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Abstract. An independent set in a graph is a set of vertices which are pair-

wise non-adjacent. An independent set of vertices F is a forcing independent

set if there is a unique maximum independent set I such that F ⊆ I. The

forcing independence number or forcing number of a maximum independent

set I is the cardinality of a minimum forcing set for I. The forcing number

f of a graph is the minimum cardinality of the forcing numbers for the maxi-

mum independent sets of the graph. The possible values of f are determined

and characterized. We investigate connections between these concepts, other

structural concepts, and chemical applications.
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1. Dedication

The authors dedicate this article to Prof Douglas Klein on occasion of his 70th

birthday. Doug is a passionate scientist, ebullient educator, tireless worker, and

generous supporter—and a role model for all young scientists. He is overflowing

with knowledge, history, and ideas—and eager to share them. The first author

had the privilege of spending six months with Doug in Galveston in 2012, where

he heard lots of interesting mathematics and chemistry, and tools and techniques,

which he hopes to master.

2. Introduction

An independent set in a graph is a set of vertices which are pairwise non-adjacent,

that is, a set of vertices with no edges between them. This concept appears in a vari-

ety of chemical contexts, though its full significance is not yet understood. Finding

a maximum independent set is a well-known widely-studied NP-hard problem. The

problem of finding a maximum independent set in a graph appears in a number of

practical contexts including, for instance, in measuring the complexity of sending

error-free messages.1 We will describe minimal sets which, in some sense, describe

the long-range independence structure of a graph. For instance, the identification

The first author would like to thank Prof D. J. Klein and the Welch Foundation of Houston,

Texas, for support for this research, under grant BD-0894.
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of no more than one vertex of “small” benzenoids identifies the unique maximum

independent set containing that vertex (see Figs. 5 and 7).

An independent set of vertices F is a forcing independent set (or forcing set)

if there is a unique maximum independent set I such that F ⊆ I. This concept

parallels a concept defined for matchings by Randić and Klein. We investigate

connections between forcing independent sets and other structural concepts. For

instance, if a graph has a unique maximum independent set, then F = ∅ is a

forcing set. It will also be seen that the complement of a forcing set together with

its neighbors induces a graph which has a unique maximum independent set. So

there is a strong connection between forcing independent sets and the theory of

unique maximum independent sets.2–4

2.1. Forcing Matching. A matching in a graph is a set of independent edges,

that is, a set of edges which have no vertices in common. If these edges saturate

the vertices of the graph then the graph has a perfect matching or Kekulé structure.

Randić and Klein define the degree of freedom df of a Kekulé structure M to be

the cardinality of a minimum set of independent edges F so that M is the unique

Kekulé structure with F ⊆ M .5 They show that molecular resonance energy of

a sample of benzenoids correlates strongly with the log of the sum of the degrees

of freedom of the molecule’s Kekulé structures. In the sequel Klein and Randić

compare df to other Kekulé structure-based invariants.6 More recently Vukičević,

Kroto, and Randić use df as a way to systematize their atlas of the Kekulé structures

of Buckminsterfullerene C60.7

Harary, Klein and Zivkovic define the forcing number of a matching in a way

equivalent to the definition of the degree of freedom of the matching.8 Among other

things, they give an algorithm to calculate it for benzenoids. The authors suggest

here that forcing independence would also be of interest. Klein and Rosenfeld

have generalized the notion of forcing sets of Kekulé structures to other covering

structures.9 Zhang, Ye, and Shiu have found lower bounds for the forcing matching

number of fullerenes.10 Vukičević and Trinajstić have investigated the anti-forcing

number of benzenoids, the smallest number of edges that must be removed from a

benzenoid so that a single Kekulé structure remains.11

2.2. Independence in Chemistry. Matching theory, beginning with the iden-

tification of the significance of Kekulé structures, has a long history of chemical

application. Independence theory has direct relationships with matching theory—

but its utility in chemistry is less clear.

