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Abstract Two of the elements of the Cabibbo-Kobayashi-Maskawa quark mix-
ing matrix, |Vy,s| and |Vep|, are extracted from semileptonic B decays. The results
of the B factories, analysed in the light of the most recent theoretical calcula-
tions, remain puzzling, because for both Vi3] and |V,3| the exclusive and inclusive
determinations are in clear tension. Further, measurements in the 7 channels at
Belle, Babar, and LHCb show discrepancies with the Standard Model predictions,
pointing to a possible violation of lepton flavor universality. LHCb and Belle II
have the potential to resolve these issues in the next few years. This article sum-
marizes the discussions and results obtained at the MITP workshop held on April
9-13, 2018, in Mainz, Germany, with the goal to develop a medium-term strategy
of analyses and calculations aimed at solving the puzzles. Lattice and continuum
theorists working together with experimentalists have discussed how to reshape the
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semileptonic analyses in view of the much higher luminosity expected at Belle II,
searching for ways to systematically validate the theoretical predictions in both
exclusive and inclusive B decays, and to exploit the rich possibilities at LHCb.
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1 Executive Summary

The magnitudes of two of the elements of the Cabibbo-Kobayashi-Maskawa (CKM)
quark mixing matrix [12], |Vys| and |Vep|, are extracted from semileptonic B-
meson decays. The results of the B factories, analysed in the light of the most
recent theoretical calculations, remain puzzling, because — for both |Vi,;| and |V
— the determinations from exclusive and inclusive decays are in tension by about
30. Recent experimental and theoretical results reduce the tension, but the situ-
ation remains unclear. Meanwhile, measurements in the semitauonic channels at
Belle, Babar, and LHCb show discrepancies with the Standard Model (SM) pre-
dictions, pointing to a possible violation of lepton-flavor universality. LHCb and
the upcoming experiment Belle II have the potential to resolve these issues in the
next few years.

Thirty-five participants met at the Mainz Institute for Theoretical Physics
to develop a medium-term strategy of analyses and calculations aimed at the
resolution of these issues. Lattice and continuum theorists discussed with exper-
imentalists how to reshape the semileptonic analyses in view of the much larger
luminosity expected at Belle II and how to best exploit the new possibilities at
LHCD, searching for ways to systematically validate the theoretical predictions, to
confirm new physics indications in semitauonic decays, and to identify the kind of
new physics responsible for the deviations.

Format of the workshop

The program took place during a period of five days, allowing for ample discussion
time among the participants. Each of the five workshop days was devoted to specific
topics: the inclusive and exclusive determinations of |Vgp| and |Vi|, semitauonic
B decays and how they can be affected by new physics, as well as related subjects
such as purely leptonic B decays and heavy quark masses. In the mornings, we
had overview talks from the experimental and theoretical sides, reviewing the main
aspects and summarizing the state of the art. In the late afternoon, we organized
discussion sessions led by experts of the various topics, addressing questions that
have been brought up before or during the morning talks.
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FEzclusive heavy-to-heavy decays

The B — D™y decays have received significant attention in the last few years.
New Belle results for the ¢> and angular distributions have allowed studies of the
role played by the parametrization of the form factors in the extraction of |Vp|. It
turns out that the extrapolation to zero-recoil is very sensitive to the parametriza-
tion employed, a problem that can be solved only by precise calculations of the
form factors at non-zero recoil. Until these are completed, the situation remains
unclear, with repercussions on the calculation of R(D*) as well, with diverging
views on the theoretical uncertainty of present estimates based on Heavy Quark
Effective Theory (HQET) expressions.

Beside a critical reexamination of these recent developments, we discussed
several incremental and qualitative improvements in lattice QCD, also in baryonic
decays. Though unlikely to carry much weight in determining |V|, the latter offer
great opportunities to test lepton-flavor universality violation (LFUV) and lattice
QCD. The discussions also addressed the fact that QCD errors are now almost
as small as effects from QED. Thus, further improvement must be theoretically
made by properly studying the effect of QED radiation, especially the treatment
of soft photons and photons that are neither soft nor hard and their sensitivity to
the meson wave functions.

Concerning studies of LFUV, we discussed the role played by higher excited
charmed states in establishing new physics and the challenges that the present
R(D™) measurements represent for model building.

FEzxclusive heavy-to-light decays

This determination of |Vy| relies on nonperturbative calculations of the form
factor of B — wflr, which is the most precise channel. We discussed the status
of the light-cone sum rule (LCSR) calculations and several recent improvements
in lattice QCD, in particular the most recent results from the Fermilab Lattice
& MILC Collaborations and from the RBC & UKQCD Collaborations, as well
as future prospects. The Fermilab/MILC calculation alone leads to a remarkably
small total error on |Vy|, about 4%. While at present the most precise extraction
of |Vup| comes from B — wlyy, it is worth considering the channel Bs — K/{v as
well, because here the lattice-QCD calculations are affected by somewhat smaller
uncertainties. B; — K /v can be accessible at Belle IT in a run at the 7°(55) and a
precision of about 5-10% could be achieved with 1 fb~!. On the other hand, LHCb
has an ongoing analysis of the ratio B(Bs — K/{v)/B(Bs — Dsfv), which will
provide a new determination of |V4,5/Vep|. This approach follows the success that
LHCb demonstrated for semileptonic baryon decays via the precise measurement
of the ratio B(Ay, — puv)/(Ay — Acpv) in the high-¢? region. This measurement,
combined with precise lattice-QCD calculations of the form factors, allowed the
extraction of ratio |Vy,s/Vep| with an uncertainty of 7%. We discussed also other
channels, in particular how to study B — mnwfv including the resonant structures.
Careful studies of other heavy-to-light channels will also be crucial to improve the
signal model for the inclusive |V,,;| measurements.
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Inclusive heavy-to-heavy decays

The theoretical predictions in this case are based on an operator product expan-
sion. Theoretical uncertainties already dominate current determinations, and bet-
ter control of all higher-order corrections is needed to reduce them. In this respect,
it would be important to have the perturbative-QCD corrections to the complete
coefficient of the Darwin operator and to check the treatment of QED radiation
in the experimental analyses. A full O(a?) calculation of the total width may be
within reach with recently developed techniques. From the experimental point of
view, new and more accurate measurements will be most welcome, in particular to
better understand the correlations between different moments and moments with
different cuts. A better determination of the higher hadronic mass moments and
a first measurement of the forward-backward asymmetry would benefit the global
fit, as would a better understanding of higher power corrections. The importance
of having global fits to the moments in different schemes and by different groups
has also been stressed. This calls for an update of the 1.5 scheme fit and could lead
to a cross-check of the present theoretical uncertainties. Lattice QCD already pro-
vides inputs to the fit with the calculation of the heavy quark masses, which have
been reviewed. New developments discussed at the workshop may soon be able to
provide additional information that can be fed into the fits, such as constraints on
the heavy-quark quantities y2 and u?;. The two main approaches are i) computing
inclusive rates directly with lattice QCD and 4i) using the heavy quark expansion
for meson masses, precisely computed at different quark mass values. The state of
theoretical calculations for inclusive semitauonic decays has also been discussed,
as they represent an important cross-check of the LEUV signals.

