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The linear and nonlinear benchmarks between the CLT code and the M3D-C1 code for the 2/1 resistive 
tearing mode and the 1/1 resistive kink mode are presented. CLT is an explicit finite difference code, 
while M3D-C1 is an implicit finite element code. Although the implementations of CLT and M3D-C1 are 
totally different, we find that the simulation results of the resistive-kink mode and the m/n = 2/1 tearing 
mode from M3D-C1 and CLT are almost the same, including the linear and nonlinear growth rates, the 
mode structures, the nonlinear saturation levels, the Poincare plots, and the scaling laws. This confirms 
that the nonlinear results for the 1/1 resistive-kink mode and 2/1 tearing mode are accurate and reliable.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Tearing modes are a common phenomenon in tokamaks. The 
tearing modes are the primary cause of the degradation of toka-
mak performance [1] and even disruptions [2]. Sawteeth, which 
not only flatten the plasma temperature but also may trigger neo-
classical tearing modes in nearby resonant surfaces [3,4], are be-
lieved to be related to the nonlinear evolution of the resistive-kink 
mode [5,6]. It is worthwhile to investigate these instabilities to in-
crease our understanding to achieve high-performance operation 
in future fusion reactors [7,8].

The resistive tearing mode was first studied by Furth et al., 
who found that the linear growth rate asymptotically scales like 
γ ∼ S−3/5, where S is the Lundquist number [9]. The first analyt-
ical theory of the resistive-kink mode was given by Coppi et al. 
[6], who found that the linear growth rate asymptotically scales 
like γ ∼ S−1/3. Not only linear but also nonlinear theoretical stud-
ies have been reported in the past decades [10–12]. It should be 
noted that significant simplifications of the physical model and the 
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geometry are applied in these analytical studies. Simulation studies 
have been widely performed [13,14] to confirm that these assump-
tions are reasonable and gain more insight into those instabilities. 
Since the implementations of different codes are different [15–19],
and the nonlinear evolution from different simulation codes some-
times is significantly different, it is difficult to say which simula-
tions are accurate and reliable.

One way to verify the simulation results is to benchmark be-
tween different codes. This method can be useful, but it is still a 
challenge since the nonlinear simulation results can be sensitive 
to many details of the formulation, the equilibrium, the bound-
ary conditions, and the initial conditions. The M3D-C1 code is 
an implicit, three-dimensional, high-order finite-element code for 
the solution of the time-dependent linear or nonlinear two-fluid 
magnetohydrodynamic (MHD) equations in cylindrical or toroidal 
geometry [17]. The CLT code is an explicit three-dimensional finite-
difference nonlinear MHD code for toroidal geometry [19]. Al-
though they are both used to investigate MHD instabilities in toka-
maks, the implementations of the two codes are totally different. 
Benchmarking the two codes on different MHD instabilities could 
demonstrate that the simulation results of both codes are accurate 
and reliable. Benchmarks between M3D-C1 and other MHD codes 
on the linear tearing instabilities [20], the vertical displacement 
[21], the impurity dynamics [22,23], the linear growth rate of the 
edge localized modes [24], and plasma’s linear response to res-
onant magnetic perturbations (RMPs) [25] have been performed. 
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Fig. 1. The schematic diagram of the cut-cell method. The grids are divided into 6 types, i.e. regular point: 4th order central finite difference (5 points, the boundary points 
are not required); 1st type irregular points: 4th order bias finite difference (5 points, the values at the boundary points are required); 2nd type irregular points: 4th order 
central finite difference (5 points, the values at the boundary points and the 1st type irregular points are required); dropped points (inside, dZ < 0.5hZ ): not calculated in 
the specified dropped direction (because it is too close to the boundary point), but will be updated by linear interpolation for the requirement in another direction; dropped 
points (outside): not calculated; boundary points: fixed boundary condition is used at present, it will be updated to free boundary condition in the future.
Since CLT is newly developed, we have just finished the bench-
mark with MARS-F [26] on plasma’s linear response to RMPs [27].
The nonlinear benchmarks between CLT and other MHD codes are 
needed. In the present paper, the benchmarks between CLT and 
M3D-C1, including the linear and nonlinear evolutions of the tear-
ing modes and the resistive-kink mode, are presented.

