.

We show different possibilities to introduce a relevant statistical operator to derive the
corresponding equations of evolution of the state. Treating the binary collisions in relaxation time
approximation, a quantum condensate may appear in the relevant statistical operator. After freeze-out,
where this relevant distribution stops evolving further, the non-equilibrium evolution of the pion
system is described by kinetic equations with initial condition at freeze-out time for the distribution
function, which is approximated by the relevant statistical operator at tfo. To obtain a optimum
description already in lowest order perturbation theory (Markov approximation), the relevant statistical
operator should contain already all relevant correlations, in particular the formation of quantum
condensates.

The method of the Zubarev NSO as presented here for the application to the pion production in
heavy-ion collision experiments considers not only a systematic description of the collision processes but
also a simultaneous treatment of the hydrodynamical evolution as well as the evolution of the condensate.
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Abstract: The relativistic form of the Zubarev density operator can be used to study quantum effects
associated with acceleration of the medium. In particular, it was recently shown that the calculation
of perturbative corrections in acceleration based on the Zubarev density operator makes it possible
to show the existence of the Unruh effect. In this paper, we present the details of the calculation of
quantum correlators arising in the fourth order of the perturbation theory needed to demonstrate the
Unruh effect. Expressions for the quantum corrections for massive fermions are also obtained.
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1. Introduction

There are wonderful quantum-field effects associated with non-uniform motion of the medium.
A well-known example of such an effect is the Unruh effect, according to which an accelerated observer
perceives the Minkowski vacuum as a medium filled with particles with a temperature depending on
the acceleration [1]. This temperature is called the Unruh temperature, and it is equal to

TU =
h̄|a|

2πck
. (1)

The Unruh effect is similar to the Hawking effect, since it is also associated with the appearance
of the event horizon in the accelerated system. This effect continues to be the focus of theorists [2–5].
The possibility of experimental observation of the Unruh effect needs the generation of ultrahigh
acceleration in a system, which is relevant, in particular, for particle collisions [6,7] and systems with
two-level atoms in quantum optics [8–10].

There is a universal fundamental statistical approach to describing the equilibrium
thermodynamics of quantized fields. This approach is based on the relativistic form of the Zubarev
density operator [11,12]. It has recently been shown that this approach allows to study in a regular
way the effects of rotation and acceleration in a medium of relativistic particles [13–15].

Using the Zubarev operator method, various effects associated with the motion of the medium
are shown. In particular, the well-known chiral vortical effect is shown and corrections to this effect
are calculated [13,14,16]. Since the chiral vortical effect is associated with the axial electromagnetic
anomaly [17–19], as well as with the gravitational anomaly [20,21], it turns out that the approach with
the Zubarev operator carries information about the most fundamental properties of matter.

A remarkable observation made recently is that the Unruh effect can also be obtained from the
Zubarev density operator [22,23]. Relativistic quantum statistical mechanics considers a continuous
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medium filled with particles described by quantized fields. This medium in equilibrium is characterized
by a number of thermodynamic parameters, such as temperature, energy density, pressure, and others.
Non-trivial aspect is connected with the need for normalization of the thermodynamic quantities of the
system to a specific vacuum, as a rule, the Minkowski vacuum. With such a statement of the problem,
a direct consequence of the Unruh effect from the point of view of quantum statistical mechanics is
the vanishing of the observables, in particular, the energy-momentum tensor, at a proper temperature
equal to the Unruh temperature [24,25]. This is exactly what was found in [23].

This means that, in the Zubarev approach, nontrivial gravitational effects, associated with the
occurrence of an event horizon, and the changes in vacuum properties depending on the reference
system, are reproduced. This observation seems even more surprising because the corresponding
calculation was carried out in ordinary flat Minkowski space-time, that is, by observing an accelerated
medium from an inertial frame. Nevertheless, nontrivial physics associated with Unruh effect
is reproduced.

Moreover, as discussed in [26], the Zubarev density operator exactly reproduces quantum
corrections that were derived in space of a cosmic string, characterized by a conical singularity [25,27].
The existence of such exact duality means that the Zubarev operator of the accelerated medium leads
to emergent conical geometry.

To justify the Unruh effect in [23], it was necessary to calculate a five-point correlator with boost
operators and energy-momentum tensor. This calculation in [23] was made for the massless Dirac field.
The method we used was developed in a series of works [13–15], where the perturbation theory with
the boost operator was developed and corrections up to the second order were calculated. It is well
known [13] that the boost operator does not commute with the Hamiltonian of the system. Because of
this, with each subsequent order of the perturbation theory, the complexity of calculation of the
corresponding quantum correlators increases. The fourth order found in [23] is currently a record
one. In the present paper, we describe a never before given scheme for calculating higher orders
of the perturbation theory with the boost operator and also derive expressions for the fourth-order
corrections to the energy-momentum tensor at nonzero mass.

To date, the Unruh effect has been considered from various points of view. In particular, in the
framework of quantum optics [8–10], the Unruh effect manifests itself in the thermal distribution with
the Unruh temperature, in the probability of absorption and emission of gamma quanta by accelerated
two-level atoms. It is necessary to consider the interaction of atoms with an electromagnetic field in
the framework of perturbation theory with respect to the coupling constant, while acceleration effects
can be taken into account in a nonperturbative way through Rindler coordinates.

Despite the difference in approaches, a parallel can be established between our consideration
and the usual approach to the Unruh effect, as well as quantum optics. In particular, in the statistical
approach we also obtained a term in the energy density (which is the last term in Equation (3.1) in [23]),
which corresponds to the Bose distribution of gamma quanta at the Unruh temperature.

The paper has the following structure. Section 2 introduces the basic concepts of the method of
Zubarev density operator. An algorithm of constructing a perturbation theory in acceleration is also
discussed. In the Section 3 we describe in details the calculation of the corrections of the fourth-order
in acceleration to the energy-momentum tensor. The interpretation associated with the Unruh effect
is given in Section 4. In Section 5 the conclusions are given. In the Appendix A the formulas for the
coefficients at finite mass are presented.

The system of units h̄ = c = k = 1 is used.
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2. Perturbation Theory in Acceleration Based on the Zubarev Density Operator

In this section, we introduce the basic concepts related to the density operator and describe how
the acceleration perturbation theory can be constructed. In general, in this section we follow the
paper [13]. In [11,12], a relativistic form of the Zubarev density operator was obtained for a medium in
a state of local thermodynamic equilibrium

ρ̂ =
1
Z

exp
{
−

∫
Σ

dΣμ[T̂μν(x)βν(x)− ξ(x) ĵμ(x)]
}

, (2)

where integration over the three-dimensional hypersurface Σ is performed. Here, βμ =
uμ

T is the
inverse temperature 4-vector, T is the proper temperature, ξ = u

T is the ratio of the chemical potential
in the co-moving frame to temperature, T̂μν and ĵμ are the energy-momentum tensor and current
operators. The conditions of global thermodynamic equilibrium for a medium with rotation and
acceleration, that is, conditions under which the density operator (2) becomes independent on the
choice of the hypersurface Σ, over which the integration occurs, thus acquiring the properties of a
density operator in a state of global thermodynamic equilibrium, have the form [13,15,28,29]

βμ = bμ + �μνxν , bμ = const , �μν = const ,

�μν = −1
2
(∂μβν − ∂νβμ) , ξ = const , (3)

where �μν is the thermal vorticity tensor. In the general case, integration over the hypersurface is to be
done and the quantum statistical theory should be projected to this hypersurface [30–32]. So under the
condition (3), the density operator (2) becomes the global equilibrium density operator [13,15,22]

ρ̂ =
1
Z

exp
{
− βμ(x)P̂μ +

1
2

�μν Ĵμν
x + ξQ̂

}
, (4)

where P̂ is the 4-momentum operator, Q̂ is the charge operator, and Ĵx are the generators of the Lorentz
transformations shifted to the point x

Ĵμν
x =

∫
dΣλ

[
(yμ − xμ)T̂λν(y)− (yν − xν)T̂λμ(y)

]
. (5)

The technique of calculating the mean values of physical quantities based on (4) was developed
in [13,15], in which second-order corrections in the thermal vorticity tensor were calculated to various
thermodynamic quantities for scalar and Dirac fields.

Note that the condition (3) also lead to a system of kinematic equations of motion, solving which,
we can construct trajectories of motion. Particular cases of this solution are the rotation of the medium
as a solid, as well as uniformly accelerated motion.

Following [13], we introduce the thermal acceleration vector αμ and the thermal vorticity
pseudo-vector wμ

αμ = �μνuν, wμ = −1
2

εμναβuν�αβ . (6)

Drawing a parallel with the electrodynamics, αμ and wμ can be called the “electrical” and
“magnetic” components of the tensor �. The tensor �μν can be decomposed into these components
as follows

�μν = εμναβwαuβ + αμuν − ανuμ . (7)
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The meaning of the vectors αμ and wμ becomes clear when considering the case of global
thermodynamic equilibrium, in which they are proportional to the usual kinematic 4-acceleration aμ

and vorticity ωμ

αμ = �μ
νuν = uν∂νβμ =

1
T

uν∂νuμ =
aμ

T
, (8)

and for thermal vorticity, we get

wμ = −1
2

εμναβuν�αβ = −1
2

εμναβuν∂ββα =
1

2T
εμναβuν∂αuβ =

ωμ

T
. (9)

In the rest frame, aμ and ωμ are expressed in terms of three-dimensional vectors

aμ = (0, a), ωμ = (0, w) , (10)

where a and w are three-dimensional acceleration and angular velocity.
The density operator (4) allows one to find corrections related to thermal vorticity in the framework

of perturbation theory. To do this, it is necessary to expand (4) in a series taking into account the fact
that we are constructing a perturbation theory with non-commuting operators. According to [13]
we have

〈Ô(x)〉 = 〈Ô(0)〉β(x) +
∞

∑
N=1

�N

2N N!|β|N
∫ |β|

0
dτ1dτ2...dτN〈Tτ Ĵ−iτ1u... Ĵ−iτN uÔ(0)〉β(x),c , (11)

where it is assumed that each of the thermal vorticity tensors is contracted with the tensor Ĵ so that
�μν Ĵμν. Equation (11) includes only connected correlators, all disconnected correlators are reduced due
to the contribution of the denominator 1/Z to (4). This fact is reflected in the subscript c; the subscript
β(x) means that the mean values are taken at � = 0, that is, averaging is performed over a grand
canonical distribution. The Tτ operator orders in imaginary time τ, and |β| = √

βμβμ = 1
T .

It is convenient to introduce the boost operator K̂ and the angular momentum operator Ĵ

Ĵμν = uμK̂ν − uνK̂μ − εμνρσuρ Ĵσ . (12)

From (7) and (12), it follows that scalar products with vorticity tensor in (4) and (11) decompose
into terms with boost and angular momentum

�μν Ĵμν
x = −2αμK̂μ

x − 2wμ Ĵμ
x . (13)

Further, we will consider uniformly accelerated media without vorticity and chemical potential;
therefore (4), transforms to the density operator of the form

ρ̂ =
1
Z

exp
{
− βμ P̂μ − αμK̂μ

x

}
, (14)

and the perturbation theory in (11) takes the form of the series in acceleration

〈Ô(x)〉 = 〈Ô(0)〉β(x) +
∞

∑
N=1

(−1)N aN

N!

∫ |β|

0
dτ1dτ2...dτN〈TτK̂−iτ1u...K̂−iτN uÔ(0)〉β(x),c , (15)
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3. Calculation of Fourth-Order Coefficients in Acceleration

The second-order coefficients in acceleration in the energy-momentum tensor of the Dirac
field were calculated in [13,14]. In this section, we present the details of calculation of the
fourth-order coefficient.

The operator form of the energy-momentum tensor of the mass-less Dirac fields is well known.
We will use the symmetrized Belinfante energy-momentum tensor

T̂μν =
i
4
(
Ψγμ∂νΨ − ∂νΨγμΨ + Ψγν∂μΨ − ∂μΨγνΨ

)
. (16)

As follows from (15), the calculation of the necessary correlators is performed in imaginary
time—a time shift is made along the imaginary axis. Thus, it is necessary to pass to the Euclidean
formalism in imaginary time. The Euclidean version of the energy-momentum tensor (16) has the form

T̂μν =
iδ0μ+δ0ν

4
(
Ψγ̃μ∂νΨ − ∂νΨγ̃μΨ + Ψγ̃ν∂μΨ − ∂μΨγ̃νΨ

)
, (17)

where γ̃ are the Euclidean Dirac matrices

γ̃μ = i1−δ0μ γμ , γ̃μ = i1−δ0μ γμ , {γ̃μγ̃ν} = 2δμν , (18)

and derivatives are also taken in Euclidean space-time, so that

∂̃μ = (−i)δ0μ ∂μ . (19)

However, we will omit the tilde sign for derivatives. Consider the mean value of the energy-momentum
tensor in the fourth order of the perturbation theory in acceleration using (15)

〈T̂μν(x)〉 = 〈T̂μν(0)〉β(x) +
aρaσ

2

∫ |β|

0
dτ1dτ2〈TτK̂ρ

−iτ1uK̂σ
−iτ2uT̂μν(0)〉β(x),c (20)

+
8aρaσaγaη

4!

∫ |β|

0
dτ1dτ2dτ3dτ4〈TτK̂ρ

−iτ1uK̂σ
−iτ2uK̂γ

−iτ3uK̂η
−iτ4uT̂μν(0)〉β(x),c +O(a6) .

Symmetry and parity considerations fix the form of the energy-momentum tensor in the fourth
order of perturbation theory

〈T̂μν〉 = (ρ0 − A1T2a2 + A2a4)uμuν − (p0 − A3T2a2 + A4a4)Δμν

+(A5T2 − A6a2)aμaν +O(a6) Δμν = gμν − uμuν , (21)

where a2 = aμaμ. As already mentioned, 2-order coefficients were calculated earlier in [13,14]. Our goal
is to calculate coefficients of the 4th order A2, A4, A6. Comparing (20) with (21), we obtain

A2a4uμuν − A4a4Δμν − A6a2aμaν =
aρaσaγaη

4!

∫ |β|

0
dτ1dτ2dτ3dτ4

×〈TτK̂ρ
−iτ1uK̂σ

−iτ2uK̂γ
−iτ3uK̂η

−iτ4uT̂μν(0)〉β(x),c . (22)
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The coefficients A2, A4, A6 are Lorentz invariants, and the relation (22) is valid for any choice
of the vectors uμ, aμ. Therefore, to determine the coefficient, we can choose the vectors uμ, aμ in
any form convenient for us. To determine A2, we choose aμ = (0, 0, 0, |a|) and uμ = (1, 0, 0, 0) and
consider the components μ = 0, ν = 0, to determine A4 we choose aμ = (0, 0, |a|, 0) and uμ = (1, 0, 0, 0)
and consider the components μ = 3, ν = 3, and to determine A6 we choose aμ = (0, 0, 0, |a|) and
uμ = (1, 0, 0, 0) and consider the components μ = 3, ν = 3. As a result, we obtain

A2 =
1
4!

∫ |β|

0
dτ1dτ2dτ3dτ4〈TτK̂3

−iτ1uK̂3
−iτ2uK̂3

−iτ3uK̂3
−iτ4uT̂00(0)〉β(x),c ,

A4 =
1
4!

∫ |β|

0
dτ1dτ2dτ3dτ4〈TτK̂2

−iτ1uK̂2
−iτ2uK̂2

−iτ3uK̂2
−iτ4uT̂33(0)〉β(x),c ,

A6 = −A4 +
1
4!

∫ |β|

0
dτ1dτ2dτ3dτ4〈TτK̂3

−iτ1uK̂3
−iτ2uK̂3

−iτ3uK̂3
−iτ4uT̂33(0)〉β(x),c . (23)

We now use the representation of the boost operator through the energy-momentum tensor.
According to (5) and (12), we have

K̂3
−iτu = Ĵ03

−iτu =
∫

d3x(−1)x3T̂00(τ, x) ,

K̂2
−iτu = Ĵ02

−iτu =
∫

d3x(−1)x2T̂00(τ, x) , (24)

Substituting (24) into (23), we come to the need of calculating quantities of the form

Cα1α2|α3α4|α5α6|α7α8|α9α10|ijkl =
∫ |β|

0
dτxdτydτzdτf d3xd3yd3zd3 f

×xiyjzk f l〈Tτ T̂α1α2(τx, x)T̂α3α4(τy, y)T̂α5α6(τz, z)T̂α7α8(τf , f)T̂α9α10(0)〉β(x),c . (25)

In particular, from (23), we have

A2 =
1
4!

C00|00|00|00|00|3333 , A4 =
1
4!

C00|00|00|00|33|2222 , A6 = −A4 +
1
4!

C00|00|00|00|33|3333 . (26)

Next, we will focus on calculating the coefficient in energy A2; the remaining coefficients can be
calculated by analogy.

We represent the energy-momentum tensor (17) in a split form

T̂αβ(X) = lim
X1,X2→X

Dαβ
ab (∂X1 , ∂X2)Ψ̄a(X1)Ψb(X2) ,

Dαβ
ab (∂X1 , ∂X2) =

iδ0α+δ0β

4
[γ̃α

ab(∂X2 − ∂X1)
β + γ̃

β
ab(∂X2 − ∂X1)

α] , (27)

and substitute it in (26). As a result, we get for the corresponding correlator

〈Tτ T̂00(X)T̂00(Y)T̂00(Z)T̂00(F)T̂00(0)〉β(x),c = lim
X1,X2→X
Y1,Y2→Y
Z1,Z2→Z
F1,F2→F
H1,H2→H=0

D00
a1a2

(∂X1 , ∂X2)

D00
a3a4

(∂Y1 , ∂Y2)D00
a5a6

(∂Z1 , ∂Z2)D00
a7a8

(∂F1 , ∂F2)D00
a9a10

(∂H1 , ∂H2)〈TτΨa1(X1)Ψa2(X2)

×Ψa3(Y1)Ψa4(Y2)Ψa5(Z1)Ψa6(Z2)Ψa7(F1)Ψa8(F2)Ψa9(H1)Ψa10(H2)〉β(x),c . (28)
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When calculating the correlator with 10 Dirac fields of the form (28), it is necessary to use an
analogue of Wick theorem for field theory at finite temperatures. Then, the five-point correlator
in (28) leads to the product of mean values of quadratic combinations of Dirac fields, that is,
thermal propagators. For short, we denote Ψan → n, and Ψan → n̄ and omit Tτ and the index
β(x). Then, after extraction on the connected part in (28) according to Wick theorem, we obtain
24 terms

〈TτΨa1(X1)Ψa2(X2)Ψa3(Y1)Ψa4(Y2)Ψa5(Z1)Ψa6(Z2)Ψa7(F1)Ψa8(F2)

Ψa9(H1)Ψa10(H2)〉β(x),c = 〈1̄23̄45̄67̄89̄10〉 = −〈1̄4〉〈29̄〉〈3̄6〉〈5̄8〉〈7̄10〉
+〈1̄4〉〈27̄〉〈3̄6〉〈5̄10〉〈89̄〉+ 〈1̄4〉〈29̄〉〈3̄8〉〈5̄10〉〈67̄〉+ 〈1̄4〉〈25̄〉〈3̄8〉〈69̄〉〈7̄10〉
+〈1̄4〉〈27̄〉〈3̄10〉〈5̄8〉〈69̄〉 − 〈1̄4〉〈25̄〉〈3̄10〉〈67̄〉〈89̄〉+ 〈1̄6〉〈29̄〉〈3̄8〉〈45̄〉〈7̄10〉
−〈1̄6〉〈27̄〉〈3̄10〉〈45̄〉〈89̄〉+ 〈1̄6〉〈29̄〉〈3̄10〉〈47̄〉〈5̄8〉+ 〈1̄6〉〈23̄〉〈49̄〉〈5̄8〉〈7̄10〉
+〈1̄6〉〈27̄〉〈3̄8〉〈49̄〉〈5̄10〉 − 〈1̄6〉〈23̄〉〈47̄〉〈5̄10〉〈89̄〉+ 〈1̄8〉〈29̄〉〈3̄6〉〈47̄〉〈5̄10〉
−〈1̄8〉〈25̄〉〈3̄10〉〈47̄〉〈69̄〉 − 〈1̄8〉〈29̄〉〈3̄10〉〈45̄〉〈67̄〉 − 〈1̄8〉〈23̄〉〈49̄〉〈5̄10〉〈67̄〉
+〈1̄8〉〈25̄〉〈3̄6〉〈49̄〉〈7̄10〉 − 〈1̄8〉〈23̄〉〈45̄〉〈69̄〉〈7̄10〉+ 〈1̄10〉〈27̄〉〈3̄6〉〈49̄〉〈5̄8〉
−〈1̄10〉〈25̄〉〈3̄8〉〈49̄〉〈67̄〉 − 〈1̄10〉〈27̄〉〈3̄8〉〈45̄〉〈69̄〉 − 〈1̄10〉〈23̄〉〈47̄〉〈5̄8〉〈69̄〉
−〈1̄10〉〈25̄〉〈3̄6〉〈47̄〉〈89̄〉+ 〈1̄10〉〈23̄〉〈45̄〉〈67̄〉〈89̄〉 , (29)

where signs correspond to the number of permutations of anti-commuting fields. Thermal propagators
have a standard form [13,33]

Ga1a2(X1, X2) = 〈TτΨa1(X1)Ψa2(X2)〉β(x) = ∑
∫
P

eiP+(X1−X2)(−iP+
μ γ̃μ + m)a1a2 Δ(P+) ,

Ḡa1a2(X1, X2) = 〈TτΨa1(X1)Ψa2(X2)〉β(x) = −〈TτΨa2(X2)Ψa1(X1)〉β(x)

= −∑
∫
P

eiP−(X1−X2)(iP−
μ γ̃μ + m)a2a1 Δ(P−) , (30)

where integration over the three-dimensional components of the momentum and summation over the
Matsubara frequencies of fermion field appear. The following notations are used in (30): P± = (p±n , p),

p±n = π(2n + 1)/|β| ± iμ, n = 0,±1,±2, · · · , X = (τ, x), ∑
∫

P = 1
|β| ∑∞

n=−∞
∫ d3 p

(2π)3 , and Δ(P) = 1
P2+m2 ,

where the square is taken with the Euclidean metric, as also in P±
μ γ̃μ = /P± (unlike P+(X1 − X2)

according to [33]). Since we consider mass-less field at zero chemical potential, the mass and chemical
potential must be set equal to zero m = 0, μ = 0. Nevertheless, we retain the notation P±, bearing in
mind the possibility of generalization to the case with nonzero chemical potential in the future.

Next, substitute (30) in (29). We will describe the calculations for the first term in (29), while all
other terms can be calculated by analogy
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− lim
X1,X2→X
Y1,Y2→Y
Z1,Z2→Z
F1,F2→F
H1,H2→H=0

D00
a1a2

(∂X1 , ∂X2)D00
a3a4

(∂Y1 , ∂Y2)D00
a5a6

(∂Z1 , ∂Z2)D00
a7a8

(∂F1 , ∂F2)D00
a9a10

(∂H1 , ∂H2)

×Ḡa1a4(X1, Y2)Ga2a9(X2, H1)Ḡa3a6(Y1, Z2)Ḡa5a8(Z1, F2)Ḡa7a10(F1, H2) =

− ∑
∫

{P,Q,K,R,L}
e−ip(x−y)−iqx−ik(y−z)−ir(z−f)−ilfeip−n (τx−τy)+iq+n τx+ik−n (τy−τz)+ir−n (τz−τf )+il−n τf

×Δ(P−)Δ(Q+)Δ(K−)Δ(R−)Δ(L−)

×tr
[
(−i/L−)D00(iL−,−iR−)(−i/R−)D00(iR−,−iK−)(−i/K−)

×D00(iK−,−iP−)(−i/P−)D00(iP−, iQ+)(−i/Q+)D00(−iQ+,−iL−)
]

, (31)

where it was necessary to arrange all the matrices under the trace in accordance with the order of the
spinor indices. To calculate (31), it is necessary to find a trace of the form

tr
[

/P1D00(P2, P3) /P4D00(P5, P6) /P7D00(P8, P9) /P10D00(P11, P12) /P13D00(P14, P15)
]

. (32)

The subsequent calculations are more convenient to carry out using special software applications.
Calculation (32) requires finding the trace of 10 Euclidean Dirac matrices

tr
[
γ̃α1 γ̃α2 γ̃α3 γ̃α4 γ̃α5 γ̃α6 γ̃α7 γ̃α8 γ̃α9 γ̃α10

]
. (33)

Using the definition (18), this trace can be easily transformed to the trace of ordinary
Dirac matrices, which can be found using standard methods. We denote the trace in (32) as
A(P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15). Then (31) will be presented in the form

−
∫ d3 pd3qd3kd3rd3l

(2π)15 e−ip(x−y)−iqx−ik(y−z)−ir(z−f)−ilf

× ∑
pn ,qn ,kn ,rn ,ln

1
|β|5 eip−n (τx−τy)+iq+n τx+ik−n (τy−τz)+ir−n (τz−τf )+il−n τf

×Δ(P−)Δ(Q+)Δ(K−)Δ(R−)Δ(L−)
×A(−iL−, iL−,−iR−,−iR−, iR−,−iK−,−iK−, iK−,−iP−,−iP−, iP−, iQ+,

−iQ+,−iQ+,−iL−) . (34)

Next, one needs to sum over the Matsubara frequencies in (34) using the relation

1
|β| ∑

ωn

(ωn ± iμ)kei(ωn±iμ)τ

(ωn ± iμ)2 + E2 =
1

2E ∑
s=±1

(−isE)keτsE[θ(−sτ)− nF(E ± sμ)] , (35)

where E =
√

p2 + m2, nF(E) = 1/(1 + eE/T) is the Fermi distribution, and θ is the Heaviside theta
function. Again, we can take m = 0, μ = 0. As a result, we obtain
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−
∫ d3 pd3qd3kd3rd3l

(2π)15 e−ip(x−y)−iqx−ik(y−z)−ir(z−f)−ilf

× 1
32EpEqEkErEl

∑
s1,s2,s3,s4,s5

e(τx−τy)s1Ep+τxs2Eq+(τy−τz)s3Ek+(τz−τf )s4Er+τf s5El

×A(−iL̃, iL̃,−iR̃,−iR̃, iR̃,−iK̃,−iK̃, iK̃,−iP̃,−iP̃, iP̃, iQ̃,−iQ̃,−iQ̃,−iL̃)

× (
θ
[−s1(τx − τy)

]− nF
(
Ep

)) (
θ [−s2]− nF

(
Eq
))

× (
θ
[−s3(τy − τz)

]− nF (Ek)
) (

θ
[
−s4(τz − τf )

]
− nF (Er)

)
(θ [−s5]− nF (El)) . (36)

Here, following [13], the notations P̃ = P̃(s1) = (−is1Ep, p), Q̃ = Q̃(s2), · · · are introduced.
We return now to the formula for A2 (26) with spatial integrals and calculate the contribution of the
term (36). This contribution has the form

A2 =
∫ dτxdτydτzdτf d3xd3yd3zd3 f d3 pd3qd3kd3rd3l

4!(2π)15 e−ip(x−y)−iqx−ik(y−z)−ir(z−f)−ilf

×x3y3z3 f 3D + · · · , (37)

where the ellipsis indicates the contribution of the remaining 23 terms from (29), and D equals to

D = − 1
32EpEqEkErEl

∑
s1,s2,s3,s4,s5

e(τx−τy)s1Ep+τxs2Eq+(τy−τz)s3Ek+(τz−τf )s4Er+τf s5El

×A(−iL̃, iL̃,−iR̃,−iR̃, iR̃,−iK̃,−iK̃, iK̃,−iP̃,−iP̃, iP̃, iQ̃,−iQ̃,−iQ̃,−iL̃)

× (
θ
[−s1(τx − τy)

]− nF
(
Ep

)) (
θ [−s2]− nF

(
Eq
))

× (
θ
[−s3(τy − τz)

]− nF (Ek)
) (

θ
[
−s4(τz − τf )

]
− nF (Er)

)
(θ [−s5]− nF (El)) . (38)

Next, one needs to rewrite the product of spatial coordinates in the integral through derivatives
using the formula∫

d3 pd3qd3kd3rd3xd3yd3zd3 f F(p, q, k, r, l)e−ip(x−y)−iqx−ik(y−z)−ir(z−f)−ilfx3y3z3 f 3

= (2π)12
∫

d3 p
(
− ∂3

∂q3∂l3∂p3∂r3 − ∂3

∂q3∂l3∂p3∂l3

+
∂3

∂q3∂l3∂r3∂q3 +
∂3

∂q3∂q3∂l3∂l3

)
F(p, q, k, r, l)

∣∣∣∣∣ l=p
r=p
k=p
q=−p

, (39)

resulting from integration by parts and properties of the delta function. After that, (37) is converted to
the form

A2 =
1

4!(2π)3

∫
dτxdτydτzdτf d3 p

(
− ∂3

∂q3∂l3∂p3∂r3 − ∂3

∂q3∂l3∂p3∂l3

+
∂3

∂q3∂l3∂r3∂q3 +
∂3

∂q3∂q3∂l3∂l3

)
D(p, q, k, r, l)

∣∣∣∣∣ l=p
r=p
k=p
q=−p

+ · · · . (40)
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Now, it remains to integrate over the imaginary time and also over the last momentum, which
can be done directly in spherical coordinates d3 p = |p|2d|p| sin(θ)dθdφ. The sequence of actions
in this case, from the point of view of calculation speed, will be most convenient as follows: first
one needs to make differentiations with respect to the four momentum variables in (40), then make
the corresponding changes of the variables following from the delta functions, then sum over the
indices sn from (38), then integrate over the angles in d3 p, and then integrate over imaginary time
variables, which requires careful handling of theta functions. The transformations with each of the
24 terms in (29) can be performed independently and using parallel computing tools. We do not give
the described intermediate steps, since they are most conveniently performed using the program,
and the intermediate formulas themselves are extremely long, while the calculations themselves are
not difficult from a mathematical point of view and are done directly. As a result, we obtain the
following integral

A2 =
∫ ∞

0
dp̃e

9p̃
2 p̃3

(
5600p̃

(
49p̃2 − 95

)
cosh

(
p̃
2

)
+ 2016p̃

(
25 − 119p̃2

)
cosh

(
3p̃
2

)
+53200

(
sinh

(
3p̃
2

)
− 11 sinh

(
p̃
2

))
cosh4

(
p̃
2

)
+ p̃

(
− 224

(
p̃2 + 25

)
cosh

(
7p̃
2

)
+224

(
119p̃2 + 575

)
cosh

(
5p̃
2

)
+ 18p̃ sinh

(
p̃
2

)(
− 5786p̃2 +

(
p̃2 + 210

)
cosh (3p̃)

−6
(

41p̃2 + 1890
)

cosh (2p̃) + 3
(

1349p̃2 + 9450
)

cosh ( p̃)

+39900
)))

(50400π2 (ep̃ + 1
)9
)−1 , (41)

where the dimensionless variable p̃ = |p|/T was introduced. This integral converges and can be
found analytically:

A2 = − 17
960π2 . (42)

Repeating the entire calculation algorithm for the coefficients A4, A6 in (26), we obtain at m = 0

A4 = − 17
2880π2 , A6 = 0 . (43)

Saving the mass in all formulas, in particular, in the propagators (30), we get more complicated
expressions for the coefficients at finite mass given in the Appendix A.