In an alternant (or bipartite) hydrocarbon, such as the family of benzenoids,

one rule-of-thumb in discussing their stability is that species with paired carbon
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electrons will be more stable than species with free electrons. This is only a first

approximation, as isomers with paired carbon electrons are not equally stable, and

species with unpaired electrons can be stable. Nevertheless, this rule-of-thumb im-

plies that the graph of a stable alternant hydrocarbon will have a perfect matching

and, thus, that the matching number ν will be half the number of vertices.

The König-Egerváry Theorem12 guarantees that, in a bipartite graph, α+ν = n.

Thus for bipartite graphs, the matching number and independence number are

complementary invariants, where a value for one gives the value for the other. The

independence number α of an alternant hydrocarbon where all carbon electrons are

paired is half the number of atoms; for any alternant hydrocarbon with unpaired

carbon electrons, the independence number is necessarily more than half the number

of atoms.

The number of Kekulé structures in a molecule is one factor in molecular stabil-

ity (Schamlz, et al.,13 for instance, found that there are 12, 500 of these in stable

Buckminsterfullerene C60). Merrifield and Simons show that the number σ of in-

dependent sets in the graph of the alkane CnH2n+2 correlates with the heat of

formation—at least for small values of n.14 They also show that σ correlates with

the boiling points of these alkanes.

Fowler and his collaborators show that the experimentally realized structure

of C60Br24 can be predicted from 300, 436, 595, 453, 640 mathematically possible

brominated fullerene structures.15 One of the rules they used was that no sp3 car-

bons could be adjacent—that is, the brominated carbons must form an independent

set.

Fajtlowicz and Larson show that the independence number of a graph is a very

good predictor of fullerene stability: more precisely, they show that the smallest

stable fullerene isomers tend to minimize their independence numbers and that, for

these stable isomers, minimization of independence number is a better predictor of

stability than maximization of the HOMO-LUMO gap.16

3. Definitions & Examples

The independence number α of a graph is the cardinality of a maximum inde-

pendent set. For example, in the graph in Fig. 1, α = 3.

A set F is a forcing set for a maximum independent set I if F ⊆ I and I is the

only maximum independent set that contains F . By the definition, a forcing set F

for a maximum independent set I is necessarily independent. The forcing number

f(I) of a maximum independent set I is the cardinality of a minimum forcing set
3



Figure 1. The set of white vertices is a maximum independent set.

for I. The forcing number f(G) of a graph G is the minimum value of f(I) for all

maximum independent sets I. It may seem potentially confusing to use the same

vocabulary and notation for two different concepts—in fact, which concept is meant

will always be clear from the context.

Let Pn be the path on n vertices. See Fig. 2 for two examples. The graph P3

on the left has α = 2. The white vertices I are a maximum independent set. This

is the unique maximum independent set for the graph. The forcing number f(I)

for I is 0. Thus the forcing number f(P3) for P3 is 0. The graph P4 on the right

also has α = 2. The white vertices J are a maximum independent set. F = {v3}
is a minimum forcing set for J . The forcing number f(J) for J is 1. No maximum

independent set with a smaller forcing set can be found. Thus the forcing number

f(P4) for P4 is 1. It can further be argued, f(Pn) = 0 if n is odd and f(Pn) = 1 if

n is even.

v1 v2 v3 v1 v2 v3 v4

Figure 2. f(P3) = 0 and f(P4) = 1

The forcing number of different maximum independent sets in a graph can be

different. See Fig. 3 for an example. This graph has independence number α = 3.

The sets of white vertices are maximum independent sets. The forcing number of

the set of white vertices on the left is 2, while the forcing number of the set of white

vertices on the right is 1.

Computations show that the values of the forcing number are relatively small

for small connected graphs. This data is compiled in Table 3.