2. Model descriptions, normalizations, and code 
implementations

A brief introduction of the two codes is presented in this sub-
section. It should be noted that both of the codes could include 
two-fluid MHD effects. In the present paper, we only use the 
single-fluid model; a benchmark with the two-fluid MHD model 
will be the subject of future work.

The single-fluid MHD model used in CLT [19] and M3D-C1 [28].
is as follows:

∂ρ

∂t
= −∇ · (ρv) + ∇ · [D∇(ρ − ρ0)] (1.1)

∂ p

∂t
= −v ·∇p −�p∇ ·v+∇ ·[κ⊥∇⊥(p − p0)]+∇ ·[κ||∇|| p] (1.2)

∂v

∂t
= −v · ∇v + (J × B − ∇p)/ρ + ∇ · [ν∇(v)] (1.3)

∂B

∂t
= −∇ × E (1.4)

E = −v × B + η(J − J0) (1.5)

J = 1

μ0
∇ × B. (1.6)

Here ρ , p, v, B, E, and J are the mass density, the plasma pres-
sure, the velocity, magnetic field, the electric field, and the current 
density, respectively. p0, ρ0, and J0 are the equilibrium plasma 
pressure, density, and current density, respectively. �(= 5/3) is 
the ratio of specific heat of the plasma. Note that M3D-C1 actu-
ally time-advances the magnetic vector potential, A, and not B, but 
by taking the curl of the A equation, we obtain Eq. (1.4).

All variables are normalized as follows: x/L0 → x, ρ/(n0Mi) →
ρ , p/(B2

00/μ0) → p, t/t A → t , v/v A → v, B/B00 → B, E/(v A B00) →
E, and J/(B00/μ0a) → J where L0 = 1 m is the normal length, 
2

B00 = 1 T is the normal strength of the magnetic field, n0 =
1 × 1020 m−3 is the normal particle density, Mi is the mass of 
the ion, v A = B00/

√
μ0n0Mi is the Alfvén speed, and t A = L0/v A

is the Alfvén time. The resistivity η and the diffusion coefficient 
D , the perpendicular and parallel thermal conductivity κ⊥ and 
κ|| , the viscosity ν are normalized as follows: η/(μ0L2

0/t A) →
η, D/(L2

0/t A) → D , κ⊥/(L2
0/t A) → κ⊥ , κ||/(L2

0/t A) → κ|| , and 
ν/(L2

0/t A) → ν , respectively. We have made sure that the defi-
nitions and the normalizations of these dissipation parameters are 
the same in the two codes.

Although CLT and M3D-C1 use the same physical model and 
cylindrical coordinate (R, ϕ, Z ) to solve the toroidal tokamak ge-
ometry problems, the code implementations are different. Firstly, 
the two codes adopt different methods for spatial discretization. 
The CLT code uses the fourth-order finite difference method in the 
R , ϕ , and Z directions, while the M3D-C1 code uses high-order 
triangular elements with continuous first derivatives (C1 continu-
ity) in the R and Z directions, and Hermite cubic finite elements 
in the ϕ direction [17]. In CLT, the grids are usually not located at 
the plasma boundary, which is a problem for code development. 
In the early version of CLT, we applied an interpolation method to 
solve the boundary problem [29]. However, this method reduces 
the parallel efficiency of the computation. Therefore, in the new 
version of the CLT code, we employ the cut-cell method [30] that 
is more efficient for parallelization. The schematic diagram of the 
cut-cell method is shown in Fig. 1. Along with the cut-cell method, 
we have also applied the OpenACC heterogeneous parallel pro-
gramming model into the code, which typically makes the code 
200 times faster [19]. The time advance methods in the two codes 
are also different. In CLT, the fourth-order accuracy Runge-Kutta 
explicit scheme is used for time advancing, while the θ -implicit 
method is used in M3D-C1 [17].