4. Discussion

In the previous section, we described the details of the calculation of the corrections of the
fourth order in acceleration to the energy-momentum tensor of the Dirac field, first obtained in [23].
Taking into account (42) and (43), we obtain the next formula for the energy-momentum tensor at
m = 0

〈T̂μν〉 =
(7π2T4

60
+

T2|a|2
24

− 17|a|4
960π2

)
uμuν −

(7π2T4

180
+

T2|a|2
72

− 17|a|4
2880π2

)
Δμν +O(a6) , (44)

where the notation |a| = √−aμaμ is used.
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As discussed in [22,24,25,27], the mean value of the energy-momentum tensor calculated in this
way should vanish at the proper temperature equal to Unruh temperature. Since the energy-momentum
tensor is normalized with respect to the Minkowski vacuum, such a vanishing is a direct consequence
of the Unruh effect—an accelerated medium with Unruh temperature corresponds to the Minkowski
vacuum. It is easy to see that energy-momentum tensor (44) satisfies this condition following from the
Unruh effect

〈T̂μν〉(T = TU) = 0 . (45)

Moreover, as discussed in [26], from the presentation of the result (44) in the form of Sommerfeld
integrals, as well as comparison with the field theory in a space with a conical singularity, it follows that
the calculated fourth order of perturbation theory is maximal; that is, O(a6) = 0 at least at T > TU [26].
Thus, Equation (44) is an exact non-perturbative formula in this region.

We also note that expression (44) can be obtained from the point of view of another approach,
where field theory in a space with a conical singularity is considered [25,27]. As discussed in [26],
this indicates the duality of the statistical and geometrical approaches to the description of
accelerated media.

5. Conclusions

The Zubarev density operator provides a powerful fundamental theoretical method for studying
quantum-field effects in the accelerated medium. This makes it possible to obtain information about
such a medium from the point of view of an inertial observer and there is no need to go to the
curvilinear coordinates of the accelerated frame and consider the features of nontrivial space with a
boundary. All effects can be calculated in ordinary flat space described by the Minkowski metric using
standard Green functions at finite temperature. In this case, the effects of acceleration are calculated
in a regular way in the framework of perturbation theory with the boost operator. However, it is
possible to obtain exact non-perturbative expressions in the chiral limit, since the first few orders of
the perturbation theory are to give a complete perturbative series.

In particular, earlier in [23], the Unruh effect for fermions was demonstrated by calculating
fourth-order quantum corrections. In the language of the statistical approach with the Zubarev
operator, the Unruh effect should lead to the vanishing of the energy-momentum tensor at the proper
temperature equal to the Unruh temperature. Thus, the Zubarev density operator allows one to obtain
information about the effects associated with the occurrence of an event horizon in an accelerated
system and the radiation associated with it.

In more usual formulation or from the point of view of modern developments in the quantum
optics [8–10], the Unruh effect should be manifested in the thermal distribution of photons with
Unruh temperature. However, it can be shown that the formula we obtained (44) also contains such a
distribution with the Unruh temperature [23].

In this paper, we described the details of the calculations of the coefficients with acceleration in
the energy-momentum tensor given in [23], focusing on the calculation of the quantum correction to
the energy density. The calculation of this correction consists in finding the mean value of the product
of the boost operators and operator of the energy-momentum tensor. Applying Wick theorem, one can
transform the average of the product of operators to the product of five thermal propagators. Each of
the propagators adds one summation over the Matsubara frequencies and a three-dimensional integral
over the momentum, and also each boost operator adds three-dimensional integral over the coordinate
and one integral over the imaginary time. The procedure for calculating these sums and integrals is
described. In addition, expressions for the coefficients at a finite mass are given.
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The effects of acceleration we are discussing are of interest from the experimental point of view,
in particular, in heavy-ion collisions, where large acceleration can occur. A systematic study of the
effects of acceleration requires calculating the acceleration resulting from particle collisions, similar to
calculating the vorticity [34–36]. Since the vorticity turns out to be significant in the collision of particles,
acceleration, being another combination of derivatives, is also expected to affect the observables.
We predict that the effects of acceleration should be significant at early stages of the collision, when the
system is not yet fully thermalized and the terms with acceleration are not suppressed with respect to
temperature. In this case, non-equilibrium processes can arise that are associated with instability at the
Unruh temperature, which were discussed in [26]. One can also make a prediction that the discussed
electron-ion collider (EIC) can become a good laboratory for studying effects of acceleration [37].
An elementary particle like an electron, colliding with an ion, behaves like a wave, which allows us to
separate the effects of acceleration from the effects of vorticity.
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Appendix A. The Coefficients a4 at Finite Mass

The coefficient A2 at a finite mass is described by the expression

A2 =
∫ ∞
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7Ẽp

2

)
− 8

(
m̃2 + p̃2

) (
5m̃2

(
2p̃2 + 63

)
+28p̃2

(
p̃2 + 25

) )
cosh

(
7Ẽp
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where the dimensionless quantities m̃ = m/T, Ẽp =
√

p2 + m2/T are introduced. The coefficient A4

at a finite mass has the form
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7Ẽp

2

)
+ 29400

(
14p̃2 − 19

)
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The coefficient A6 is zero both for massless and massive Dirac fields

A6 = 0 . (A3)
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Abstract: The problem of pressure fluctuations in the thermal equilibrium state of some objects
is discussed, its solution being suggested via generalizing the Bogoliubov–Zubarev theorem.
This theorem relates the thermodynamic pressure with the Hamilton function and its derivatives
describing the object in question. It is shown that unlike to other thermodynamic quantities
(e.g., the energy or the volume) the pressure fluctuations are described not only by a purely
thermodynamic quantity (namely, the corresponding thermodynamic susceptibility) but also
by some non-thermodynamic quantities. The attempt is made to apply these results to the
relativistic ideal gases, with some numerical results being valid for the limiting ultra-relativistic
or high-temperature case.

Keywords: Gibbs equilibrium statistical mechanics; Bogoliubov’s quasi-averages; pressure fluctuations;
relativistic ideal gas

PACS: 05.70.-a; 05.30.-d; 05.40.-a

1. Introduction

The long-standing and rather non-trivial problem of calculating pressure fluctuations in the Gibbs
equilibrium statistical mechanics is revised. The previous attempts are critically analyzed and it is
shown that the application of the Bogoliubov’s ideas gives the full and unambiguous solution to this
problem. The crucial role plays the Bogoliubov’s idea of quasi-average (in our case—quasi-dynamic)
quantities—specifically, the pressure P and the dynamic compressibility Ψ. Following the Bogoliubov’s
idea of spontaneous symmetry breaking, we introduce the virtual conjugate field, which appears
to be the singular potential εU of the container impenetrable walls. The translational invariance of
the Hamilton function H being broken, finally we consider the limiting case ε→0. General relations
expressing P and Ψ in terms of the derivatives of H are presented and some examples are studied.
In particular, we consider the cases when the Hamilton function can be expressed as the sum of
uniform functions (in the Euler sense).

In our case the virtual conjugate field, which in the limit ε→0 breaks the translational invariance
of the Hamilton function H, appears to be the singular potential εU of the container impenetrable
walls. The general relations expressing P and Ψ in terms of the derivatives of H are presented and
some examples are studied—i.e., the cases of the ideal vs. non-ideal as well as those of uniform vs.
non- and quasi-uniform (in the Euler sense) Hamilton function H describing the system (here—the
gas, presumably in the classical regime).

The problem of the equilibrium pressure fluctuations is one of the oldest and most difficult
problems in classical statistical mechanics. In 1902, Gibbs [1] in Ch.VII wrote down the appropriate
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expression, which included the quantity named by him the “dynamical compressibility” (see also
Fowler [2], Hill [3], Kittel [4], Terletzky [5]), the latter one being important for the problem of
thermodynamic stability (more precise definitions are given below).

Many unsuccessful attempts were undertaken for calculating this quantity even for the simplest
case of ‘ordinary’ non-relativistic ideal gas. One can find the details in the works by Fowler [2],
Wergeland [6], Münster [7], and M. Klein [8].

A ‘pessimistic’ point of view was expressed in [3], Ch. 4, §19 (see also [5], §69), where the
calculation of the pressure fluctuations was connected with the detailed knowledge of the kind of
forces acting between the gas particles and the container walls. Some attempts [2,3] to follow this
route brought physically unsatisfactory—i.e., divergent—results. This appears to be unphysical
because, due to Maxwell, the gas in the container should relax to the thermal equilibrium state quite
independently on physical properties of the walls.

Finally, it was even claimed (see, e.g., [4], Ch. 11) that the solution to the problem of Gibbs’
pressure fluctuations is generally outside the scope of the equilibrium theory, so all these failures
were sometimes considered as the inconsistency of the Gibbs’s approach as a whole. The situation
becomes even more involved by noting that some of the physically acceptable results for the pressure
fluctuations obtained earlier [6–8] refer in fact not to the Gibbs’s approach itself, but to the Einstein’s
one, which is called “quasi-thermodynamic” by Landau and Lifshitz [9]. These approaches differ
significantly by the choice of the thermodynamic variables fixed by calculation. For example, in the
case of the pressure fluctuations it is the entropy in the Einstein’s approach, though it is the volume in
the Gibbs’s ensemble approach (more details relating to these approaches are given in [10]). The goal
of our paper is to show the efficiency of the Gibbs approach.

Concerning the problem of application, it is not obvious that just Gibbs approach (and thus BZ
and our results) should be more useful than Einstein one. To decide this one should analyze the specific
experimental situation but it is outside scope of our paper.

The way out concerning only the Gibbs approach was actually outlined in 1946 by Bogoliubov [11],
who used the coordinate scale transformation in order to connect the thermodynamic pressure with
the dynamical quantities—namely, with the first derivatives of the Hamilton function and the particles’
pair distribution function. Later on in 1971, Zubarev [12] obtained the analogous expression for
the dynamic (yet not somehow thermally-averaged) pressure as the function defined only in the
phase space.

In fact, in [12] there was implicitly used the idea of quasi-averages—or, in our case, quasi-dynamic
quantities—which was also formulated by Bogoliubov [13] in 1961. From the computational point of
view, the Zubarev’s result became possible by virtue of the explicit usage of generalized functions (in
this case—the singular potential of the container walls) following the lines of Vladimirov [14].

However, it was only in 2000 one of the present authors with Sukhanov [10] succeeded to
extend the Bogoliubov–Zubarev approach and obtained for the first time the general expression for
the Gibbs ‘dynamical compressibility’ in terms of the second derivatives of the Hamilton function.
This generalized form of the Bogoliubov–Zubarev theorem is valid for any reasonable kind of the
kinetic energy and the interaction potential, but only the non-relativistic Maxwell gas was considered
in [10] as an example.

Later on in [15–17], these results were extended to the ideal gas with any uniform (in the
Euler sense) dependence of the Hamilton function upon the (quasi)particle momentum. The most
general case of the non-uniform Hamilton function—i.e., that of Lorentz as well as Lorentz-violated
form [16]—was considered for the classical ideal gas. In the present paper the pressure fluctuation
problem is considered for the more complicated case—the non-uniform gas in the ultra-relativistic
limiting case—both from dynamic as well as thermodynamic points of view. We stress that the logical
and computational completeness of the Gibbs statistical mechanics, which was sometimes brought to
doubt—especially in connection with the problem of the pressure fluctuations—is fully restored by
means of Bogoliubov’s seminal ideas.
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This paper is organized as follows. In Section 2, the problem of pressure fluctuations is formulated
and in Section 3 the solution to this problem is given in general form. Sections 4 and 5 are devoted
to some illustrative examples, whereas Section 6 contains the main result for the thermodynamic
properties of the ideal gas in the ultra-relativistic approximation. Section 7 provides the short summary.
Appendix A clears some computational problems encountered in Section 6.

2. Rigorous Formulation of the Pressure Fluctuations Problem

The equilibrium pressure fluctuations <(ΔP(Г))2> are defined in a standard way as <(ΔP(Г))2>
= <(P(Г))2> − <P(Г)>2, where Г = {q,p} is the phase space of coordinates q and momenta p and < . . .
> denotes the canonical averaging for the system in the isothermal-isochoric ensemble with fixed
values of the inverse temperature β and the volume V. The value of β is introduced by the canonical
distribution function whereas V—by the restriction of the region of Г.

Following Gibbs [1], if the Hamilton function H(Г) for the dynamic system is given, then

< . . . > = Z−1(β,V)
∫

dГexp[−βH(Г)]( . . . ), Z(β,V) =
∫

dГexp[−βH(Г)], Φ(β,V) = lnZ(β,V), (1)

where the partition function Z(β,V)is supposed to be finite and strictly positive, so that the
Massieu—Planck thermodynamic potential Φ(β,V) does exist. The latter one is usually a smooth
function of βand V, so there exist also the relevant thermodynamic derivatives, in particular the
equilibrium (i.e., isothermal) pressure P(β,V) and the compressibility χ(β,V) < 0

P(β,V) = (1/β)[∂Φ(β,V)/∂V], χ(β,V) ≡ ∂P(β,V)/∂V = (1/β)[∂2Φ(β,V)/∂V2]; (2)

the expressions (2) being known in thermodynamics as thermic equations of state.
According to the Gibbs lemma [1] (Ch. VII, Equations (252) and (255), see also [3,5]), the equilibrium

pressure fluctuations <(ΔP(Г))2> are given by the expression

β<(ΔP(Г))2> = χ(β,V) + Ψ(β,V), χ(β,V) = ∂<P(Г)>/∂V, Ψ(β,V) = −<∂P(Г)/∂V>, (3)

or, following Gibbs and introducing the additional dynamic quantity Ψ(Г),

Ψ(β,V) = <Ψ(Г)>, Ψ(Г) = −∂P(Г)/∂V = ∂2H(Г)/∂V2, P(Г) = −∂H(Г)/∂V. (4)

Gibbs called the quantity Ψ(Г) dynamic compressibility, but gave no example of its calculation;
in general, calculation of quantities in (3) and (4) consists of two stages: firstly, the adequate definition
of P(Г) and Ψ(Г), and secondly—their correct averaging according to (1).

Note that for the pressure P the first stage may be in fact bypassed due to the first of Equation
(2) along with definitions in (1), and thus the pressure P(β,V) is called the ‘thermodynamic’ average.
On the contrary, though according to (3) Ψ(β,V) also belongs to the set of Gibbs’s averages, it is a
‘non-thermodynamic’ one because it needs a direct calculation according to (1).

Furthermore, in order to satisfy the conditions of thermodynamic stability relative to the external
mechanical disturbance, it is necessary for<(ΔP(Г))2> to be positive. It requires Ψ(β,V) not only to be
positive but also to exceed −χ(β,V). Hence Ψ(β,V) cannot be equal to −χ(β,V), this fact implying (with
the account for (3) and (4)) that the operation < . . . > is in general not permutable with the operation
∂/∂V—just this circumstance is of decisive significance for further presentation.

It is worthwhile to note, that due to the Gibbs lemma the expressions analogous to (3) hold also
for the equilibrium thermal fluctuations of other (thermo)dynamic quantities—e.g., the energy H or
the generalized force A = −∂H/∂a. In all cases the relevant derivatives in the Gibbs lemma refer to the
(thermo)dynamically conjugate variables (for H and A those are the inverse temperature β = 1/kBT and
the relevant generalized parameter a respectively), but in the cases with H and A the terms ∂H(Г)/∂β

and −∂A/∂a = ∂2H/∂a2 fully disappear and thus no difficulties arise at all. Indeed, the energy H(Г)
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is a pure dynamic variable and so—by definition—does not depend upon the thermal parameter β,
whereas variables A and a are mutually independent and enter H(Г) in the bilinear form (−Aa).

Quite a different situation takes place for the pair of relevant (thermo)dynamically conjugate
variables—the pressure P and the volume V. Strictly speaking, all the derivatives of the energy H(Г)
with respect to the volume V, entering the definitions (4), are identically zero by definition. Indeed,
all the quantities H(Г), P(Г), and Ψ(Г) in (4) have pure dynamical origin and do not contain the
kinematical parameter V. All these quantities are defined in the whole phase space Г for the ‘free’
system without any ‘walls’ (therefore, for V→∞), while the finite value V enters only at the final stage,
that is, after the averaging procedure.

Let us recall here, that the method of quasi-averages was created by Bogoliubov [13] just in order
to cope those frequently encountered problems, when the symmetry of the Hamiltonian H of the
physical system is higher than that of the ground state or of the state of thermal equilibrium. In these
cases, the formal calculations in accordance with (1) prescribed by the Gibbs approach [1] (as well as
by its quantum generalization) give unphysical zero results for ordinary average values. It was shown
by Bogoliubov [13], that the reason lies in the existence of some kind of degeneration in the system’s
energy, so the notion of quasi-averages was suggested in order to obtain physically meaningful results.

Note that the term ‘degeneration’ is fully deprived here of any ‘quantum’ sense and is used only to
designate the presence of some additional symmetry in H (e.g., with respect to translations or rotations
in the configuration part of the phase space Γ). The ingenious—though almost ‘obvious’—Bogoliubov’s
idea was to remove this ‘degeneration’ by means of relevant conjugate (in wide sense) infinitesimal
‘external field’ before the averaging procedure is carried out and then, after all calculations are made,
fully eliminate the field. Spoken figuratively, the quasi-averages are alike to such fictitious personages
as the Moor of Venice or the Cheshire Cat.

To be specific, in our case the Hamilton function H(p,q) ≡ H(Γ) describing the energy of the
system of particles in classical regime, is translation invariant and does not distinguish between the
‘interior’ and the ‘exterior’ of some ‘container’. Therefore, H(Γ) does not depend upon the volume V
of this container and thus both quantities P and Ψ are formally identically equal to zero. But in fact,
any system in thermal equilibrium should be confined in space, so the system’s energy should depend
upon the value of the volume V—in the opposite case no pressure and no dynamic compressibility
may be formally defined at all.

3. Solution to the Problem of Pressure Fluctuations

In order to overcome this contradiction and to obtain the adequate definitions of P and Ψ, we act
in the spirit of the Bogoliubov’s method [13] and, following partly to Zubarev [12], violate (may be
virtually) the translational symmetry of ‘free’ Hamilton function H(Г). To this end, one can simply add
to H(Г) the singular repulsive potential UV(q)

HV
(ε)(Γ) = H(Γ) + εUV(q); UV(q) =

{
0, q /∈ SV ,
∞, q ∈ SV .

(5)

The potential UV(q) is called also the ‘contact delta-like’, or the ‘hard core’ potential, which describes
dynamically the container of the volume V and the surrounding surface SV with the idealized
‘impenetrable’ walls. Evidently, UV(q) should not depend on the form of any actually present
‘wall–particle’ interaction. Its role reduces to introducing the dependence of the ε-deformed Hamilton
function (5) on the volume V.

By virtue of the suggested properties (5) of UV(q), the configuration part of Γ is divided into the
‘interior’ and the ‘exterior’ parts (relative to the container). Therefore, the potential UV(q) acquires the
properties of the generalized function (in particular, see [10]). Possibly, just these circumstances have
led to the failure of perturbation approaches in papers [2,6].
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Taking into account these definitions, it is natural to define the quantities P and Ψ in the proper
and unambiguous way as the ‘quasi-dynamical’ variables in the following ‘limiting’ sense

PV(Г) ≡ lim[-∂HV
(ε)(Γ)/∂V], ΨV(Г) = lim[∂2HV

(ε)(Г)/∂V2] (ε→0); ΨV(Г) �= −∂PV(Г)/∂V. (6)

Note that the mathematical hallmark of the Bogoliubov’s method of quasi-averages [13] consists
in their non-analytic dependence upon the infinitesimal parameter ε, and this is just the main reason
why the results of the limiting procedure (6) differ drastically from the identically zero results for P(Г)
and Ψ(Г), when ε is taken equal to zero from the very beginning.

It can be shown (details of calculation see in [10], App. 6) that in accordance with the definition (6),
PV(Г) coincides exactly with the previously known result of Zubarev [12], whereas ΨV(Г) in the form
(6) was presented in [10] explicitly for the first time. It is worthwhile to note that, in [10], the quantum
generalization of these results was also obtained based on the well-known Hellman—Feynman theorem
for the operator’s parameter differentiation.

Finally, the averaging of ΨV(Г) according to (1) gives Ψ(β,V) and thus allows one to obtain in quite
general way the solution of the long standing and rather controversial problem (see [2–8]) of thermal
equilibrium pressure fluctuations (3) in the isothermal-isochoric Gibbs ensemble for the non-ideal
systems of particles in classical regime.

The key mathematical device for obtaining the quasi-dynamical equations of state (6) is the
equality of volume derivatives of the n-th order for the two types of functionals, namely ZV(β) =∫

dГexp[−βH(Г)] and ZV(ε)(β) =
∫

dГexp[−βHV(ε)(Г). In the first case the integral is taken over the
kinematic-confined coordinate subspace of Г with the volume V. On the contrary, in the second case,
the integral is taken over the whole coordinate subspace of Г and only after this the limiting procedure
ε→0 is performed.

For n = 0 the equality is quite obvious because the dynamical factor ΔV(Г) = exp[−βUV(q)] acts as
the projection operator onto the relevant coordinate subspace of Г. Indeed, according to the definition
(5) of the external wall potential UV(q), ΔV(Г) = 1, if UV(q) = 0—i.e., when q belongs to the interior
of the container, and ΔV(Г) = 0, if UV(q)→∞, when q belongs to the exterior of the container or even
to its walls. Details of calculations for n = 1 and n = 2, which give the constructive realization of the
definitions (6), can be found in [10], App. 7, and were repeated in the recent paper [18]. The main
result is the following.

Suppose that a macroscopic dynamic system is confined within the finite volume V and is
described by the Hamilton function of the form (5). Then the explicit expressions for PV(Г) and ΨV(Г)
are determined only by the ‘free’ part H(Г) of the Hamilton function (5) and are quite independent
upon the specific form of the “wall potential” UV(Г). This result is quite typical when one works with
the generalized functions.

Furthermore, the canonical scale transformation in the phase space Г = (q,p)→Гλ = (λq,p/λ) is
performed, and thus we obtain the following expressions for PV(Г)and ΨV(Г) in terms of the partial
derivatives of the Hamilton function H(Гλ) for the “free”, or unconfined, system but with λ-deformed
phase space (f is the degree of freedom)

PV(Г) = −(1/fV)[DλH(Гλ)]|λ=1, ΨV(Г) ≡ (1/V)PV(Г) + ΔΨV(Г),
ΔΨV(Г) = (1/fV)2[Dλ(1 + Dλ)H(Гλ)]|λ=1.

(7)

Here Dλ ≡ d/dλ, and 1 ≡ Dλ
0 is the symbolic designation of the unity operator in the operator

family, {Dλ
n} (n ≥ 0—integer) is the n-fold differentiation with respect to λ. Finally, one should

put everywhere λ = 1. Expressions (7) are well defined for sufficiently smooth Hamilton function
H(q,p)—i.e., twice differentiable with respect to the arguments pиq, while this operation does not yield
the dependence of PV(Г) and ΨV(Г) upon V.

The auxiliary variable λ establishes the connection between the change of the volume V and
the equivalent change of the coordinates q, where the condition of canonicity requires also the
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corresponding change of the momenta p. In other words, λ is a parameter of canonical scaling
transformation preserving the Liouville dynamic measure—i.e., the volume element of phase space dГ:
clearly, dГλ = (λdq)(dp/λ) = (dqdp) = dГ.

Note that terms of different order in Dλ entering ΔΨV(Г) may give contributions of the same
order; e.g., in the case (7) and (8) (see below) the terms in (6) take the form—e.g., for Hk(p) (just the
same expressions will be valid for the contribution of Hp(q)into (6), with replacing m with l.):

[DλHk(p/λ)]|λ=1 = −mHk(p), [Dλ
2Hk(p/λ)]|λ=1 = m(m + 1)Hk(p),

PV(p) = (1/fV)mHk(p), ΔΨV(p) = (1/fV)2m2Hk(p).

The expression for PV(Г) in (7) is usually cited as the Bogoliubov–Zubarev theorem [11,12],
whereas the expression for ΨV(Г) for the first time was obtained in the paper byRudoy and
Sukhanov [10]. It is natural to call the expressions (7) (quasi)-dynamical equations of state, because
they connect the (quasi)-dynamic quantities—the pressure P(Г) and the compressibility Ψ(Г) with the
main characteristic of the dynamic system—the Hamilton function H(Г).

It is essential that thermodynamic equations of state (7) do not include external thermal
parameter—the temperature T, but they explicitly depend on the external mechanical parameter—the
volume V. It is evident that the dynamic functions H, P and Ψ are defined in the system’s phase space
Г. Note also that all functions entering (7) are usually (but not always!) additive, so their average
values are proportional to particle’s number N. Moreover, functions entering (7) possess various – but
universal for all dynamical systems – kinds of behavior relative to deformations of the volume V,
namely H(Г) = O(V0), PV(Г) = O(V−1), ΨV(Г) = O(V−2). Indeed, the external parameter V enters the
right-hand parts of (6) only as entire negative (or zero) powers, so in the limit V→∞ (i.e., for the case
of ‘free’ system) quantities PV(Г) and ΨV(Г) really tend to zero in full accord with (2), whereas HV(Г)
rests in this limit invariable.

For most non-ideal macroscopic non-relativistic systems the Hamilton functions H(q,p) appear
to have additive and separable nature in q and p, so they can be represented as sums of three terms:
the constant rest energy E0, the kinetic energy Hk(p) and the potential energy Hp(q). These energies
usually are also additive relative to all particles (E0 and Hk(p)) and to their pairs (Hp(q). Evidently,
the energy E0 gives no contribution to the Equation (7) for the pressure P and the compressibility Ψ.

4. Uniform Ideal and Non-Ideal Systems

4.1. Uniform Non-Ideal Case

In [10] the particular case was considered, where both energies Hκ(p) and Hp(q) are uniform (in the
Euler’s sense) functions of their arguments with exponents m and l respectively. This means that

Hp(λq) = λlHp(q), Hk(λ−1p) = λ−mHk(p), (8)

so the expressions (7) can be represented as

PV(q,p) = (1/fV)[mHk(p) − lHp(q)], ΔΨV(q,p) = (1/fV)2[m2Hk(p) + l2Hp(q)]. (9)

It should be remarked that the expression for PV(q,p) in (9) includes the quantity (−lHp(q)) =
qF(q), where F(q) = −∂Hp(q)/∂q, which is in fact the Clausius force virial. Therefore, after the Gibbs
averaging the resulting expression is nothing else as the virial theorem. The “uniform” expressions
(8) and (9) possess the following useful properties. Note, that in this approach it is not necessary to
invoke the dynamical equations of motion with the additional assumptions of their stationary behavior
relative to the time averaging: here we operate only with the phase space variables without using the
time variable.
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1. For any non-zero exponents m and l in (8) both energies Hk(p) and Hp(q) enter the right-hand
parts of (8) linearly, every differentiation with respect to λ increasing by unity both indices m and l.

2. Physical dimension for the pressure in (9) corresponds to the energy volume density,
whereas that for the dynamic compressibility being the pressure volume density, and therefore every
differentiation with respect to λ increases by unity the power of the factor 1/V.

3. There exist conditions when the pressure PV(q,p) as well as the compressibility ΨV(q,p) are
proportional to the total energy H(q,p) = Hk(p) + Hp(q). Under these conditions, according to (9),
the average value <Ψ> is proportional to <P> and/or <H>; thus, <Ψ> is the usual thermodynamic
average and its calculation does not amount to any additional problem. Clearly, these conditions can
be realized only in two cases: at m = −l or at l = 0, while m may be arbitrary.

In [15–17,19], we concentrated on the case of an ideal dynamic system, where the coordinate-
dependent potential energy Hp(q) of the inter-particle interaction vanishes, so l = 0. The total energy
H(q,p) for this system is given by the sum of the constant term E0 and of the kinetic energy Hk(p) which
depends only on the particle’s momentum:

Hp(q) = 0, H(Г) ≡ H(q,p) = E0 + Hk(p). (10)

4.2. Uniform Ideal Gas

In the case when Hk(p) is a uniform function (in the Euler’s sense) with the exponent m,
the expressions (8) obtain the following simple form

PV(p) = μ[Hk(p)/V], ΔΨV(p) = (1/V)μPV(p) = (1/V)μ2[Hk(p)/V], μ ≡ m/f.

Note that both expressions (11) contain the constant μ = m/f, which is the ratio of the uniformity
exponent m to the number of degrees of freedom f. The ratio μ characterizes the given dynamic system
in the course of its dynamic (and also thermodynamic) description in both classic and quantum regimes;
thus, μ represents some kind of ‘similarity index’ and specifies the whole class of dynamic systems.

For the given values of f = 1,2,3 typical values of index μ may vary from μnr = mnr/f = 2/f up
to μur = mur/f = 1/f, where the subscripts “nr” and “ur” correspond to the non- and ultra-relativistic
limiting expressions for the kinetic energy Hk(p)

Hk
nr(p) ≈ (cp)2/2E0 (cp/E0«1), Hk

ur(p) ≈ cp (cp/E0»1). (11)

Note that in the particular case of massless particles (e.g., photons) with E0 = 0 the expression for
Hk

ur(p) becomes exact. Obviously, for both limiting cases in (12) the kinetic energy has the form

Hk(p) = αmpm, mur = 1, α1 ≡ αur = c; mnr = 2, α2 ≡ αnr = (α1)2/2E0, (12)

which is the exponential—and thus uniform (in the Euler’s sense)—function of the momentum p with
the uniformity exponent m equal to 2 and 1, respectively.

In more general situations, for any possible values 1 ≤ f ≤ 3 and 1 ≤ m ≤ 2, one obtains 1/3 ≤ μ ≤ 2,
but in some models of the ‘ideal gas’ (e.g., used in modern cosmology) the ranges of the parameters m,
f and μ = m/f may differ in magnitude (and sometimes also in sign); nevertheless, the expressions (11)
preserve the applicability for these cases too.

Note that if the energy density is positive, the pressure fluctuations are also positive for any sign
of μ. This fact means that the system may be mechanically stable (ΔΨ > 0) even if the pressure is
negative (P < 0), and this is just the case (if μ < 0) due to the unusual value m < 0 (e.g., for the Chaplygin
gas). As is easily seen, the condition f > 0 is always fulfilled by definition.
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5. Non-Uniform and Quasi-Uniform Ideal Gas

5.1. Non-Uniform Ideal Gas

Rather general case of the ideal gas is that of the free isotropic relativistic particles with the
non-uniform Hamilton function H(p) consisting of the rest energy E0 ≡ H(0) and the kinetic energy
Hk(p), where Hk(0) = 0. Note that study of this model from the point of view of statistical mechanics
was started by Jüttner [20,21] and Glaser [22] many years ago; however, the problem of pressure
fluctuations was not even mentioned in these papers.

The expression for H(p) is given by the Lorentz–Einstein equation

H(p) ≡ E0 + Hk(p) = [E0
2 + (cp)2]

1
2 , H(p) = E0h(p), h(p) = 1 + hk(p); (13)

which can be rewritten in the dimensionless form

h(ξ) = 1 + hk(ξ) = (1 + ξ2)
1
2 ; hk(ξ) = h(ξ)fμ(−)(ξ), ξ = cp/E0 (E0 �= 0). (14)

Here c is the velocity of light in vacuum, h and hk being the dimensionless energies (total and
kinetic). In the case E0 = 0, the ultra-relativistic limit becomes an exact one: it is the uniform case with
m = 1 (see Equation (13)).