It is clear that, for any graph, 0 ≤ f ≤ α. Examples can be found which give

equality in these bounds. The path P3 on three vertices gives an example where
4



Figure 3. Forcing numbers for different maximum independent

sets can be different: the indicated maximum independent sets

have forcing numbers 1 and 2.

n f = 0 f = 1 f = 2 f = 3 f = 4

1 1

2 1

3 1 1

4 2 4

5 8 11 2

6 35 68 9

7 252 524 75 2

8 2994 7161 934 28

9 68665 171684 20296 432 3

10 3013075 7849829 840786 12766 115

Table 1. Forcing numbers for connected graphs of order n.

f = 0. The flower F4 in Fig. 3 is an example where f = α. We will characterize

the graphs for which equality holds in both the upper and lower bounds.

Figure 4. A flower F4 with four petals. The forcing number is 4.
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4. Fundamental Results

The independence number of a graph “behaves nicely”: if you remove a vertex

from the graph the independence number will not increase. Similarly, for any

induced subgraph H of a graph G, α(H) ≤ α(G). The same is not true for the

forcing number of a graph. The forcing number of a subgraph may be smaller or

larger than the forcing number of the parent graph. For example, P1 is a subgraph

of P2 and f(P1) ≤ f(P2); but P2 is an induced subgraph of P3 and f(P2) ≥ f(P3).

Fortunately, the forcing number does have some useful properties.

Let G be a graph with vertex set V (G). If a vertex v is adjacent to a vertex w

we write v ∼ w. The (open) neighborhood N(v) of a vertex v is the set of vertices

adjacent to v; that is N(v) = {w : v ∼ w}. The closed neighborhood N [v] of

a vertex v is N(v) ∪ {v}. These notions can be generalized to sets: the (open)

neighborhood of a set S is N(S) = ∪v∈SN(v), and the closed neighborhood of a

set S is N [S] = N(S) ∪ S. If S ⊆ V (G), the induced subgraph G[S] is the graph

with vertex set S and edge set {xy : x, y ∈ S and x ∼ y}, that is, there is an edge

between two vertices of the induced subgraph if and only if there is an edge between

the vertices in the parent graph G. For convenience, we use G − S to denote the

graph G[V (G) \ S] induced on the remaining vertices after deleting the vertices in

S.

The following result is a useful tool and, furthermore, provides some intuition of

the role of forcing sets in the independence structure of a graph.

Proposition 4.1. If F is a forcing set for a graph G then G−N [F ] has a unique

maximum independent set.

Proof. Let F be a forcing set of G corresponding to a maximum independent set

I. So I −F is a maximum independent set of G−N [F ]. Suppose J is a maximum

independent set of G−N [F ]. So F ∪ J is a maximum independent set of G. Since

F is a forcing set for G it follows that F ∪J = I and J = I −F . That is, G−N [F ]

has a unique maximum independent set. �

The following result shows that the forcing number of a graph is bounded by a

function of the number of maximum independent sets of the graph.

Proposition 4.2. Let M be the number of maximum independent sets in a graph.

For any graph, f ≤M − 1.

Proof. Let G be a graph and I1, I2, . . . , IM be the maximum independent sets in

G. For i ∈ {1, . . . ,M − 1}, let vi ∈ IM \ Ii. Let F = {v1, . . . , vM−1}. F ⊆ IM , and
6



F 6⊆ Ii, for i ∈ {1, . . . ,M − 1}. So F is a forcing set for IM . Thus f = f(G) ≤
f(IM ) ≤ |F | ≤M − 1. �

A support vertex of a graph is a vertex adjacent to a pendant vertex. So the

path P3 has a single support vertex, and any longer path has two support vertices.

Notice that a set consisting of a single support vertex is a minimum forcing set

for any path P2n with even order: the graph formed by deleting this set and its

neighbors has a unique independent set.

The main idea of the following five propositions is that vertices which are in every

maximum independent set or vertices which are not in any maximum independent

set play a special role in the theory of minimum forcing sets. Any vertex which

is in every maximum independent set will not be included in a minimum forcing

set, and vertices which are not in any maximum independent set can be deleted: a

set is a minimum forcing set for the reduced graph if and only if it is a minimum

forcing set for the parent graph.