Inclusive heavy-to-light decays

This determination is based on various well-founded theoretical methods, most of
which agree well. The 2017 endpoint analysis by BaBar seems to challenge this
consolidated picture, suggesting discrepancies between some of the methods and
a lower value of |V,3|. For the future, the complete NNLO corrections in the full
phase space should be implemented and the various methods should be upgraded
in order to make the best use of the Belle II differential data based on much
higher statistics. These data will make it possible to test the various methods
and to calibrate them, as they will contain information on the shape functions.
The SIMBA and NNVub methods seem to have the potential to fully exploit the
B — X,lv (and possibly radiative) measurements through combined fits to the
shape function(s) and |Vis|. The separation of B¥ and B° in the experimental
analyses will certainly help to constrain weak annihilation, but the real added
value of Belle II could be precise measurements of kinematic distributions in Mx,
¢°, Ey, etc. A detailed measurement of the high ¢ tail might be very useful, also
in view of attempts to check quark-hadron duality. Experimentally, better hybrid
(inclusive+exclusive) Monte Carlos are badly needed; s-5 popping should be in-
vestigated to develop a better understanding of kaon vetos. The b — ¢ background
will be measured better, which will benefit these analyses.
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Leptonic decays

The measurement of B — 7v is not yet competitive with semileptonic decays for
measuring |V,p|, because of a 20% error on the rate. Belle II will improve on this.
The corresponding lattice-QCD calculation is however very precise, with an error
below 1%, according to the 2019 report from FLAG [3] and based mainly on a result
from Fermilab/MILC that was presented at the workshop. That said, the mode
is useful today to model builders trying to understand new physics explanations
of the tension between inclusive and exclusive determinations of |V,;|. Belle II
will also access B — pwv(v) with the possibility to reach an uncertainty on the
branching fraction of about 5% with 50 ab™", allowing for a new determination of
|Vup| in the long term. We discussed also the LHCDb contribution to leptonic decays
with the process B — pppuv,, where two of the muons come from virtual  or light
vector meson decays. A study of this channel has been published in [4] and a very
stringent upper limit obtained, inconsistent with the existing branching fraction
predictions, calls for new reliable theoretical calculations.

2 Heavy-to-heavy exclusive decays

The aim of this section is to present an overview of b — ¢ exclusive decays. After an
introduction to the parametrization of the relevant form factors between hadronic
states we describe the status of current lattice QCD calculations with particular
focus on B — D* and A, — A.. Next, we discuss experimental measurements
of B — D™ semileptonic decays with special focus on the ratios R(D™*)), and
several phenomenological aspects of these decays: the extraction of V¢, theoretical
predictions for R(D)), the role of B — D** transitions and constraints on new
physics. We also briefly discuss the information that is required to reproduce results
presented in experimental analyses and to incorporate older measurements into
approaches based on modern form factor parametrizations. We conclude with the
description of HAMMER, a tool designed to more easily calculate the change in
signal acceptancies, efficiencies and signal yields in the presence of new physics.

2.1 Parametrization of the form factors

In this section, we introduce the form factors for the hadronic matrix elements that
arise in semileptonic decays. Several different notations appear in the literature,
often using different conventions depending on whether the final-state meson is
heavy (e.g., D) or light (e.g., 7). A general decomposition relies, however, only
on Lorentz covariance and other symmetry properties of the matrix elements. As
discussed below, it is advantageous to choose the Lorentz structure so that the
form factors have definite parity and spin.

In this spirit, let us consider the matrix elements for a meson decay By —
X )¢y, where the quark content of the B is bl with [ a light quark (u, d, or s),
and the quark content of the X is gl where ¢ can be either a light quark or the ¢
quark. The desired decomposition can be written as

M? —m?
mp — Mg

(X@)IS|Bay(p) = folg?), (2.1)
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Table 2.1 Quantum numbers of various meson form factors.

ot o~ 1~ 1T 2+
By =Xt fo - fy - fr
B(l) — X*lp — AO VO Aly A2 T17T27T3
M? —m? M? —m?
(XEHIVHBuy®) = [(p+p ) — ———d"| f+(@®) + Tq" fo(d?),
(2.2)
(X | Buy(p) = 222 — PP (2) (2.3)
M+m ’
* 2m * 2
X VI P|B — - .9)A 2.4
(X*()|P|Bu(p)) mermq(e 9)Ao(q%), (2.4)
* 27 va * 2
(XD Bw () = 3 e ™ ebparh V), (2.5)

€ -q

q2

*
€

24 Aold®) + (M + ) ( -

(X*(p')|A*|By(p)) = 2m

- q " M2 —m?2 .
e (A= S =] PRV N
(X" ()T |Byy (p)) = ™" { [<p ), Tid) -
2 m2 5 5
0 2T (1) - o) | (2.7
/ 2
+ (¢ -p)(er:# {Tl(qZ) —-Tu(q*) - ﬁﬁ(q?)} } :

where ¢* = (p — p)* is the momentum transfer, S = bq is the scalar current, P =
by°q is the pseudoscalar current, V* = by*q is the vector current, A" = by ysc is
the axial current, T*Y = bo*" ¢ is the tensor current, mq is the mass of the quark g,
M is the mass of the parent meson (B in this case), m (without subscript) is the
mass of the daughter meson, and » = m/M. Contracting Egs. (2.2) and with
g, and using the appropriate Ward identities shows that the scalar form factor, fo,
and pseudoscalar form factor, Ag, appear in the vector and axial vector transitions.
The J¥ quantum numbers of the form factors are given in Table The tensor
form factors in Egs. and appear in extensions of the Standard Model.

One can impose bounds on the shape of these form factors by using QCD
dispersion relations for a generic decay H, — Hq¢v. Since the amplitude for pro-
duction of HyH, from a virtual W boson is determined by the analytic contin-
uation of the form factors from the semileptonic region of momentum transfer
m? < ¢*> < M? —m? to the pair production region ¢ > M? + m?, one can find
constraints in the pair-production region, amenable to perturbative QCD calcu-
lations, and then propagate the constraint to the semileptonic region by using
analyticity. The result of this process applied to the form factors is the model-
independent Boyd-Grinstein-Lebed (BGL) parametrization [Bl6], which expands
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a form factor F'(z) in the dimensionless variable z as

1 S
F(z)= W%afz , (2.8)
2(q°5t0) = Vie—d -yt - (2.9)

Vie —@+Vir =t

where t3 = (M+m)?, Br(z) are known as the Blaschke factors, which incorporate
the below- or near-threshold [7] poles in the s-channel process v — BX, and ¢ (2)
is called the outer function. The poles, and hence the Blaschke factor, depend on
the spin and the parity of the intermediate state, which is why it is useful to
use fixed JT for the form factors. See Sec. for more detailsE| Of course, in
practical applications the series is truncated at some power z"F.

By taking certain linear combinations of form factors with the same spin and
parity one obtains the BGL notation for the helicity amplitudes,

FECY = 1y, (2.10)
v = (M? —m?) fo, (2.11)
2
= 1% 2.12
I=M+m” (212)
f=(M+m)A, (2.13)
2Mm(w? — 1
Fi=M(M+m)(w—r)A; — %AQ, (2.14)
Fa = 2A, (2.15)
leaving aside the (BSM) tensor form factors. Here the velocity transfer
M? 4 m? — ¢
U)—'UM"Um—W, (216)

with vay = p/M and v, = p’/m, is often used in heavy-to-heavy decays. For
heavy-to-light decays it can be helpful to work with the energy of the daughter
meson in the rest frame of the parent, i.e.,

M? +m?

_ 2
E=p vom= VR (2.17)

These form factors are subject to three kinematic constraints, namely

(M —m®) 2" (¢ = 0) = f79"(¢* = 0), (2.18)
(M - m)f(q2 = qgnax) =F (q2 = qfnax)a (219)

where ¢2.x = (M —m)?, corresponding to w = 1 and E = m.

1 In particular, there are cases when one should not use the naive choice t+ = (M + m)?
in Eq. (2.9). The correct choice is the branch point of a cut in the complex-¢? plane, which
sometimes is at tcuy < (M + m)2.
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The variable z can also be expressed via w,

- vw+1—+v2N
Vw+1++V2N’

where N = (t4 — to)/(t+ — t—), is real for ¢> < (M + m)?, and it becomes a
pure phase beyond that limit. The constant to defines the point at which z = 0.
Often to = t—, one end of the kinematic range, so z ranges from 0 at maximum
@® t0 zZmax = (1 — /r)?/(1 + +/7)? when m; ~ 0. Alternatively, the choice to =
(M +m)(vVM — /m)? sets z = 0 exactly in the middle of the kinematic range.
Even for B — 7wlv, z is always a small quantity, which ensures a fast convergence
of the power series defined in .