The dynamic equations of state follow immediately from (7) but differ noticeably from (11).
Using the dimensionless variable ξ = cp/E0, we obtain instead of (11) the following exact dynamical
equations of state

PV(ξ) = (E0/fV){[h2(ξ) − 1]/h(ξ)} = [H(ξ)/V]ν(−)(ξ) = [Hk(ξ)/V]μ(+)(ξ), (15)

ΔΨV(p) = E0(1/fV)2{[h4(ξ) − 1]/h3(ξ)} = (1/V)PV(ξ)ν(+)(ξ) = (1/V)[Hk(ξ)/V]μ(+)(ξ)ν(+)(ξ). (16)

It is evident that the non-uniform expressions (14)–(16) are much more complicated as compared
to their uniform counterparts (11). In particular, instead of the unique and constant ‘similarity index’ μ

in (11) one obtains in (14)–(16) a whole family of the variable dimensionless factors ν(±)(ξ) and μ(±)(ξ).
These factors have the meaning of the generalized ‘similarity indices’ and depend (though weakly
enough) on ξ through the function h(ξ)

fμ(±)(ξ) = 1 ± [h(ξ)]−1, fν(±)(ξ) = 1 ± [h(ξ)]−2, fκ(±)(ξ) = 1 ± [h(ξ)]−4;

fμ(+)(ξ)μ(−)(ξ) = ν(−)(ξ), fν(−)(ξ)ν(+)(ξ) = fκ(−)(ξ), hk(ξ) = h(ξ)fμ(−)(ξ). (17)

The system of exact Equations (14)–(17) is rather complicated, but in practice only their
approximate forms are of real interest, namely, the two limiting cases: the non-relativistic (nr) (ξ→0)
and the ultra-relativistic (ur) (ξ→∞) one. The lowest order corrections to the functions hκ(ξ) and
1/hκ(ξ), as compared to their ‘uniform’ analogs (12) and (13), have the form

hk(ξ) ≈ hk
nr(ξ)[1 − 1

4
ξ2] = hk

nr(ξ)[1 − 1
2

hnr(ξ)], hk
nr(ξ) =

1
2
ξ2 (ξ→0), (18)

1/hk(ξ) = [hk
ur(ξ)]−1{1 − 1

2
ξ2} = [hk

ur(ξ)]−1{1 − 1
2

[hk
ur(ξ)]−2}, [hk

ur(ξ)]−1 = ξ−1 (ξ→∞). (19)

Note that hk
nr(0) = 1/hk

ur(∞) = 0, this fact enabling one to consider the quantities hκ(ξ) and
1/hκ(ξ) as small in corresponding ranges of the variable ξ.

In some physical problems there may be of interest to obtain the corrections to the limiting
‘uniform’ Equations (11) and (12), which are stipulated by the variable nature of the functions κ(±)(ξ)
and μ(±)(ξ) entering the dynamic equations of state (16) and (17) for P(ξ;V) and Ψ(ξ;V). In order to
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carry out some perturbation procedure at small values ξ«1 in the non-relativistic (nr) limit and at
large values ξ»1 in the ultra-relativistic (ur) limit, it is convenient to use in Equations (17)–(19) as the
corresponding small parameters not ξ and 1/ξ, but the quantities hκ(ξ) and 1/hκ(ξ).

Omitting simple but lengthy calculations, one obtains the following approximate results

PV(ξ) ≈ μnr[Hk(ξ)/V][1 − 1
2

hk(ξ)], ΔΨV(ξ) ≈ μ2
nr[Hk(ξ)/V][1 − (3/2)hk(ξ)] (ξ→0); (20)

PV(ξ) ≈ μur[Hk(ξ)/V]{1 + [hk(ξ)]−1}, ΔΨV(ξ) ≈ μ2
ur[Hk(ξ)/V] (ξ→∞). (21)

These expressions reveal the tendency of ‘sloping’ the dependence upon ξ both for kinematical
(κ(+), μ(+)) as well as dynamical (hk, P, ΔΨ) quantities: at small (but finite) ξ all these quantities become
smaller than their ‘uniform’ limits at ξ = 0, whereas at large (but finite) ξ, on the contrary, they become
larger than their ‘uniform’ limits at 1/ξ = 0.

5.2. Quasi-Uniform Ideal Gas

Evidently, the most general case of ideal gas includes the Hamilton function H(p) with the
non-uniform dependence upon p. However, in practice only certain limiting cases (e.g., non- or
ultra-relativistic ones) are of interest, where H(p) (and hence also its derivatives) may be presented as
an expansion in integer powers m of p with m > 0 or m < 0 (i.e., in 1/p), where H0(p) = h0 ≡ E0 = const,
m0 ≡ 0, but mi and hi at i = 1, 2, . . . may have both signs

H(p) = ∑n
i=0 Hi(p)= ∑n

i=0 hi pml , PV(p) = (1/ f V)∑n
i=1 mi Hi(p)= (1/ f V)∑n

i=1 mihi pmi

ΨV(p) = (1/ f V)2 ∑n
i=1 m2

i Hi(p) = (1/ f V)2 ∑n
i=1 m2

i hi pmi .
(22)

Evidently, every term in (22) is a uniform one, whereas the whole expression (22) is not; so it can
be considered as a quasi-uniform one and characterized not by the single uniformity exponent but by
the whole discrete set of them. The examples can be found in [15–17]

NR-limit: m1 = 2, h1 > 0; m2 = 4, h2 = −1
4

h1 < 0; UR-limit: m1 = 1, h1 > 0; m2 = −1, h2 =
1
2

h1 > 0. (23)

Obviously, the final sign of the quantities presented in (22) is determined by the non-trivial
interplay of the coefficients hi and mi. As a rule, hi contains some small parameter and decreases in
magnitude with increasing i, whereas mi, on the contrary, increases with i in magnitude.

Note that nowadays the Lorentz–Einstein expression (14) seems to be not the uniquely possible
one and therefore in [16] the scheme outlined in that paper was carried out for this more general case.
In particular, it appears, that in the Lorentz-violated case the UR-limit in (23) is supplemented by the
third term with h3 > 0, m3 = 2, which has a typical NR-form. This term enters (22) due to the appearance
in the Lorentz-violated case of the parameter H(p)/EPl (here EPl is the Planck energy) which is always
small—even in the extreme UR-situation when H(p)/E0 is large. In other words, the ratio E0/EPl
is always very small for any reasonable choice of particles constituting the system. The analysis of
relevant expressions shows the existence of some critical value p* defined as cp*~(E0

2EPl)
1/3 . When the

particle’s momentum takes the value p*, then the usual Lorentz behavior breaks and the velocity
v(p) = dH(p)/dp exceeds the critical value c (details are given in [16]).

As it was mentioned in Section 2, the calculation of the equilibrium pressure fluctuations (3) in
terms of β and V (and, may be, N) will be completed after averaging the quasi-dynamic quantities
obtained in Sections 4–6. This procedure is much more traditional but far from being simple, so we give
here only its general outline for the ideal system in the case (14) of the non-uniform kinetic Hamilton
function Hk(p). The partition function is of the multiplicative form

ZN(β,V) = [Vz(β)]N, z(β) = exp(−βE0)zk(β), zk(β) =
∫

dГ(p)exp[−βHk(p)]; (24)
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ρk(p) = [zk(β)]−1exp[−βHk(p)], dГ(p) = Afpf − 1dp (A1 = 1, A2 = 2π, A3 = 4π).

6. Thermodynamic Equations of State—Relativistic Ideal Classical Gas

Let us turn now to the derivation of the thermodynamic equations of state for the general, i.e.,
non-uniform, case of the relativistic ideal classical gas with the Hamilton function h(ξ), defined in (14).
Here and below the dimensionless energetic (h = H/E0) and momentum (ξ = cp/E0) units are used,
and all the extensive (i.e., proportional to the particle number N) quantities are given per particle.

6.1. Representations for the Partition Function and Some Moments

Using the definition (24) for the ‘small’ partition function z(β), we express it in the dimensionless
temperature units a = βE0 = T0/T, a ≥ 0, putting so far E0 �= 0; whereT0 ≡ E0/kB is the characteristic
temperature and p0 = E0/c = T0(kB/c) is the characteristic momentum for the given sort of particles

z(a) =
∫

dГξexp[−ah(ξ)], dГξ = dГp(ξ) = Af(p0)fξf−1dξ, z(a) = ζ(∞;a) − ζ(0;a). (25)

Here A1 = 1, A2 = 2π, A3 = 4π, the integration limits on ξ in (25) (as well as on p in (24)) being
equal to 0 and ∞ respectively; ζ(ξ;a) is the indefinite Riemann integral in the left part of (25).

Clearly, at any a > 0 the convergence of the integral (25) is ensured and improved with the growth
of a, however the limiting value a = 0 should be excluded. Physically, the limit a = T0/T→0 corresponds
to the high-temperature approximation T→∞ or to the ultra-relativistic case E0 = T0 = 0. Therefore,
the representation (25) is convenient at large values a»1 (when T→0 and/or T0→∞) in order to obtain
the low-temperature (LT) and/or the non-relativistic (NR) expansions, so it is natural to call it the
LT/NR-representation of the partition function z(a) for the classical relativistic gas. The inclusion of
the point a = 0 implying the high-temperature approximation can be realized through the change of
variables (see Equation (26)).

The exclusion of the point a = 0 for the LT/NR-representation is stipulated by the fact that the
quantity ζ(ξ;0) =

∫
dГξ~ξf at any f > 0 diverges on the upper limit at ξ→∞; the same conclusion

follows from the asymptotic behavior z(a)~
∫

dГξe−aξ~a−f at a→0, where the property h(ξ) ≈ ξ at large
values of ξ is used. For the possibility of considering small values a«1, including a = 0 (when T→∞
and/or T0→0), i.e., to obtain the high-temperature (HT) and/or the ultra-relativistic (UR) expansions,
it is necessary to go over from the LT/NR-representation to the HT/UR-representation for z(a).The latter
one can be of interest in the case of the hot dense quark–gluon–plasma (QGP).

To this end, one should carry out in (25) the change of variable ah(ξ) = η, where h(ξ) = (1 + ξ2)
1
2 ≥ 1,

so that η ≥ a. Moreover, it is convenient to introduce the denotation pT = T(kB/c) for the characteristic
thermal momentum of gas particles, thus obtaining

z(a) =
∫ ∞

a
dΓη[1 − (a/η)2]( f−2), dGη = Af(pT)

fe−ηη f−1dη, (a) = ζ(∞; a)− ζ(0; a). (26)

However, the structure in (26) contrasts with that in the integral (25), since the variable a enters
not only into the integrand, but also into the lower limit of the integral (26). Moreover, according to
(26) the quantity z(a)→0 as a→∞, whereas at a = 0 the quantity z(0)/Af(pT)f takes its finite limiting
value equal to Г(f ).

According to the results of Section 4, all the thermodynamic quantities of the relativistic ideal
classical gas can be expressed through the ordinary (not central) moments of the partition function;
these moments being defined in the following way (the quantities zκ(a) and hκ(ξ) all will be analogous,
replaced with the h(n)(a) with hκ

(n)(a))

h(n)(a) ≡
∫ ∞

0
dΓξ [h(ξ)]n exp[−ah(ξ)], h(0)(a) = z(a), h(n)(a) = ζ(n)(∞; a)− ζ(n)(0; a). (27)
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After changing the variable ξ→η the quantities h(n)(a) will have the form

h(n)(a) = (1/a)n
∫

dГηηn [1 − (a/η)2]
1
2

(f − 2)
. (28)

It is natural to call the quantities h(n)(a) (or hκ
(n)(a)) the Jüttner integrals for the total and kinetic

energies (in analogy with Maxwell, Bose, Fermi, and other similar integrals in statistical mechanics).
Indeed, the definition of the canonical averages (9) reads <[h(ξ)]n> = h(n)(a)/h(0)(a), so for the caloric
quantities—i.e., the internal energy and its fluctuations—we obtain immediately from their definitions

H(a) = E0[h(1)(a)/h(0)(a)], <(ΔH)2> = E0
2[h(2)(a)/h(0)(a)] − [H(a)]2. (29)

For the thermal quantities—i.e., the pressure and its fluctuations—one obtains

P(a,V) = (E0/fV)[h(1)(a) − h(−1)(a)]/h(0)(a) = E0(1/V)(1/a), (30)

<(ΔP)2> = (1/β)ΔΨ(a,V) = E0
2(1/a)(1/fV)2[h(1)(a) − h(−3)(a)]/h(0)(a). (31)

6.2. Perturbation Expansion for the HT/UR-Representation

Obviously, the exact expressions for the partition function in the representation (26) and the
corresponding Jüttner integrals (28) are not available, and so we are not able to construct the
corresponding asymptotic behavior as a→0. Therefore, we obtain only approximate expressions
for h(n)(a) (nis any integer including zero), namely, the expansion in degrees of hκ

(m)(a) with positive
m. Expansions of this kind for all thermodynamic quantities arise in the limit of large values of the
parameter 1/a = T/T0»1 (including the value a = 0 at E0 = 0). Physically, this corresponds to the
smallness of the ratio E0/Hκ(T), i.e., to the high temperature case (if the rest energy E0 is fixed) or,
on the contrary, to the small values of E0 (at fixed temperature T). As can be seen from (19), E0/Hκ

ur(T)
= κur(T0/T) = aκur, where κur = 1/f is the factor of the order unity.

In order to obtain the desired expansions, we use the binomial power series at ν ≥ 0

[1 − (a/η)2]ν− =
∞

∑
m=0

[ν, m]a2mη−2m, [ν, m] = (−1)m(2mm!)−1
m−1

∏
l=0

{2ν− (2l − 1)}. (32)

The coefficients in (32) satisfy the recurrence relation [ν,m + 1] = − 1
2 [ν,m]{2ν − (2m + 1)}(m + 1)−1,

so that [ν,0] ≡ 1, [ν,1] = − 1
2 (2ν − 1), [ν,2] = [ν,1](− 1

4 )(2ν − 3) = (1/8)(2ν − 1)(2ν − 3). Furthermore,
it is more convenient to designate these coefficients [f,m], going over from the variable ν ≡ 1

2 (f − 1) (ν
≥ 0) to the variable f = 2ν + 1 (f ≥ 1).

Let us substitute the expansion (32) into the integrand of the Jüttner integral (26) and introduce
the special denotation for the combined exponent k(m)

k(m) ≡ 2ν + n − 2m + 1 = k(0) − 2m, k(0) = f + n (all f, n, m, k being integers) (33)

This exponent at given values of the number of particle’s degrees of freedom f = 1, 2, 3 as well as
the order of the Jüttner integral n = 0, ±1, ±2, . . . depends only upon the value m ≥ 0. Then for the
h(n)(f ;a) one obtains the infinite sum of the following integrals

h(n)( f ; a) = Af(pT)
fa−n

∞

∑
m=0

[ f , m]a2mΓ[k(m); a], Γ[k(m); a] ≡
∫ ∞

a
dηe−ηηk(m)−1. (34)

The quantity Г[k(m);a] is the incomplete gamma-function (related to the integral exponential
function, see, e.g., [23]), and its expansion into the power series in a (at fixed value of k(m)) depends
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significantly upon the sign of k(m). According to the definition (33), the quantity k(m) decreases linearly
with the increase of m and changes at the critical value m = m0, where

m0 =
1
2

k(0) (k(0) > 0 even), m0 =
1
2

(k(0) + 1) (k(0) > 0 odd), m0 = 0 (k(0) ≤ 0). (35)

Therefore, the infinite sum (34) is appropriate to be presented in the following form

h(n)( f ; a) = Af(pT)
fa−n

{
m0−1

∑
0

[ f , m] a2mΓ[k(m) > 0; a] +
∞

∑
m=m0

[ f , m]a2mΓ[k(m) ≤ 0; a]

}
, (36)

where the desired power expansions in a for Г[k(m);a] at k(m) > 0 and k(m) ≤ 0 are qualitatively
different and should be considered separately (all the definitions are given in Appendix A, Equations
(A5)–(A7)).

Finally, the expression (36) for h(n)(f ;a) with the account for only lowest corrections in degrees of a
may be written in the following form (recall that pT = T(kB/c), a = T0/T = E0/kBT)

h(n)(f ;a) = Af(kB/c)fTfa−n{Σ(f,n;a) + S(f,n;0)af + n}. (37)

Clearly, however, that if the values of the parameters f and n (just their sum defines k(0) in (33))
are such that k(0) < 0 and m0 = 0, then the first summand on the right-hand side of (36) vanishes. In the
second summand, pole divergences arise in of the form a−|k(0)| = (T/T0)|f+n| which are now not
compensated, so the corresponding Jüttner integral h(n)(f ;a) exists only at finite values of a, the same
being valid for T0.

Using this fact, let us consider qualitatively the problem of thermodynamic stability of the
so-called Wien gas, or the ideal gas of massless particles (E0 = kBT0 = 0, a = 0), in the context of its
dependence upon the dimension f. In order to ensure such a stability, it is necessary that in the
limit a = 0 the corresponding Jüttner integrals h(n)(f ;a) should exist, since according to Section 4 they
determine the main thermodynamic quantities and their fluctuations.

Recall that for the partition function the similarity index n = 0, for the average energy n = 1 and
for its fluctuation (specific heat) n = 2. However, for the average pressure it is necessary to choose the
values n = 1 and n = −1, whereas for the pressure fluctuations (compressibility)—the values n = 1 и
n = −3. Note that in the structure of the perturbation theory expansions there appear two specific
dependences: upon the dimensionality f (i.e., upon the particle’s spatial degrees of freedom) as well as
upon the order n of the moment (i.e., the average value of the n-th power of the particle’s energy).

That is why in the HT/UR-representation it is impossible to write down general expressions
for the coefficients of expansions in (34). Thus, one should enumerate all the terms, considering
consequently different combinations of integer values of f and n.

Note that all the thermodynamic parameters and their fluctuations are determined by the
dimensionless quantity χ(n)(f ;a) = h(n)(f ;a)/h(0)(f ;a). Indeed, we obtain for the average energy,
the specific heat, the pressure and the compressibility the following expressions

H(f ;a) = E0χ
(1)(f ;a),CV(f ;a) = E0

2{χ(2)(f ;a) − [χ(1)(f ;a)]2},

P(f ;a) = (E0/fV)[χ(1)(f ;a) − χ(−1)(f ;a)] = kBT/V, (38)

ΔΨ(f ;a) = (E0/fV)2(1/a)[χ(1)(f ;a) − χ(−3)(f ;a)],

χ(n)(f ;a) = a−n[Σ(f,n;a) + S(f,n)af + n]/[Σ(f,0;a) + S(f,0)af].

The quantity χ(n)(f ;a) below should be approximated in the spirit of the perturbation theory with
the accepted accuracy in a in the following way

χ(n)(f ;a) − χ(n’)(f ;a) = a−n{[Σ(f,n;a) + S(f,n)af + n] − an − n’[Σ(f,n’;a) + S(f,n’)af + n’]}/[Σ(f,0;a) + S(f,0)af],
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while for the cases n = 1 at n’ = −1 and n’ = −3 the contribution of the second summand in braces
contains additional small factors a2 and a4. Note that for the quantities H and CV this accuracy (within
the scope of the applied here direct moments method) can be superfluous in comparison to the usual
method, when the quantities H and CV are expressed through the derivatives with respect to a of the
function lnh(0)(f ;a). In the latter case the final accuracy is confined by that of calculating the partition
function h(0)(f ;a).

Consider now the HT/UR-expansions for the thermodynamic quantities of the ideal gas of
particles with various numbers f of degrees of freedom. We start with the dimensionless moments

h̃(n)(f ;a) ≡ h(n)(f ;a)/Af(kB/c)fTf, which determine these thermodynamic quantities according to (38)

n = 0.      h ̃(0)(1;a) = 1 + S(1,0)a;  h(̃0)(2;a) = 1 + S(2,0)a2;  h(̃0)(32;a) = 2 —½a2 + S(3,0)a3. 
n = 1.      h(̃1)(1;a)a = 1 + S(1,1)a2;  h(̃1)(2;a)a = 2 + S(2,1)a3;  h(̃1)(3;a)a = 6 —½a2 + S(3,1)a4.  

n = 2.     h ̃(2)(1;a)a2 = 2 + ½a2 + S(1,2)a3;  h(̃2)(2;a)a2 = 6 + S(2;2)a4; h(̃2)(3;a) a2 = 24 − a2+[3,2] a4 + S(3,2)a5. 
n = −1.     a−1h ̃(−1)(1;a) = S(−1;1);  a−1h ̃(−1)(2;a) = 1 + S(2;−1)a;  a−1h ̃(−1)(3;a) =1 + S(3;−1)a. 
n = −3.     h(̃−3)(f;a) = S(f,−3)af. 

 

Then we write down the quantities (38), with accounting for the lowest (in a) correction terms.
Average energy H(f ;a); Hκ

ur(T) = H(f ;0) = fkBT.

H(1;a) = kBT{1 − S(1,0) + [ S(1,0) + S(1,−1)]}a2;  H(2;a) = 2kBT[1 + S(2,0)a2]; 

H(3;a) = 3kBT [1 + ⅙a2]. 
(39) 

Specific heat CV(f ;a); CV
ur = CV(f ;0) = fkB.

CV(1;a) = kB{1 − [3S(1,0) + 2S(1,1)}a2;  CV(2;a) = 2kB[1 + S(2,0)a2]; CV(2;a)=3kB[1 − ⅙ a2] (40) 

Note that due to the multiplication of a−1 by the ‘small’ factor E0 the quantity Hur(T) = H(f ;0)
proves to be not more ‘large’ and coincides with the first of the expressions (33) for the average (kinetic)
energy of the UR Wien gas (k = 1, κur = 1/f ). The correction within the second order of smallness in
a = T0/T«1 for the expression (39) is stipulated by the account for the corresponding correction in ξ

to 1/h(ξ) in the second of the expressions (26). This correction in (39) is positive, and physically it
corresponds to the increase of the average energy with that of the rest energy.

Analogously, the correction to the specific heat in (40) at f = 2 and 3 is also within the second order
of smallness in a and differs from the corresponding correction to the average energy only in sign.
At f = 1 this tendency also takes place (because S(1,0) < 0), but the connection between the coefficients
looks more intricate due to the fact that the linear in a correction to CV disappears. One can easily
see that this property always takes place and does not depend upon the specific value of the linear
in a term for the average energy. Naturally, CV

ur coincides with the second expression in (23) for
the specific heat of the UR Wien gas with k = 1 and does not depend upon the temperature T. It is
worth-while to note that in this case, just as before, both CV(T) and dCV(T)/dT are positive, so the
thermodynamic stability is guaranteed.

Pressure vs. temperature P(f ;a) = kBT/V at all f and a.
Pressure vs. kinetic energy P(f ;Hκ); Pur(f ;Hκ

ur) = (κur/V)Hκ
ur.

P(1;Hκ) =1 − S(1,−1)[E0/Hκ
ur]; P(2;Hκ)= 1 − 2[E0/Hκ

ur]; P(3;Hκ)= 1 − (3/2)[E0/Hκ
ur] (41)

Compressibility ΔΨ(f ;a) is equal

ΔΨ(f ;a) = ΔΨur{1 − S(f,−3)af}. (42)

Formally, the correction for the κur = 1/f can be obtained by using the second of the Equation (39),

with the result of the lowest order h̃(−1)(f ;a) ≈ a. Taking into account that the small parameter reads
a = T0/T = (1/κur)(E0/Hκ

ur) = f (E0/Hκ
ue), one obtains (41). Finally, the corrections to the limiting
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UR-value of the compressibility ΔΨur = ΔΨ(f ;0) = (κur/V)Pur at a = 0 start with af and in full analogy
with the pressure they are negative.

Therefore, it is obvious that the HT/UR-corrections do not violate the thermodynamic stability of
the system because these corrections cannot change the sign of fluctuations for the energy (39) and the
pressure (41).

7. Conclusions

In this paper, we have revised the long-standing problem of equilibrium pressure fluctuations
and showed that its solution can be obtained on the grounds of generalizing the Bogoliubov–Zubarev
theorem by using the method of quasi-averages (applied to the introduction of the volume) as well
as that of scale transformation in the phase space of a physical object in question. Besides general
formulation for the proof of the theorem (which can be found in Refs. [10,18]), we have presented
some numerical results for the thermodynamic quantities of the relativistic gases. We hope that these
results could be partly applied to the description of the hot quark-gluon plasma within the scope
of thermodynamics as well as of statistical mechanics (in this connection see, e.g., papers [24,25]).
However, for the moment the thermal equations of state for the pressure are formulated mostly within
the phenomenological approach on the grounds of QCD thermodynamics, whereas the application of
the generalized Bogoliubov–Zubarev theorem needs some dynamical description in the object’s phase
space (e.g., if possible, for the Mott–Hagedorn resonance gas described in [24,25]).
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Appendix A Details of Calculating Sum (36) in Section 6

1. Case k(m) > 0

At k(m) > 0 (0 ≤ m < m0) in the expansion for Г[k(m) > 0;a] only positive degrees of a appear

Γ[k(m) > 0; a] = Γ[k(m) > 0; 0]− ∫ a
0 dηe−ηηk(m)−1= Γ[k(m) > 0]− ∑∞

l=0 (−1)l(l!)−1ak(m)+l(k(m) + l)−1, (A1)

where Г[k(m)>0;0] is the ordinary (i.e., complete) gamma-function Г[k(m)] (see, e.g., [22]); for integer
values k(m) = 1, 2, . . . it possesses the most simple form [k(m) − 1]!

In order to obtain the expansion (A1), it is sufficient to expand the exponent e−η, which enters the
integrand in the definition (34), in the Taylor series and then to integrate over η the relevant convergent
series. In this course no singularities in (A1) in the limit a→0 arise, because they would appear in any
of the terms on the right-hand side of (A1) only in the case of violating the condition k(m) > 0. Indeed,
the function Г[k(m)] in this case would be not well defined and some of the denominators k(m) + l
might take zero values.

Taking into account the form of the product a2mak(m) = ak(0), it can be easily seen that the first
term in the braces on the right-hand side of Equation (36) contains in general case two groups of
expansion terms: one running even degrees of a (starting with a0, a2, . . . ), and another running all
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degrees of a, starting with ak(0) and taking subsequent values ak(0) + l, l = 1, 2, . . . Clearly, the lowest
order contribution “surviving” in the limit a = 0 is of the form

[f,0]Г[k(0) ≥ 1]a0 = [k(0) − 1]! = (f + n − 1)!,

with the values of f and n satisfying the aforementioned condition k(0) ≥ 1.
If the quantity k(0) = f + n has the minimal possible (for the case in question) value k(0) = 1,

the lowest order contribution (linear in a) will be given by the first term of the second group ak(0).
The next order contribution will be given by the second term of the first group, which is quadratic in a.
However, if k(0) = 2, the terms mentioned will give the contribution of one and the same order in a,
and only at k(0) = 3 the contributions of the second group (starting with a3) will follow, the two first
terms of the first group joining the battle.

2. Case k(m) ≤ 0

At k(m) ≤ 0 (i.e., at m ≥ m0 ≥ 0), in contrast with the case k(m) > 0, only negative degrees of a enter
into the expansion for Г[k(m) ≤ 0;a]. This fact implies the arising of the pole singularities of all orders
from 1 till |k(m)|, as well as also the logarithmic singularity in a, the latter singularity being the only
“surviving” one even in the limiting case k(m0) = 0. However, as can be seen, these singularities do
not become apparent in the final result for h(n)(f ;a), since they are fully suppressed by the factor a2m

appearing in every order at m ≥ m0.
In order to obtain the expansion for Г[k(m) ≤ 0;a] in degrees of a, it is worth-while to note that

this quantity is defined by the integral in (34) and the condition of its convergence at the upper limit
for any value of k(m) (independently on the sign) is guaranteed by the factor e−η. However, at the
lower limit the convergence condition is violated already for the maximally possible in our case value
k(m) = 0 implying the logarithmic singularity. Moreover, with the decrease of k(m) (i.e., the increase of
|k(m)|) there arise pole singularities of maximal order |k(m)|.

So it is appropriate to use for Г[k(m) ≤ 0;a] the recurrence relation enabling one to increase
by the unity the value k(m) (and respectively to decrease the value |k(m)|), thus selecting the pole
singularities. The relation of this kind can be easily found through the integration by parts of the
original integral in (34), with the result reading

Г[k(m) ≤ 0;a] = e−aa−|k(m)| − (1/|k(m)|) Г[k(m) + 1 ≤ 0;a]. (A2)

Finally, the relation (A2) permits one to express Г[k(m) ≤ 0;a] with an arbitrary value k(m) ≤ 0 as
a function of Г[k(m) = 0;a]

Γ[k(m) ≤ 0; a] = e−a ∑
k(m)−1
l=0 (−1))l+1[|k(m)| . . . (|k(m)| − l)]−1a−|k(m)|+l + (−1)|k(m)|(|k(m)|!)−1

Γ[k(m) = 0; a].
(A3)

The finite sum entering the right-hand side of (A3) is different from zero only under the condition
k(m) < 0. Otherwise (at k(m) = 0) the relation (A3) reduces to the identity. In particular, just this sum
contains all the pole singularities mentioned above.

The quantity Г[k(m) = 0;a] is the limiting one for all possible values k(m) ≤ 0 and coincides (up to
the sign) with the integral exponent function Ei(−a) (see, e.g., [23])

Γ[k(m) = 0; a] =
∫ ∞

a
dηe−ηη−1 ≡ −Ei(−a), Ei(−a) = C + ln a +

∞

∑
l=0

(l!l)−1al , (A4)

where C ≈ 0,577 is the Euler constant. The power series on the right-hand side of (A4) converges for
all finite real values of a, but the term lna possesses an obvious singularity at the limiting value a = 0,
corresponding to the case of massless particles with E0 = 0.
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It can be shown that all the singularities mentioned above of the quantity Г[k(m) ≤ 0;a] disappear,
as was expected, after its substitution into the second term in the braces on the right-hand side of
Equation (36) due to its multiplication by the factor a2m in every order of the infinite sum over the index
m ≥ m0 > 0. It is quite clear for the logarithmic singularity (and also for the constant term) entering
(A4). As to the pole singularities entering the finite sum in (A3) at k(m) ≡ k(0) − 2m ≤ 0, one obtains
|k(m)| = −k(m) = 2m − k(0) and −|k(m)| = −2m + k(0), so a2ma−|k(m)| = ak(0).

Thus, the two cases 2 and 1, which look on the first glance as quite different, appear to be
in sufficiently complete accordance one with another. Indeed, in the case 2 the two groups of the
expansion terms in degrees of a prove to appear: those with even degrees and also with all degrees,
starting with ak(0) and taking subsequent values ak(0) + l (l = 1, 2, . . . ). Note that the first group of terms
in the case 2 starts not with a0 (with the coefficient Г[k(0);0]), as in the case 1, but with the term am0

(with the coefficient C), where according to Equation (35) the value m0, in general differs from zero.
Otherwise, just this term proves to be the starting one for the whole expansion (36), so that the case 1
cannot be realized.

If the case 1 is nevertheless realized, the first group of terms may be represented as

Σ( f , n; a) ≡
m0−1

∑
m=0

[ f , m][k(m)− 1]!a2m = [( f + n)− 1]! + [ f , 1][( f + n − 2)− 1]!a2 + O(a4), (A5)

where it was taken into account that [f,0] ≡ 1, k(0) = f + n( ≥ 1) and [f,1] = − 1
2 (f − 2), k(1) = k(0) − 2.