Proposition 4.3. If v is in every maximum independent set of a graph G then

f(G) = f(G−N [v]).

Proof. Suppose v is in every maximum independent set of a graph G.

First we show that f(G) ≤ f(G − N [v]). Let F be a minimum forcing set

for G − N [v] corresponding to a maximum independent set I of G − N [v]. So

|F | = f(G−N [v]). Then I ′ = I ∪ {v} is a maximum independent set in G. Let J

be a maximum independent set of G containing F . J−v is a maximum independent

set of G−N [v]. Since F is a forcing set for G− v it follows that J − v = I − v. So

J = I and f(G) ≤ |F |.
Now we show that f(G−N [v]) ≤ f(G). Let F be a minimum forcing set for G

and I be a corresponding maximum independent set. So v ∈ I, f(G) = |F |, and

I − v is a maximum independent set in G−N [v].

We will now show that F − v is a forcing set for I − v in G − N [v]. F − v

is an independent subset of the maximum independent set I − v. Suppose J is a

maximum independent set of G − N [v] containing F − v. So J ′ = J ∪ {v} is a

maximum independent set of G containing F . Since F is a forcing set for I, it

follows that J ′ = I, and J = I − v. So f(G−N [v]) ≤ |F − v| ≤ |F | = f(G). �

The core of a graph is the set of vertices belonging to all maximum independent

sets; thus core(G) = ∩{I : I is a maximum independent set in G}. Let ξ(G) =

|core(G)|. The core of a graph is a fundamental concept in the theory of maximum

independent sets of a graph. See Ref. 17 for more information and results. In

Ref. 18 Hammer, Hansen and Simeone show that finding the core of a graph is
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NP-complete. Let the anti-core of a graph be the set of vertices which are not

in any maximum independent set. These are fundamental concept in the theory

of forcing independent sets as minimum forcing independent sets cannot contain

vertices from either the core or anti-core.

Proposition 4.4. If G is a graph then f ≤ α− ξ.

Proof. Let core(G) = {v1, . . . , vξ} and let I = {v1, . . . , vξ, vξ+1, . . . , vα} be a max-

imum independent set. Let F = {vξ+1, . . . , vα}. Since F is a forcing set for I, it

follows that f(G) ≤ |F | = |I| − |core(G)| = α− ξ. �

Proposition 4.5. For any graph G, f(G) = f(G−N [core(G)]).

Proof. One proof can be constructed by directly imitating the proof of Proposition

4.3. Another proof can be constructed by repeated application of this proposition.

Suppose core(G) = {v1, v2, . . . , vξ} is the set of vertices in every maximum inde-

pendent set of G. Let G = G1. So, f(G) = f(G1) = f(G1 − N [v1]). It is easy

to see that v2 is in every maximum independent set of G2 = G1 − N [v1]. Thus

f(G2) = f(G1−N [v1]−N [v2]) = f(G1−N [{v1, v2}]). So f(G) = f(G1) = f(G2) =

. . . = f(Gξ+1). It then follows that f(G) = f(Gξ+1) = f(G−N [core(G)]). �

Proposition 4.6. If v is in the anti-core of a graph G then f(G) = f(G− v).

Proof. First note that if v is in the anti-core of G then α(G) = α(G− v). Now let

F be a minimum forcing set of G, corresponding to a maximum independent set I;

so f(G) = |F |. So I is also a maximum independent set of G− v. It is easy to see

that F is a forcing set for I in G− v. Thus f(G− v) ≤ |F | = f(G).

Now let F ′ be a minimum forcing set for G − v, corresponding to a maximum

independent set I ′. Since v is not in any maximum independent set, I ′ is also a

maximum independent set inG. Suppose J is a maximum independent set ofG with

F ′ ⊆ J . Since J is a also a maximum independent set in G− v, and F ′ is a forcing

set, it follows that J = I ′ and F ′ is a forcing set in G. So f(G) ≤ |F ′| = f(G− v).