Unitarity constraints from the QCD dispersion relations are translated into
constraints for the coefficients of the BGL expansion. In general,

i (af)Q <1, (2.22)

=0

(2.21)

for each form factor F', but in the particular case of B — D*¢P the bound becomes

i {(af)z + (afﬂ <1, (2.23)

for the f and Fi form factors, because they have the same quantum numbers.
These bounds are known as the weak unitarity constraints.

A modification of the BGL parametrization by Bourrely, Lellouch and Caprini
(BCL) [8] is often chosen in analyses of heavy-to-light decays. The BCL parametriza-
tion improves BGL by fixing two artifacts of the truncated BGL series. In par-
ticular, it removes an unphysical singularity at the pair production threshold and
corrects the large ¢? behavior (see [9)10]) in the functional form. These two modi-
fications improve the convergence of the expansion. However, the kinematic range
is much more constrained in the heavy-to-heavy case, and lies farther from both
the production threshold and the large ¢* region. Therefore, the presence of far
singularities or an incorrect asymptotic behavior are not expected to spoil the
z-expansion in that case.

In the heavy-to-heavy case, one can sharpen the weak unitarity constraints
on the BGL coefficients using heavy quark symmetry (HQS) which relates the
different B*) — D®*)¢ channels and their form factors: each form factor is either
proportional to the Isgur-Wise function £(w) or zero. Using heavy quark effective
theory (HQET) one can improve the precision by introducing radiative and power
(i.e. in inverse powers of the heavy masses) corrections. Then we can define any
form factor in such a way that it admits the expansion in both as and the heavy
quark masses

F(w) = €(w) (1 +ea, 2 4 opdacD o Agop ) . (2.24)
™ mp mc
These expansions can be used to link the z expansion coefficients of different form
factors, leading to the so-called strong unitarity constraints [IT)[I2]. The power
corrections depend on subleading Isgur-Wise functions that have been estimated
with QCD sum rules [I3|[I4]15].
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Previous analyses of B — D™ /v have used the Caprini-Lellouch-Neubert (CLN)
parametrization [II]. CLN employ a notation for the form factors that satisfies
2.24) P

BGL
CLN Jo CLN _ VT
- PN 2.2
51 M2(1 —r)/r(1 +w)’ ! T2 (2:25)
Fi

ACLN — f ACLN — 2.97

! M/r(1+w)’ ° M2(1 —r)/r(1 +w)’ (2:27)
ROLN _ VN ROLN _ W1 (1—7) AGN (2.28)

LT AN > T w—1  w-—1 AFIN

where the letter naming the form factor (S, P, V and A) encodes its quantum num-
bers (scalar, pseudoscalar, vector and axial vector), and RE%N are two convenient
ratios of form factors. Sometimes the ratio RSLN = PchN/AchN is considered.

In the CLN parametrization the strong unitarity constraints obtained with
HQET at NLO are used to remove some of the coefficients of the z expansion.
Further, specific numerical coefficients are introduced in a polynomial in w for
R?’%N. The numerical values were determined using information available in 1997,
which has been partly superseded but not updated. The numerical values also omit
error estimates (which were discussed in the original CLN paper [II], although
in an optimistic manner) because at the time the experimental statistical errors
dominated, which is no longer the case. A consensus of the workshop recommends
that CLN no longer be used, certainly not unless the numerical coefficients have
been updated and the ensuing theoretical uncertainties are accounted for. It is
better to use a general form of the z expansion.

HQET naturally presents another basis for the form factors of the B —
D™y processes. Using velocities instead of momenta and otherwise mimicking
the Lorentz structure of Eqs., , and , the notation is A4+ and h_ for
B — DI{v,and hy and hy, ,, for B — D*{p. In the heavy quark limit, these form
factors tend to 1

hix (w) = nas)é(w) + O(TE2), (2.29)

,C

for X = 4, A1, A3, V, and

Aqc
hy (w) = B(as)é(w) + O(T? 2y, (2.30)
Ne
with Y = —, As. Here n(as) = 1+ O(as), while 8(as) = O(as). In this represen-
tation, the identities expressed in Eqgs. (2.18)—(2.20)) become evident.
Finally, for the case of a baryonic decay Ay — Y{(,)fv, with Y = p, A, we define

(Y 0)S1A)) = (o) = ol o), (231)
(Y|Pl As(p)) = ﬂq(p')%%go(f)ub(p% (2.32)

2 See [12] for a comprehensive table including other decays.
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YOV A(p)) = 1 (p) {(M —m) L ol )+

MAm (<p+p’>“ - L - m2>) Felad)t

(- zw) fmf)} (0, (2.33)

(Y ()| A" 4 (0)) = —1q (5 s [(M ) o)+

M((p+p) 7(1 (M? me))9+(q2)+

>-Q

(27 =00 i 30

2
(Y 0)anT™ | Ap(p)) = ~14(p) K(p iy - Lo - m2>) Lot

O m) (=2 ) ), 239

where M is the mass of the Ap, m is the mass of the daughter baryon and s+ =
(M +m)?—¢2. The z expansions for the baryonic form factors employed in Ref. [16]
use trivial outer functions and do not impose unitarity bounds on the coefficients
of the expansion. As a result, the coefficients are unconstrained and reach values

as high as ~ 10. See also Sec.

2.2 Heavy-to-heavy form factors from lattice QCD

The lattice QCD calculation of the form factors for the semileptonic decay of
a hadron uses two- and three-point correlation functions, which are constructed
from valence quark propagators obtained by solving the Dirac equation on a set
of gluon field configurations. Averaging the correlation functions over the gluon
field configurations then yields the appropriate Feynman path integral. The two-
point correlation functions give the amplitude for a hadron to be created at the
time origin and then destroyed at a time T'. The three-point correlation functions
include the insertion of a current J at time ¢ on the active quark line, changing the
active quark from one flavor to another. Usually calculations are performed with
the initial hadron at rest. Momentum is inserted at the current so that a range of
momentum transfer, ¢, from initial to final hadron can be mapped out.

The three-point correlation functions (for multiple ¢ values) and the two-point
correlation functions (with multiple momenta in the case of the final-state hadron)
are fit as functions of ¢ and T to determine the matrix elements of the currents
between initial and final hadrons that yield the required form factors. An important
point here is that the initial and final hadrons that we focus on are the ground-state
particles in their respective channels. However, terms corresponding to excited
states must be included in the fits in order to make sure that systematic effects
from excited-state contamination are taken into account in the fit parameters that
yield the ground-state to ground-state matrix element of J and hence the form
factors.
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Statistical uncertainties in the form factors obtained obviously depend on the
numbers of samples of gluon-field configurations on which correlation functions
are calculated. To improve statistical accuracy further, calculations usually in-
clude multiple positions of the time origin for the correlation functions on each
configuration. The numerical cost of the calculation of quark propagators falls as
the quark mass increases and so heavy (b and ¢) quark propagators are typically
numerically inexpensive. The accompanying light quark propagators for heavy-
light hadrons are much more expensive, especially if u/d quarks with physically
light masses are required. It is this cost that limits the statistical accuracy that can
be obtained, especially since the statistical uncertainty for a heavy-light hadron
correlation function (on a given number of gluon field configurations) also grows
as the separation in mass between the heavy and light quarks increases.