The number of terms in (A5) depends upon the value of the index m0, which according to (33) и (35)
depends in turn upon the values f and n.

As for the second groups of terms in both cases 1 and 2, it follows that they should be unified,
so that the resulting contribution into the right-hand side of Equation (36) takes the form ak(0)S(f ;a).
Here S(f,n;a) = S<(f,n;a) + S≥(f,n;a) is the expansion in a, including all the degrees (starting with a0),
and the quantities S<(a) (with m < m0) and S≥(a) (with m ≥ m0) are the following double sums

S<( f , n; a) = −∑m0−1
m=0 [ f , m][ f , m]∑∞

l=0 (−1)l(l!)−1al(k(m) + l)−1,

S≥( f , n; a) = e−a ∑∞
m=m0 [ f , m]∑

k(m)−1
m=m0 [ f , m]∑(−1)l+1[|k(m)| . . . (|k(m)| − l)]−1al .

(A6)

It is necessary to underline that at the point a = 0 in the “inner” sums over the index l only the
first term with l = 0 remains. We do not study here the infinite sum (42), but in virtue of definitions
(32) and (33) for [f,m] and k(m) it is seen that the general term of this sum with alternating signs is of
the form (−1)m(2mm!)−1 and even in the worst (in the sense of convergence) case m0 = 0 the series (42)
converges, with S(0) taking the finite value

S( f , n; 0) = −
m0−1

∑
m=0

s( f , m)+
∞

∑
m=0

s( f , m), s( f , m) ≡ [ f , m](k(m))−1. (A7)

Here the quantity S(f,n;0) ≡ S(f,n), like Σ(f,n;a), depends on n through m0, which is determined by
the relations (33) and (35).
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Abstract: On the basis of the well-known kinetic description of e−e+ vacuum pair creation in
strong electromagnetic fields in D = 3 + 1 QED we construct a nonperturbative kinetic approach
to electron-hole excitations in graphene under the action of strong, time-dependent electric fields.
We start from the simplest model of low-energy excitations around the Dirac points in the Brillouin
zone. The corresponding kinetic equations are analyzed by nonperturbative analytical and numerical
methods that allow to avoid difficulties characteristic for the perturbation theory. We consider
different models for external fields acting in both, one and two dimensions. In the latter case we
discuss the nonlinear interaction of the orthogonal currents in graphene which plays the role of an
active nonlinear medium. In particular, this allows to govern the current in one direction by means
of the electric field acting in the orthogonal direction. Investigating the polarization current we
detected the existence of high frequency damped oscillations in a constant external electric field.
When the electric field is abruptly turned off residual inertial oscillations of the polarization current
are obtained. Further nonlinear effects are discussed.

Keywords: graphene; dynamic critical phenomena; high-field and nonlinear effects

PACS: 81.05.Uw, 64.60.Ht, 73.50.Fq

1. Introduction

In recent years considerable interest has developed in a nonperturbative, dynamical description
of transport phenomena in condensed matter physics inspired by the physics of strong electromagnetic
fields [1]. Particular attention was devoted to graphene (see, e.g., [2,3]). In this case there is an obvious
similarity with the dynamical Schwinger effect in QED, the creation of electron-positron pairs from the
vacuum in strong electromagnetic fields [4–6]. In this context the nonperturbative kinetic approach has
proven successful. It is based on the transition to a quasiparticle representation in the presence of an
external, quasiclassical electric field facilitated by a time dependent Bogoliubov transformation [7–10].
It would be natural to adopt these methods to specific problems in condensed matter physics and,
in particular, to the physics of graphene. Such an adaptation is performed in the present work. The
application of these methods allows for advancement to nonperturbative investigations of nonlinear
effects in graphene in the presence of strong external electric fields.

Particles 2019, 2, 208–230; doi:10.3390/particles2020015 www.mdpi.com/journal/particles167
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We want to give a detailed outline of the contents of the present work. In Section 2, Section 2.1 the
basic kinetic equation (KE) for the simplest dynamical model of graphene [2,3,11–14] (a single layer
graphene sheet with two Dirac points of the Brillouin zone and absence of the standard scattering
mechanism of carriers) is obtained using nonperturbative techniques for the case of a spatially
homogeneous, time-dependent external electric field of arbitrary polarization in the graphene plane.
The transition to the quasiparticle representation is obtained with the help of a unitary transformation
expressed in explicit form [15]. All subsequent consideration is essentially nonperturbative.

The process of electron-hole (e-h) pair creation in a strong electric field can be considered as a
specific field-induced phase transition in a system with broken symmetry [1,10,16]. In Section 2.2
some features of this process are considered in graphene. Section 3 is devoted to the connection of
observables such as the quasiparticle number and current densities with the kinetic theory. Here we
discuss also the energy conservation law for a system in an external electric field. Here, in particular,
an order parameter is introduced which describes the polarization properties of graphene. It is shown
that after switching off the external field pulse the order parameter survives and oscillates with
momentum dependent amplitude. In other words, the evolution of the order parameter is defined
by the entire prehistory of the graphene evolution during the application of the external field. In
particular, this effect becomes apparent in the damped oscillations of the residual polarization current
on the background of a constant residual conduction current (Section 4). Here it is also shown that
the polarization current dominates over the conduction current. This dominance turns out also in
calculations of the currents in the framework of the standard perturbation theory. For example, in the
Appendix A, we reproduce the well-known results for the polarization and conduction currents in the
leading orders of the expansion with respect to E/E0 � 1, where E0 is the characteristic field (1).

Section 5 contains results of the numerical calculations of the distribution functions of the carriers
for electric fields of different magnitude and spectral composition models both for linear and elliptic
polarizations. This fact is an important hint that the similar situation is valid also in D = 3 + 1 QED,
where analogous calculations can be very complicated [17].

In Section 6 we outline the effect of manipulating a weak signal with a current by means of
generating active properties of graphene with the help of another (basic) field.

Finally, in Section 7, by analogy with Section 2, we derive the KE in the D = 2 + 1 tight binding
model of the nearest neighbor interaction [3,11,12]. Also in this case the conduction and polarization
currents are obtained. Their detailed investigation will be performed in a separate work.

The conclusions are drawn in Section 8.
We use the metric gμν = diag (1,−1,−1) and the coordinates xμ =

(
vFt, x1, x2). We will proceed

from the basic parameters of the model: a = 2.46 Å is the lattice spacing, γ = 2.7 eV is the hopping
energy, and vF = 106 m/s is the Fermi velocity. We define a set of scale factors for the physical
quantities time (t0), momentum (p0), and field strength (E0) according to

t0 =
a

vF
, p0 =

h̄
a

, E0 =
h̄vF

ea2 . (1)

2. Kinetic Equation

In this section the basic KE for the description of electron-hole excitations in external,
time-dependent electric fields will be derived for the D = 2 + 1 QED model of graphene in
the framework of a low-energy model (for a tight-binding model, see Section 7 below). Some
necessary prerequisites for such a derivation have already been obtained earlier [15] by means of
the diagonalization of the initial Hamiltonian of the model. Our approach is based on the consistent
usage of the occupation number representation and the adaptation of a method that is well known in
D = 3 + 1 QED for the description of the creation of an electron-positron plasma from the vacuum in
strong fields [7,8,18].

168



Particles 2019, 2

Let us assume the graphene layer is located in the plane
(
x1 = x, x2 = y

)
. A time dependent

spatially homogeneous electric field acts in this plane, i.e., the corresponding vector potential in the
Hamiltonian gauge is Ak (t) =

(
0, A1(t), A2(t)

)
. The spatial homogeneity of the electric field can be

provided, for example, in the focal spot of two coherent laser beams counter propagating along the
axis perpendicular to the graphene layer. It is assumed that the field model is finite, i.e., that the
field strength �E(t) = − 1

c
�̇A(t) vanishes before switching on and after switching off the laser fields,

lim
t→±∞

E(t) = 0 (the dot above the symbol denotes its time derivative). This is necessary for the correct

definition of the in- and out- states of the vacuum with Ain = A(t → −∞) and Aout = A(t → ∞).

2.1. The Low-Energy Approximation

The Dirac-type equation for the low-energy excitations in graphene in a time dependent electric
field described above is

ih̄Ψ̇ (�x, t) = vF �̂P�σΨ (�x, t) , (2)

where P̂k = −ih̄∇k − (e/c)Ak(t) is the quasi-momentum (k = 1, 2) and σk are the Pauli matrices
corresponding to the pseudospin structure of graphene.

The Hamiltonian of the theory,

H(t) =
ih̄
2

∫
d2x

[
Ψ†(�x, t)Ψ̇(�x, t)− Ψ̇†(�x, t)Ψ(�x, t)

]
, (3)

is the 00 component of the corresponding energy-momentum tensor and it can be transformed with
help of the equation of motion (2) to the form

H(t) = vF

∫
d2xΨ†(�x, t)�̂P�σΨ(�x, t). (4)

Here we dropped the spin indices.
The wave function here is a two-component spinor permitting the decomposition

ΨT (�x, t) =
1

(2πh̄)2

∫
d2 p

(
Ψ(1)
�p (t) , Ψ(2)

−�p (t)
)

ei�p�x/h̄ , (5)

which translates the Hamiltonian function (4) to the momentum representation.
For the physical interpretation of the model it is appropriate to go over to the quasiparticle

representation, where the Hamiltonian of the theory is diagonal. As it was shown in the work [15],
this is achieved with the unitary transformation

U†(t)vF�P�σU(t) = ε(�p, t)σ3 = H�p(t), (6)

and Φ = U†Ψ with the unitary matrix [15]

U(t) =
1√
2

(
exp(−iκ/2) exp(−iκ/2)
exp(iκ/2) − exp(iκ/2)

)
. (7)

The function κ is defined by the condition (6) [15], corresponding to tanκ = P2/P1, where Pk =

pk − (e/c)Ak(t). The quasienergy ε(�p, t) in (6) is determined by the dispersion relation in the vicinity
of the Dirac points

ε(�p, t) = vF
√

P2 = vF

√
(P1)2 + (P2)2. (8)

Equation (2) transforms then to the form

ih̄Φ̇ = H�p(t)Φ +
1
2

λh̄σ1Φ, (9)
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where H�p(t) is defined by Equation (6) and

λ (�p, t) = κ̇ =
ev2

F[E1P2 − E2P1]

ε2(�p, t)
. (10)

Introducing the notation

Φ(�p, t) =

[
a(�p, t)

b†(−�p, t)

]
, (11)

the Hamiltonian function (4) can be rewritten in the quasiparticle form

H(t) =
∫
[dp]ε(�p, t)Φ† (�p, t) σ3Φ (�p, t) (12)

=
∫
[dp]ε(�p, t)

[
a†(�p, t)a(�p, t)− b(−�p, t)b†(−�p, t)

]
,

where the abbreviation [dp] = d2 p(2πh̄)−2 has been used.
Apparently, the realization of the unitary transformation in the explicit form in both the low-energy

and the tight-binding (see below Section 7) models is a result of the fact that these models belong to
the class of conformal-invariant field theories (see, e.g., Ref. [6]).

At this stage one can go over to the occupation number representation and replace the amplitudes
a†(t),a(t) and b†(t), b(t) by the corresponding creation and annihilation operators for electrons and
holes considered as quasiparticles. These operators are defined on the in-vacuum state |in〉 with vector
potential �Ain and satisfy the canonical anti-commutation relations{

a(�p, t), a†(�p′, t)
}
+

=
{

b(�p, t), b†(�p′, t)
}
+
= (2π)2δ(�p − �p′). (13)

Other elementary anti-commutators are equal to zero.
From Equations (2), (6) and (11) it follows the equations of motion of the Heisenberg type for the

description of the unitary evolution of the creation and annihilation operators, e.g.,

ȧ(�p, t) =
i
h̄
[H(t), a(�p, t)]− i

2
λ (�p, t) b+(−�p, t) =

i
h̄
[Htot(t), a(�p, t)] , (14)

ḃ(�p, t) =
i
h̄
[H(t), b(−�p, t)] +

i
2

λ (�p, t) a+(�p, t) =
i
h̄
[Htot(t), b(−�p, t)] , (15)

where the amplitude of the transitions between states with the positive and negative energies of the
quasiparticles is defined by Equation (10). From Equations (9), (14) and (15) it follows that evolution
of the system is unitary. The Fock space is constructed on the time dependent vacuum state. In
Equations (14) and (15) Htot = H + Hpol , where

Hpol(t) =
h̄
2

∫
[dp]λ(�p, t)[a†(�p, t)b†(−�p, t)− b(−�p, t)a(�p, t)] (16)

describes the dynamics of vacuum polarization.
Now one can obtain the KE. Let us introduce the distribution functions for the electrons and

the holes,

f e(�p, t) = 〈in|a+(�p, t)a(�p, t)|in〉, (17)

f h(�p, t) = 〈in|b+(−�p, t)b(−�p, t)|in〉. (18)
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The averaging procedure here is carried out under the in-vacuum state |in〉. Differentiation with
respect to time and taking into account Equations (14) and (15) results in

ḟ e(�p, t) =
iλ
2
(�p, t)

{
f (+)(�p, t)− f (−)(�p, t)

}
, (19)

where anomalous averages have been introduced

f (+)(�p, t) = 〈in|a+(�p, t)b+(−�p, t)|in〉, (20)

f (−)(�p, t) = 〈in|b(−�p, t)a(�p, t)|in〉 . (21)

The equations of motion for these functions have the form

ḟ (+)(�p, t) =
2i
h̄

ε(�p, t) f (+)(�p, t)− iλ(�p, t)
2

[1 − 2 f (�p, t)], (22)

ḟ (−)(�p, t) =
−2i

h̄
ε(�p, t) f (−)(�p, t) +

iλ(�p, t)
2

[1 − 2 f (�p, t)]. (23)

Here it was assumed that f e = f h = f holds as a consequence of the electroneutrality condition.
Let us rewrite Equations (22) and (23) in integral form. Substitution of this result in Equation (19)

leads to a KE of non-Markovian type

ḟ (�p, t) =
1
2

λ (�p, t)
t∫

t0

dt′λ(�p, t′)
[
1 − 2 f (�p, t′)

]
cos θ(t, t′), (24)

where

θ(t, t′) = 2
h̄

t∫
t′

dt′′ε(�p, t′′) (25)

is the dynamical phase.
In the present work the KE (24) and its reformulation in the form of an equivalent system of

ordinary differential equations (ODE), shown below in Equation (27), are considered only for zero
initial conditions, f0 = f (t0) = 0. For the first time a KE of such type was obtained in the works [6,7,19]
in D = 3 + 1 QED for the description of vacuum creation of electron-positron pairs under the action of
a time dependent spatially homogeneous linearly polarized electric field. This method is based on
the usage of unitary nonequivalent canonical transformations for the transition to the quasiparticle
representation [6]. In the considered situation this approach is applicable and leads to the KE (24) that
has the same mathematical structure as in the D = 3 + 1 QED case [7,8,18]. However, in the massless
D = 2 + 1 QED case the transition to the quasiparticle representation is possible in the framework of a
unitary transformation [15] (see, e.g., Equation (6)).

An advantage of the unitary approach is also the possibility of a generalization of this method [15]
to the case of a two-dimensional electric field with the vector potential Ak(t)(k = 1, 2). Let us remark
that the transition from the one-dimensional electric field (linear polarization) to two or three field
dimensions (arbitrary polarization) in D = 3 + 1 QED is connected with the necessity to take into
account a larger number of spin degrees of freedom and is accompanied with a significant increase in
the number of necessary KE’s [20–22].

The main feature of the KE (24) is the absence of an energy gap in the quasienergy (8). Such kind
of models were considered long ago [23] (see also [6]) and have been investigated sufficiently well.
In the following this feature will be investigated in the situation when the e-h-system in graphene
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is exposed to a time dependent electric field. In the presence of the external field the Dirac points
ε0(p) = 0 are transformed to a family of Dirac lines LD which depend parametrically on time,

PD
i = pD

i − e
c

Ai(t) = 0, i = 1, 2. (26)

For the numerical analysis of the KE (24) for different field models it is appropriate to rewrite it in
the form of an equivalent system of ODEs [6,8],

ḟ =
1
2

λu, u̇ = λ (1 − 2 f )− 2ε

h̄
v, v̇ =

2ε

h̄
u, (27)

with the corresponding initial conditions f (t0) = u(t0) = v(t0) = 0. The auxiliary functions u(�p, t)
and v(�p, t) describe polarization effects (Section 3) and can be expressed via the anomalous averages
(20) and (21)

u =
i
2

[
f (+) − f (−)

]
, v =

1
2

[
f (+) + f (−)

]
. (28)

A concrete physical interpretation of these functions will be given in Section 3.
For the system of Equation (27) one readily obtains the integral of motion

(1 − 2 f )2 + u2 + v2 = 1, (29)

which is compatible with the zero initial conditions.
There is an approximate nonperturbative solution [24] of the KE (24) which is valid for small

occupation numbers, 2 f � 1 (low density approximation),

fLD(�p, t) = J(�p, t) =
1
2

t∫
t0

dt′λ(�p, t′)
t′∫

t0

dt′′λ(�p, t′′) cos θ(t′, t′′). (30)

This integral plays an important role in the formulation of the other nonperturbative approach based
on the Markovian approximation (see below).

The polarization function

u(�p, t) =
t∫

t0

dt′λ(�p, t′)[1 − 2 f (�p, t′)] cos θ(t, t′) (31)

is transformed in the low density approximation to the quadrature formula

uLD(�p, t) =
t∫

t0

dt′λ(�p, t′) cos θ(t, t′). (32)

From the low density approximation formula (30) and Equation (10) it follows that the distribution
function tends to infinity when approaching the Dirac line, �p → �pD(t). This indicates also the
non applicability of the standard perturbation theory. Thus, close by the lines LD an essentially
nonperturbative analysis of the KE (24) is required. One such nonlinear approximate solution is
obtained in the Markovian approximation based on the neglect of the retardation on the r.h.s. of the
KE (24), f (�p, t′) → f (�p, t). This results in the quadrature formula

fM(�p, t) =
1
2
{1 − exp [−2J(�p, t)]} , (33)
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which has its analog in the case of D=3+1 QED [24]. From here one can see that the distribution
function tends to saturation, fM(�p, t) → 1/2, at �p → �pD(t). The polarization function u(�p, t) can be
obtained in this approximation on the basis of the first equation of the system (27) and Equation (33)

uM(�p, t) = exp [−2J(�p, t)]
t∫

t0

dt′λ(�p, t′) cos θ(t, t′). (34)

where J(�p, t) is defined by Equation (30).

2.2. Order Parameter

By analogy with the standard QED [10], let us introduce the function Φ(t) = u(t) + iv(t) as
an order parameter of the system that describes polarization effects in graphene by means of the
anomalous averages (20), (21) and (28) which are characteristic for systems with broken symmetry
(e.g. [5,6,16]). We write the corresponding equation of motion

Φ̇ − 2iε
h̄

Φ = λ(1 − 2 f ), (35)

which follows from Equation (27). The formal solution of this equation with the zero initial condition is

Φ(t) =
t∫

t0

dt′λ(t′)
[
1 − 2 f (t′)

]
exp

⎡⎣2i
h̄

t∫
t′

dτε(τ)

⎤⎦ . (36)

Let us consider now a finite electric field which is switched off at the point of time toff, i.e.,
E(t > toff) = 0 and hence according to Equation (10) λ(t > toff) = 0. Then, for t > toff it follows
from Equation (36) that the order parameter is different from zero and oscillates with the frequency
2εout/h̄, i.e.,

Φ(t > toff) = Φout(�p) exp
[

2iεout

h̄
(t − toff)

]
, (37)

where the asymptotical value of the quasienergy (8) is equal to

εout = ε(t → ∞) = vF

√
(�p − e

c
�Aout)2, (38)

Ak
out = lim

t→∞
Ak(t). In Equation (37) the momentum dependent amplitude

Φout(�p) =
toff∫

t0

dt′λ(t′)
[
1 − 2 f (t′)

]
exp

⎡⎣2i
h̄

toff∫
t′

dτε(τ)

⎤⎦ (39)

is defined by the entire prehistory of the system evolution in a given external field.
The presence of such residual oscillations of the order parameter is a prerequisite for the analogous

behavior of the polarization current (see Section 5).
Thus,

|Φ(t > toff)|2 = |Φout(�p)|2 = const (40)

after switching off the external field, i.e., the long-lived order is formed.
The amplitude Φout(�p) of oscillations of the order parameter in the residual state can be defined

from the integral of motion (29) by rewriting it in the form

(1 − 2 fout)
2 + |Φout|2 = 1. (41)
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The order parameter Φ(t) reflects the role of anomalous averages in the kinetics of the excitation
process in graphene, that can be considered as a peculiar field induced phase transition [1,16]. Some
other features of this process in graphene will be considered below.

3. Observables

It is straightforward to write expressions for the pair number density

n(t) = N
∫
[dp] f (�p, t). (42)

The factor N corresponds to number of species (or flavors) of quasiparticles in graphene [3,14,25]:
N = 4 in the low energy model and N = 2 in the tight binding model.

For exact solutions of the ODE system (27) and correct nonperturbative solutions of the type
(33) and (34) it follows from the normalization integral (42) that the distribution function is limited
everywhere, f (�p, t) ≤ 1. Then both polarization functions u(�p, t) and v(�p, t) are limited also
everywhere under the integral of motion (29). This conclusion relates to the neighborhood of the Dirac
lines (26) and to the ultraviolet behavior of these functions as well.

The current density consists of two components, the conduction and polarization current densities,

jk(t) = jcond
k (t) + jpol

k (t). (43)

These currents are defined by the distribution function f (�p, t) and the polarization function u(�p, t),
correspondingly [26].

Firstly we consider the currents in the low-energy model. On the basis of the standard definition
of the current density [27] (k = 1, 2)

jk(t) = −e
δH(t)
δAk(t)

(44)

one can obtain for the theory with the Hamiltonian (4) taking into account the flavor number

jk(t) = 4evF

∫
d2xΨ∗ (�x, t) σkΨ (�x, t) . (45)

Going over to the quasiparticle representation with the help of the unitary operator (7) we obtain

jk(t) = 4evF

∫
[dp]Φ† (�p, t)U†(t)σkU(t)Φ (�p, t) . (46)

Taking into account the spinor (11) and the definition (43), one can separate the conduction and
polarization currents,

jcond
i (t) = 8

∫
[dp]vi

q(�p, t) f (�p, t), (47)

jpol
i (t) = 4

∫
[dp]ε(�p, t)li(�p, t)u(�p, t),

where vi
q(�p, t) = Pi/ε(�p, t) and the vector li(�p, t) = δλ(�p, t)/δEi(t) is defined by the components

l1(�p, t) =
ev2

FP2

ε2 , l2(�p, t) = − ev2
FP1

ε2 . (48)

One can see from the system (27) and its nonperturbative solutions (33) and (34), that the
polarization effects dominate in the leading approximation for weak fields, α = E/E0 � 1, i.e.,
f ∼ α2, u ∼ α and so it follows that

|jpol(t)| � |jcond(t)| . (49)
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This conclusion is supported also by direct numerical calculations.
Let us note, that the conduction and polarization currents are not collinear in the general case.

In the case of the linearly polarized electric field collinearity of the currents (47) rebuilds. In order to
ascertain this fact, let us consider the situation when the electric field acts along the axis x1, �E(E1(t), 0).
Then P2 → p2 and the functions f (�p, t) and u(�p, t) are even and odd under reflection p2 → −p2,
respectively, as it can be seen from the structure of the amplitude (10) and Equation (27). This
makes the integrals for jcond

2 (t) and jpol
2 (t) in Equation (47) vanish. In order to investigate the theory

we calculate the currents (47) in the framework of the perturbation theory in the minimal leading
approximation for relatively small external field, see Appendix A.

From Equation (47) it follows that the function u(�p, t) determines the vacuum polarization current.
The physical meaning of the other polarization function v(�p, t) is revealed if one considers the total
energy density of the quasiparticles including the polarization energy. From Equations (12) and (16)
one can obtain Etot = Eq + Epol, where

Eq(t) = 8
∫
[dp]ε(�p, t) f (�p, t), (50)

Epol(t) = 8
∫
[dp]h̄λ(�p, t)v(�p, t). (51)

Taking the time derivative of the quasiparticle energy Eq(t) (50) one obtains

Ėq(t) = �E(t)[�jcond(t) +�jpol(t)] = �E(t)�jtot(t), (52)

where the currents�jcond(t) and�jpol(t) are defined by Equation (47).
On the other hand, let us write the Maxwell equation for the internal electric field �Ein(t) generated

by the motion of the eh-plasma,
�̇Ein(t) = −�jtot(t). (53)

On this stage we will imply that the total electric field �Etot(t) is formed by an external field �E(t) and
an internal field �Ein(t), i.e., �Etot = �E(t) + �Ein. Let us substitute now in Equation (52) the external field
�E(t) by the total field �Etot(t). Using here Equation (53), we obtain the conservation law of the energy

d
dt

[
Eq(t) +

1
2

E2
in

]
= �E�jtot(t). (54)

So, the work of external electric fields (r.h.s. of Equation (54)) is distributed between the energy of e-h
excitation and the internal electric field.

4. Residual Currents

Here we consider some nonperturbative effects in graphene which are not sufficiently studied in
the standard QED or possess some specific features. We restrict ourselves here to the case of a linearly
polarized electric field directed along the axis x1.

Let us begin by investigating the residual currents that persist in graphene after the passage
of a strong electric field pulse. In the nondissipative model considered here the conduction current
discontinues its evolution and remains constant while the polarization current performs damped
oscillations. The character of these oscillations and their damping depends on the form of the electric
field pulse, as it follows from Equations (37) and (39).

Thus, some oscillating and damped component will be present in the total residual current. In
order to calculate it, we will use the formulas for the polarization currents (47) in the low energy
model and their analogues in the tight binding model (below in Section 7) with the corresponding
polarization function uout(t) for t > toff,

uout(t) = Re Φ(t > tout), (55)
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where the order parameter Φ(t > tout) in the out-state is defined by Equations (37)–(39).
According to Equation (37) the frequency of the order parameter is defined by the doubled

quasienergy (38). However, while these oscillations are smoothed out upon integration over the
momentum space in the polarization current (47), their influence remains quite appreciable, see
Figure 1.

Figure 1. Upper panel: Supergaussian electric field (56) where tmax = 1000 t0 (2.46 × 10−13 s) and
Ea = 0.00001 E0 (1.088 × 103 V/cm). Lower panel: The density of the polarization current.

We select the supergaussian model of the electric field

E(t) = −Ȧ(t) = Ea exp[−(t − tmax)
4/(2τ4)], (56)

where tmax determines the position of the maximum amplitude Ea of the field. This choice of the pulse
waveform allows to realize abrupt fronts of switching on and off, see the upper panel of Figure 1, and
to clearly identify the presence of a alternating polarization current, see the lower panel of Figure 1.
This picture demonstrates also dominance of the polarization current.

Another feature of the polarization current becomes apparent in presence of a constant electric field

E(t) = Ea = const, A(t) = −Eat. (57)

Here the oscillations of the polarization function (Figure 2) transform to damped oscillations of the
polarization current (Figure 3). This damping is caused by the monotonic growth of the quasienergy
(8) with time at t ≥ 0 and, as a consequence, by the decrease of the oscillation amplitude of the
polarization current. This mechanism can be traced visually in the Markovian approximation (33).
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Figure 2. The polarization function u(p1, p2 = 0) for the times: t1 = 50t0 (1.23× 10−14 s, upper graph),
t2 = 2050t0 (5.043 × 10−13 s, middle graph), t3 = 4050t0 (9.963 × 10−13 s, lower graph) in a constant
electric field (57) Ea = 5 × 10−6 E0 (5.44 × 102 V/cm).

Figure 3. The density of the polarization current in a constant field (57) with parameters of Figure 2.

5. Numerical Analysis

The numerical analysis will be based on the system of ordinary differential Equation (27) rewritten
in terms of the corresponding dimensionless values.
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We will investigate the response of the system to four electric field models: the constant electric
field (57), the Eckart - Sauter field model

E(t) = Ea cosh−2(t/T), A(t) = −Ea tanh(t/T), (58)

the harmonic function with a constant amplitude

E(t) = Ea sin(ωt), A(t) =
Ea

ω
− Ea

ω
cos(ωt), (59)

where ω is the angular frequency, and the “laser field” model [28]

E(t) = Ea cos(ωt) exp(−t2/2τ2), (60)

A(t) = −
√

π

8
Eaτ exp (−σ2/2) erf(

t√
2τ

− i
σ√
2
) + c.c.,

where σ = ωτ. In all the cases in this section we assume that the electric field is directed along the first
coordinate axis.

We start with the most convenient model of the field (58). From Equation (27) follows that the
speed of the filling process of the conduction band is determined by the amplitude of the transitions
(10). In the denominator of (10) the quasienergy (8) takes zero values on the Dirac line (26). This feature
of the amplitude of transitions should be reflected in the behavior and properties of the distribution
function. From the form of the evolution of the vector potential (58) it follows that the Dirac line in this
case should be represented in the momentum space by a segment with the endpoints determined by
A(t → −∞) and A(t → ∞) in accordance with the conditions (26).

In Figure 4 we demonstrate the presence of such characteristic features of the distribution function.
On the left panel the Dirac line has the end point coordinates p1 ∓ 0.1, p2 = 0.0 while on the right panel
the pulse duration is five times larger so that the coordinates of the end points are p1 ∓ 0.5, p2 = 0.0.
The Dirac line itself cuts in the distribution function a very thin canyon that is not visible in this figure
owing to the selected scale of the numerical calculations.

Figure 4. The distribution function in the planar momentum space after the action of the Eckart-Sauter
pulse (58). Left panel: Ea = 0.01 E0 (1.088 × 108 V/m) and T = 10 t0 (2.46 × 10−15 s), Right panel:
Ea = 0.01 E0 (1.088 × 108 V/m) and T = 50 t0 (1.23 × 10−14 s).

In the next step, we consider the constant field (57) at t ≥ 0. The distribution function at the time
t = 10.0 t0 of the field action is presented on the left panel of Figure 5. Results of the field action with
five times longer duration are represented on the right panel of Figure 5.

Another frequently used model is the harmonic electric field (59). The procedure of switching on
at t = 0 and off at tm = 2πm/ω can be realized with sufficient accuracy in the numerical calculations.
The shape of the distribution function and its change in time (m = 1, 2, 4 and 10) for the field (59) are
presented in Figure 6.
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Figure 5. The distribution function in the constant electric field (57) with Ea = 0.01 E0 (1.088 ×
106 V/cm) at t = 10 t0 (2.46 × 10−15 s) after switching on the field (left panel) and at t = 50 t0 (1.23 ×
10−14 s) after switching on the field (right panel).

Figure 6. The stages of evolution of the distribution function under the action of the field of type (59)
with the number of periods m = 1, 2, 4 and 10, respectively.

Finally, let us consider the more realistic model (60) of the “laser pulse”. In this case the vector
potential and the field strength are changed smoothly at any moment of time and do not bear any
problems for the numerical calculations. The shape of the distribution function and its dependence on
the pulse width determined by parameter σ are presented in Figure 7.