Thus f(G) = f(G− v), which was to be shown. �

The main idea of the following proposition and its corollary is that the search

for minimum forcing sets can be reduced to searching for minimum forcing sets in

components of the graph. For graphs G, G1, G2, we write G = G1 ∪G2 if G is the

disjoint union of G1 and G2.

Proposition 4.7. If G = G1 ∪G2 then f(G) = f(G1) + f(G2).

Proof. Let F be a minimum forcing set for G corresponding to a maximum indepen-

dent set I. Let F1 = F∩V (G1), F2 = F∩V (G2), I1 = I∩V (G1), and I2 = I∩V (G2).
8



First we will show that F1 is a forcing set for G1. Note that F1 ⊆ I1. Suppose J1

is a maximum independent set of G1 with F1 ⊆ J1. Then F ⊆ J1 ∪ I2. Since F is a

forcing set for G it follows that I1∪I2 = J1∪I2 and I1 = J1. Similarly it follows that

F2 is a forcing set for G2. So f(G1)+f(G2) ≤ |F1|+ |F2| = |F1∪F2| = |F | = f(G).

Now let F1 be a minimum forcing set for G1, corresponding to a maximum

independent set I1; and let F2 be a minimum forcing set for G2, corresponding

to a maximum independent set I2. I = I1 ∪ I2 is a maximum independent set

of G. We will show that F1 ∪ F2 is a forcing set for G. Let J be a maximum

independent set of G with F1 ∪ F2 ⊆ J . Let J1 = J ∩ V (G1) and J2 = J ∩ V (G2).

Since F1 is a forcing set for I1 and F1 ⊆ J1, it follows that I1 = J1. Similarly

it follows that I2 = J2. Thus I = J and F1 ∪ F2 is a forcing set for G. So

f(G1) + f(G2) = |F1|+ |F2| = |F1 ∪ F2| ≥ f(G). �

Corollary 4.8. If G is a graph with components G1, . . . , Gk then f(G) =
∑k
i=1 f(Gi).

5. Graphs where f = 0, k, α

5.1. Unique Maximum Independent Sets and Graphs where f = 0. The

forcing number of a graph is no less than 0 and no more than the independence

number of the graph. We now turn to characterizing graphs having specific forcing

numbers.

Any path Pn with odd n is an example of a graph with a unique maximum

independent set. If a graph G has a unique maximum independent set I then

clearly the empty set is a forcing set for I and f(G) = 0. The converse is also true.

Proposition 5.1. f = 0 if and only if G has a unique maximum independent set.

Proof. Let G be a graph. Assume first that G has a unique maximum independent

set I. The empty set ∅ ⊆ I is a forcing set for I. Suppose J is a maximum

independent set containing ∅. Since I is a unique maximum independent set, we

have I = J . So f(I) = 0, and f(G) = 0.

Assume then that f(G) = 0. Let F be a minimum forcing set in G corresponding

to a maximum independent set I; so f(I) = 0 and F = ∅. Let J be any maximum

independent set of G. Since ∅ is a forcing set for G, and ∅ ⊆ J , it follows that

I = J . Since any maximum independent set is identical to I, I is a unique maximum

independent set. �

It now follows immediately that any odd path P2n+1 has forcing number f = 0.

5.2. Graphs where f ≤ k.
9



Proposition 5.2. For any non-negative integer k, f ≤ k if and only if there is an

independent set F so that G−N [F ] has a unique maximum independent set of size

at least α(G)− k.

Proof. Let G be a graph with f ≤ k. Let F = {v1, . . . , vf} be a minimum forcing set

for G corresponding to a maximum independent set I = {v1, . . . , vf , vf+1, . . . , vα}.
So |F | = f ≤ k. Since F is a forcing set, Proposition 4.1 implies that the graph

G − N [F ] has a unique maximum independent set. Since {vf+1, . . . , vα} is an

independent set in G−N [F ], it follows that α(G−N [F ]) ≥ α(G)− f ≥ α(G)− k,

which was to be shown.