A key issue for heavy-to-heavy (b to ¢) form factor calculations is how to handle
heavy quarks on the lattice. Discretization of the Dirac equation on a space-time
lattice gives systematic discretization effects that depend on powers of the quark
mass in lattice units. The size of these effects depends on the value of the lattice
spacing and the power with which the effects appear (i.e., the level of improvement
used in the lattice Lagrangian).

Since the b quark is so heavy, its mass in lattice units will be larger than 1
on all but the finest lattices (e < 0.05 fm) currently in use. Highly-improved dis-
cretizations of the Dirac equation are needed to control the discretization effects.
A good example of such a lattice quark formalism is the highly improved stag-
gered quark (HISQ) action developed by HPQCD [I7] for both light and heavy
quarks with discretization errors appearing at O(as(am)?) and O((am)*). An al-
ternative approach is to make use of the fact that b quarks are nonrelativistic
inside their bound states. This means that a discretization of a nonrelativistic
action (NRQCD) can be used, expanding the action to some specified order in
the b quark velocity. Discretization effects then depend on the scales associated
with the internal dynamics and these scales are all much smaller than the b quark
mass. Relativistic effects can be included and discretization effects corrected at the
cost of complicating the action with additional operators. A third possibility is to
start from the Wilson quark action and improved versions of it but to tune the
parameters (such as the quark mass) using a nonrelativistic dispersion relation for
the meson, which is known as the Fermilab method [18]. This removes the leading
source of mass-dependent discretization effects, whilst retaining a discretization
that connects smoothly to the continuum limit. Again, improved versions of this
approach (such as the Oktay-Kronfeld action [I9]) include additional operators.

The ¢ quark has a mass larger than Aqcp but within lattice QCD it can
be treated successfully as a light quark because its mass in lattice units is less
than 1 on lattices in current use (with a < 0.15 fm). This means that, although
discretization effects are visible in lattice QCD calculations with ¢ quarks, they are
not large and can easily be extrapolated away accurately for a continuum result.
For example, discretization effects are less than 10% at a = 0.15 fm in calculations
of the decay constant of the D, using the HISQ action [20]. Purely nonrelativistic
approaches to the ¢ quark are therefore not useful on the lattice. There can be
some advantage for b-to-c form factor calculations in using the same action for b
and ¢, however, as we discuss below.

Because lattice and continuum QCD regularize the theory in a different way,
the lattice current J needs a finite renormalization factor to match its continuum
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counterpart so that matrix elements of J, and form factors derived from them, can
be used in continuum phenomenology. For NRQCD and Wilson/Fermilab quarks
the current J must be normalized using lattice QCD perturbation theory. Since
this is technically rather challenging it has only been done through O(«s) and this
leaves a sizeable (possibly several percent) systematic error from missing higher-
order terms in the perturbation theory. If Wilson/Fermilab quarks are used for
both b and ¢ quarks, then arguments can be made about the approach to the
heavy-quark limit that can reduce, but not eliminate, this uncertainty [21].

Relativistic treatments of the b and ¢ quarks have a big advantage here, because
J can generally be normalized in a fully nonperturbative way within the lattice
QCD calculation and without additional systematic errors. The advantages of
this approach were first demonstrated by the HPQCD collaboration using the
HISQ action to determine the decay constant of the B, [22]. The HISQ PCAC
relation normalizes the axial-vector current in this case. Calculations for multiple
quark masses on lattices with multiple values of the lattice spacing allow both the
physical dependence of the decay constant on quark mass and the dependence of
the discretization effects to be mapped out so that the physical result at the b quark
mass can be determined. This calculation has now been updated and extended to
the B meson by the Fermilab Lattice and MILC collaborations [23], achieving
better than 1% uncertainty. HPQCD is now carrying out a similar approach to
b-to-c form factor calculations [24], and the JLQCD collaboration is also working
in that direction [25] with Mobius domain-wall quarks.

An equivalent approach, using ratios of hadronic quantities at different quark
masses where normalization factors cancel, has been developed by the European
Twisted Mass collaboration using the twisted-mass action [26,27] for Wilson fermions.

2.2.1 B— D™ form factors from lattice QCD

Early lattice QCD calculations of B — D form factors were limited to the deter-
mination of G® 7P (w) = 4rf1(¢°)/(1 + r) (with notation defined near (2.16)) at
the zero-recoil point w = 1. Results include the Ny = 2 + 1 calculation of Fermi-
lab/MILC [28/29] and the Ny = 2 calculation of Atoui et al. [30]. More recently
Fermilab/MILC [31] and HPQCD [32l[33] have presented Ny = 2 + 1 calculations
of the B — D form factor at non-zero recoil based on partially overlapping subsets
of the same MILC asqtad (a® tadpole improved) ensembles.

The Fermilab/MILC calculation [31I] uses configurations with four different
lattice spacings and with pion masses in the range [260,670] MeV. The bottom
and charm quarks are implemented in the Fermilab approach. The form factors
ffHD (w) are extracted from double ratios of three point functions up to a match-
ing factor which is calculated at 1-loop in lattice perturbation theory. The results
are presented in terms of three synthetic data points which can be subsequently
fitted using any form factor parametrization. The systematic uncertainty due to
the joint continuum-chiral extrapolation is about 1.2% and dominates the error
budget.

The HPQCD calculations [32[33] rely on ensembles with two different lattice
spacings and two/three light-quark masses values, respectively. The treatment of
heavy quarks is different from that used in the Fermilab/MILC papers: the bot-
tom quark is described in NRQCD and the charm quark using HISQ. The form
factors are extracted from appropriate three-point functions and the results are
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presented in terms of the parameters of a modified BCL z expansion that incor-
porates dependence on lattice spacing and light-quark masses into the expansion
coeflicients.

In order to combine the Fermilab/MILC and HPQCD results [3], it is neces-
sary to generate a set of synthetic data which is (almost exactly) equivalent to
the HPQCD calculation. The two sets of synthetic data can then be combined
while taking into account the correlation due to the fact the Fermilab/MILC and
HPQCD share MILC asqtad configurations. As mentioned above, dominant uncer-
tainties are of systematic nature, implying that this correlation (whose estimate is
rather uncertain) is a subdominant effect. A simultaneous fit of Fermilab/MILC
and HPQCD synthetic data together with the available Belle and Babar data
yields a determination of |V.| with an overall 2.5% uncertainty (dominated by
the experimental error which contributes about 2% to the total error).

Finally, both collaborations present values for both the fi and fo form factors,
which allow for a lattice only calculation of the SM prediction for R(D). The
uncertainty on the Fermilab/MILC and HPQCD combined determination of R(D),
without experimental input, is about 2.5% and is negligible compared to current
experimental errors.

The advantage of an approach in which currents can be nonperturbatively
normalised has been demonstrated by HPQCD for Bs — Dy form factors in [34].
They use the HISQ action for all quarks, extending the method developed for decay
constants. The range of heavy quark masses can be increased on successively finer
lattices (keeping the value in lattice units below 1) until the full range from c to
b is reached. The full ¢ range of the decay can also be covered by this method
since the spatial momentum of the final state meson (which should also be less
than 1 in lattice units) grows in step with the heavy meson/quark mass. Results
from [34] improve on the uncertainties obtained in [33] with NRQCD b quarks and
this promising all-HISQ approach is now being extended to other processes.

Calculations of B — D™ form factors at non-zero recoil are considerably more
involved due to difficulties in describing the resonant D* — D decay. Up to now,
lattice QCD simulations have focused on the single B — D* form factor that
contributes to the rate at zero recoil, A1(q2,qz). The quantity generally quoted is
ha, (1) where

_ Mg+ Mp-

A1 (Ghax 2.36
SWAYISIne 1(Gimax) (2.36)

ha, (1)
The combination of the lattice QCD result and the experimental rate, extrapolated
to zero recoil, yields a value for V.