3. Benchmarking results

This subsection describes the linear and nonlinear benchmark 
between CLT and M3D-C1 for two major tokamak instabilities: the 
m/n = 2/1 tearing mode and the m/n = 1/1 resistive-kink mode.
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Fig. 2. The initial safety factor profile used in the m/n = 2/1 tearing mode bench-
mark.

Fig. 3. The non-uniform mesh used in the simulation of M3D-C1. We have packed 
the mesh around the q = 2 resonant surface during the simulation.

3.1. The m/n = 2/1 tearing mode

The initial safety factor profile for the m/n = 2/1 tearing mode 
benchmark is shown in Fig. 2. The formula used for the q-profile 
is given as follows:

q = q0 × (1 + (ψn/ql)
α)1/α, (1.7)

where ψn is the normalized poloidal flux, q0 = 1.75, qe = 2.5, 
α = 2.0, ql = [(qe/q0)

α − 1]−1/α , and r = √
ψn . For simplification, 

the plasma beta and the aspect ratio are set to be β ∼ 0 and 
R/a = 10/1 (a = 1m). The initial equilibrium is calculated by the 
QSOLVER code [31]. The dominant MHD instability in the system 
is the m/n = 2/1 tearing mode.

The non-uniform mesh used in M3D-C1 is shown in Fig. 3. Dur-
ing the simulation, we pack the mesh around the q = 2 resonant 
surface to accurately simulate the current sheet of the m/n = 2/1
tearing mode. A total of 4800 elements in the poloidal plane and 
Table 1
The linear growth rates of the m/n = 2/1 tearing 
are dt ∼ 8.5 × 10−3t A in CLT and dt = 1.0t A in M3
linear growth rates from the two codes is about 10

η = 1 × 10−5 η = 3 × 10−6 η =
M3D-C1 0.00178 0. 00116 0.
CLT 0.00165 0. 00104 0.

3

Fig. 4. The scaling laws of the linear growth rates on the resistivity for the tearing 
mode in CLT and M3D-C1.

16 toroidal planes are used in the nonlinear simulations. The 2D-
complex version of M3D-C1 is used for the linear simulation, and 
the 3D nonlinear version is used for the nonlinear simulation. In 
CLT, the uniform mesh with 256 × 16 × 256 (R, ϕ, Z ) is used both 
for the linear and nonlinear simulations.

We start with the linear benchmark of the two codes. Note that 
the rule for deriving the scaling law for the tearing mode or the 
resistive-kink mode is that the diffusion parameters are chosen to 
be much smaller than the resistivity. The diffusion parameters used 
in the linear benchmark are D = 1.0 × 10−8, ν = 1.0 × 10 −8, 
κ⊥ = 1.0 × 10−8, κ|| = 1.0. For simplification, we choose a con-
stant resistivity and scan from η = 1.0 × 10−5 to η = 1.0 × 10−7. 
The linear growth rates of the m/n = 2/1 tearing mode with dif-
ferent resistivity are shown in Table 1. The difference between 
the linear growth rates from the two codes is about 10% for each 
case.

As shown in Fig. 4, the scaling laws for the linear growth rate 
with the resistivity are γ ∼ η0.601 in CLT and γ ∼ η0.58 in M3D-
C1, which are both close to the asymptotic theoretical prediction
[9,32], i.e., γ ∼ η3/5. We use the linear toroidal electric field to 
represent the mode structure for comparison of the eigenfunctions 
from the two codes. As shown in Figs. 5a and 5b, the mode struc-
tures from the two codes are very similar, and both are the typical 
mode structures of the m/n = 2/1 tearing mode.

The linear benchmark of the m/n = 2/1 tearing mode indicates 
that both codes work well in the linear simulation of the tearing 
mode. To ease computational requirements, we choose the con-
stant resistivity η = 1.0 × 10−5 during the nonlinear simulations.