Assume now that there is an independent set F so that G−N [F ] has a unique

maximum independent set F ′ of size at least α(G) − k. Clearly f ≤ |F |. Let

I = F ∪F ′. Then α ≥ |I| = |F |+ |F ′| ≥ f + (α(G)− k). It follows that f ≤ k. �

Notice that an even path does not have a unique maximum independent set. So

f(P2n) ≥ 1. Note too that if you remove a support vertex of an even path, together

with its neighbors, the remaining graph is an odd path with a unique maximum

independent set. Since there is a maximum independent set containing this support

vertex, it then follows that f(P2n) ≤ 1. So f(P2n) = 1. A similar argument can be

made to determine the forcing number of an even cycle. Here, f(Cn) = 1.

In the case of an odd cycle (with n ≥ 5), note that the removal of a single vertex

and its neighbors gives a non-trivial even path—which does not have a unique

maximum independent set. So f(C2n+1) > 1. If two vertices v and w which are

connected by a path of length 3 (so this path has 4 vertices) and their neighbors are

removed, an even path is removed, leaving an odd path with a unique maximum

independent set. Proposition 5.2 then implies that f ≤ 2. So, f(C2n+1) = 2.

5.3. Graphs where f = α. For every value of the independence number α, there

are graphs where f = α. One example is the class of flowers Fk. Fk is formed by

identifying one vertex in each of k copies of the triangle K3; the triangles become

petals in the flower. (See Fig. 3 for an example of F4.) In Fk the center vertex is

not in any maximum independent set. Deletion of this vertex yields k copies of the

edge K2. Each maximum independent set of Fk contains exactly one vertex from

each K2. So we have that for the flowers, f(Fk) = α(Fk) = k.

Proposition 5.3. f = α if and only if there is no independent set J with |J | = α−1

and |V −N [J ]| = 1.

Proof. Assume first that f = α. Suppose there is an independent set J with

|J | = α − 1 and |V − N [J ]| = 1. So V \ (J ∪ N(J)) = {v}, for some vertex
10



v. G[{v}] has a unique maximum independent set. Thus Proposition 4.1 implies

that J is a forcing set for the maximum independent set I = J ∪ {v}. But then

f(G) ≤ |J | = α− 1, contradicting the fact that f = α.

Assume then that there is no independent set J with |J | = α − 1 and |V −
N [J ]| = 1. Let I = {v1, . . . , vα} be a maximum independent set for G. Let

J = {v1, . . . , vα−1}. By assumption G − N [J ] has at least two vertices, one of

which is vα. So J is not a forcing set for I. Since this argument holds for any

vi ∈ I, f(I) = α. And since this argument holds for any maximum independent

set, f(G) = α, which was to be shown. �

Proposition 5.4. If f = α then n− |anti-core| ≥ 2α.

Proof. Let G be a graph. Let I be a maximum independent set of G. Assume that

f = α. So α = |I|. For every v ∈ I let Iv = I − v. Proposition 5.3 implies that

|V − N [Iv]| > 1. The proof of Proposition 5.3 shows that there must be at least

two vertices in V −N [Iv] which are each in some maximum independent set (and

thus not in the anti-core). Let v′ be any vertex in V − N [Iv] besides v which is

not in the anti-core. Let J = {v′ : v ∈ I}. The vertices in J are distinct from each

other and distinct from the vertices in I, and none are in the anti-core of G. Thus

the claim follows. �

6. Benzenoids

Benzenoids are graphs which can be represented as a subgraph of the infinite

hexagonal lattice formed by taking a closed curve along the edges of this lattice.