The Fermilab Lattice/MILC Collaborations have achieved the highest precision
for this result so far [35]. They use improved Wilson quarks within the Fermilab
approach for both b and ¢ quarks and work on gluon field configurations that
include u/d (with equal mass) and s quarks in the sea (ny = 2 + 1) using the
asqtad action. By taking a ratio of three-point correlation functions they are able
simultaneously able to improve their statistical accuracy and reduce part of the
systematic uncertainty from the normalization of their current operator. Their re-
sult is h4, (1) = 0.906(4)(12) where the uncertainties are statistical and systematic
respectively. Their systematic error is dominated by discretization effects. They
take the systematic uncertainty from missing higher-order terms in the perturba-
tive current matching [36] to be 0.1a2.
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Fig. 2.1 Plot taken from Ref. [24] showing the comparison of lattice QCD results for h 4, (1)
(left side) and h% (1) (right side). Raw results for ha, (1) are from [37] and [35] and are

plotted as a function of valence (=sea) light quark mass, given by the square of M. On the
right are points for hf41 (1) from [37] plotted at the appropriate valence mass for the s quark,

but obtained at physical sea light quark masses. The final result for h 4, (1) from [35], with its
full error bar, is given by the inverted blue triangle. The inverted red triangles give the final
results for ha, (1) and A% (1) from [37]. The HPQCD results of [24] are given by the black
stars.

The HPQCD collaboration have calculated h 4, (1) on gluon field configurations
that include ny = 2+ 1+ 1 HISQ sea quarks using NRQCD b quarks and HISQ ¢
quarks [37]. Their result, ha, (1) = 0.895(10)(24) has a larger uncertainty, domi-
nated by the systematic uncertainty of 0.502 allowed for in the current matching.
They were also able to calculate the equivalent result for Bs — D}, obtaining
hi, (1) = 0.879(12)(26) and demonstrating that the dependence on light quark
mass is small. The B; — D} provides a better lattice QCD comparison point than
B — D™ because it has less sensitivity to light quark masses (in particular the
D* D ‘cusp’) and to the volume. More recently the HPQCD collaboration have
used the HISQ action for all quarks, with a fully nonperturbative current nor-
malization, to determine h% (1) [24]. Their result, h% (1) = 0.9020(96)(90) agrees
well with the earlier results and has smaller systematic uncertainties. Figure 2-]]
compares the three results.

The importance of being able to compare lattice QCD and experiment away
from the zero recoil point is now clear and several lattice QCD calculations are
underway, attempting to cover the full g2 range of the decay and all 4 form factors.
This includes calculations for B — D* from JLQCD [25] with M&bius domain-
wall quarks, Fermilab/MILC [38] (see also talk at Lattice 2019) with improved
Wilson/Fermilab quarks and LANL/SWME with an improved version of this for-
malism known as the Oktay-Kronfeld action [39]. Calculations for other b-to-c
pseudoscalar-to-vector form factors, Bs — Dj [40] and B. — (J/v,n.) are also
underway from HPQCD [411/42] using the all-HISQ approach. At the same time fur-
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ther B — D and Bs — D, form factor calculations are in progress, including those
using a variant of the Fermilab approach known as Relativistic Heavy Quarks on
RBC/UKQCD configurations [43]. In future we should be able to compare results
from multiple actions with experiment for improved accuracy in determining |Vep|.

2.2.2 Ay — AL form factors from lattice QCD

The Ay — A, form factors have been calculated with 2+1 dynamical quark flavors;
the vector and axial vector form factors can be found in Ref. [16], while the tensor
form factors (which contribute to the decay rates in many new-physics scenarios)
where added in Ref. [44]. This calculation used two different lattice spacings of
approximately 0.11 fm and 0.08 fm, sea quark masses corresponding to pion masses
in the range from 360 down to 300 MeV, and valence quark masses corresponding
to pion masses in the range from 360 down to 230 MeV. The lattice data for the
form factors, which cover the kinematic range from near ¢2,, ~ 11 GeV? down
to ¢*> ~ 7 GeV?, were fitted with a “modified” version of the BCL z expansion [§]
discussed in Sec. where simultaneously to the expansion in z, an expansion in
powers of the lattice spacing and quark masses is performed. No dispersive bounds
were used in the z expansion here (this is something that can perhaps be improved
in the future, see also Sec. . The form factors extrapolated to the continuum
limit and physical pion mass yield the following Standard Model predictions:

1 _ _
Wf(xlb — Acp”7y) = (21.5 £ 0.8gtat £ 1.1gyst) ps (2.37)

for the fully integrated decay rate, which has a total uncertainty of 6.3% (corre-
sponding to a 3.2% theory uncertainty in a possible |V,;| determination from this
decay rate),

1 [Tmex dD(Ap — Ae p™ 0 _
/ dl(Ap = Ae p7 W) g2 (8.37 4 0.16 stat & 0.34ayst) PS~* (2.38)
7

Ves|? J7 geve dg?

for the partially integrated decay rate, which has a total uncertainty of 4.5%
(corresponding to 2.3% for |V |), and

. F(Ab —>ACT_17¢)
o F(Ab — Ac /L_ﬂ“)

R(A.) = 0.3328 £ 0.0074sat £ 0.00704ysc  (2.39)

for the lepton-flavor-universality ratio, which has a total uncertainty of 3.1%. The
systematic uncertainties of the vector and axial vector form factors are dominated
by finite-volume effects and the chiral extrapolation. Both of these can be re-
duced substantially in the future by adding a new lattice gauge field ensemble
with physical light-quark masses and a large volume, and dropping the “partially
quenched” data sets that have erV"“) < meea) . Adding another ensemble at a
third, finer lattice spacing will also be beneficial to better control the continuum
extrapolation.

At this workshop, there was some discussion about the validity of the modi-
fied z expansion; it has been argued that it would be safer to first perform chi-
ral/continuum extrapolations and then perform a secondary z expansion fit. This
is expected to make a difference mainly if nonanalytic quark-mass dependence



16 P. Gambino! et al.

from chiral perturbation theory is included. However, the fits used in Ref. [16] for
the A, form factors were analytic in the lattice spacing and light-quark mass. Note
that the shape of the Ay, — Ac p~ 7, differential decay rate was later measured by
LHCb, and found to be in good agreement with the lattice QCD prediction all the
way down to ¢® = 0 [45].

Motivated by the prospect of an LHCb measurement of R(A}), work is now
also underway to compute the A, — A} form factors in lattice QCD, for the
A%(2595) and A7 (2625), which have J¥ = %_ and JP = %_, respectively. Prelim-
inary results were shown at the workshop. For these form factors, the challenge
is that, to project the A} interpolating field exactly to negative parity and avoid
contamination from the lower-mass positive parity states, one needs to perform
the lattice calculation in the A} rest frame. With the b-quark action currently in
use, discretization errors growing with the A, momentum then limit the accessible
kinematic range to a small region near g2, To predict R(A}), it will be necessary
to combine the lattice QCD results for the form factors in the high-¢? region with
heavy-quark effective theory and LHCb data for the shapes of the Ay — A% ™ v,
differential decay rates [40].