The above results correspond to very short time intervals from T = 10 t0 (2.46 × 10−15 s) to
T = 50 t0 (1.13 × 10−14 s) of the electric field action for the models (57) and (58) and for a very high
frequency of oscillations t0/T = 0.1(≈400 THz) for the models (59) and (60). Figure 8 demonstrates
the distribution function for the field model (57) and its change for the large time intervals T =

406,500 t0 (1.0 × 10−10 s) and T = 1,219,500 t0 (3.0 × 10−10 s) at the field strength Ea = 9.19 ×
10−8 E0(10 V/cm). The top row shows images with a linear scale for the color code of the distribution
function. This allows to demonstrate that the generated carriers are concentrated in momentum space
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in a very narrow area close to zero values of the momentum in the direction perpendicular to the
direction of the field. The bottom row shows the same distribution function with a logarithmic scale of
the color coding. In this case the complicated structure of the distribution function outside the main
area of the carrier generation becomes apparent. The main area, however, is absolutely dominant.
Other parameters of the electric field can change this picture. This issue requires further research.

Figure 7. The residual distribution function in momentum space after the action of the electric field
(60) with Ea = 0.01 E0 (1.088 × 106 V/cm), ω = 2π0.1. Left: σ = 5. Right: σ = 10.

Figure 8. The residual distribution function in momentum space after the action of the field of type
(57) with Ea = 10 V/cm for a duration of 1.0 × 10−10 s (left column) and 3.0 × 10−10 s (right column).
A logarithmic color scale used for the bottom panel.
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The set of parameters used here is quite realizable in the experiment. We note that the behavior of
the distribution function in momentum space has not undergone fundamental changes in comparison
to the ones in Figure 5. Figure 8 demonstrates agreement with the results of the work [29] where the
same parameters have been used for the numerical calculations in the framework of another formalism.

The behavior of a quasiparticle plasma under the action of periodic fields (59) and (60) with
increasing pulse duration is not trivial. Figure 9 shows the distribution function for the field model (60)
with the parameters ω = 2π × 2.46 × 10−4 t−1

0 (corresponding to 2π × 1.0 THz), Ea = 9.19 × 10−6 E0

(corresponding to 1000 V/cm) for σ = 3, 10, 25, and 50.

Figure 9. The residual distribution function under the action of the field of type (60) with the frequency
1.0 THz, amplitude Ea = 1000 V/cm and σ = 3, 10, 25, 50.

Let us now discuss the analysis of some observable values. We have studied the behavior of the
density of carriers (42) in dependence on the amplitude of the electric field for the three models (57),
(58) and (60). A summary of the results is presented below.

It should be noted that these results are determined solely by the filling of the conduction band
due to the quasiparticle excitation by an external electric field. The presence of thermally excited
carriers has not been taken into account as well as the relaxation processes since the considered
times are much shorter than the relaxation time. Figure 10 demonstrates that the number of
quasiparticles created during the action of the field increases quadratically with increasing electric
field strength. The quadratic dependence can be traced quite rigorously in relatively weak fields
Ea ≤ 0.001 E0 (�105 V/cm). The increment of the pair number density is slowing down somewhat
with further increase of the electric field. This can be explained by a saturation effect.
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The presented values correspond to the pulse of the constant field (57) with duration 20t0, the
Eckart-Sauter pulse (58) with duration parameter T = 10 t0 and a “laser” pulse (60) with a period of
the carrier frequency equal to 2π/ω = 10 t0. Such a proximity of the characteristics of the compared
field pulses provides very similar values for the surface density of the charge carriers. However, it
should be noted that above it has been demonstrated that there is a strong difference between the
quasiparticle spectrum in the field of type (60) and the quasiparticle spectrum produced by fields of
the type (57) or (58). Nevertheless, the density of carriers and their dependence on the amplitude of
the electric field are very similar, see Figure 10.

The dotted line in Figure 10 indicates the approximate level of the thermal carrier density at room
temperature. For short pulses their contribution to the total number of carriers will be noticeable only
at high electric fields. On the other hand, the spectrum of thermal quasiparticles and quasiparticles
generated by the field pulse are different. These differences appear at any electric field strength.

Figure 10. The dependence of the carrier density for the electric field models (57), (58) and (60).

Now we come back to the constant field and look at the dynamics of the process of creation of the
quasiparticles in the period of the field action. We consider a weak field strength of about 1 V/cm and
a field action time of 5 × 105t0 (corresponding to 1.23 × 10−10 s). The left panel of Figure 11 shows the
evolution of the distribution function along the direction of the electric field (for p2 � 0). The sections
of the distribution function along the p1 axis are presented for six time points from t1 = 25,000 t0 to
t6 = 500,000 t0. This figure shows in more detail the dynamics that we have already seen in Figures 5
and 8. The complete picture is presented in the right panel of Figure 11. It shows the evolution of a
slice of the distribution function for the value of p1 = −0.002002 p0 in which the distribution function
at the initial period (t1 = 2.5 × 104t0, t2 = 1 × 105t0) is not large. At the time t3 = 2 × 105t0 there is a
transition in the state of saturation and then the picture becomes almost stationary.

Figure 12 shows the evolution of three observables under the action of a constant electric field
with the same parameters as in Figure 11. The left panel shows the time dependence of the density
of the charge carriers (42). The dashed line shows the linear extrapolation of the initial values. The
middle panel shows the time dependence of the density of the conduction current in the direction
of the field. The dashed line also shows a linear extrapolation. It can be concluded that the creation
of charge carriers in a weak constant field proceeds at a constant rate. The energy of the carriers is
proportional to their momentum. The number of carriers and the average value of their momentum
increase under the influence of the field. As a result, the energy density of the carriers in graphene
increases quadratically. This is shown in the right panel of Figure 11 (the dashed line shows the
quadratic extrapolation of the initial values).
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Figure 11. The distribution function in momentum space for the range of time: t1 = 2.5× 104 t0 (6.15×
10−12 s), t2 = 1 × 105 t0 (2.46 × 10−11 s), t3 = 2 × 105 t0 (4.92 × 10−11 s), t4 = 3 × 105 t0 (7.38 × 10−11

s), t5 = 4 × 105 t0 (9.84 × 10−11 s), t6 = 5 × 105 t0 (1.23 × 10−10 s). The electric field strength
Ea = 1 × 10−8 E0 (1.088 V/cm). The dependence of the distribution function on p1 for p2 = 0 is shown
on the left panel while the dependence on p2 for p1 = −0.002002 p0 is shown on the right panel.

Figure 12. From left to right: density of charge carriers (42), density of conduction current and energy
density the carriers for range of the time 25,000 t0− 500,000 t0 (6.15 × 10−12s − 1.23 × 10−10s). The
constant electric field strength Ea = 1 × 10−8 E0 (1.088 V/cm).

6. Graphene as Active Medium

The nonlinear properties of graphene allow to activate it by some basic electric field for driving
by the current of another weak signal. Below we will consider an example when a rather strong basic
field is aligned with the x1—axis while the probe field aligned with the x2—axis allows the application
of perturbation theory.

The corresponding perturbation theory can be constructed both on the system of Equation (27)
and in the framework of the Markovian approximation (33). The latter variant allows to proceed with
analytical calculations.

In the framework of such an approximation we can limit ourselves in the weak field approximation
to the Markovian solution (33) and (34). The distribution function in this approximation is fM ≈
f (0) + f (1),

f (0) =
1
2
(1 − e−J(0) ), f (1) = J(1)e−J(0) , (61)

where labels (0) and (1) correspond to the “basic” field A1(t) (nonperturbative solutions) and to the
perturbing field A2(t), respectively. The function J(�p, t) is defined by Equation (33), so that

J(1)(�p, t) = 8
t∫

t0

dt′λ(1)(�p, t′)
t′∫

t0

dt′′λ(0)(�p, t′′) cos θ(0)(t′, t′′), (62)
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where according to Equation (10)

λ(0)(�p, t) =
ev2

FE1(t)p2

2[ε(0)(�p, t)]2
, λ(1)(�p, t) =

ev2
FE2(t)P1

2[ε(0)(�p, t)]2
. (63)

In Equation (62) we have neglected in the phase (25) the frequency shift under the influence of the
weak field A2(t), i.e., θ → θ(0). An analogous decomposition of the polarization function (34) leads to
the result: uM � u(0) + u(1), where

u(1)(�p, t) = J(0)(�p, t)
{ t∫

t0

dt′λ(1)(�p, t′) cos θ(0)(t, t′)− J(1)(�p, t)
t∫

t0

dt′λ(0)(�p, t′) cos θ(0)(t, t′)
}

. (64)

Substitution of Equations (61)–(64) into Equation (47) results in the perturbed current calculated
in the first order of perturbation theory under the weak field,

j(1)1 (t) = 0, j(1)2 (t) =
t∫

t0

dt′σ(t, t′)E2(t′), (65)

where σ(t, t′) is the linear induced conductivity of graphene controlled by the external field A2(t),

σ(t, t′) = −8ev2
F

∫
[dp]

ε(0)(�p, t)

{ δ f (1)(�p, t)
δE2(t′)

+ f (2)(�p, t)
ev2

FP2
1 (t)

[ε(0)(�p, t)]2

+P1(t)
δu(1)(�p, t)

δE2(t′)
− u(0)(�p, t)

ev2
F p2

[ε(0)(�p, t)]2

}
. (66)

Here the first and second groups of terms correspond to the contributions of the conduction and
polarization currents.

The dependence of the conductivity (66) on the magnitude and spectral decomposition of the
basic field will be considered separately.

7. Tight Binding Model

It is not difficult to obtain now the analogous KE in the D = 2 + 1 tight binding model of the
nearest neighbor interaction [3,11,12]. The Hamiltonian function in the momentum representation in
this case is

H�p(t) =

(
0 h�p(t)

h∗�p(t) 0

)
= h′�p(t)σ1 − h′′�p(t)σ2, (67)

where

h�p(t) = h′�p(t) + ih′′�p(t) = −γ ∑
α

exp
(

i
h̄
�P�δα

)
, (68)

with γ ≈ 2.7 eV being the hopping energy, and

�δ1 =
a
3
(0,

√
3), �δ2 =

a
3
(±3/2,−

√
3/2) (69)

are the locations of the nearest neighbors, a ≈ 3.
An external electric field is introduced here according to the rule �p → �P = �p − e/c�A(t). Such a

method was used in the work [3] in the case of a constant electric field A2(t) = −eEt and resulted
immediately in a nonlinear interaction with external field. Such a theory belongs to the class of theories
with the highest derivatives.
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The Hamiltonian functions (4) and (67) have the same pseudospin structure. Therefore one
can follow the way of derivation of KE (24) in the theory with the Hamiltonian function (67). The
quasienergy (8) and the amplitude (10) are changed only by the following formal substitutions

vFP1 → h′�p(t), vFP2 → −h′′�p(t). (70)

This results in
ε(�p, t) =

√
h∗�p(t)h�p(t) = |h�p(t)|, (71)

λ(�p, t) =
1

|h�p(t)|2
{

ḣ′′�p(t)h
′
�p(t)− ḣ′�p(t)h

′′
�p(t)

}
. (72)

An analogous KE can be obtained also for the case of the multilayer graphene model [30].
The conduction and polarization currents have the following form (the flavor number in the given

model is equal to 2 [3])

jcond
k (t) = −4eγ

∫
[dp] f (�p, t)[F(1)

k (�p, t) cos χ + F(2)
k (�p, t) sin χ], (73)

jpol
k (t) = −4eγ

∫
[dp] f (�p, t)[−F(1)

k (�p, t) sin χ + F(2)
k (�p, t) cos χ] , (74)

with the vector formfactors

F(1)
k (�p, t) = ∑

α

δ
(k)
α sin

(
1
h̄
�P�δα

)
, (75)

F(2)
k (�p, t) = ∑

α

δ
(k)
α cos

(
1
h̄
�P�δα

)
(76)

and χ being the angle of the unitary rotation in the matrix of the type (7),

χ = −h′′�p(t)/h′�p(t). (77)

Let us rewrite Equations (73) and (74) for the currents to obtain

jcond
k (t) = −4eγ

∫
[dp] f (�p, t)∑

α

δ
(k)
α sin

(
χ +

1
h̄
�P�δα

)
, (78)

jpol
k (t) = −4eγ

∫
[dp]u(�p, t)∑

α

δ
(k)
α cos

(
χ +

1
h̄
�P�δα

)
(79)

as the final result of this section. The numerical evaluation of the currents for particular external field
models is delegated to future work.

8. Conclusions

We have obtained on a nonperturbative basis the KE for describing electron-hole excitations in
graphene under the action of a spatially homogeneous time dependent electric field. To this end the
analogy with the well-developed case of kinetic theory of vacuum e+e− plasma generation in strong
fields [8,10] in D = 3 + 1 QED has been used. As a rule, we used the simplest low energy model.
However, the used method admits a straightforward generalization to other realistic models of the
carrier dynamics as, e.g., the tight binding model of nearest neighbour interaction. The derivation of
the KE is based on the transition to the quasiparticle representation [6]. As shown in Section 2, in the
D = 2 + 1 QED model of graphene such a derivation can be given in an explicit form with the help
of a unitary transformation first introduced in the work [15] for the linearly polarized electric field.
It is important that the final KE is valid in the general case of an arbitrarily polarized electric field.
Some features of the obtained KE are discussed in that Section. In particular, the non applicability of
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the standard perturbation theory in vicinity of the Dirac lines has been demonstrated. However, the
corresponding approximate analytical and numerical nonperturbative solutions (e.g., the Markovian
approximation) of the KE provide a correct description in physical terms in the entire momentum space.
In Section 2.2 we consider also some general properties of the evolution of the excited electron-hole
plasma that allow to interpret this phenomenon as a specific field induced phase transition [10,16]. An
important characteristics of this process is an order parameter that continues to oscillate in the out-state
after the external field pulse ceases. The connection of the observables with both, the distribution
function and the polarization functions has been discussed in Section 3. The damped oscillations
of the residual polarization current on the background of a conduction current were considered in
Section 4. The character of these oscillations is related to features of the external field pulse. The
damped oscillations of the polarization current in a constant electric field have demonstrated a similar
nature. Apparently, these effects are accessible to experimental observation. It can be assumed that
similar phenomena occur in D = 3 + 1 QED. Here too it was shown that the polarization current
dominates over the conduction current. We have performed a systematic numerical investigation based
on the KE for the distribution function of quasiparticle excitations and the corresponding observable
values for various models of the external electric field.

We have discussed the possibility of using graphene as an active medium excited by the basic
electric field to be probed by another signal current (“pump-and-probe”).

Finally, we have derived an analogous KE for the tight binding model that is substantially
nonperturbative. In the framework of this model we have obtained and discussed the conduction and
polarization currents.

A verification of the developed theory was obtained in the work [31], where good agreement with
experiment has been shown for the case of a constant electric field [32].

Let us note that both models considered here led KE’s of identical form. Moreover, this form
invariance is conserved also in the standard QED in the case of a linearly polarized electric field when
the spin degrees of freedom are frozen.
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Appendix A. Perturbation Theory

In order to demonstrate the effectiveness of the introduced approach, we will reproduce some
well known results in the framework of perturbation theory for relatively small external fields, E < E0.

We begin with the analysis of currents in the low density approximation (30) and (32) which
corresponds to the one-photon excitation mechanism [33]. In the minimal leading approximation
ε(�p, t) → ε0(�p) = vF|�p| we have

f (2)LD (�p, t) =
1
2

∫ t
dt′λ(1)(�p, t′) , u(1)

LD(�p, t′) (A1)

u(1)
LD(�p, t) =

t∫
dt′′λ(1)(�p, t′′) cos[ηp(t − t′′)], (A2)

with
λ(1)(�p, t) = λ0(�p) [E1(t)P2 − E2(t)P1] , (A3)
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where λ0(�p) = ev2
F/2ε2

0(p) = e/2p2 and η = 2vF/h̄. The upper indices at the functions f (2) and u(1)

indicate the order of perturbation theory.
The relations (A1) and (A2) indicate the dominant role of polarization effects in the considered

approximation, |j(1)pol(t)| � |j(2)cond(t)|.
Let us consider the case of linear polarization �E(t) = (E(t), 0) with arbitrary time dependence of

the electric field.
The polarization current in lowest order perturbation theory according to Equation (47) is

j(1)pol
1 (t) = 8evF

∫
[dp]u sinκ, (A4)

j(1)pol
2 (t) = −8evF

∫
[dp]u cosκ,

where κ is defined in explanation to Equation (7),

κ = arctan(P2/P1) ≈ arctan(p2/p1), (A5)

where the last step corresponds to the leading approximation. From Equation (A5) follows

sinκ ≈ p2/p = sin Φ, cosκ ≈ p1/p = cos Φ, (A6)

where Φ is the polar angle in the polar representation of the momentum space. Integration over the
momentum p in the neighborhood of the Dirac points is limited by the cutoff parameter Λ. It is implied
that it can be defined by the limits of the validity range of the linear dispersion law ε0(p) = vF p.
However, the results obtained below are universal and do not depend on the choice of Λ.

Taking these remarks into account, one can thus write the polarization current after integration
over the angle (here t0 → −∞),

j(1)pol
1 (t) =

e2vF

πh̄2

t∫
−∞

dt′E(t′)
∫ Λ

0
dp cos[ηp(t − t′)],

j(1)pol
2 (t) = 0 . (A7)

Let us now perform a Fourier transformation of the function E(t) and after that integrate over the
momentum p,

j(1)pol
1 (t) =

e2

πh̄

∫
dωE(ω)

t∫
−∞

dt′ sin[Λη(t − t′)]
t − t′ eiωt′

=
e2

πh̄

∫
dωE(ω)eiωt

0∫
−∞

dx
x

sin(γx) cos x.

(A8)

The last integral does not depend on the parameter γ = 2vFΛ/h̄ω,

0∫
−∞

dx
x

sin γx cos x =

0∫
−∞

dx
x

=
π

2
, (A9)

so that

j(1)pol
1 (t) =

e2

4h̄
E(t). (A10)

This result does not depend on the choice of the field model.
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In order to calculate the conduction current, it is necessary to find the distribution function. To
this end we use perturbation theory as a first step and consider the case of a constant electric field (57)
switched on at the time t0 = 0. In the leading approximation from Equation (30) follows the known
result [15,34]

f (2)LD (�p, t) =
e2h̄2E2 p2

2
4v2

F p6
sin2 Ωt , (A11)

where Ω = vF p/h̄ is the frequency of the vacuum oscillations.
The anisotropic distribution (A11) and the corresponding nonperturbative Markovian distribution

(33) have the center symmetry relative to the Dirac point pi → −pi whereby the conductivity current
(see Equation (47)) vanishes.

In order to break this symmetry, it is necessary to go beyond the leading approximation. However,
the next correction leads to secular terms that indicate a problem with perturbation theory. For further
details on the transport properties of graphene see, e.g., Refs. [35–39].
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Abstract: The kinetic-equation approach to particle production in strong, time-dependent external
fields is revisited and three limiting cases are discussed for different field patterns: the Sauter
pulse, a harmonic pulse with a Gaussian envelope, and a Poisson-distributed stochastic field.
It is shown that for transient subcritical electric fields E(t) a finite residual particle number density
n(∞) would be absent if the field-dependence of the dynamical phase in the Schwinger source
term would be neglected. In this case the distribution function of created particles follows the law
f (t) ∼ E2(t). Two lessons for particle production in heavy-ion collisions are derived from this
exercise. First: the shorter the (Sauter-type) pulse, the higher the residual density of produced
particles. Second: although the Schwinger process in a string-type field produces a non-thermal
particle spectrum, a Poissonian distribution of the (fluctuating) strings produces a thermal spectrum
with an apparent temperature that coincides with the Hawking–Unruh temperature for the mean
value of the string tension.

Keywords: kinetic theory; particle production; Schwinger effect; Zitterbewegung;
low density approximation

1. Introduction

The kinetic equation (KE) approach to particle production in strong, time-dependent external
fields by the dynamical or dynamically assisted Schwinger mechanism (see, e.g., reference [1] for
a recent review) has a broad spectrum of applications in different fields of Physics, ranging from
high-intensity laser colliders to nuclear collisions and graphene in an external (laser) field. Even in the
case when spatially homogeneous fields are considered the momentum distribution of the produced
particles shows a complex pattern, reminding of interference fringes [2,3]. Therefore, it is instructive
to consider limiting cases which may already provide valuable insights for phenomenological
applications. In this spirit we shall consider in the present work the case of spatially homogeneous
fields with three approximations to the Schwinger source term in the KE and three examples for the
temporal pulse shape of the external field in order to draw conclusions for the systematics of particle
production in relativistic heavy-ion collisions. Hereby we focus on the questions of how to maximize
the yield of produced particles and how to explain their thermal-like spectra when they would be
produced by a Schwinger mechanism.
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This work is organized in the following way. In Section 2, the KE approach to particle production
is shortly summarized, the differential form of the KE is given and three approximations are derived:
the Markovian limit, the low-density approximation (LDA) and the low-field limit. In Section 3, the full
solutions of the KE for two temporal pulse shapes are given (Sauter and Gaussian envelope harmonic
(GEH) pulse) and compared with the results for the three approximations. In Sections 4 and 5 the two
lessons for the phenomenology of particle production in heavy-ion collisions are presented and in
Section 6 we draw the conclusions.

2. Kinetic Approach to Particle Production

Our investigation is based on a KE which is a nonperturbative consequence of the fundamental
equations of motion of QED. The KE for the (quasi-)particle distribution function can be derived from
the Dirac equation by a canonical time-dependent Bogoliubov transformation [4]. This method is
valid only in a spatially-uniform time-dependent field. In the case of a linearly polarized electric
field with the vector potential Aμ(t) = (0, 0, 0, A(t)) (Hamiltonian gauge) we obtain a non-Markovian
integro-differential collisionless KE [5]

d f ( p̄, t)
dt

=
1
2

λ( p̄, t)
∫ t

t0

dt′λ( p̄, t′)
[

1 − 2 f ( p̄, t′)
]

cos
(

2[Θ( p̄, t)− Θ( p̄, t′)]
)

, (1)

where

λ( p̄, t) =
eE(t)ε⊥
ω2( p̄, t)

(2)

is the amplitude of vacuum transitions governing the rate of particle production. The dynamical phase,

Θ( p̄, t) =
∫ t

t0

dt′ω( p̄, t′) , (3)

describes the vacuum oscillations (Zitterbewegung) with a frequency of the energy gap 2ω( p̄, t)
between lower (ω < −m) and upper (ω > m) continua (one can regard particle creation as an
excitation of massive field quanta from lower to upper continua just like electrons and holes in the
solid state physics models). Due to the fact that our calculations are performed in Hamiltonian gauge
it is convenient to use a cylindrical system of coordinates, so it is natural to express the dispersion
relation,

ω( p̄, t) =
√

ε2
⊥( p̄⊥) + P2( p̄‖, t) , (4)

in terms of the transverse energy and the parallel canonical momentum,

ε⊥( p̄⊥) =
√

m2 + p̄2
⊥, (5)

P( p̄‖, t) = p̄‖ − eA(t) . (6)

Here m is the electron mass, e is the charge, p̄⊥ is the momentum component perpendicular to the
field vector, whereas p̄‖ is the momentum component parallel to the field.

For the initial condition we choose

f ( p̄, t)
∣∣∣∣
t=t0

= 0 . (7)

2.1. Differential Form

The numerical evaluation of the integro-differential Equation (1) through straightforward double
time integration is highly ineffective. First of all, one needs to deal with the rapidly oscillating term
cos(2[Θ( p̄, t) − Θ( p̄, t′)]). To address this problem we can take the integration step small enough.
Second, due to the non-Markovian character of the equation, it is required to store the whole pre-history
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of f (t) in the computer memory. Luckily, one can avoid these complications by transforming (1) to a
time local system of differential equations [6,7]. In order to perform the transformation we introduce
two auxiliary functions

u(t) =
∫ t

t0

dt′λ( p̄, t′)
[

1 − 2 f ( p̄, t′)
]

cos
(

2[Θ( p̄, t)− Θ( p̄, t′)]
)

, (8)

v(t) =
∫ t

t0

dt′λ( p̄, t′)
[

1 − 2 f ( p̄, t′)
]

sin
(

2[Θ( p̄, t)− Θ( p̄, t′)]
)

. (9)

The auxiliary functions u( p̄, t) and v( p̄, t) describe vacuum polarization effects [8].
The differentiation of these functions with respect to t together with

∂t

(
[Θ( p̄, t)− Θ( p̄, t′)]

)
= ∂t

∫ t

t′
ω( p̄, t′′)dt′′ = ω( p̄, t) (10)

and Equation (1) leads to a coupled system of first order differential equations [7]

ḟ =
1
2

λ( p̄, t)u(t), (11)

u̇ = λ( p̄, t)
[

1 − 2 f ( p̄, t)
]
− 2ω( p̄, t)v(t), (12)

v̇ = 2ω( p̄, t)u(t) , (13)

with the initial conditions
f (t0) = u(t0) = v(t0) = 0 . (14)

The above system of Equations (11)–(13) is much simpler to solve numerically.

2.2. Three Approximations to the Schwinger Source Term

In this section, we discuss three related approximations which can be obtained when the applied
external electric field, E � Ec, is considerably smaller than the critical field strength [6,9].

Ec =
m2c3

eh̄
� 1.32 × 1018 V/m . (15)

The first approximation is the low density limit. When the electric field E is small we expect the
probability of pair creation to be small f ( p̄, t) � 1, hence 1 − 2 f ( p̄, t) ≈ 1. Consequently, the source
term (r.h.s. of (1)) in LDA assumes the following form

SLDA(t) =
1
2

λ( p̄, t)
∫ t

t0

dt′λ( p̄, t′) cos
(

2[Θ( p̄, t)− Θ( p̄, t′)]
)

. (16)

2.2.1. Markovian Limit

In the Markovian limit, one replaces the time argument t′ in the statistical factor of (1) by the
actual time t thus neglecting dependence on pre-history of the process [10],

d f M(t)
dt

= [1 − 2 f M(t)]SLDA(t) = SM(t) . (17)

Then, for the initial condition f (t0) = 0, the solution of (17) is given by

f M(t) =
1
2

(
1 − exp

[
− 2

∫ t

t0

d t′SLDA(t′)
])

. (18)
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2.2.2. Low-Density Approximation (LDA)

The expansion of f M in powers of the argument of the exponential function leads to

f M(t) =
∫ t

t0

d t′SLDA(t′)−
( ∫ t

t0

d t′SLDA(t′)
)2

+O
[( ∫ t

t0

d t′SLDA(t′)
)3

]
. (19)

Provided that the integral in (18) is small we can keep only the leading term and get the
low-density solution

f LDA(t) =
∫ t

t0

d t′SLDA(t′) . (20)

The low-density limit gives us a tool to demonstrate the positive definiteness of the distribution
function. Using the trigonometric identity cos(α − β) = cos α · cos β + sin α · sin β, we rewrite (20) as

f LDA(t) =
1
2

t∫
t0

d t′g1(t′)
t′∫

t0

d t′′g1(t′′) +
1
2

t∫
t0

d t′g2(t′)
t′∫

t0

d t′′g2(t′′) , (21)

g1,2(τ) = λ(τ)

{
cos[2Θ(τ)]

sin[2Θ(τ)]

}
.

The application of the mathematical identity

t∫
t0

d t′A(t′)
t′∫

t0

d t′′B(t′′) = 1
2

t∫
t0

d t′A(t′)
t∫

t0

d t′′B(t′′) (22)

to (21) leads to the quadratic form

f LDA(t) =
1
4

( t∫
t0

d t′g1(t′)
)2

+
1
4

( t∫
t0

d t′g2(t′)
)2

. (23)

Now it is straightforward to see that the distribution function in the LDA is positive definite as is
required by the interpretation of the distribution function as a probability

f LDA(t) ≥ 0 . (24)

2.2.3. Low-Field Limit

A further simplification of (23) can be obtained by expanding the dispersion relation with respect
to a small external field A ≈ 0,

ω( p̄, t) =
√

m2 + p̄2
⊥ + p̄2

‖ −
p̄‖eA√

m2 + p̄2
⊥ + p̄2

‖
+O

(
A2

)
, (25)

and keeping only the leading order by assuming the smallness of the vector potential

ω( p̄, t) ≈
√

m2 + p̄2
⊥ + p̄2

‖ ≡ a . (26)

Immediately one gets

Θ( p̄, t) =
∫ t

t0

dt′ω( p̄, t′) = a(t − t0) . (27)
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Then, we have to move out λ in front of the integrals in (23),

t∫
t0

d t′g1(t′) = λ(t)
t∫

t0

d t′ cos[2a(t′ − t0)] = λ(t)
sin[2a(t − t0)]

2a
, (28)

t∫
t0

d t′g1(t′) = λ(t)
t∫

t0

d t′ sin[2a(t′ − t0)] = −λ(t)
cos[2a(t − t0)]

2a
, (29)

to obtain
f 0( p̄, t) = λ2(t)

1
16a2 . (30)

Applying a system of units such that m = 1 leads to

f 0( p̄ = 0, t) =
E2(t)

16
. (31)

3. Results for Sauter Pulse and Gaussian-Envelope Harmonic (GEH) Pulse

In this work we consider the simplest model of the external laser-like field, namely the linearly
polarized, time-dependent and spatially homogeneous electric pulse. We solved the KE (1) numerically
for the two field shapes. The first one, the so-called Sauter pulse [11] is defined by

A(t) = −E0τ tanh
t
τ

, E(t) =
E0

cosh2 t
τ

, (32)

with τ being the characteristic duration of action. The second one, called the GEH pulse, is given by

E(t) = E0 cos (ωt + ϕ) exp (− t2

2τ2 ), (33)

A(t) = −
√

π

8
E0τ exp (−1

2
σ2 + iϕ)× erf

(
t√
2τ

− i
σ√
2

)
+ c.c. , (34)

where σ = ωτ is a dimensionless measure for the characteristic duration of the pulse τ connected with
the number of periods of the carrier field [12].

The impact of the above mentioned approximations on the fermionic distribution function for
case of the Sauter have been presented on Figure 1. The analysis of these graphs shows:

1. In case of a critical field strength E0 ∼ Ec and t > 0 > t0 one gets f LDA(t) > f M(t) > f (t).
This happens due to the presence of the factor (1 − 2 f ) in (1) and its absence in (16).

2. When E0 ∼ 10−1Ec, the Markovian and the low-density approximation give similar values for
the distribution functions so that f LDA(t) ≈ f M(t) > f (t).

3. In the case when E0 ∼ 10−2Ec we obtain f LDA(t) ≈ f M(t) ≈ f (t).
4. When the external field is E0 ∼ 10−2Ec, the distribution function is given by f (t) ∼ f (0)(t) =

E(t)2/16 at least for some finite period of time. For higher field strength, such an equality may
not hold.

5. When distribution function f (t) follows the trend of E(t)2/16 we are dealing with the
quasi-particle electron-positron plasma (QEPP). However, when the distribution function reaches
its asymptotic (residual) value f (t) = const, the state of the residual electron-positron plasma
(REPP) is attained. In-between, there is a transition region characterized by fast oscillations which
divides the system evolution into QEPP and REPP domains.

6. For high field strengths, it is more difficult to distinguish the QEPP and REPP domains (see bottom
panel of Figure 1).