The nonlinear evolution of the kinetic energy for the m/n = 2/1
tearing mode from the two codes is shown in Fig. 6. The dominant 
mode in the system is the n = 1 mode, and its amplitude is much 
larger than other harmonics. In the nonlinear stage, the tearing 
mode finally saturates. The saturation level of the n = 1 mode for 
the tearing mode in CLT is about 1.5 ×10 −6, while it is 1.4 ×10 −6

in M3D-C1. The saturation levels for other harmonics from the two 
codes are also very close to each other.

The nonlinear evolutions of the growth rate for the m/n = 2/1
tearing mode from the two codes are shown in Fig. 7. The growth 
mode with different resistivity. The time-steps 
D-C1, respectively. The difference between the 
% for each case.

1 × 10−6 η = 3 × 10−7 η = 1 × 10−7

000675 0. 000330 0.000178
000604 0. 000293 0.000135
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Fig. 5. The toroidal electric field at the linear stage of the simulations (a) CLT and (b) M3D-C1, which represents the mode structure of the m/n = 2/1 tearing mode. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
Fig. 6. The nonlinear evolutions of the kinetic energy for the m/n = 2/1 tearing 
mode from the two codes. The results from M3D-C1 are artificially shifted by 4200 
t A for comparison.

Fig. 7. The nonlinear evolutions of the growth rate for the m/n = 2/1 tearing mode 
from the two codes. The results from M3D-C1 are artificially shifted by 4200 t A for 
comparison.

rate of the n = 1 mode initially stays almost unchanged during the 
long linear phase, but slowly reduces in the nonlinear phase, and 
finally becomes zero when the mode saturates.

In CLT, the initial perturbation only contains the n = 1 compo-
nent, and the n = 1 mode is the dominant mode. During the linear 
stage, the other harmonics are solely driven beat modes of the 
4

Fig. 8. The Poincare plots of the magnetic field at the saturation stage from the two 
codes (a) CLT and (b) M3D-C1.

n = 1 mode. The growth rates of the n = 2 and n = 0 modes are 
twice that of the n = 1 mode. In M3D-C1, the initial perturbation 
is random and contains all components. As a result, modes with 
different n are present from time zero. They initially decay, but 
eventually, the harmonic components of the n = 2 mode become 
dominant when the n = 1 mode grows to sufficient amplitude. The 
n = 0 mode still independently develops, but its amplitude is much 
smaller than other modes (Fig. 6) and is not important.

As shown in Fig. 8, the Poincare plots of the magnetic field at 
the saturation stage from the two codes are almost the same. The 
mode structures at the saturation stage shown in Fig. 9 (a) CLT and 
(b) M3D-C1 are very similar.

Although the implementations in CLT and M3D-C1 are different 
and the tearing mode starts from different initial perturbations, 
the linear and nonlinear behaviors and the saturation levels of the 
tearing mode from the two codes agree well with each other. This 
confirms that CLT and M3D-C1 are both excellent codes for tearing 
mode studies.

3.2. The m/n = 1/1 resistive-kink mode

The initial safety factor profile for the m/n = 1/1 resistive-kink 
mode benchmark is shown in Fig. 10. The formula used in the 
QSOLVER code is given as follows:

q = q0 +ψn[qe −q0 + (q′
e −qe +q0)(1 −ψs)(ψn − 1)/(ψn −ψs)],

(1.8)

where ψs = (q′
e − qe + q0)/(q′

e + q′
0 − 2qe + 2q0), q0 = 0.7, qe = 3.6, 

q′
0 = 2.0, and q′

e = 5.0. For simplification, the plasma beta and the 
aspect ratio are set to be β ∼ 0 and R/a = 10/1 (a = 1m). The 
initial equilibrium is calculated by the QSOLVER code [31]. The 
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Fig. 9. The mode structures at the saturation stage from the two codes (a) CLT and (b) M3D-C1.
Fig. 10. The initial safety factor profile used in the m/n = 1/1 resistive-kink mode 
benchmark.

m/n = 1/1 resistive-kink mode is the dominant mode in the sys-
tem.