2.3 Measurements of B — D) ¢y and related processes
2.3.1 Measurements with light leptons

The decays B — D*fv and B — D/{v have been measured at Belle and BaBar as
well as at older experiments (CLEO, LEP). Unfortunately, most of these measure-
ments assume the Caprini-Lellouch-Neubert parametrization of the form factors
(see Sec. and report results in terms of V| times the only form factors rel-
evant at the zero-recoil point w = 1, namely F(1) = ha,(1) for B — D*¢v and
G(1) = 2v/MpMp/(Mp + Mg))f+(1) for B — D{lv, and of the other CLN pa-
rameters, instead of a general form of the z expansion or the raw spectra. The
Heavy Flavor Averaging Group (HFLAV) has performed an average of these CLN
measurements [47] and reports

newF(1)|Vep| = (35.27 4 0.11(stat) + 0.36(syst)) x 1072, (2.40)
newG(1)|[Ves| = (42.00 £ 0.45(stat) + 0.89(syst)) x 107> . (2.41)

Notice that Eq. together with h 4, (1) = 0.904(12) [3] leads to the low value
|Ves| = 38.76(69)10 °. Eq. together with G(1) = 1.0541(83) [31] leads to a
consistent result |Vop| = 39.58(99)107>. In the case of B — D{v one can also use
the existing lattice calculations at non-zero recoil [311[32] to guide the extrapolation
to zero recoil, together with the w spectrum measured by Belle [48]. In the BGL
parametrization, this leads to a higher value, |V.| = 40.83(1.13)107%, a more
reliable determination than (2.41)). In the following we will have a closer look at
the most recent measurements by the various experiments.

Belle has recently updated the untagged measurement of the B — D*~¢Tv
mode [49]. While the new analysis is based on the same 711 fb™' Belle data
set, the re-analysis takes advantage of a major improvement of the track re-
construction software, which was implemented in 2011, leading to a substan-
tially higher slow pion tracking efficiency and hence to much larger signal yields
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than in the previous publication [50]. Again D** mesons are reconstructed in
the cleanest mode, D*t — D%t followed by D° — K—xt, combined with a
charged, light lepton (electron or muon) and yields are extracted in 10 bins for
each of the 4 kinematic variables describing the B® — D*~¢Tv decay. These
yields are published along with their full error matrix. The updated publication
also contains an analysis of these yields using both the CLN and the BGL form
factors (where BGL has only 5 free parameters). The CLN analysis results in
newF(1)|Ves| = (35.06 & 0.15(stat) + 0.56(syst)) x 1073, while the BGL fit gives
newF(1)|Ve| = (34.93 + 0.23(stat) £ 0.59(syst)) x 10>, Both results are thus
well consistent. This contrasts with a tagged measurement of B® — D*~ ¢+ first
shown by Belle in November 2016 [5I]. Analyzing the raw data of this measure-
ment in terms of the CLN and BGL form-factors gives a difference of almost two
standard deviations in |V| [62/53]. However, this result has remained preliminary
and will not be published. A new tagged analysis, using an improved version of
the hadronic tag is now underway and should clarify the experimental situation.

Babar has presented a full four-dimensional angular analysis of B — D*¢~ 1,
decays, using both CLN and BGL parametrizations [54]. This analysis is based
on the full data set of 450 fb~!, and exploits the hadronic B-tagging approach.
The full decay chain ete™ — Y(4S) — BiagBsig(— D*{v;) is considered in
a kinematic fit that includes constraints on the beam properties, the secondary
vertices, the masses of Biag, Bsig, D* and the missing neutrino. After applying
requirements on the probability of the x? of this constrained fit, which is the
main discriminating variable, the remaining background is only about 2% of the
sample. The resolution on the kinematic variables is about a factor five better
than the one possible with untagged measurements. The shape of the form factors
is extracted using an unbinned maximum likelihood fit where the signal events
are described by the four dimensional differential decay rate. The extraction of
|Vep| is performed indirectly by adding to the likelihood the constraint that the
integrated rate I" = B/7p, where B is the B — D*{v branching fraction and 75 is
the B-meson lifetime. The values of these external inputs are taken from HFLAV
[47]. The final result, using ha, (1) from [35], is |Ves| = (38.36 £0.90) x 10~ with
a 5-parameters BGL version and |V, = (38.40 & 0.84) x 1072 in the CLN case,
both compatible with the above HFLAV average. Nevertheless, the individual form
factors show significant deviations from the world average CLN determination by
HFLAV.

LHCD has extracted V., from semileptonic Bg decays for the first time [55].
The measurement uses both B? — D;/LJFVM and B — D:f,quuu decays using
3 fb~! collected in 2011 and 2012. The value of |V| is determined from the
observed yields of BY decays normalized to those of BY decays after correcting for
the relative reconstruction and selection efficiencies. The normalization channels
are B> - D u"v, and B® — D*~uty, with the D™ reconstructed with the
same decay mode as the D, (D) — [KTK~],m), to minimize the systematic
uncertainties. The shapes of the form factors are extracted as well, exploiting
the kinematic variable p, (Ds) which is the component of the Dy momentum
perpendicular to the BY flight direction. This variable is correlated with ¢2. In
this analysis both the CLN parametrization and a 5-parameter version of BGL
have been used. The results for V., are

[Veoloon = (41.4 + 0.6(stat) & 0.9(syst) + 1.2(ext)) x 10>
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Experiment tag T decay N(D7v7) Nnorm R(D)
Babar [56/57] Had. fvvr 489 + 63 2891 4+ 65 0.440 + 0.058 + 0.042
Belle [58] Had. fvpvr 320 £ 55 3147 £ 72 0.375 + 0.064 + 0.026
Belle [59] SL lvgvr 1778 +£204 22896 + 471 | 0.307 £0.037 £0.016
HFLAV 0.340 + 0.027 £+ 0.013
Theory 0.299 + 0.003
Experiment tag 7 decay N(D*rv,) Nnorm R(D*)
Babar [56,/57] Had. fypvr 888 £ 63 11953 122 | 0.332 £0.024 £ 0.018
Belle [58] Had. ‘fvpv, 503 4+ 65 3797 £ 74 0.293 + 0.038 + 0.015
Belle [60L/61] Had. 7wv., pvr 298 £+ 29 7213 £ 96 0.270 + 0.035 £ 0.028
LHCb [62] - Uy vr 16480 363000 0.336 + 0.027 + 0.030
LHCb [63l64] - TV 1273 17660 0.280 + 0.018 + 0.029
Belle [59] SL lvgv, 651 £ 46 16942 4+ 148 | 0.283 £0.018 £0.014
HFLAV 0.295 + 0.011 £ 0.008
Theory 0.253 4+ 0.005

Table 2.2 Summary of Rp and Rp* measurements and theoretical predictions. The number
of observed signal and normalization events is also reported. The normalization channel is
B%D(*)EW for all measurements but the LHCb one with three-prong 7 decays, where the
normalization channel is B— D*nwm. The latter LHCb measurement has been updated using
the latest HFLAV average for B(B — D*{v;). The quoted theory predictions are arithmetic
averages of the values reported in Table below; they are given for illustration only and do
not imply consent from the authors of the calculations.

[Ves| Bor = (42.3 £ 0.8(stat) & 0.9(syst) + 1.2(ext)) x 1072,

where the first uncertainty are statistical, the second systematic and the third
due to the limited knowledge of the external input, in particular the BY to B°
production ratio fs/fs which is known with an uncertainty of about 5%. The
results are compatible with both the inclusive and exclusive decays. Although not
competitive with the results obtained at the B factories, the novel approach used
can be extended to the semileptonic B® decays.

2.8.2 Past measurements of R(D) and R(D™)

Rp and Rp- are defined as the ratios of the semileptonic decay width of By and
B, meson to a 7 lepton and its associated neutrino v, over the B decay width to a
light lepton. A summary of the currently available measurements of Rp and Rp- is
presented in Table showing the yield of B signal and B normalization decays
and the stated uncertainties. The data were collected by the BaBar and Belle
experiments at eTe™ colliders operating at the 7' (4S) resonance, which decays
exclusively to pairs of BT B~ or B°B° mesons. The LHCb experiment operates
at the high energy pp collider at CERN at total energies of 7 and 8 TeV, where
pairs of b-hadrons (mesons or baryons) along with a large number of other charged
and neutral particles are produced. While the maximum production rate of the
7 (45) — BB events has been 20 Hz, the rates observed at LHCb exceed 100kHz.