7. The higher the external field strength E0, the faster f (t) reaches the residual value.
8. For shorter pulse duration the residual value f (t → ∞) is closer to maximal one.
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9. The approximation given by (31) assumes time-independence of the dispersion relation (26).
In such circumstances f (t) goes to zero when E(t) → 0. No real particles are created, only virtual
ones which disappear with the disappearance of the external electric field [7].
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Figure 1. Time evolution of the fermionic distribution function f (p⊥ = 0, p‖ = 0, t). Left panels: for
the Sauter pulse (32) with τ = 8. Right panels: for the Gaussian envelope harmonic (GEH) pulse (33)
with σ = 5, ϕ = 0 and ω = 0.02 nm. From the upper to the lower panel the electric field increases as
E0/Ec = 0.02, 0.2, 1. Time is scaled with the electron mass. Solid curve: full solution f (t), dotted
curve: E(t)2/16, dashed curve: low density approximation f 0(t) given by (23), dot-dashed curve:
Markovian limit f M(t) given by (18).
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4. Lesson 1: Sauter Pulse Asymptotics

Now we are going to discuss the case of the Sauter pulse more in detail. We set �p = 0 throughout.
Its low-density approximation (LDA) [3] is denoted f LDA and is given by

f LDA(t) =
1
2
|I(t)|2, I(t) =

t∫
−∞

dt′ J(t′), (35)

J(t) =
eE(t)m

m2 + e2 A(t)2 e2iΘ(t), Θ(t) =
t∫

0

dt′
√

m2 + e2 A(t)2. (36)

Following Equations (35) and (32), it is easy to see that for t � −τ

A(t) ∼ E0τ, E(t) ∼ 4E0 e2t/τ , Θ(t) ∼
√

m2 + (eE0τ)2 t, (37)

J(t) ∼ 4eE0m
m2 + (eE0τ)2 e2t/τ+2i

√
m2+(eE0τ)2 t . (38)

From these relations follows

I(t) ∼ 2eE0m
m2 + (eE0τ)2 · e2t/τ+2i

√
m2+(eE0τ)2 t

1/τ + i
√

m2 + (eE0τ)2
=: Iasy(t) . (39)

This allows us to define the small-t asymptotics of f LDA, denoted f−∞ as

f−∞(t) =
1
2

∣∣Iasy(t)
∣∣2 =

2(eE0m)2

[m2 + (eE0τ)2]
2
[1/τ2 + m2 + (eE0τ)2]

e4t/τ . (40)

For t � τ, we need the following symmetries

A(−t) = −A(t), E(−t) = E(t), Θ(−t) = −Θ(t), J(−t) = J(t)∗ (41)

and therefore

I(t) = I(∞)−
∞∫

t

dt′ J(t′) = I(∞)−
−t∫

−∞

dt′ J(−t′) = I(∞)−
−t∫

−∞

dt′ J(t′)∗ = I(∞)− I(−t)∗ . (42)

The large-t asymptotic can thus be reduced to the small-t asymptotic and the constant I(∞).
We denote it as f∞ and it is given by

f∞(t) =
1
2

∣∣I(∞)− Iasy(−t)∗
∣∣2 . (43)

In Figures 2 and 3, we present the behavior of the Sauter pulse case together with the asymptotics
introduced above. This comparison shows

1. The shorter the Sauter-type pulse (smaller τ), the higher the residual value of f LDA, f∞ and f .
2. The difference between the maximal value of f and its residual value grows with τ. The same

situation concerns f LDA. This feature is not observed in the case of f∞ and f−∞.
3. Differences in the asymptotic values of f LDA(t) and f (t) grow with E0 and with τ.
4. The curve f∞ exhibits a much weaker oscillatory behavior than f and f LDA.
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Figure 2. Time evolution of the fermionic distribution function f (p⊥ = 0, p‖ = 0, t) in the case of
Sauter pulse for E0 = 0.1Ec. From the upper left to the lower right panel the pulse duration increases
as τm = 1, 2, 5, 10, 20, 50. The solid curve is for the full solution f (t). The dotted curve shows the low
density approximation, the dashed curve depicts the small-t asymptotics f−∞, while the dot-dashed
curve stands for the large-t asymptotics f∞.

The features of f (t) can be useful in explaining phenomena related to heavy-ion collisions (HIC).
Lorentz-contracted pancake-like nuclei at high energies are better sources for producing high parton
densities than spherically-shaped nuclei at lower ones. This fact can be explained on the basis of
Schwinger mechanism. After the collision of two ions, the color glass condensate (CGC) is likely
formed, creating a strong longitudinal color electric field, called a flux tube. In this circumstance,
the decay of the color electric field due to the Schwinger mechanism takes place. As shown in
Figures 2 and 3, particle creation is greatly enhanced when the external field duration is short. Then,
the residual value of the distribution f (t → ∞) is higher and closer to the maximal value. Similarly,
in HIC the number of created partons increases when nuclei collide rapidly.
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Figure 3. Time evolution of the fermionic distribution function as in Figure 2, but for E0 = 0.2Ec.

Although the individual process of a particle-antiparticle pair creation leads to a non thermal
spectrum, a statistical ensemble of the (fluctuating) color fields produces an apparently thermal
spectrum with a temperature that is surprisingly given by the mean string tension in exactly the same
functional form as the temperature of Hawking–Unruh radiation in a confining field. This observation
can also be explained by the dynamical Schwinger mechanism.

Lesson 1: the shorter the Sauter-type pulse, the higher the residual density of produced particles.
Therefore, Lorentz-contracted pancake-like nuclei at high energies are better sources for producing
high parton densities than sphere-shaped nuclei at lower ones. Note, that we are speaking here
not about the particle production in binary collisions, but rather by the vacuum decay in strong
color-electric fields.

5. Lesson 2: Thermalization and Hawking Radiation

As an application of the Schwinger process the particle production in heavy-ion collisions has
been considered which may proceed by the decay of color electric flux tubes [13–16]. The flux
tubes are characterized by a linear, stringlike potential between color charges, analogous to the
case of a homogeneous electric field considered by Schwinger. Using this analogy that |eE| = σ
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with σ ∼ 0.19 GeV2 being the string tension, the transverse energy spectrum of produced particles
according to the Schwinger mechanism would be

dNSchwinger

d2 p⊥
∼ exp

(
−πε2

⊥
σ

)
, (44)

with ε⊥ =
√

m2 + p2
⊥ being the transverse energy (5), often also denoted as “transverse mass” m⊥.

This spectrum of produced particles is Gaussian and thus would contradict the general observation of
exponential particle spectra in heavy-ion collision experiments

dNexp

d2 p⊥
∼ exp

(
− ε⊥

Teff

)
, (45)

with an inverse slope parameter Teff ∼ 160 MeV that can be considered as an effective temperature
at the freeze-out (see, e.g., reference [17]). Thus the question arises how this transformation from a
Gaussian to an exponential behavior of the spectrum (or the “thermalization”) could occur. It has been
suggested that it proceeds via collisions described by a kinetic equation [18,19]. For a most recent
discussion of the issue, see [20–24]. It has been questioned whether in high-energy nuclear collisions
there is enough time for the thermal equilibration and the isotropization [25] of the system by collisions,
after the particle production in a Schwinger process.

As an alternative picture for the emergence of a thermal particle spectrum in ultrarelativistic
particle collisions the analogue of the Hawking–Unruh radiation has been discussed [26–28].
This reasoning predicts thermal spectra of hadrons with the Hawking–Unruh temperature

TH(σ) =

√
σ

2π
∼ 173 MeV , (46)

where for the string tension, σ = 1 GeV/fm has been taken.
In this context it is interesting to note a possible synthesis of both pictures as provided by the

argument elucidated by Bialas [29]. If the string tension in the Schwinger process for flux tube decay
would fluctuate and follow, e.g., a Poissonian distribution

P(σ) = exp(−σ/σ0)/
√

πσσ0 , (47)

which is normalized
∫

dσP(σ) = 1 and has a mean value 〈σ〉 = ∫
dσσP(σ) = σ0/2, then the initial

Gaussian transverse energy spectrum (44) after averaging with the string tension fluctuations becomes
exponential, i.e., thermal with the temperature parameter Teff =

√〈σ〉/(2π),

∫
dσP(σ) exp

(
−πε2

⊥
σ

)
= exp

(
− ε⊥

T

)
. (48)

Here the integral
∫ ∞

0 dt exp[−t − k2/(4t)]/
√

πt = exp(−k) has been used [30].
This coincides with the Hawking–Unruh picture of thermal hadron production, where in the

case of fluctuating strings the string tension of Equation (46) is now replaced by its mean value.
We would like to note at this point that a largely thermal spectrum would arise also from the solution
of a kinetic equation with the Schwinger source term, as has been demonstrated by Florkowski in
reference [31] for the case of parton creation (a more detailed calculation has recently been done in [20]).
This demonstrates the dynamical origin of thermal spectra.

A recent study of the thermalization and isotropization question in the early stages of heavy-ion
collisions [32] by solving a relativistic Boltzmann transport equation with a Schwinger source term for
particle production from flux-tube decay goes beyond reference [20] by taking into account viscosity
effects and 2 → 2 collisions in the gluon sector. This study finds that for ideal fluid conditions with
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a minimal viscosity at the KSS bound η = s/(4π) [33] already at a timescale below 1 fm/c the ratio
of longitudinal to transverse pressure approaches unity with oscillations being damped out and
the transverse momentum spectrum shows thermal behavior dN/(p2

T dpT dy) ∝ exp(−βpT) with an
inverse slope parameter fulfilling the ideal gas relationship β−1 = Teff ∝ ε1/4

kin , where εkin is the kinetic
energy density. It is interesting to note that this feature is reproduced by the much simpler model
considered here which neglects collisions, spatial evolution and finite size as well as the backreaction
of the produced particles on the field. It has, however, the advantage of being particularly suitable
for discussing the temporal evolution (pulse shape) of the flux-tube field with special emphasis on
subcritical field strengths (we remind that the account for confining boundary conditions in a flux
tube of finite radial extension r0 gives rise to an r0-dependent suppression of the Schwinger pair
production rate [34]).

In order to draw the link to the observed hadron spectra in heavy-ion collision experiments,
it remains to consider also the hadronization process when starting from the parton level of
description. For this purpose one could employ, e.g., kinetic theory approaches built on the basis
of the Nambu–Jona–Lasinio model Lagrangian, see [35–38]. In this context, the dynamical chiral
symmetry breaking in the quark sector plays an essential role as it triggers the binding of quarks into
hadrons (inverse Mott effect). The increase in the sigma meson mass that accompanies the dynamical
chiral symmetry breaking gives rise to additional sigma meson production by the inertial mechanism
(see [39] and references therein). By the dominant decay σ → ππ this leads to an additional population
of low-momentum pion states and can contribute to the observed effect that s also discussed as a
precursor of pion Bose condensation and may simultaneously resolve the Large Hadron Collider (LHC)
proton puzzle [40] within a non-equilibrium model.

Lesson 2: although the individual Schwinger process of for creating a particle-antiparticle pair
from flux-tube decay has a Gaussian transverse energy spectrum, a statistical distribution of the
(fluctuating) color fields produces an apparently thermal (exponential) spectrum with an inverse
slope parameter (effective temperature) Teff = TH(〈σ〉) that surprisingly is given by the mean string
tension in exactly the same functional form as the temperature of Hawking–Unruh radiation in a
confining field.

6. Conclusions

In the present work, we have revisited the KE approach to particle production by the dynamical
Schwinger effect. We have shown that in the case of subcritical external fields both, the LDA and
the Markovian approximation to the source term give quite accurate estimations for the residual
particle densities, to be observed after the field is switched off. It is an elucidating exercise to retain
only the lowest order term in a low-field expansion of the dynamical phase of the Schwinger source
term. In this case, the time-dependence of the distribution function of produced particles follows the
temporal shape of the external field according to f (t) ∼ E2(t) with the consequence that there are no
produced particles in the final state where the field is absent. Thus the origin of particle production in
subcritical fields can be traced to the self-interference (decoherence) of the virtual fields in the transient
stage, formally accounted for by the time-dependent dynamical phase in the source term.

Two lessons for particle production in heavy-ion collisions are drawn from our exercise.
Lesson 1: The shorter the Sauter-type pulse, the higher the residual density of produced particles.

Therefore, Lorentz-contracted pancake-nuclei at high energies are better sources for producing high
parton densities than sphere-shaped nuclei at lower energies. Note, that in this argument we are
considering only particle production from the vacuum decay in strong color fields as if particle
production by collisions were absent.

Lesson 2: Although the individual Schwinger process of a particle-antiparticle pair has a non
thermal (Gaussian) spectrum, a statistical distribution of the (fluctuating) color fields produces
an apparently thermal (exponential) spectrum with a temperature (inverse slope parameter) that
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surprisingly is given by the mean string tension in exactly the same functional form as the temperature
of Hawking–Unruh radiation in a confining field.

In a more complete kinetic description of particle production in a complex process like a heavy-ion
collision, the subsequent stages following the creation of particles in the initial phase of the process
should be included by adding elastic and inelastic scattering processes in the collision integrals of
the system of kinetic equations for all relevant particle species. Thus, one can address the process of
hadron production in heavy-ion collisions starting from parton production in strong field decay, their
rescattering and conversion to hadrons (hadronization) with chemical equilibration and rescattering in
the hadronic final state.
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Abstract: We present a novel numerical scheme to solve the QCD Boltzmann equation in the soft
scattering approximation, for the quenched limit of QCD. Using this we can readily investigate
the evolution of spatially homogeneous systems of gluons distributed isotropically in momentum
space. We numerically confirm that for so-called “overpopulated” initial conditions, a (transient)
Bose-Einstein condensate could emerge in a finite time. Going beyond existing results, we analyze
the formation dynamics of this condensate. The scheme is extended to systems with cylindrically
symmetric momentum distributions, in order to investigate the effects of anisotropy. In particular, we
compare the rates at which isotropization and equilibration occur. We also compare our results from
the soft scattering scheme to the relaxation time approximation.

Keywords: QCD; Boltzmann equation; gluons; Bose-Einstein condensate; Fokker-Planck equation;
relaxation time approximation; thermalization

1. Introduction

The study of quark-gluon plasma (QGP), the phase of strongly interacting matter formed in
relativistic nuclear collisions and consisting of quasi-free quarks and gluons, is of increasing relevance
in modern physics [1]. It represents a testing ground for the Standard Model, as well as for finite
temperature field theory and possible grand unification theories. It is also of cosmological significance,
as the early universe was dominated by this phase of matter.

Experiments at the Super Proton Synchrotron (SPS), Relativistic Heavy Ion Collider (RHIC) and
Large Hadron Collider (LHC) allow us to probe the energy scales at which the QGP is produced.
Inferring its properties and phenomenological behaviour is a central goal of the heavy ion programs
at these facilities. The theoretical tools that have been developed to describe it are manifold, as the
various stages of a heavy ion collision represent very different physical regimes that demand similarly
diverse mathematical formalisms to describe (see Figure 1).

Prior to the collision, the nuclei are accelerated to near-light speed, with a Lorentz factor on the order
of 100. They are therefore subject to strong Lorentz contraction along the beam axis. At these energies,
the lifetime of gluons emitted from the valence quarks or other gluons is long enough to allow additional
emissions of soft gluons from themselves. This process keeps increasing the number density of gluons
until saturation occurs as recombination of gluons becomes non-negligible, forming the state of matter
called the Color Glass Condensate (CGC) [2–4]. This regime of large gluon number can be approximated by
classical dynamics.

In the first stage of a collision, a large number of gluons are liberated from the CGC. These gluons
form a dense, off-equilibrium state called the glasma. Extensive hydrodynamic analyses of HIC
indicate that as the medium expands, rapid thermalization occurs (characteristic time on the order of
1 fm) and a QGP in local equilibrium forms [5–8]. This rapid thermalization is indicative of strong
interactions. As the medium continues to expand and decrease in temperature, it eventually drops
below the deconfinement temperature (Tc ≈ 170 MeV) and hadronization occurs.
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Despite longstanding efforts and various approaches to describe the dynamics of heavy ion
collisions (see e.g., [9,10]), the rapid equilibration of the QGP remains to be thoroughly understood.
Another question that has received a lot of recent attention is the possible formation of a gluon
condensate in heavy ion collisions [11,12]. We will address these two questions by adapting and
numerically solving the QCD Boltzmann equation assuming the dominance of soft gluon exchange
in binary collisions. In this framework we can describe the evolution of the QGP from the early
pre-equilibrium stages through thermalization towards freeze-out.

Figure 1. The stages of a heavy ion collision (from [1]).

2. The Boltzmann Transport Equation

The fundamental equation of kinetic theory is the Boltzmann transport equation. It is a non-linear
integro-differential equation describing the evolution of a distribution function of particles, for our
purposes a dilute gas of gluons “in a box”. (Quarks are omitted for conceptual simplicity and also
motivated for systems which are gluon-dominated). For a spatially homogeneous system under the
assumption that 2 → 2 processes dominate, it can be written as

∂t f =
1
2

∫ d3 p2

(2π)32E2

d3 p3

(2π)32E3

d3 p4

(2π)32E4

|M12→34|2
2E1

(2π)4δ(p1 + p2 − p3 − p4)( f3 f4 f̄1 f̄2 − f1 f2 f̄3 f̄4) . (1)

Here fi is the distribution function of particle i with 4-momentum pi = (Ei, pi). As shorthand,
we write f̄i ≡ 1 + fi.

The transition amplitude M of binary gluon scattering reads at tree level

|M12→34|2 = 72g4
[
3 − tu

s2 − su
t2 − st

u2

]
, (2)

where s, t and u are the familiar Mandelstam variables and g is related to the QCD coupling constant α

by g2 = 4πα.
For small scattering angles, |t| � s and expression (2) simplifies to

|M12→34|2 ≈ 144g4 s2

t2 , (3)

which is to be regulated, e.g., by making the substitution

1
t2 → 1

(t − μ2)
2 , (4)

where μ is the screening mass.
While this equation is a challenge to solve, Boltzmann’s H-Theorem guarantees that regardless of

the initial condition, the equilibrium distribution function will be a Bose-Jüttner function [13],

feq(x, p) =
[

e
pαuα(x)−μ(x)

T(x) − 1
]−1

. (5)
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Here T, u and μ parameterize the temperature, collective flow velocity and chemical potential,
respectively.

There is one caveat; there exist “overpopulated” initial distributions (see Figure 2) which
contain more gluons than can be “accommodated” in a Bose-Jüttner distribution while maintaining
particle number and energy conservation. It has been argued [11] that under the assumption of
approximate gluon number conservation, a transient state close to equilibrium may form with a
Bose-Einstein condensate.

Figure 2. Contours of constant particle number and energy density at equilibrium. The values of the
equilibrium parameters T and μ are found where the lines intersect. In the critically populated case,
the intersection occurs at the maximum possible value of μ = 0. In the overpopulated case, no real
solution for μ < 0 exists and a condensate is necessary to contain the excess particles.

3. The Fokker-Planck and Relaxation Time Approximations

Under the assumption that small-angle scattering dominates, the RHS of Equation (1) can be
approximated as the divergence of a current in momentum space [11],

Dt f = −∇p ·J (p) , (6)

which is a Fokker-Planck type equation. Here the components of the current J read

J i(p) = 9
4π g4L ∫

k Vij(p, k)
{

fp f̄p∇j
k fk − fk f̄k∇j

p fp

}
, (7)

where
V ij = (1 − v · w) δij +

(
viwj + vjwi) , (8)

and we define p ≡ p1, k ≡ p2 and denote the corresponding unit vectors by w ≡ p/p and v ≡ k/k.
In Equation (7), L is the so-called Coulomb logarithm emerging for screened interactions with

vector boson exchange, L =
∫ qmax

qmin

dq
q = ln qmax

qmin
where qmax and qmin are cutoffs of the order of the

equilibrium temperature T and the screening mass μ introduced in expression (4), respectively [11].
We take L to be a constant of order 1 in our analysis.

It is convenient to rescale the time variable in Equation (6) as τ = 9
4π g4L t to eliminate the constant

factor in Equation (7). The integral in (7) can then be performed (see Appendix A), yielding

J (p) = Ia∇p f + Ib f f̄ p̂ + (∇p f · p̂)I + (∇p f × p̂)× I , (9)

where Ia =
∫

f f̄ , Ib =
∫ 2 f

p and I ≡ (Ix, Iy, Iz) =
∫

w f f̄ are functionals of the distribution function f .
It will be interesting to compare the Fokker-Planck approximation of the Boltzmann equation to

the well-known Relaxation Time Approximation (RTA),

∂t f =
pμuμ

p0

f∞− f
τ . (10)
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The RTA is easily solvable (and convergences to the same equilibrium distribution); however
it lacks QCD-specific features and, as we will see, yields qualitatively different behavior to the
Fokker-Planck approximation, which we argue is more physically motivated.

4. The Method of ’B-Lines’

We have developed a flux-conservative numerical scheme that allows us to readily solve the
Boltzmann equation in the Fokker-Planck approximation, (6) + (9), which we call the method of ‘B-lines’.
The name is given in analogy to splines, with the ’B’ referring to an efficient parameterization of the
distribution function in terms of piecewise Bose functions. We have implemented it for distribution
functions spherically and cylindrically symmetric in momentum space; here we will discuss the scheme
for the simpler isotropic case.

For spherically symmetric distribution functions, we discretize the momentum grid into bins of
width Δ and construct a piecewise Bose interpolation of f ,

f (i)(p) =
1

eai p+bi − 1
. (11)

The domain of f (i) is p ∈ [i, (i + 1)]Δ for 0 ≤ i < M − 1 and [Δ(M − 1), ∞) for i = M − 1.
A couple of points are in order. Firstly, it should be noted that this approach is equivalent to a linear

interpolation of an expedient transformation of the distribution function, g ≡ ln( f̄ / f ), i.e., g(i)(p) = ai p+ bi.
One of the reasons that we choose to make this transformation is that a piecewise linear interpolation directly
in terms of f would not allow us to describe the formation of the Bose-Einstein condensate. Secondly,
for equilibrium distribution functions approaching equilibrium our interpolation scheme becomes exact,
which is a nice property. An equilibrium distribution in g-space of course is simply a straight line.

Physically, the ai correspond to local (in momentum space) inverse temperature parameters, and the
bi correspond to the chemical potential. We determine them by sampling the distribution function at
the gridpoints,

f0 ≡ f (δ) ,

fi ≡ f (Δi), 0 < i < M .
(12)

Here δ is small relative to Δ but non-zero in order to avoid singularities at the origin.
Having established the details of the initial interpolation, we now consider the process by which

we evolve the distribution function in time. We separate our M + 1 cells on the p-axis at the momenta

p0 = δ ,

pi =

(
i +

1
2

)
Δ, 0 < i < M ,

(13)

such that cell 0 is [0, δ], cell M is [(M − 1
2 )Δ, ∞) and intermediate cells with index 0 < i < M are

[pi−1, pi]. These cell boundaries are “staggered” with respect to the grid used for the interpolation,
with the distribution function in each cell being interpolated by two B-lines. This is because as we
will see shortly, the first derivative of our interpolation of the distribution function is required to be
continuous at our cell boundaries, which is not in general the case at B-line boundaries.

From the B-lines we can easily calculate the particle number (per volume) in each cell,

n0 =
4π

(2π)3

∫ δ

0
dp p2 f (0)(p) ,

ni =
4π

(2π)3

∫ Δi

pi−1

dp p2 f (i−1)(p) +
4π

(2π)3

∫ pi

Δi
dp p2 f (i)(p), 0 < i < M ,

nM =
4π

(2π)3

∫ ∞

pM−1

dp p2 f (M−1)(p) .

(14)
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These integrals are combinations of polylogarithm functions depending on the B-line parameters
ai, bi. For convenience we have set the gluon degeneracy to 1; dg = 16 can be reinstated as needed.

Now, recall that the Fokker-Planck equation (6) can be written as a continuity equation (conserving
both particle number and energy). Thus the rate of change of particle number in cell i,

∂τni =
4π

(2π)3

∫ pi+1
pi

dpp2∂τ f (p, τ) = 4π
(2π)3 p2J (p)

∣∣∣∣pi+1

pi

, (15)

is given by φi+1 − φi, the net radial flux into cell i, where

φi ≡ 4π
(2π)3 p2J (pi) =

4π
(2π)3 p2(Ia∂p f + Ib f (1 + f ))

∣∣∣∣
p=pi

. (16)

For the zeroth cell, the flux φ0 at p = 0 is zero by definition. Similarly, the last cell’s rightmost
boundary is at infinity, with zero flux through it.

We thus arrive at the following non-linear system of ODEs,

ṅ0 = φ(δ) ,

ṅi = φi+1 − φi, 0 < i < M ,

ṅM = −φM .

(17)

Note that the integrals Ia and Ib (I vanishes in the spherically symmetric case), which determine
the flux (16) depend non-linearly on all of the fi and must be updated at each time step. We can readily
solve these ODEs using the forward Euler method. Having updated the particle number in each cell, it
is straightforward to find the evolved set of B-line parameters.

One advantage of the modified scheme is that it allows us to compute the number of particles in
the condensate. Analysis shows that the flux into the zeroth cell becomes non-zero after finite time
for overpopulated systems approaching the equilibrium Bose-Einstein distribution. Note that this
flux remains well-defined as we take the limit δ → 0. For large t, the flux becomes proportional to
Ib − Ia/T, which vanishes for an equilibrium distribution. The particle number in cell 0 has a “regular”
contribution, which vanishes for δ → 0, as well as the condensate contribution.

5. Results

Figures 3–6 show the evolution in the special case of spherically symmetric, CGC-inspired initial
conditions of the form

f (p) = f0
1

e(p−Q)/C+1
, (18)

where f0 and C are constants and Q sets the overall momentum scale. For these figures, we have
chosen f0 = 0.225 and C = 0.05Q (and Q → 1), which is a moderately overpopulated initial condition
where some 8% of the particles asymptotically condense. We point out the qualitative difference
between the Fokker-Planck and Relaxation Time Approximations; in the latter the condensate begins
to form immediately, whereas the Fokker-Planck scheme exhibits a characteristic “lag”. The onset time
tc is fairly short, assuming L ≈ 1, α ≈ 0.4 and Q ≈ 2 GeV we find tc ≈ 0.2 fm/c.
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Figure 3. Evolution of the initial condition according to the Fokker-Planck scheme. The intermediate
distribution functions shown are for times τ ∈ {1, 3, 5, 7.5, 11, 15.5, 25.5, 50, 70, 100}.
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Figure 4. Corresponding evolution of the condensate for the system in Figure 3.
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Figure 5. Evolution of the initial condition using the Relaxation Time Approximation. The relaxation
time parameter is taken to be 40 in order to match the Fokker-Planck timescale; the intermediate
distribution functions shown are for times t ∈ {0.5, 2, 4, 7, 12, 20, 32, 52, 80} .
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Figure 6. Corresponding evolution of the condensate for the system in Figure 5.

Generalizing from spherically symmetric to cylindrically symmetric initial conditions, we are
able to explore the effects on anisotropy on the evolution of the distribution function. It is important
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to differentiate between isotropic distribution functions just boosted out of their rest frame and
distribution functions that are “genuinely” anisotropic, i.e., even in their rest frame.

“Genuinely” anisotropic distributions are often parameterized in the form [14,15]

fiso

(√
ω2 + ξ p2

z

)
, (19)

where ξ > −1 specifies the anisotropy. Similarly, we consider as a generalization of (18) initial
conditions of the form

f (ω, pz) = f0

√
1+ξ

e

(√
ω2+ξ p2

z+bpz−Q
)

/C
+1

, (20)

where ω = |p|, b is a boost parameter and the numerator is a normalization that is convenient with
regard to the particle number density.

We extract the equilibration time by studying the entropy, evaluated towards final equilibrium.
In particular we would like to compare it to the time taken for the initially anisotropic distribution
function to isotropize. To this end, as a measure of the anisotropy of a distribution function, we define
the “anisotropy parameter”

α =
T22

LRF
T33

LRF
, (21)

where Tμν
LRF is the energy-momentum tensor in the local rest frame. In the rest frame, for a cylindrically

symmetric distribution function with some anisotropy, T11 = T22 = P⊥ is the transverse pressure of
the fluid, while T33 = Pz is the longitudinal pressure. For an isotropic distribution they are equal; thus
the ratio α must also approach 1 as the system isotropizes.

In Figure 7 we plot the evolution of the normalized entropy and anisotropy parameters associated
with an initial condition of form (20), with parameters f0 = 0.1, C = 0.05, ξ = b = 0.2 and Q = 1.
Figure 8 shows a log plot of this evolution.

From a fit, the gradients of the lines in Figure 7 are identical within the uncertainties, which
corroborates that the rates of isotropization and equilibration are strongly correlated.

6. Discussion

In summary, we have developed an efficient numerical scheme to solve the relativistic
Boltzmann equation for gluons in the small-scattering approximation under the assumption of
spherically/cylindrically symmetric initial conditions and spatial homogeneity. Among our findings,
we have reproduced results from [11] regarding the formation of a transient Bose-Einstein condensate
state for overpopulated, spherically symmetric initial conditions. We have investigated the rate
at which an anisotropic distribution function becomes isotropic and compared it to the rate of
thermalization. Further, we have compared these results to the relaxation-time approximation to
the Boltzmann equation.

Figure 7. .Evolution of the normalized entropy and anisotropy parameters.
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Figure 8. Linearized evolution of the normalized entropy and anisotropy parameters.

Possible directions for future work might include investigating the timescale of
hydrodynamization (i.e., the time at which hydrodynamics becomes applicable). Following [16], it
would be interesting to explore the relation between Bose-Einstein condensation and Kolmogorov
turbulence in the relativistic case. Another follow-up would be to study the non-equilibrium attractor
described by [17] for the relaxation-time approximation, and see if a similar phenomenon can be
observed in the Fokker-Planck approximation.

Scope for further extension of our scheme exists, and such an extension is planned. In particular,
it is desirable to extend the scheme to remove the assumption of spatial homogeneity and describe
systems without symmetry assumptions in which the above scheme would essentially represent a
single spatial cell. A challenge is the fact that the computational complexity scales geometrically with
each additional degree of freedom - the so-called “curse of dimensionality”. (Boltzmann equation
solvers as well as hydro-codes typically rely on assumptions of symmetry, and for good reason).
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Appendix A. Derivation of the Current

Here we present a derivation of the Fokker-Planck current J given in Equation (9). Recall
expression (7) for the current, where the constant prefactor is absorbed into τ,

J i(p) = fp f̄p
∫ Vij∇j

k fk −∇j
p fp

∫ Vij fk f̄k . (A1)

These two integrals correspond to a vector quantity

Ji ≡
∫ Vij∇j

k fk (A2)

and a tensor quantity
Jij =

∫ Vij fk f̄k , (A3)

each being a functional of the distribution function f . The current (A1) is defined for a specific
momentum p. For this p we then integrate over all possible values of k. We can represent the Vij tensor
(8) as a matrix,

Vij =

⎛⎜⎝ 1 + vxwx − vywy − vzwz vywx + vxwy vzwx + vxwz

vywx + vxwy 1 − vxwx + vywy − vzwz vzwy + vywz

vzwx + vxwz vzwy + vywz 1 − vxwx − vywy + vzwz

⎞⎟⎠ . (A4)
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Thus we find for the components of the first integral in (A1),

V1j∇j
k fk =

(
1 + vxwx − vywy − vzwz, vywx + vxwy, vzwx + vxwz

)⎛⎜⎜⎝
∂ fk
∂kx
∂ fk
∂ky
∂ fk
∂kz

⎞⎟⎟⎠
= (1 + vxwx − vywy − vzwz)

∂ fk
∂kx

+ (vywx + vxwy)
∂ fk
∂ky

+ (vzwx + vxwz)
∂ fk
∂kz

,

V2j∇j
k fk =

(
vywx + vxwy, 1 − vxwx + vywy − vzwz, vzwy + vywz

)⎛⎜⎜⎝
∂ fk
∂kx
∂ fk
∂ky
∂ fk
∂kz

⎞⎟⎟⎠
= (vywx + vxwy)

∂ fk
∂kx

+ (1 − vxwx + vywy − vzwz)
∂ fk
∂ky

+ (vzwy + vywz)
∂ fk
∂kz

,

V3j∇j
k fk =

(
vzwx + vxwz, vzwy + vywz, 1 − vxwx − vywy + vzwz

)⎛⎜⎜⎝
∂ fk
∂kx
∂ fk
∂ky
∂ fk
∂kz

⎞⎟⎟⎠
= (vzwx + vxwz)

∂ fk
∂kx

+ (vzwy + vywz)
∂ fk
∂ky

+ (1 − vxwx − vywy + vzwz)
∂ fk
∂kz

(A5)

Note that
∫ ∞
−∞ dki

∂ fk
∂ki

= fk|∞−∞ = 0 since the distribution function vanishes for large momenta.