The non-uniform mesh used in M3D-C1 is shown in Fig. 11. We 
packed the mesh around the q = 1 resonant surface to accurately 
simulate the current sheet of the m/n = 1/1 resistive-kink mode. A 
total of 3816 elements in the poloidal plane and 12 toroidal planes 
are used in the nonlinear simulations. The 2D-complex version of 
M3D-C1 is used for the linear simulation, and the 3D nonlinear 
version is used for the nonlinear simulation. In CLT, the uniform 
mesh with 256 × 12 × 256 (R, ϕ, Z ) is used both for the linear and 
nonlinear simulations.

Before the nonlinear benchmark, a systematical linear scan 
with the two codes is carried out. The diffusion parameters used 
in the linear simulations are D = 1.0 × 10−8, ν = 1.0 × 10 −8, 
κ⊥ = 1.0 × 10−8, κ|| = 1.0. For simplification, we choose a con-
stant resistivity and scan from η = 1.0 × 10−5 to η = 1.0 × 10−7. 
The linear growth rates of the m/n = 1/1 resistive-kink mode with 
different resistivity are shown in Table 2. The difference between 
the linear growth rates from the two codes is about 5% for each 
case.
Table 2
The linear growth rates of the m/n = 1/1 resistive-
steps are dt ∼ 8.5 × 10−3t A in CLT and dt = 1.0t A in
the linear growth rates from the two codes is abou

η = 1 × 10−5 η = 3 × 10−6 η =
M3D-C1 0. 0115 0. 00870 0.
CLT 0. 0111 0. 00837 0.

5

Fig. 11. The non-uniform mesh used in the simulation of M3D-C1. We have dense 
the mesh around the q = 1 resonant surface during the simulation.

As shown in Fig. 12, the scaling laws for the linear growth rate 
with the resistivity are γ ∼ η0.31 in CLT and γ ∼ η0.30 in M3D-
C1, respectively, which are both close to the asymptotic theoretical 
prediction [6], i.e., γ ∼ η1/3. A comparison of the linear mode 
structures is shown in Fig. 13. The mode structures in the two 
codes are both very similar to the typical mode structure of the 
m/n = 1/1 resistive-kink mode.

To again ease computing requirements, we choose a constant 
resistivity η = 1.0 × 10−5 in the nonlinear simulations. The dom-
inant mode is the n = 1 mode, and its amplitude is much larger 
than other harmonics. As shown in Fig. 14, the nonlinear evolu-
tion of the kinetic energy for the m/n = 1/1 resistive-kink mode 
from the two codes is almost the same. During the nonlinear stage, 
the kinetic energy increases, saturates, and then decreases. The 
maximum value of the kinetic energy of the n = 1 mode for the 
resistive-kink mode is 4.4 × 10 −5 in CLT, while it is 4.2 × 10 −5 in 
M3D-C1. The behavior of the other harmonics in the two codes is 
also very similar.
kink mode with different resistivity. The time-
 M3D-C1, respectively. The difference between 

t 5% for each case.

1 × 10−6 η = 3 × 10−7 η = 1 × 10−7

00640 0. 00440 0.00320
00617 0. 00428 0.00300
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Fig. 12. The scaling laws of the linear growth rates on the resistivity for the resistive-kink mode in CLT and M3D-C1.

Fig. 13. The toroidal electric field at the linear stage of the simulations (a) CLT and (b) M3D-C1, which represents the mode structure of the m/n = 1/1 resistive-kink mode.
Fig. 14. The nonlinear evolutions of the kinetic energy for the m/n = 1/1 resistive-
kink mode from the two codes. The results from M3D-C1 are artificially shifted by 
270 t A for comparison.

As shown in Fig. 15, the growth rates of the n = 1 mode initially 
stay almost unchanged during the long linear phase, then slowly 
reduces in the early nonlinear phase, and then suddenly reduces 
to a negative value. It should be pointed out that the evolution of 
the growth rates is still qualitatively the same even after the crash.