Currently we have only two measurements [56,5758] of the ratios Rp and Rp-~
based on two distinct samples of hadronic tagged BB events with signal B —
Dtv; and B — D*71v, decays and purely leptonic tau decays, 7~ — €~ Devr Or
T~ — pu uvr. In addition, there is a measurement from Belle [60/61] of Rp~ with
hadronic tags and a semileptonic one-prong 7 decay (7~ — 7 vr or 7 — p~ V7).
A Belle measurement [59] of Rp and Rp- with semi-leptonic tags and purely
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leptonic 7 decays appeared recently, superceding a previous measurement [65] of
Rp+ obtained with the same technique.

At LHCb only decays of neutral B mesons producing a charged D* meson and
a muon of opposite charge are selected, with a single decay chain D** — D° (—
K~ nt)7t. LHCb published two measurements [62,[63,[64] of Rp-, the first relying
on purely leptonic 7 decays and normalized to the B® — D*'Ufl?u decay rate,
and the more recent one using 3-prong semileptonic 7 decays, 7~ — 7t7 T v,
and normalization to the decay B® — D*tntr n

BaBar and Belle analyses rely on the large detector acceptance to detect and
reconstruct all final state particles from the decays of the two B mesons, except
for the neutrinos. They exploit the kinematics of the two-body 7°(4S5) decay and
known quantum numbers to suppress non-BB and combinatorial backgrounds.
They differentiate the signal decays involving two or three missing neutrinos from
decays involving a low mass charged lepton, an electron or muon, plus an associated
neutrino.

LHCD isolates the signal decays from very large backgrounds by exploiting
the relatively long B decay lengths which allows for a separation of the charged
particles from the B and charm decay vertex from many others originating from
the pp collision point. There are insufficient kinematic constraints and therefore the
total B meson momentum is estimated from its transverse momentum, degrading
the resolution of kinematic quantities like the missing mass and the momentum
transfer squared ¢2. Also, the production of D** D pairs with the decay D; —
7~ U7 leads to sizable background in the signal sample.

The summary in Table indicates that the results are not inconsistent. For
BaBar and Belle the systematic uncertainties are comparable for Rp«, while Belle
systematic uncertainties are smaller for Rp. However the differences in the signal
yield and the background suppression lead to smaller statistical errors for BaBar.
The Belle measurements based on semileptonic tagged samples result in a 50%
smaller signal yield than for the hadronic tag samples. For the two LHCb mea-
surements, the event yields exceed the BaBar yields by close to a factor of 20, but
the relative statistical errors on Rp~ are comparable to BaBar, and the systematic
uncertainties are larger by a factor of 2.

2.8.8 Lessons learned

All currently available measurements are limited by the difficulty of separating
the signal from large backgrounds from many sources, leading to sizable statistical
and systematic uncertainties. The measurement of ratios of two B decay rates
with the very similar - if not identical — final state particles, significantly reduces
the systematic uncertainties due to detector effects, tagging efficiencies, and also
from uncertainties in the kinematics due to form factors and branching fractions.
For all three experiments the largest systematic uncertainties are attributed to the
limited size of the MC samples, the fraction and shapes of various backgrounds,
especially from decays involving higher mass charm states, and uncertainties in the
relative efficiency of signal and normalization, the efficiency of other backgrounds,
as well as lepton mis-identification. Though the total number of BB events of the
full Belle data set exceeds the one for BaBar by 65%, the signal BaBar signal yield
for B — D™ 11, exceeds Belle by 67% due to differences in event selection and
fit procedures.
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While the use by Belle of semileptonic B decays as tags for BB events benefits
from the fewer decay modes with higher BF's, the presence of a neutrino in the tag
decays results in the loss of stringent kinematic constraints. The resulting signal
yields are lower by 50% compared to hadronic tags, and the backgrounds are much
larger. The use of the ECL, namely the sum of the energies of the excess photons
in a tagged event, in the fit to extract the signal yield is somewhat problematic,
since it includes not only the photons left over from incorrectly reconstructed BB
events, but also photons emitted from the high intensity beams. As a result the
signal contributions are difficult to separate from the very sizable backgrounds.

2.8.4 Outlook for R(D) and R(D™)

Belle IT and the upgraded LHCb are expected to collect large data samples with
considerable improved detector performances. This should lead to much reduced
detector related uncertainties, higher signal fractions, and opportunities to mea-
sure many related processes. The goal is to push the sensitivity of many mea-
surements of critical variables and distributions beyond theory uncertainties and
thereby increase the sensitivity to non-Standard Model processes.

Currently there are only two measurements of the ratio Rp, one each by BaBar
and Belle, based on two distinct samples of hadronic tagged BB events for the
signal B — D7vr and B — D*71v, decays. The decay B — D7, is dominated by
a P-wave, whereas in the B — D*7v; S, P, and D waves contribute and the impact
for contributions from new physics processes is expected to be smaller. A contri-
bution of a hypothetical charged Higgs would result in an S-wave for B — D7v;,
and a P-wave for B — D*7v,, thus measurements of the angular distributions
and the polarization of the 7 lepton or D and D* mesons will be important. Such
measurements would of course also serve as tests of other hypotheses, for instance
contributions from leptoquarks. The studies for many decay modes, the detailed
kinematics of the signal events, the four-momentum transfer ¢, the lepton mo-
mentum, the angles and momenta of D and D* and the 7 spin should be extended
to perform tests for potential new physics contributions.

Belle IT will benefit from major upgrades to all detector components, except
for the barrel sections of the calorimeter and the muon detector. In addition, a
new data acquisition and analysis software are being developed to benefit from the
very high data rates and improved detector performance. Upgrades to the preci-
sion tracking and lepton identification, especially at lower momenta, are expected
to significantly improve the mass resolution and purity of the signal samples.
This should also improve the detector modeling of efficiencies for signal and back-
grounds and fake rates that are the major contributions to the current systematic
uncertainties. The much larger data rates should allow choice of cleaner and more
efficient BB tagging algorithms.

Major improvements to the MC simulation signal and backgrounds will be
needed. They require much better understanding of all semileptonic B decays,
contributing to signal and backgrounds, i.e., updated measurements of branching
fractions and form factors and theoretical predictions, especially for backgrounds
involving higher mass charm mesons, either resonances or states resulting from
charm quark fragmentation. The fit to extract the signal yields could be improved
by reducing the backgrounds and making use of fully 2D or 3D distributions of
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kinematic variables, and by avoiding simplistic parametrizations. The suppres-
sion of fake photons and 7°s needs to be scrutinized to avoid unnecessary signal
loss and very large backgrounds for D*® decays. Shapes of distributions entering
multi-variable methods to reduce the backgrounds should be scrutinized by com-
parisons with data or MC control samples, and any significant differences should
be addressed. The use of ECL, the sum of the energies of all unassigned photon
in an event, may be questionable, given the expected high rate of beam generated
background.

The first study by Belle of the 7 spin in B — D*7v, decays with 77 — p~ v,
or 7 — m vy is very promising, it indicates that much larger and cleaner data
samples will be needed. The systematic uncertainty on the Rp- measurement of
11% is dominated by the hadronic B decay composition of 7% and the size of the
MC sample [61]. The measured transverse 7 polarization of P, = —0.38+0.51192%
is totally statistics dominated, and implies Pr < 0.5 at 90% C.L.

Among the many other measurements Belle II is planning, ratios R for both
inclusive and inclusive semileptonic B decays are of interest, for instance in ad-
dition to Rp, Rp~, and Rp~- also Rx,, as well as R and Rx,, which rely on
unique capabilities of Belle II.