See Ref. 19 for some basic facts about these graphs and their utility in representing

molecules of the same name. They are bipartite. Recall that ν is the matching

number of a graph and that α + ν = n for bipartite graphs (the König-Egerváry

Theorem). It follows that a non-trivial bipartite graph has at least two maximum

independent sets and thus f ≥ 1. See Fig. 5 for an example. Both the white and

black sets of vertices are a maximum independent set. This benzenoid has a perfect

matching. Any choice of a vertex in this graph uniquely picks out an associated

maximum independent set. So f = 1. Note that having a perfect matching does not

always imply that there are exactly 2 maximum independent sets. The benzenoid

in Fig. 6 has a perfect matching 3 maximum independent sets. Whether having a

perfect matching implies that f = 1 is an open question.

The class of triangulenes include examples of benzenoids with unique maximum

independent sets and, thus, forcing number f = 0. See Fig. 7 for the first three

triangulenes; T1, T2, and T3. The white sets of vertices are maximum independent

sets. It is easy to see that f(T1) = 1. In T2 at most half of the vertices in the
11



Figure 5. A linear benzenoid chain.

Figure 6. The three maximum independent sets in the smallest

hourglass benzenoid.

outside cycle belong to a maximum independent set. Since the center vertex can

be added to a choice of half of the vertices of the outside cycle, it follows that this

is a maximum independent set. Since the outside cycle has exactly two maximum

independent sets, T2 has a unique maximum independent set. Thus, f(T2) = 0. A

similar argument shows that f(T3) = 0.

Figure 7. The first three triangulenes; T1, T2, and T3. f(T1) = 1,

while f(T2) = f(T3) = 0.
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For “small” benzenoids with no more than 12 hexagons the forcing number f

is either 0 or 1. Calculations show that the situation becomes more interesting

for benzenoids with more than 12 hexagons; see Table 6. The program benzene

was used to generate complete lists of non-isomorphic benzenoids.20 The forcing

numbers were calculated using a straight-forward algorithm which checks all subsets

of the maximum independent sets until a smallest forcing set is found. The program

uses some bounding criteria and optimizations, but is still quite slow when the

forcing number and the independence number are high. The program Cliquer was

used to find all the maximum independent sets.21

hexagons f = 0 f = 1 f = 2

1 1

2 1

3 1 2

4 1 6

5 7 15

6 30 51

7 141 190

8 668 767

9 3249 3256

10 15666 14420

11 75931 65298

12 367664 301920

13 1781841 1416398 17

14 8636667 6730574 336

15 41888162 32315128 4620

Table 2. Forcing number data for benzenoids with 1 to 15 hexagons.

7. Open Problems

(1) Forcing Ratio. The forcing ratio f
n of a graph may be of some interest.

Large paths representing molecular chains should be expected to have sim-

ilar properties. But, as we saw, odd paths and even paths have different

forcing numbers: 0 for odd paths and 1 for even paths. In both cases though

the forcing ratio goes to 0. In this sense, long odd and even paths really

are “the same”. For flowers Fn the forcing ratio is n
2n+1 , which goes to 1

2

in the limit. Can a graph have a forcing ratio greater than 1
2?
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(2) Well-Covered Graphs. A graph is well-covered if every maximal indepen-

dent set is a maximum independent set. The theory of well-covered graphs

was initiated by Plummer22 in 1970 and has been extensively pursued since

then. The interest in well-covered graphs lies partly in the fact that these

are graphs where any greedy algorithm for finding a maximal independent

set yields a maximum independent set. Notice that for flowers Fk the center

vertex is not in any maximum independent set. It is the only vertex with

this property. Upon removing the center vertex, the remaining graph is

well-covered. Note too that well-covered graphs necessarily have an empty

anti-core.

Conjecture 7.1. If G is a graph with an empty anti-core and f = α then

G is well-covered.

The converse is not true. The graph P4 is a counterexample: P4 is well-

covered and has an empty anti-core, but f = 1 and α = 2.

(3) Benzenoids. When looking at the benzenoids with f = 2, we see that

most of them consist of a large part with a fixed maximum independent set

(N [core]) and 2 smaller subgraphs which each have 2 maximum indepen-

dent sets. This seems to suggest that any value for the forcing number of

benzenoids is possible, as long as the benzenoids are sufficiently large.
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