Thus only terms of
∫ ki

k
∂ fk
∂ki

survive. Integrating by parts we have

∫ ∞

−∞
dkx

kx√
k2

x + k2
y + k2

z

∂ fk
∂kx

=
kx

k
fk|∞−∞ −

∫ ∞

−∞
dkx

(
− k2

x
k3 +

1
k

)
fk

=
∫ ∞

−∞
dkx

(
k2

x
k3 − 1

k

)
fk ,

(A6)

with corresponding expressions for ky and kz.
Altogether, the non-vanishing terms of Jx are

Jx = wx

∫
vx

∂ fk
∂kx

+ vy
∂ fk
∂ky

+ vz
∂ fk
∂kz

= wx

∫ (
k2

x + k2
y + k2

z

k3 − 3
k

)
fk

= −wx

∫ 2
k

fk .

(A7)

Similarly

Jy = −wy

∫ 2
k

fk ,

Jz = −wz

∫ 2
k

fk .
(A8)

Defining

Ib ≡
∫ 2

k
fk , (A9)

we can simply write
J =

p
p

Ib . (A10)
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Now consider the tensor term Jij (A3). Expanding Jij∇j
p fp we have

J1j∇j
p fp =

∫ (
1 + vxwx − vywy − vzwz, vywx + vxwy, vzwx + vxwz

)⎛⎜⎜⎝
∂ fp
∂px
∂ fp
∂py
∂ fp
∂pz

⎞⎟⎟⎠ fk f̄k

=
∂ fp

∂px

∫
(1 + vxwx − vywy − vzwz) fk f̄k +

∂ fp

∂py

∫
(vywx + vxwy) fk f̄k

=+
∂ fp

∂pz

∫
(vzwx + vxwz) fk f̄k .

(A11)

We can tidy this expression by defining

Ia ≡
∫

fk f̄k ,

Ii ≡
∫

vi fk f̄k ,
(A12)

and writing wi = pi/p. As it is no longer necessary to differentiate between fp and fk, we drop the
subscript. Then

J1j∇j
p fp =

∂ fp

∂px

(
Ia +

px

p
Ix − py

p
Iy − pz

p
Iz

)
+

∂ fp

∂py

(
px

p
Iy +

py

p
Ix

)
+

∂ fp

∂pz

(
pz

p
Ix +

px

p
Iz

)
=

∂ fp

∂px
Ia +

(
px

p
∂ fp

∂px
+

py

p
∂ fp

∂py
+

pz

p
∂ fp

∂pz

)
Ix +

(
px

p
∂ fp

∂py
− py

p
∂ fp

∂px

)
Iy

+

(
px

p
∂ fp

∂pz
− pz

p
∂ fp

∂px

)
Iz ,

(A13)

and similarly

J2j∇j
p fp =

∂ fp

∂py
Ia +

(
py

p
∂ fp

∂px
− px

p
∂ fp

∂py

)
Ix +

(
px

p
∂ fp

∂px
+

py

p
∂ fp

∂py
+

pz

p
∂ fp

∂pz

)
Iy

+

(
py

p
∂ fp

∂pz
− pz

p
∂ fp

∂py

)
Iz ,

(A14)

and
J3j∇j

p fp =
∂ fp

∂pz
Ia +

(
pz

p
∂ fp

∂px
− px

p
∂ fp

∂pz

)
Ix +

(
pz

p
∂ fp

∂py
− py

p
∂ fp

∂pz

)
Iy

+

(
px

p
∂ fp

∂px
+

py

p
∂ fp

∂py
+

pz

p
∂ fp

∂pz

)
Iz .

(A15)

We can write down a vector expression for Jij∇j
p fp by inspection as Ia∇p f + (∇p f · p̂)I + (∇p f ×

p̂)×I.
Altogether we have the complete expression for the current,

J (p) = Ia∇p f + Ib f f̄ p̂ + (∇p f · p̂)I + (∇p f × p̂)× I . (A16)
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Abstract: We study the particle production in the early stage of the ultrarelativistic heavy-ion
collisions. To this end the Boltzmann kinetic equations for gluons and pions with elastic
rescattering are considered together with a simple model for the parton-hadron conversion process
(hadronisation). It is shown that the overpopulation of the gluon phase space in the initial state
leads to an intermediate stage of Bose enhancement in the low-momentum gluon sector which due
to the gluon-pion conversion process is then reflected in the final distribution function of pions.
This pattern is very similar to the experimental finding of a low-momentum pion enhancement in
the ALICE experiment at the CERN Large Hadron Collider (LHC). Relations to the thermal statistical
model of hadron production and the phenomenon of thermal and chemical freeze-out are discussed
in this context.

Keywords: Boltzmann equation; gluon saturation; pion enhancement; ALICE; LHC; thermalization;
hadronization

1. Introduction

One of the issues which can be addressed by the kinetic approach is the question of
a low-momentum pion enhancement in heavy ion collisions [1]. There are several solutions proposed
to explain this effect as, e.g., the hadronization and freeze-out in a chemical non-equilibrium [2–4],
the separate freeze-out for strange particles [5], Bose-Einstein condensate (BEC) of pions [6–10],
established by elastic rescattering in the final stage [10,11]. However, none of them are commonly
accepted yet [8]. We believe, an explanation linked to the presence of non-equilibrium physics and
a precursor of pion condensation in heavy ion collisions should be the favorable one, especially after
the recent analysis of particle correlations performed by the ALICE collaboration is showing a coherent
fraction of charged π-meson emission that is reaching 23% [1,9]. Such formation of a Bose condensate
is usually described by the introduction of additional non-equilibrium parameters to the statistical
approach [10,12], see also [2,8,13].

An alternative scheme may rely on the Boltzmann kinetic equation for gluons and pions with
elastic rescattering and a simple model for the parton-hadron conversion process (hadronisation).
There are deep physical reasons for the non-equilibrium and pion condensation at the Large Hadron
Collider (LHC). It can be due to fast expansion and overcooling of the quark-gluon plasma (QGP),
or due to gluon condensation in the color glass condensate (CGC) initial state preceeding subsequent
hadronization of the low-momentum gluons into low-momentum pions [8]. A scenario with an
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initial state dominated by gluons which subsequently hadronize, eventually via a quarkless evolution
through a first order phase transition, has recently been considered in Ref. [14].

In this short communication we investigate the idea that a certain oversaturation of the purely
gluonic initial state could lead by elastic rescattering to a precursor of Bose condensation in the gluon
sector in the form of a low-momentum gluon enhancement which, however, should be depopulated
by the gluon-pion conversion process and thus appear as low-p pion enhancement in the pion sector.
The gluon-pion conversion process is assumed with a constant matrix element which may be pictured
as the local limit of a quark one-loop diagram for the case of large quark mass (quark confinement).
We demonstrate the evolution of the coupled gluon and pion distribution functions in this case within
a schematic model of coupled kinetic equations.

2. Kinetic Equation Approach to Thermalization and Hadronization

We start with the kinetic equation in the form of a Boltzmann-Nordheim equation, which for
a single particle distribution function f = f (�x,�p, t) can be written as

d f
dt

= C[ f ] , (1)

where

d f
dt

=
∂ f
∂�x

d�x
dt

+
∂ f
∂�p

d�p
dt

+
∂ f
∂t

(2)

and C[ f ] represents the collision integral. In this study we restrict ourselves to the case of a uniform
(∂ f /∂�x = 0) system in a non-expanding box (�F = d�p/dt = 0), therefore only the explicit
time-dependence remains: d f /dt = ∂ f /∂t ≡ ∂t f .

On the other hand, the collision integral for the 1 + 2 → 3 + 4 process is defined as:

C[ f (t,�p1)] =
(2π)4

2E1

∫
δ4(∑

i
Pi)|M|2F[ f ]

4

∏
k=2

d3�pk
(2π)32Ek

, (3)

so that the Equation (1) will take the following form:

∂t f (t,�p1) =
(2π)4

2E1

∫
δ4(∑

i
Pi)|M|2F[ f ]

4

∏
k=2

d3�pk
(2π)32Ek

, (4)

describing elastic scattering of the system of particles of one type, e.g., gluons. Here for the process
1 + 2 → 3 + 4 we define as fi the distribution function of particle i with 4-momentum Pi = (Ei,�pi),
|M| as the transition amplitude of the process, and F[ f ] = (1 + f1)(1 + f2) f3 f4 − f1 f2(1 + f3)(1 + f4)

represents the gain and loss terms in the collision integral. In the current study we consider the
distribution function to be isotropic through the whole evolution. Moreover, the matrix elements of all
the processes involved are taken to be constant:

|M|12→34 = const , (5)

following [11], where the case of a system of pions was considered. Albeit this work describes the
academic study with only constant matrix elements, the ongoing project involving momentum- and
angle-dependent transition amplitudes is discussed in the Section 4.
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As we consider an isotropic, uniform, non-expanding system and constant matrix elements for the
processes, and taking into account the 4-momentum conservation (P1 + P2 = P3 + P4), the Equation (4)
takes the form

∂t f (ε1) =
|M|2

64π3ε1

∫ ∫
dε3dε4DF[ f ] , (6)

where D = min{p1, p2, p3, p4} and pi are now the radial components of the three-momenta. Details of
the derivation are shown in the Appendix A. For future investigations it is helpful to rewrite the
Equation (6) in terms of a momentum integration, as we would like to extend the approach to the
angle-dependent collision integral, as well as to non-uniform systems. Therefore, in the current work
we use the following formula:

∂t f (p1) =
|M|2

64π3ε1

∫ ∫ p3 p4

ε3ε4
dp3dp4DF[ f ] . (7)

Obviously, elastic scattering is necessary but not sufficient to achieve low-p pion enhancement.
The second required process which needs to be accounted for is hadronization. In this exploratory work
we connect the gluon sector directly with the pion one. For such system there are three contributing
channels: ππ → ππ, gg → gg, and gg ↔ ππ. Therefore at the end we have a coupled system
of equations:

∂ fπ

∂t
(t,�p1) =

∫ ∫ |Mππ→ππ |2
64π3ε1

p3 p4

ε3ε4
dp3dp4DF[ fπ ]

+ (1 + fπ(t, p1))
∫ ∫ ∣∣Mgg→ππ

∣∣2
64π3ε1

p3 p4

ε3ε4
dp3dp4D (1 + fπ(t, p2)) fg(t, p3) fg(t, p4)

− fπ(t, p1)
∫ ∫ ∣∣Mππ→gg

∣∣2
64π3ε1

p3 p4

ε3ε4
dp3dp4D fπ(t, p2)

(
1 + fg(t, p3)

) (
1 + fg(t, p4)

)
(8a)

∂ fg

∂t
(t,�p1) =

∫ ∫ ∣∣Mgg→gg
∣∣2

64π3ε1

p3 p4

ε3ε4
dp3dp4DF[ fg]

+
(
1 + fg(t, p1)

) ∫ ∫ ∣∣Mππ→gg
∣∣2

64π3ε1

p3 p4

ε3ε4
dp3dp4D

(
1 + fg(t, p2)

)
fπ(t, p3) fπ(t, p4)

− fg(t, p1)
∫ ∫ ∣∣Mgg→ππ

∣∣2
64π3ε1

p3 p4

ε3ε4
dp3dp4D fg(t, p2) (1 + fπ(t, p3)) (1 + fπ(t, p4))

(8b)

where Mgg→ππ and Mππ→gg are matrices for hadronization channels. Note, that due to the momentum
conservation p2 = p3 + p4 − p1 in Equation (8). In this study we set Mππ→gg = 0, which is motivated
by the threshold for this process due to the large value of the gluon mass: mg = 0.7 GeV. The value of
Mgg→ππ is set to be constant and should be seen as an academic example.

As the initial condition of the system we take an oversaturated gluon distribution given by
a step-like function [15,16] inspired by the CGC picture of the initial state which is assumed to have
no pions

fπ(t, p)
∣∣∣∣
t=0

= 0 , fg(t, p)
∣∣∣∣
t=0

= f0 θ(1 − p/Qs) . (9)
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By Qs we denote the saturation scale. However, in order to avoid numerical problems that would
occur with the step-function distribution, we use instead the following smooth function [15]

fg(t, p)
∣∣∣∣
t=0

= f0

[
θ(1 − p/Qs) + θ(p/Qs − 1)e−a (p/Qs−1)2

]
, a = 10 (10)

to define the initial conditions.
We keep our model simple and therefore do not introduce an extra timescale for the start

of hadronization. However, we keep in mind that the underlying microphysical process is,
e.g., a quark-box diagram, which consists of the Breit-Wheeler type process of 2g → qq̄ and subsequent
hadronization cross section qq̄ → ππ. In the future we plan to investigate the problem of the
gluon-to-pion conversion in detail, for instance within a Nambu–Jona-Lasinio model [17–20] and/or
by exploiting dynamical schemes of hadronization that would address the confinement aspect as
well [21–24].

3. Results

In Figure 1 we show the evolution of the gluon distribution function from a CGC motivated initial
(over-)saturated gluon state to a thermal distribution due to elastic scattering according to the gg → gg
process. The timescale to reach a thermalized final state is of the order of tfinal ∼ 250 fm/c and thus
exceeds the typical duration evolution towards freeze-out of the fireball created in a heavy-ion collision.
This is mainly due to the fact that the value of the matrix element taken in this example calculation as
|M| = 4.5 is unrealistically small.

0 1 2 3 4 5 6
p, GeV

tinitial = 0 fm/c

tfinal = 257 fm/c

0

0.5

1

1.5

2

2.5

3

f n

Figure 1. (Color online) The evolution of gluon distribution function f (p) with time in a system of
massive gluons (m = 0.7 GeV). The final distribution is shown as a bold red line, while the initial
function is drawn as a bold black line. Thin black lines represent the intermediate stages of the gluon
distribution function. The final time of the evolution represents the point when the pion distribution
reaches equilibrium.

In Figure 2 we show the same evolution of the gluon distribution function for three different
values of the matrix element. The value M = 140 leads to a thermalization time scale which nicely
corresponds to the result of a calculation by Shuryak [25].
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Figure 2. (Color online) Same as Figure 1 for different matrix elements |M| = 1, 4.5, 140.

When the coupling to the pion sector is switched on, the gluon conversion proceeds and the
initially empty pion phase space gets populated at the expense of the gluon one. Due to the relation of
the gluon and pion masses the reverse process (the pion annihilation to two gluons) does not practically
take place. In Figure 3 the evolution from the initially pure gluon saturated state to the thermal pion
state without gluons is shown. The pion distribution shows clearly the low-momentum enhancement
typical for a precursor of Bose condensation. This is the fact observed in the ALICE experiment at
CERN for which we wanted to give a qualitative explanation with the simple kinetic model presented
here. It should be noted that here we used as a test the equal values for the three transition amplitudes:
|Mgg→gg| = |Mππ→ππ | = |Mgg→ππ | = 4.5.

0 1 2 3 4
p, GeV

t nal =68 fm/c

initial gluon distribution
nal gluon distribution
nal pion distribution
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Figure 3. (Color online) The evolution of pion (m = 0.14 GeV) and gluon (m = 0.7 GeV) distribution
functions f (p) with time in a coupled pion-gluon system. Blue line represents the initial gluon
distribution, while the final distributions are shown as bold black and red lines for pion and
gluon distribution functions, respectively. Thin black lines represent the intermediate stages of the
distribution functions. The final time of the evolution represents the point when the pion distribution
reaches equilibrium.

Our simplified model shows, under the assumption of gluon dominance in the initial state,
the quarkless evolution of the system towards a pion gas with low-momentum pion enhancement as
a precursor of Bose condensation. According to (8) both particle species (gluons and pions) undergo
two main processes: conversion and elastic scattering. Both of them are responsible for low-momentum
(low-p) pion enhancement.
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The fist process turns π-mesons to gluons and vice versa and its rate is defined by two matrix
elements Mππ→gg, Mgg→ππ , which in the simplest case considered here are constant numbers. Particle
conversion can take place only when energy of incoming particles is at least equal to mass of outgoing
ones. Consequently, in case of massless gluons kinematics restricts gg → ππ reaction to higher energy
region of a spectrum, making the whole process slow.

The impact of the second process (elastic scattering ) is more subtle. It lowers momentum
of particles through subsequent collisions, leading them to “pile-up” near zero momentum mode.
The effect is especially strong for bosons due to the statistical factor (1 + fi) in (8) and allows
pre-condensate formation even before thermalization. In normal circumstances for long enough
times the distribution should become an equilibrium Bose function. However, in our model massive
gluons undergo a complete conversion to pions before thermalization because mg > mπ (mg = 0.7 GeV,
while mπ = 0.14 GeV).

4. Discussion

The present model, albeit quite simple, shows the formation of the pion condensation precursor
emerging from an oversaturated purely gluonic state. The process takes place before the system
reaches equilibrium. The model can be improved by the use of non-constant matrix elements and
thus taking into account scattering angle in collision kinematics. Such an improved model would
allow us to discuss the different scales and their evolution, e.g., the Debye scale, the UV and IR scale,
see Refs. [7,11,15,26].

These improved matrix elements should also bear the confining aspects of gluon-gluon
interactions which ultimately should be responsible for the absence of gluons from the final state.
The assumption of a constant gluon mass, exceeding the value of the pion mass is a rather
schematic realization of this concept which provides ample room for improvement. Here it would
be beneficial to make a comparison with the study in Ref. [15], where a system of massless gluons
undergoes the evolution due to elastic scattering with similar restrictions as used in the current paper.
However, the Equation (7) will no longer be valid in the case of non-constant matrix elements and
angle-dependence, and thus will need to be rederived.

Another room for advancement lies in direct handling of the kinetics of Bose condensation
(see, e.g., Ref. [10]). One way to do that is the separation of the distribution function into two parts:

f̃π(p) = fπ(p) + (2π)3nπ
c δ(p) (11)

f̃g(p) = fg(p) + (2π)3ng
c δ(p) (12)

where the first term represents the “gas” and the second describes BEC. This ansatz has been discussed
for the oversaturated pion gas in Ref. [11] and recently also for the gluon plasma in Ref. [27]. We hope
to achieve manifest energy and particle number conservation with such an improved formulation of
the particle kinetics in the presence or precursory development of a Bose condensate in the system.

The model can be extended towards a more realistic description of a hadronizing gluon-dominated
initial state in high-energy heavy-ion collisions by including more hadronic species as they are observed
in those experiments in good agreement with the thermal statistical model [28]. This calls then for an
extension of the collision integrals in our kinetic model to other classes of processes than just 2 → 2
processes as, e.g., the three-meson conversion to a baryon-antibaryon pair and its reverse [29].

Last, but not least we want to mention that the assumed absence of dynamical quarks is only
a simplifying assumption. In an improved model, their kinetics shall be coupled to that of the gluons
and all considered hadron species. Their absence in the final state shall be realised due to a confining
mechanism. The one already tested in the framework of a kinetic theory is the Gribov-Zwanziger
confinement realized by an infrared-divergent selfenergy [22–24]. We shall come back to these issues
in a subsequent, more elaborate work on the subject.
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Appendix A. Collision Integral Derivation

Here we will simplify the collision integral (3):

C1[ f ] =
(2π)4

2E1

∫
δ4(∑

i
Pi)|M|2F[ f ]

4

∏
k=2

d3�pk
(2π)32Ek

(A1)

Using the identity:

δ3(∑�pi) =
∫

exp (i(�λ,�p1 + �p2 − �p3 − �p4)) · d3�λ

(2π)3 , (A2)

and separating the angle integrations:

d�pi = dϕid cos θi p2
i dpi = εi pidΩidεi (A3)

the integral takes the following form:

C1[ f ] =
|M|2

64π3ε1

∫
δ(ε1 + ε2 − ε3 − ε4)DF[ f ]dε3dε4dε2, (A4)

where D is defined as follows:

D =
p2 p3 p4

64π5

∫
λ2dλ

∫
ei(�p1,�λ)dΩλ

∫
ei(�p2,�λ)dΩ2

∫
ei(�p3,�λ)dΩ3

∫
ei(�p4,�λ)dΩ4 . (A5)

Taking into account that

∫
ei(�p1,�λ)dΩλ =

∫
ei(p1λ cos θλ)dΩλ =

∫ 2π

0
dϕ

∫ 1

−1
d cos θei(p1λ cos θλ) =

=
2π

ip1λ
eip1λx∣∣x=1

x=−1 =
2π

p1λ

eip1λ − e−ip1λ

2i
· 2 =

4π

p1λ
sin(p1λ)

(A6)

we can rewrite D as:

D =
4

πp1

∫ dλ

λ2 sin(p1λ) sin(p2λ) sin(p3λ) sin(p4λ) (A7)
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Using the Fourier transformation:

−
√

π

2
w Sign(w) =

1√
2π

∫ ∞

−∞

1
x2 eiwxdx =

1√
2π

(∫ ∞

0

1
x2 eiwxdx +

∫ ∞

0

1
(−x)2 e−iwxdx

)
=

1√
2π

∫ ∞

0

1
x2

(
eiwx + e−iwx

)
dx,

(A8)

we can simplify the integral in the formula for D:

D =
4

πp1

∫ ∞

0

dλ

λ2
eip1λ − e−ip1λ

2i
eip2λ − e−ip2λ

2i
eip3λ − e−ip3λ

2i
eip4λ − e−ip4λ

2i
=

=
1

4πp1

∫ ∞

0

dλ

λ2

(
(eiλ(p1+p2) − eiλ(p2−p1) −−eiλ(p1−p2) + eiλ(−p1−p2))(eiλ(p3+p4)−

− eiλ(p4−p3) − eiλ(p3−p4) + eiλ(−p3−p4))
)
=

=
1

4πp1

∫ ∞

0

dλ

λ2

(
eiλ(p1+p2+p3+p4) + e−iλ(p1+p2+p3+p4) − eiλ(p3+p4+p2−p1)

− e−iλ(p3+p4+p2−p1) − eiλ(p3+p4+p1−p2) − e−iλ(p3+p4+p1−p2) + eiλ(p3+p4−p1−p2)+

+ e−iλ(p3+p4−p1−p2) − eiλ(p1+p2+p4−p3) − e−iλ(p1+p2+p4−p3) + eiλ(p4−p3+p2−p1)+

+ e−iλ(p4−p3+p2−p1) + eiλ(p4−p3+p1−p2) + e−iλ(p4−p3+p1−p2) − eiλ(p4−p3−p1−p2)

− e−iλ(p4−p3−p1−p2)
)
=

=
1

4πp1
(−π)(|p1 + p2 + p3 + p4| − |p3 + p4 + p2 − p1| − |p3 + p4 + p1 − p2|

+ |p3 + p4 − p1 − p2| − |p1 + p2 + p4 − p3|+ |p4 − p3 + p2 − p1|
+ |p4 − p3 + p1 − p2| − |p4 − p3 − p1 − p2|) =

=
1

4πp1
(−π)(−4 min{p1, p2, p3, p4}) = min{p1, p2, p3, p4}

p1

(A9)

The last step in this Equation (A9) (changing to the minimum function between the four
momenta) can be easily done by checking one of the possibilities—for example, the case when
p1 = min{p1, p2, p3, p4} (or p1 < p2 < p3 < p4). Taking into account the 4-momentum conservation:
P1 + P2 = P3 + P4, we get the final result:

C[ f (ε1)] =
|M|2

64π3ε1

∫ ∫
dε3dε4DF[ f ] (A10)

where D = 1
p1

min{p1, p2, p3, p4}. In order to change the Formula (A10) to the integration over
momentum, we can use the connection between energy and momentum in the relativistic case:
ε2 = p2 + m2 → εdε = pdp, so that the Equation (A10) takes form:

C[ f (p1)] =
|M|2

64π3ε1

∫ ∫ p3 p4

ε3ε4
dp3dp4DF[ f ] . (A11)
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Abstract: Our aim is to contribute to quantum field theory (QFT) formalisms useful for descriptions of
short time phenomena, dominant especially in heavy ion collisions. We formulate out-of-equilibrium
QFT within the finite-time-path formalism (FTP) and renormalization theory (RT). The potential
conflict of FTP and RT is investigated in gφ3 QFT, by using the retarded/advanced (R/A) basis of
Green functions and dimensional renormalization (DR). For example, vertices immediately after (in
time) divergent self-energy loops do not conserve energy, as integrals diverge. We “repair” them,
while keeping d < 4, to obtain energy conservation at those vertices. Already in the S-matrix theory,
the renormalized, finite part of Feynman self-energy ΣF(p0) does not vanish when |p0| → ∞ and
cannot be split to retarded and advanced parts. In the Glaser–Epstein approach, the causality is
repaired in the composite object GF(p0)ΣF(p0). In the FTP approach, after repairing the vertices,
the corresponding composite objects are GR(p0)ΣR(p0) and ΣA(p0)GA(p0). In the limit d → 4, one
obtains causal QFT. The tadpole contribution splits into diverging and finite parts. The diverging,
constant component is eliminated by the renormalization condition 〈0|φ|0〉 = 0 of the S-matrix theory.
The finite, oscillating energy-nonconserving tadpole contributions vanish in the limit t → ∞.

Keywords: out-of-equilibrium quantum field theory; dimensional renormalization; finite-time-path
formalism

1. Introduction and Survey

In many regions of physics, the interacting processes are embedded in a medium and require a
short-time description. To respond to such demands, neither vacuum S-matrix field theory [1–5], nor
equilibrium QFT [6–16] with the Keldysh-time-path [17–28] suffice. The features, a short time after the
beginning of evolution, where uncertainty relations do not keep energy conserved, are to be treated
with the finite-time-path method. Such an approach includes many specific features that are not yet
completely understood. A particular problem, almost untreated, is handling of UV divergences of the
QFT as seen at finite time. The present paper is devoted to this problem. We consider it in the simplest
form of λφ3 QFT, but many of the discussed features will find their analogs in more advanced QED
and QCD.

Starting with perturbation expansion in the coordinate space, one performs the Wigner transform
and uses the Wick theorem. The propagators, originally appearing in matrix representation, are linearly
connected to the Keldysh base with R, A, and K components. For a finite-time-path, the lowest order
propagators and one-loop self-energies taken at t = ∞ correspond to Keldysh-time-path propagators
and one-loop self-energies. For simplicity, the label “∞” is systematically omitted throughout the
paper, except in the Appendix with technical details.

To analyze the vertices, one further separates K-component [27,28] into its retarded (K,R) and
advanced (K,A) parts:

Particles 2019, 2, 92–102; doi:10.3390/particles2010008 www.mdpi.com/journal/particles227



Particles 2019, 2

GR(p) = GA(−p) =
−i

p2 − m2 + 2ip0ε
,

GK(p) = 2πδ(p2 − m2)[1 + 2 f (ωp)]

= GK,R(p)− GK,A(p),

GK,R(p) = −GK,A(−p) = h(p0, ωp)GR(p),

ωp =
√
�p2 + m2, h(p0, ωp) = − p0

ωp
[1 + 2 f (ωp)]. (1)

Matrix propagators are (i and j take the values 1, 2):

Gij(p) =
1
2
[GK(p) + (−1)jGR(p) + (−1)iGA(p)]. (2)

Specifically:

GF(p) = G11(p) f (ωp)=0 =
−i

p2 − m2 + 2iε
, GF̄(p) = −G∗

F(p). (3)

2. Results

2.1. Conservation and Non-Conservation of Energy at Vertices

Having done all this, one obtains the vertex function (for simplicity, all the four-momenta are
arranged to be incoming to the vertex). For the simplicity of discussion, all the times corresponding
to the external vertices (j) of the whole diagram are assumed equal (x0,j,ext = t, all j; otherwise, some
factors, oscillating with time, but inessential for our discussion, would appear), so that the vertex
function becomes:

i
2π

e−it ∑i p0i

∑i p0i + iε
. (4)

This expression [27–29] integrated over some dpo,k by closing the time-path from below gives
the expected energy conserving δ(∑i p0i), with the oscillating factor reduced to one. If the integration
path catches additional singularity, say the propagator’s D(pk) pole at p̄0k, for this contribution,
conservation of energy is “spoiled” by a finite amount ΔE = ∑′

i p0i + p̄0k, and there is an oscillating
vertex function (i/2π) e−itΔE/(ΔE + iε). Note: the fact that some time is lower or higher than another,
i.e., t1 > t2 or t1 < t2, survives Wigner transform in the character of ordering (retarded or advanced)
of the two-point function.

In general, we have the following possibilities:

• If the vertex time is lower than the other times of all incoming propagators, there are additional
contributions, and energy is not conserved at this vertex. The oscillations are just what we would
expect from the Heisenberg uncertainty relations. It is how the time dependence emerges in
the finite-time-path out-of-equilibrium QFT. The ill-defined pinching singularities—products
of retarded and advanced propagators with the same (p0,�p), only partially eliminated for the
Keldysh time-path [30]—do not appear here as the propagator energies p0 and p′0 are different
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variables, so that the singularities do not coincide except at the point p0 = p′0. Thus, the pertinent
mathematical expressions are well defined.

• For some vertices, at least one incoming propagator G(p0k) is advanced (or more generally, time
is lower at the other vertex of this propagator); then, integration over the p0k (supposed to be UV
finite) re-establishes energy conservation.

• The case of UV divergent integrals is interesting; looking at integrations done separately, one
would expect energy conservation, but performing other integrals before, one notices that the
result is ill-defined. The solution is in regularization: regulated quantities are finite, and (say,
in the dimensional regularization) the energy conservation is re-established (as far as d < 4).

In the λφ3 QFT, there are two divergent subdiagrams: the tadpole diagram and self-energy
diagram, considered separately in the following subsections.

2.2. UV Divergence at the Tadpole Subdiagram

In the perturbation expansion, the tadpole diagram (Figure 1) appears as a propagator with both
ends attached to the same vertex, which is the (lower-time) end-point vertex of the second propagator.