The Poincare plots of the magnetic field during the nonlinear 
stage from the two codes are shown in Fig. 16 (a) CLT and (b) 
M3D-C1. They are almost the same. The corresponding mode struc-
tures are shown in Fig. 17 (a) CLT and (b) M3D-C1.
6

Fig. 15. The nonlinear evolutions of the growth rate for the m/n = 1/1 resistive-kink 
mode from the two codes. The results from M3D-C1 are artificially shifted by 270 
t A for comparison.

Thus, although the CLT code and the M3D-C1 code are very 
different, the linear and nonlinear behaviors and the maximum ki-
netic energy of the resistive-kink mode from the two codes are 
almost the same. This gives confidence in the simulation results of 
the resistive-kink mode.

4. Summary and discussion

In the present paper, we presented a systematic benchmark 
between the CLT code and the M3D-C1 code for the linear and 
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Fig. 16. The Poincare plots of the magnetic field at the nonlinear stage from the two codes (a) CLT and (b) M3D-C1.

Fig. 17. The toroidal electric field at the nonlinear stage from the two codes (a) CLT and (b) M3D-C1.
nonlinear tearing mode and resistive-kink mode. We find that 
very similar simulation results for the resistive-kink mode and the 
m/n = 2/1 tearing mode are obtained from the two codes. We 
compared the linear and nonlinear growth rates, the mode struc-
tures, the nonlinear saturation levels, the Poincare plots, and the 
scaling laws.

CLT is an explicit finite difference code, while M3D-C1 is an 
implicit finite element code. Although they are both used to in-
vestigate MHD instabilities in tokamaks, they are totally different 
in the code implementations. As presented in the present paper, 
the simulation results for the m/n = 2/1 tearing mode and the 
resistive-kink mode from the two codes are very close. This gives 
us confidence in the nonlinear results of the two codes for this 
class of problems.

It should be noted that the simulation results from the two 
codes are not exactly the same. There are two possible reasons 
for the slight difference between the simulation results. The first 
reason is that the initial perturbations are not the same. In CLT, 
the initial perturbation only contains the n = 1 component, while, 
in M3D-C1, random perturbations (including all the components) 
are applied. This is why the development of the harmonics is sig-
nificantly different at the beginning of the simulations. However, 
the initial perturbations hardly influence the linear growth rate 
and the nonlinear evolution of the resistive-kink mode and the 
m/n = 2/1 tearing mode. The second reason is that, due to the 
different methodologies of the two codes, the initial equilibrium 
profiles are slightly different. M3D-C1 first reads the initial pro-
files from the QSOLVER code, solves the Grad-Shafranov equation, 
and then generates equilibrium consistent with its finite element 
representation before the simulation. However, the CLT code does 
not solve the Grad-Shafranov equation. CLT reads the equilibrium 
data from the QSOLVER code [31] and directly interpolates the data 
into its mesh. This means that the initial equilibria used in the two 
7

codes are slightly different, which could be why the nonlinear evo-
lution is not exactly the same.

The initial equilibriums used in the simulations are both with 
the low-beta limit (β ∼ 0) and large aspect ratio (R/a = 10/1), 
while, in typical Tokamaks, the plasma beta is a few percent and 
the aspect ratio is from R/a ∼ 3/1 to R/a ∼ 4/1. With these equi-
libriums, we can not only benchmark the simulation results with 
each other, but also benchmark our simulation results with the-
oretical predictions, i.e. the scaling law of the tearing mode is 
γ ∼ η3/5 [9], and it is γ ∼ η1/3 [6] for the resistive-kink mode. As 
a result, this type of initial equilibriums is often adopted for bench-
marking studies between different Tokamak simulation codes, and 
this is the reason why we choose such equilibriums in our simu-
lations. It should also be aware that with the finite plasma beta, 
the MHD activities in Tokamaks could be significantly different, 
and the thermal conductivities κ|| and κ⊥ then become crucial. 
The aspect ratio determines the coupling between the modes with 
different poloidal modes, and this can also be important for Toka-
maks. More complicated benchmarks between the CLT code and 
the M3D-C1 code with finite plasma beta and aspect ratio are then 
needed for further validating the two codes in the real Tokamak 
parameter regime, and will be carried out in the future.
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