The tadpole subdiagram without a leg is simple. Of the three components, the loop integral
vanishes for the R and A components and diverges for the K, R and K, A ones. At finite κ = 4− d, these
integrals are real constants related to the F and F̄ components. In the limit d = 4, the renormalization
performed on F and F̄ makes them finite.

igμκ/2
∫

dd p
(2π)d GR(p) = igμκ/2

∫
dd p

(2π)d GA(p) = 0,

GTad ≡− ig
∫

d4 p
(2π)4 GK,A(p) = −igμκ/2

∫
dd p

(2π)d
p0

ωp

1 + 2 f (ωp)

p2 − m2 − 2ip0ε
= igμκ/2

∫
dd p

(2π)d GK,R(p),

=⇒ −1
2

GTad = − igm2

8π2κ
− igm2

16π2 [1 − γE + ln(
4πμ2

m2 )] +O(κ) + ig
∫

d3 p
(2π)3 2 f (ωp)

= − igm2

8π2(κ)
+ f inite vacuum term + f inite f (ωp) term. (5)

(Above, and throughout the paper, γE denotes the Euler-Mascheroni constant, γE ≈ 0.5772.)
For a tadpole subdiagram with a leg (see Figure 1), we have two vertices; higher in time (t2),

which is the connection to the rest of the diagram, and lower in time (t1, t1 < t2) with the tadpole loop.
The lower vertex does not conserve energy.

One has to add contributions from vertices of Type 1 and Type 2. We write it symbolically with
the help of the Wigner transform, the connection between the Keldysh-time-path propagators and the
finite-time-path propagators at the time t′ = ∞ and transition to the R/A basis. The derivation given
in the Appendix A shows that:

Gtad,j(x2) = −GA(0, 0)GTad +
∫ dp02

2π

ieip02x02

p02 − iε
[GA(p02, 0)− GA(0, 0)]GTad . (6)

The contribution is split into the first, energy-conserving term, and the second term, oscillating
with time, in which energy is not conserved at the vertex 1 [31].

The tadpole counterterm follows the same pattern:

Gtadpole
count,j (x2) = −GA(0, 0) +

∫ dp02

2π

ieip02x02

p02 − iε
[GA(p02, 0)− GA(0, 0)]. (7)
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Notice the similarity of the expressions (6) and (7).
An important point here is that the tadpole contribution splits into two: (1) the energy-conserving

part and (2) the energy nonconserving part.
In the energy conserving part, the constant multiplying the counterterm may be adjusted to satisfy

the renormalization condition 〈0|φ|0〉 = 0 of the S-matrix theory, by which the tadpoles are completely
eliminated from perturbation expansion. Nevertheless, the terms proportional to f survive. The energy
nonconserving terms oscillate with time, with the frequency depending on the energy increment. In
the competition with the contributions of subdiagram without tadpoles, they fade with time, thus
giving the same t → ∞ limit as expected from S-matrix theory.

The g3 order tadpoles and tadpoles with the resummed loop propagator (obtainable after
renormalizing the self-energy; see further in the text) do not change our conclusions.

p1

1

2

p2

Figure 1. The tadpole diagram with a leg.

2.3. UV Divergence at the Self-Energy Subdiagram

While in the S-matrix theory, there is only Feynman (Σ1
F(p0,�p)) one-loop self energy, which

does not depend on the frame, in out-of-equilibrium FT, we have self-energies Σ1
R(p0,�p), Σ1

A(p0,�p),
and Σ1

K(p0,�p), which is frame dependent through f (ωp) (notice here that we distinguish the “true”
retarded and advanced functions from those that carry index R (A), but do not vanish for t2 > t1

(t2 < t1), except at d < 4).

Σ1
R(p0,�p) = −ig2μκ

∫ ddq
2(2π)d [GR(p0 − q0,�p −�q)GK,R(q0,�q)

+GK,R(p0 − q0,�p −�q)GR(q0,�q)] = Σ1,∗
A (p0,�p),

Σ1
K(p0,�p) = −Σ1

K,R(p0,�p) + Σ1
K,A(p0,�p) (8)
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Σ1
K,R(p0,�p) = −i g2 μκ

∫ ddq
2(2π)d [GK,R(p0 − q0,�p −�q)GK,R(q0,�q)

+ GR(p0 − q0,�p −�q)q, GR(q0,�q)] = −Σ1,∗
K,A(p0,�p). (9)

Now, all the integrals containing f (ωp) are UV finite owing to the assumed UV cut-off in the
definition of f . Vacuum contributions to Σ1

K,R are finite separately at d → 4; at d → 6, this is no longer
the case, but their sum is finite.

For retarded and advanced self-energies, imaginary parts and parts proportional to f (ωp) are UV
finite and could be calculated directly from (8). Real, vacuum parts of Σ1

R are connected to Σ1
F, and we

use the results already available from S-matrix renormalization. The connection is:

Σ1
j,k =

1
2
[−Σ1

K,R + Σ1
K,A − (−1)kΣ1

R − (−1)jΣ1
A],

ReΣ1
R, f=0 = ReΣ1

11 + Σ1
K,R, f=0 = Σ1

F + Σ1
K,R, f=0. (10)

The regularization procedure (either by making d < 4 or by introducing fictive massive particles
as in Pauli–Villars regularization) is usually considered artificial. Nevertheless, there are efforts to
generate necessary massive particles (virtual wormholes) dynamically [32].

For Σ1
F(p), we find in the literature [33]:

Σ1
F(p) =

1
2

i2g2
∫

d4q1d4q2

(2π)8 GF(q1)GF(q2)(2π)4δ(4)(q1 − q2 − p),

=
1
2

g2
∫

d4q1d4q2

(2π)8
(2π)4δ(4)(q1 − q2 − p)

(q2
1 − m2 + iε)(q2

2 − m2 + iε)
,

=⇒ 1
2

g2(μ)κ
∫ 1

0
dz

∫ ddq′

(2π)d
1

[q′2 − m2 + p2z(1 − z) + iε]2
,

=
ig2

32π2 (μ
2)κ/2Γ(κ/2)

∫ 1

0
dz[

p2z(1 − z)− m2 + iε
4πμ2 ]−κ/2. (11)

The last relation above is still causal. It is UV finite, and it allows the separation into the sum
of the retarded and advanced term. However, the expansion of [p2z(1 − z)− m2 + iε/4πμ2]−κ/2 in
power series of |κ| is allowed only when κ ln[p2/(4πμ)] << 1; thus, it is a “low energy” expansion,
and in spite of the fact that κ may be taken arbitrarily small, the limit |p0| → ∞ is never allowed.

Σ1
F(p) ≈ ig2μκ

16π2(κ)
− ig2μκ

32π2 [ γE +
∫ 1

0
dz ln[

p2z(1 − z)− m2 + iε
4πμ2 ] ]

=
ig2μκ

16π2(κ)
+ f inite. (12)

This expression is no longer causal; it is valid only if κ ln[p2/(4πμ)] << 1. One needs
the vanishing of self-energy for |p0| → ∞, i.e., the region where the opposite condition
κ ln[p2/(4πμ)] >> 1 is fulfilled. Then, |Σ1

∞,F(p)| → 0 as |p0| → ∞ as far as κ �= 0.
The integration over z gives:

Σ1
F(p) = − g2

16π2

⎧⎨⎩1
κ
− γE

2
+ 1 +

1
2

ln(4π
μ2

m2 )−
1
2

√
1 − 4m2

p2 + iε
ln

⎡⎣
√

1 − 4m2

p2+iε + 1√
1 − 4m2

p2+iε − 1

⎤⎦⎫⎬⎭ (13)
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with a high p0 limit:

ΣF(p2, m2)p2→∞ ≈ − g2

16π2

{
1
κ
− γE

2
+ 1 +

1
2

ln(4π
μ2

m2 )−
1
2

ln
[
−m2

p2

]}
. (14)

To verify the causality of the two-point function, one may try to project out the retarded part of

the finite (subtracted) part of Σ1
F(p), namely −i

∫ dp′0
2π Σ1

F, f inite(p)/(p0 − p′0 − iε), by integration
∫

dp0

over a large semicircle. However, the contribution over a very large semicircle does not vanish, and
the integral is ill defined.

Indeed, we have started from the expressions for GF (ΣF) containing only retarded and advanced
functions, and in the absence of divergence, we expect this to be the truth at the end of calculation.
Instead, the function in the last two lines of Expression (12) is not a combination of the R and A
functions, otherwise it should vanish when |p0| → ∞ and κ are chosen as arbitrarily small; such a
behavior can be shifted to an arbitrarily high scale. However, the limit κ → 0 remains always out of
reach. To preserve causality, we should keep the whole p0 complex plane. Specifically, we need the
region with large |p0|, to be able to integrate over a large semicircle in the complex p0 plane, at least
to get

∫
dp0Σ1

R(p)GK,A(p0) = 0. Thus, we have obtained a result correct at κ �= 0 and problematic at
d = 4.

Fortunately enough, there is a way to “repair” causality: the composite object GF(p)Σ1
F(p) is

vanishing when |p0| → ∞; it can be split into its retarded and advanced parts; thus, it is causal.
This sort of reparation of causality is possible in other QFT in which logarithmic UV divergence
appears. It is similar to the Glaser–Epstein [34–36] approach, where not just Σ, but GΣ are the subjects
of expansion.

In this spirit, we agree with the conclusion of [37–39]: “Our amplitudes are manifestly causal,
by which we mean that the source and detector are always linked by a connected chain of
retarded propagators.”

Similar is the problem we can see by considering λφ4 theory. In this theory, the loop of Figure 2
is a vertex diagram, and the above Glaser–Epstein philosophy does not apply. Nevertheless, the
propagator attached to the vertex depends on p0 and “improves” the convergence of dp0 integration.

1

p1

2 3

p4

4

p2

p3

Figure 2. The vertex diagram.

2.4. Self-Energy Diagram with Legs

To be able to introduce composite objects with ΣR(A), we need one of ΣR(A)’s vertices to conserve
energy. The lower in time vertex may be the minimal time vertex, so it does not help in all cases.
However, the higher in time vertex would do it, if both the integrals dq0 and dp0 converge.
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The Σij self-energy contributions with legs (see Figure 2) are:

GRΣ1
K,R ∗ GA, GR ∗ Σ1

K,AGA, GRΣ1
R ∗ GK,A, GK,R ∗ Σ1

AGA,

GRΣ1
R ∗ GA, GAΣ1

AGA, GRΣ1
RGK,R, GK,AΣ1

AGA. (15)

In the above expression, Σs are introduced in Equation (8). “∗” indicates the convolution product,
which includes the energy nonconserving vertex. Terms containing Σ1

K,R and Σ1
K,A are UV-finite,

creating no problems. The other terms, containing Σ1
R and Σ1

A, are finite as long as d < 4, and we may
obtain their real part through (11).

Two features seem potentially suspicious: (1) UV divergence in the loop defining Σ1
R(A)

, (2) the

ill-defined vertex function between GR and Σ1
R and between Σ1

A and GA.
Nevertheless, both problems are resolved at d < 4: “to be” UV divergence is subtracted and

energy conservation is recovered in the above-mentioned vertices. The composite objects GR(p)Σ1
R(p)

and Σ1
A(p)GFA(p) are now well defined.

3. Discussion and Conclusions

We examined renormalization prescriptions for the finite-time-path out-of-equilibrium λφ3 QFT
in the basis of GR, GA, GK,R, and GK,A propagators.

As expected, the number of counterterms did not change, and the formalism enables term by
term finite perturbation calculation.

There are some interesting features:

1. The integrals ensuring the energy conservation at the vertices above ΣR and ΣA should have been
done before taking the limit d = 4.

2. The renormalized self-energies (ΣF, ΣR, and ΣA) are not a linear combination of true retarded
and advanced components. This is directly readable from the final result, which does not
vanish as |p0| → ∞ in all directions in a complex plane p0. This problem is present already in
S-matrix theory, and we only recognize it properly as a causality problem, in the sense that the
expected properties of the theta-function fail: Θ(t)Θ(−t) �= 0 or Θ(t)Θ(t) �= Θ(t). While it is
not clear what harm it does to the theory, one may introduce “composite objects” GF(p)Σ1

F(p),
GR(p)Σ1

R(p), and Σ1
A(p)GA(p) to improve convergence, and the causality is “repaired”. Indeed in

the Glaser–Epstein approach, they consider the perturbation expansion, in which only self-energy
with a leg appears.

3. The tadpole contribution splits into the energy-conserving, constant component, which is
eliminated by renormalization condition, and the other energy nonconserving, time-dependent
component, is finite after subtraction. These tadpole contributions are strongly oscillating with
time and vanish as t → ∞, in good agreement with the renormalization condition < 0|φ|0 >= 0
of the S-matrix theory.

4. The regularization (d �= 4) is extended till the late phase of calculation.

The procedure is therefore generalized for application to more realistic theories (QED and QCD,
electro-weak QFT, etc.) by the following:

(A) regularize; (B) do energy-conserving integrals; (C) subtract “to be” UV infinities; (D)
deregularize (do limit d → 4).

Again, the above described Features (1) and (2) will emerge.
This work contains many of the features [40] arising in the more realistic theories like QED or

QCD. Such finite-time-path renormalization is a necessary prerequisite for the calculation of damping
rates, and other transition coefficients under the more realistic conditions truly away from equilibrium
as opposed to the results obtained within the linear response approximation.
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Our plan is to extend the exposed methods to the case of QED. Specifically, we resolve the
controversy of the UV diverging number of direct photons in the lowest order of quark QED, as
calculated by Boyanovsky and collaborators [41,42] and criticized by [43]. We find that, at the
considered one-loop order of perturbation, it is only the vacuum-polarization diagram contributing.
The renormalization leaves only finite contributions to the photon production [44].
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QFT quantum field theory
FTP finite-time-path
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DR dimensional regularization
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QED quantum electrodynamics
QCD quantum chromodynamics

Appendix

This Appendix provides the derivation of Equation (6).
The tadpole diagram, Figure 1, appears as a propagator with both ends attached to the same

vertex. We start in coordinate representation. To sum contributions from the vertices of Types 1 and 2,
we write the propagators with the help of the Wigner transform. Keldysh-time-path propagators and
the finite-time propagators become identical in the limit t′ → ∞. To translate to the R/A basis, we use
Gi,j =

1
2 [GK + (−1)jGR + (−1)iGA].

Gtad,j(x2) = igμκ/2
∫

ddx1

×[G1,1(x1, x1)G1,j(x1, x2)− G2,2(x1, x1)G2,j(x1, x2)],

= igμκ/2
∫

dd−1x1

∫ ∞

0
dx01e−ip2(x1−x2)

dd p1

(2π)d
dd p2

(2π)d

×[G1,1,x01(p1)G1,j,t(p2)− G2,2,x01(p1)G2,j,t(p2)], t =
x01 + x02

2
,

= igμκ/2
∫

dd−1x1

∫ ∞

0
dx01

dd p1

(2π)d
dd p2

(2π)d

×e−ip2(x1−x2)dp′01dp′02Px01(p01, p′01)Pt(p02, p′02)

×[G1,1,∞(p′1)G1,j,∞(p′2)− G2,2,∞(p′1)G2,j,∞(p′2)],

p′1 = (p′01,�p1), p′2 = (p′02,�p2), (A1)
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where we have used the projection operator P connecting time-dependent lowest order propagators
with time-independent lowest order propagators [27,28]:

Gt(p0,�p) =
∫ ∞

−∞
dp′0Pt(p0, p′0)G∞(p′0,�p),

Pt(p0, p′0) =
Θ(t)
2π

∫ 2t

−2t
ds0eis0(p0−p′0) =

Θ(t)
π

sin 2(p0 − p′0)t
(p0 − p′0)

,

lim
t→∞

Pt(p0, p′0) = δ(p0 − p′0),∫ ∞

−∞
dp0e−is0 p0 Pt(p0, p′0) = e−is0 p′0 Θ(t)Θ(2t − s0)Θ(2t + s0). (A2)

Here, G is a bare propagator (matrix propagator or R, A, or K propagator.)
A similar relation holds for lowest order self-energies:

Σ1
t (p0,�p) =

∫ ∞

−∞
dp′0Pt(p0, p′0)Σ1

∞(p′0,�p), (A3)

where Σ1
t is the retarded, advanced, or Keldysh self-energy.

By using the above relations, we obtain:

Gtad,j(x2) = igμκ/2
∫

dd−1x1

∫ ∞

0
dx01e−ip′2(x1−x2)

dd p′1
(2π)d

dd p′2
(2π)d

×[G1,1,∞(p′1)G1,j,∞(p′2)− G2,2,∞(p′1)G2,j,∞(p′2)],

= igμκ/2(2π)−1
∫ −i

p′02 − iε
δ(d−1)(�p′2)eip′02x02

dd p′1
(2π)d dd p′2

×[G1,1,∞(p′1)G1,j,∞(p′2)− G2,2,∞(p′1)G2,j,∞(p′2)],

= igμκ/2(2π)−1
∫ −i

p′02 − iε
δ(d−1)(�p′2)eip′02x02

dd p′1
(2π)d dd p′2

×1
2
[−GK,∞(p′1)GA,∞(p′2)− GR,∞(p′1)GK,∞(p′2)− GA,∞(p′1)GK,∞(p′2)

+(−1)jGR,∞(p′1)GR,∞(p′2) + (−1)jGA,∞(p′1)GR,∞(p′2)], (A4)

By taking the fact that tadpoles with GR and GA vanish, we obtain:

Gtad,j(x2) = igμκ/2 (2π)−1

2

∫ i
p′02 − iε

δ(d−1)(�p′2)eip′02x02

× dd p′1
(2π)d dd p′2GK,∞(p′1)GA,∞(p′2),

= (2π)−1
∫ i

p′02 − iε
eip′02x02 GA,∞(p′02, 0)dp′02GTad

GTad =
igμκ/2

2

∫
GK,∞(p′1)

dd p′1
(2π)d . (A5)
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Thus,

Gtad,j(x2) = −GA,∞(0, 0)GTad +
∫ dp′02

2π

ieip′02x02

p′02 − iε
[GA,∞(p′02, 0)− GA,∞(0, 0)]GTad. (A6)

The contribution is split into the first, energy-conserving term, and the second term, oscillating
with time, in which energy is not conserved at the vertex 1.
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29. Dadić, I. Out-of-equilibrium thermal field theories: Finite time after switching on the interaction: Fourier

transforms of the projected functions, Erratum. Nucl. Phys. A 2002, 702, 356. [CrossRef]
30. Bedaque, P.F. Thermalization and pinch singularities in nonequilibrium quantum field theory. Phys. Lett. B

1995, 344, 23. [CrossRef]
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Abstract: The fixed-target NA61/SHINE experiment (SPS CERN) looks for the critical point (CP)
of strongly interacting matter and the properties of the onset of deconfinement. It is a scan of
measurements of particle spectra and fluctuations in proton–proton, proton–nucleus, and nucleus–
nucleus interactions as a function of collision energy and system size. This gives unique possibilities
to researching critical properties of the dense hot hadronic matter created in the collision process.
New measurements and their objectives, related to the third stage of the experiment after 2020, are
presented and discussed here.

Keywords: QCD matter; phase transition; critical point

1. Introduction

The NA61/SHINE, Super Proton Synchrotron (SPS) Heavy Ion and Neutrino Experiment,
is the continuation and extension of the NA49 [1,2] measurements of hadron and nuclear fragment
production properties in fixed-target reactions induced by hadron and ion beams. It has used a similar
experimental fixed-target setup as NA49 (Figure 1), but with an extended research program. Beyond an
enhanced strong interactions program, there are the measurements of hadron production for neutrino
and cosmic ray experiments realized. NA61/SHINE is a collaboration, with about 150 physicists,
33 institutions, and 14 countries being involved.

The strong interaction program of NA61/SHINE is devoted to studying the onset of
deconfinement and search for the critical point (CP) of hadronic matter, related to the phase transition
between hadron gas (HG) and quark-gluon plasma (QGP). The first order phase boundary between
the HG and QGP phase is expected to end at the CP, as seen in Figure 2. At the CP, the sharp first-order
phase transition turns into a rapid crossover, resulting in the appearance of large fluctuations of
various observables, which are sensitive to the vicinity of the CP. The CP has long been predicted
for thermal quantum chromodynamics (QCD) at finite μB/T [3–5]. Lattice QCD calculations, which
are becoming more and more accurate, have led to the present conclusions that the cross-over region
occurs at Tc(μB = 0) = 154 ± 9 MeV [6] and the location of the CP is not expected for μB/T � 2 and
T/Tc(μB = 0) > 0.9 [7]. A more detailed exploration of the QCD phase diagram would need both new
experimental data with extended detection capabilities and improved theoretical models [8].

The NA49 experiment studied hadron production in Pb + Pb interactions, while the NA61/SHINE
collects data varying collision energy (13A–158A GeV) and the size of the colliding systems, as shown
in Figure 3. This is, in a sense, equivalent to the two-dimensional scan of the NA61/SHINE piece of the
hadronic phase diagram in the (T, μB) plane, as depicted in Figure 2. Changes in the collision energy
lead to different values of the net baryon number chemical potential μB and temperature T. Different
sizes of colliding systems allow to identify the minimum hadronic volume, which can be excited to the
state where statistical physics concepts of HG/QGP phase transition are still meaningful. The research
program was initiated in 2009, with the p + p collisions used later on as reference measurements for
heavy-ion collisions.
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Figure 1. The present NA61/SHINE detector consists of a large acceptance hadron spectrometer,
followed by a set of six Time Projection Chambers (TPCs), as well as time-of-flight (ToF) detectors.
The high resolution forward calorimeter, the projectile spectator detector (PSD), measures energy flow
around the beam direction. For hadron–nucleus interactions, the collision volume is determined by
counting the low momentum particles emitted from the nuclear target with the low momentum particle
detector (a small TPC) surrounding the target. An array of beam detectors identifies beam particles,
secondary hadrons, and nuclei, as well as primary nuclei, and measures precisely their trajectories.

Figure 2. Phase structure of hadronic matter covered by NA61/SHINE (green), compared to present
and future heavy ion experiments.

240



Particles 2018, 1

Figure 3. For the program on strong interactions NA61/SHINE scans in the system size and beam
momentum. In the plot, the recorded data are indicated in green and the approved future data in red.

Hadron production measurements for neutrino experiments are just reference measurements
of p + C interactions for the T2K experiment, since they are necessary for computing initial neutrino
fluxes at J-PARC. These measurements have been extended to the production of charged pions and
kaons in interactions with thin carbon targets and replicas of the T2K target, to test accelerator neutrino
beams [9]. The collection of data began in 2007.

Collected p + C data also allow to better understand nuclear cascades in the cosmic air
showers—necessary in the Pierre Auger and KASCADE experiments [10,11]. These are reference
measurements of p + C, p + p, π + C, and K + C interactions for cosmic ray physics. The cosmic
ray collisions with the Earth’s atmosphere produce air shower secondary radiation. Some of the
particles produced in such collisions subsequently decay into muons, which are able to reach the
surface of the Earth. Cosmic ray induced muon production would allow to reproduce primary cosmic
ray composition if the related hadronic interactions are known [12].

As seen in Figure 2, the phase structure of hadronic matter is involved. Progress in the theoretical
understanding of the subject and collecting more experimental data will allow to delve into the subject.
While the highest energies achieved at LHC and RHIC colliders provide data related to the crossover
HG/QGP regions, the SPS fixed-target NA61/SHINE experiment is particularly suited to explore the
phase transition line HG/QGP with the CP included.

Results of Initial NA61/SHINE Research

The production properties of light and medium mass hadrons, in particular pions and kaons,
have been measured [13] according to the NA61/SHINE proposal [1]. The Be + Be results are close to
p + p independently of collision energy. Moreover, the data show a jump between light (p + p, Be + Be)
and intermediate, heavy (Ar + Sc, Pb + Pb) systems [14]. The observed rapid change of hadron
production properties that starts when moving from Be + Be to Ar + Sc collisions can be interpreted
as the beginning of the creation of large clusters of strongly interacting matter—the onset of fireball.
One notes that non-equilibrium clusters produced in p + p and Be + Be collisions seem to have similar
properties at all beam momenta studied here.

The K+/π+ ratio in p + p interactions is below the predictions of statistical models. However, the
ratio in central Pb + Pb collisions is close to statistical model predictions for large volume systems [15].
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In p + p interactions, and thus also in Be + Be collisions, multiplicity fluctuations are larger than
predicted by statistical models. However, they are close to statistical model predictions for large
volume systems in central Ar + Sc and Pb + Pb collisions [16].

The two-dimensional scan conducted by NA61/SHINE by varying collision energy and nuclear
mass number of colliding nuclei indicates four domains of hadron production separated by two
thresholds: The onset of deconfinement and the onset of fireball [17]. The sketch presented in Figure 4
illustrates this preliminary conclusion. Collected Ar + Sc and Xe + La data are being analyzed to
provide further information.
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Figure 4. The onset of deconfinement and the onset of fireball. The onset of deconfinement is well
established in central Pb + Pb (Au + Au) collisions. Its presence in collisions of low mass nuclei, inelastic
p + p interactions in particular, is questionable.

Total production cross-sections and total inelastic cross-sections for reactions π++C,Al and
K++C,Al at 60 GeV/c and π++C,Al at 31 GeV/c were measured. These measurements are a key
ingredient for neutrino flux prediction from the reinteractions of secondary hadrons in current and
future accelerator-based long-baseline neutrino experiments [18].

2. New Measurements Requested

The third stage of the experiment, starting after the Long Shutdown 2 (LS-2) of the CERN
accelerator system, would include:

• Measurements of charm hadron production in Pb + Pb collisions for heavy ion physics;
• measurements of nuclear fragmentation cross-section for cosmic ray physics;
• measurements of hadron production in hadron–nucleus interactions for neutrino physics.

The proposed measurements and analysis are requested by heavy ion, cosmic ray, and neutrino
communities. A careful analysis of fluctuations and intermittency phenomena in NA61/SHINE data
collected so far is necessary to look for the CP [19].

The objective of charm hadron production measurements in Pb + Pb collisions is to obtain the
first data on the mean number of c̄c pairs produced in the full phase space in heavy ion collisions.
Moreover, further new results on the collision energy and system size dependence will be provided.
This will help to answer the questions about the mechanism of open charm production, about the
relation between the onset of deconfinement and open charm production, and about the behavior of
J/ψ in quark-gluon plasma.
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The objective of nuclear fragmentation cross-section measurements is to provide high-precision
data needed for the interpretation of results from current-generation cosmic ray experiments.
The proposed measurements are of crucial importance to extract the characteristics of the diffuse
propagation of cosmic rays in the Galaxy.

The objectives of new hadron production measurements for neutrino physics are to further
improve the precision of hadron production measurements for the currently used T2K replica
target, to perform measurements for a new target material, both for T2K-II and Hyper-Kamiokande
experiments, and to study the possibility of measurements at low incoming beam momenta (below
12 GeV/c), relevant for improved predictions of both atmospheric and accelerator neutrino fluxes.

NA61/SHINE is the only experiment which will conduct such measurements in the near future.
Together with other HIC experiments, it creates a full-tone physical picture of QCD in dense medium.
Especially concerning the strong interaction heavy-ion program, the NA61/SHINE has unique
capabilities in comparison with the other experiments (see Figure 2):

The limitations of other experiments are related to: (i) Limited acceptance, (ii) measurement of
open charm not considered in the current program, or (iii) very low cross-section at SIS-100.

Concerning other experiments’ capabilities shown at Figure 5:

• LHC and RHIC measurements of open charm at high energies are performed in a limited
acceptance due to the collider kinematics and the detector geometry. The NA61/SHINE
measurement will not be subject to these limitations [20–23];

• RHIC BES collider (
√

sNN = 7.7 − 39 GeV ): Measurement not considered in the current
program [24–26];

• RHIC BES fixed-target (
√

sNN = 3 − 7.7 GeV ): Measurement not considered in the current
program [27];

• NICA (
√

sNN < 11 GeV): Measurements during stage 2 (after 2023) are under consideration [28];
• J-PARC-HI (

√
sNN � 6 GeV): Under consideration, may be possible after 2025 [29];

• FAIR SIS-100 (
√

sNN � 5): Not possible due to the very low cross-section at SIS-100, charm
measurements are planned with SIS-300 (

√
sNN � 7 GeV), but not with the start version (timeline

is unclear).

Figure 5. Recent (red) and future (green) heavy ion facilities in the phase diagram of strongly
interacting matter.

The beam momentum range provided to NA61/SHINE by the SPS and the H2 beam line is highly
important for the heavy ion, neutrino, and cosmic ray communities. It covers:
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• Energies at which the transition from confined hadrons to quark gluon plasma in heavy ion
collisions takes place—the onset of deconfinement [30];

• proton beams of momenta used to produce neutrino beams at J-PARC, Japan and Fermilab,
US [31];

• light nuclei at momenta > 10 A GeV/c, important for the understanding of the propagation of
cosmic rays in the Galaxy [32].

Specific Research Goals

The NA61/SHINE charm program addresses questions about the validity and the limits of
statistical and dynamical models of high energy collisions in the new domain of quark mass,
mc ≈ 1300 MeV � TC ≈ 150 MeV [33]. To answer these questions, knowledge is needed on the mean
number of charm–anticharm quark pairs 〈cc̄〉 produced in the full phase space of heavy ion collisions.

Such data do not exist yet and NA61/SHINE aims to provide them within the coming years.
The related preparations have started already. In 2015 and 2016, a Small Acceptance Vertex Detector
(SAVD) was constructed and first measurements of open charm production started in 2016—Figure 6.
Vertex resolution has appeared precisely enough (30 μm) to distinguish D0 decay. That was possible
due to the fixed-target experiment-specific property, where the Lorenz factor βγ ≈ 10 makes
short-living D0 an observable particle, even in such a small acceptance vertex detector.

~13 m
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Vertex magnets
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Figure 6. Present NA61/SHINE setup with the SAVD included.

Successful performance of the SAVD in 2016 led to the decision to also use it during the collection
of Xe + La data in 2017. About 5 ∗ 106 events of central Xe + La collisions at 150A GeV/c were collected.
The Xe + La data are currently under analysis and are expected to lead to physics results in the coming
months. One expects to reconstruct several hundreds of D0 and D̄0 decays. Beyond this, about 4000 D0

and D̄0 decays can be expected to be reconstructed from the collection of Pb + Pb data in 2018. Further
data collection on Pb + Pb collisions and the reconstruction of decays of various open charm mesons
are planned by NA61/SHINE for the years 2022–2024. This would be combined with the required
detector upgrades, including a full scale, large acceptance vertex detector—now under construction.

Another domain of NA61/SHINE activity will be to measure fragmentation cross-sections relevant
for the production of Li, Be, B, C, and N nuclei. These elements are of particular importance for the
physics of cosmic rays in the Galaxy. The NA61/SHINE facility has already successfully taken
data with light ion beams [34] and can be used with practically no modifications to perform the
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needed cross-section measurements at isotope level. The ability to separate different isotopes from
fragmentation interactions for a given charge was validated with simulations [35].
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Abbreviations

The following abbreviations are used in this manuscript:

CERN Conseil Europén pour la Recherche Nucléaire
CP critical point
FAIR Facility for Antiproton and Ion Research
HG hadron gas
HIC heavy-ion collision
J-PARC Japan Proton Accelerator Research Complex
LHC Large Hadron Collider
LS long shutdown
NICA Nuclotron-based Ion Collider fAcility
QCD quantum chromodynamics
QGP quark-gluon plasma
SAVD small acceptance vertex detector
RHIC Relativistic Heavy Ion Collider
SPS Super Proton Synchrotron
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