The LHCb detector is currently undergoing a major upgrade with the goal
to switch to an all software trigger and to be able to select and record data up
to rates of 100kHz. Replacements of all tracking devices are planned, ranging
from radiation hard pixel detector near interaction region to scintillation fibers
downstream. Improvements to electron and muon detection and reduction in pion
misidentification will be critical for the suppression of backgrounds, and should
also allow rate comparison for decays involving electron or muons. LHCb relies
on large data samples rather than MC simulation to assess signal efficiencies and
most importantly the many sources of backgrounds and their suppression.

Several analyses are underway based on Run 1 and Run 2 data samples, and are
benefiting from improved trigger capabilities. The first analysis based on 3-prong
7 decays showed a clear separation of the 7 decay vertex from both the D and the
proton interaction point, improving the signal purity to about 11%, compared to
4.4% for the purely leptonic 1-prong 7 decay. This may therefore be the favored 7
decay mode, and should also be tried for BT — D7 " v, . Improved measurements
of the branching fractions for normalization and the 7 decays will be essential.

As a follow-up on the first LHCb measurement of Rp«, a simultaneous fit to
two disjoint D°u~ and D** ™ samples is in preparation, taking into account the
large feed-down from D* decay present in the D°,~ sample. As pointed out above,
the decay Bt — D%r v, is more sensitive to new physics processes than B —
D*~ 77w, and thus this analysis is expected to be very important to establish the
excess in these decay modes and its interpretation. This analysis will benefit from
the addition of dedicated triggers sensitive to D°u ™, D** =, AX o and D i final
states.

LHCb is considering a series of other ratios measurements, among several b — ¢
transitions (B — Dy 7t v,, B = D**7tu, and A/lb+ — Aﬁ*’r*uT) and certain
b — w transitions (BT — p°77v,, BT — pprTuv,; and A) — prv.), most
of which will be challenging to observe and not trivial to normalize. The decay
A;r — AX7Tw, probes a different spin structure, and a precise measurement of Ra,
would be of great interest for the interpretation of the excess of events in Rp .
The observation of the decay By — J/¢(— pupu~ )7~ (= p~ Duv- )07 has recently
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been reported. It is a very rare process which is only observable at LHCb. The final
state of 3 muons is a unique signature, though impacted by sizable backgrounds
from hadron misidentification. The measured ratio R/, = 0.714+0.17 £ 0.18 has
large uncertainties, dominated systematically by the signal simulation since the
form factors are unknown.

2.4 Extraction of V; and predictions for Ry

The values of V., extracted from inclusive and exclusive decays have been in
tension for a long time [66]. In order to extract Ve, from B — D™y data we need
information on the form factors, which is mostly provided by Lattice QCD. For
the B — D form factors fi o there are lattice results at w > 1 [BILB323]. A fit to
all the available experimental and lattice data of B — Dlv leads to [67]

Vep - 10° = 40.49(97) (2.42)

with x?/dof = 19.0/22. Similar results have been obtained in [3]. For B — D*
at the moment there is only information on one of the four form factors at zero-
recoil, A1(w = 1) [35,[37], however further developments look promising [686G9]
70]. At the other end of the w or ¢? spectrum there are results available from
Light Cone Sum Rules (LCSR) [7IL[72]. In view of the advanced experimental pre-
cision, a key question for the precise extraction of V., and a robust prediction of
R(D™) = B(B — D™ rv)/B(B — D™Iv) is how large the theoretical uncer-
tainties are. For example, whenever relations such as (2.24]) are used, how large
are HQET corrections beyond NLO, i.e. of O (a?, AZQCD/mC’b, asAQCD/mc)b) and
how accurate are the QCDSR results that are used at NLO? A guideline for an
answer to these questions can be provided by studying the size of NLO corrections
in the HQET expansion and by a comparison with corresponding available lat-
tice results [12]. A definite answer, especially for the pseudoscalar form factor Pi,
which is needed for the prediction of R(D*), will be given only by future lattice
results [68L[69,[70].

In all experimental analyses prior to 2017, HQET relations have been employed
in terms of a form of the CLN parametrization [II] where theoretical uncertain-
ties noted in Ref. [I1] were set to zero by fixing coefficients to definite numbers.
Moreover, the slope and curvature of Ri 2(w) depend on the same underlying the-
oretical quantities as R1,2(1), which makes the variation of the latter and fixing of
the former inconsistent. In future experimental analyses this has to be taken into
account.

Recent preliminary Belle data [51] allowed for a reappraisal of fits to B — D*lv
by several groups [52L[12L53173[74L[75,[37]. For the first time, Ref. [51] reported de-
convoluted w and angular distributions which are independent of the parametriza-
tion. This allowed to test the possible influence of different parametrizations on
the extracted value of V. Indeed, based on that data set the central values for
|Vep| varied by up to 6% between CLN and BGL fits [52l[53[75]. By floating some
additional parameters of the less flexible CLN parametrization, the agreement be-
tween BGL and CLN could be restored [52l[74]. Furthermore, in the literature
one could observe a correlation of smaller central values for V., with stronger
HQET+QCDSR input [51L52112]53173[74.75,37].
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Ref. R(D) Exp. deviation Ref. R(D*) Exp. deviation
67 0.299(3) T.4o 3 0.257(3) 270
73] 0.299(3) 140 7 0254 (7 270
[75]  0.302(3) 1.30 [79] 0.251 (3 3.10
78  0.297(3) 14c 78 0.250(3) 3.20

Table 2.3 Recent theory predictions for R(D(*)). The deviations are calculated from the
HFLAV spring 2019 updates R(D)P = 0.340(27)(13) E7B6/5TI5859] and R(D*)*<P =
0.295(11)(8) 40565768 6562I60L6TI63L64.59], respectively. For older predictions see
Refs. [8081L[82]. Table adapted and extended from Ref. [83].

Recently, on top of the tagged analysis Ref. [51] a new untagged Belle analysis
of B — D*lv appeared [76]. The new, more precise data brought the |V,;| central
values of the CLN and BGL fits closer together. However, in order to obtain a
reliable error, it is necessary to employ the BGL parametrization with a sufficient
number of coefficients rather than the CLN parametrization. Including the new
data, Ref. [77] obtains

Vi - 10% = 39.6 (t};é) , (2.43)

with a x?/dof = 80.1/72. The inclusion of LCSRs or strong unitarity constraints,
where input from HQET is used in a conservative way, basically does not change
the fit result [77]. The V. value in Eq. differs by 1.90 from the inclusive
result.

The shortcomings of the CLN parametrization have been addressed in several
recent articles [73L[75[84[78[85]: varying the coefficients of the HQE consistently
allows for a simultaneous description of the available experimental and lattice
data in B — D, while the parametrization dependence in the extraction of V,
from Ref. [51] remains [73]. Including additionally contributions at O(1/m2) and
higher orders in the z expansion, the extracted values for V., using the BGL
parametrization and the HQE become compatible [78].

For the above reasons, older HFLAV averages, which are based on the CLN
parametrization, should not be employed in future analyses, with the exception
of the total branching ratios, whose parametrization dependence is expected to
be negligible. The two most recent experimental analyses of B( s) — DZ‘ SV [54],
59] present results obtained in both CLN and a simplified version of the BGL
parametrization. They did not observe sizeable parametrization dependence, but
found very different values of V.. However, they did not provide data in a format
that allows for independent reanalyses.

For the lepton flavor nonuniversality observables R(D(*)) we list a few re-
cent theoretical predictions in Table [2:3] Predictions for further lepton flavor non-
universality observables of underlying b — clv transitions can be found in Refs. [86)
87]. Compared to predictions from before 2016, the predictions in Table make
use of new lattice results and new experimental data. The results are based on
different methodologies and a different treatment of the uncertainties of HQET +
QCDSR. We have a very good consensus for R(D) predictions because in this case
the predictions are dominated by the recent comprehensive lattice results from
Refs. [3T32/88]. QED corrections to R(D) remain a topic which deserves further
study [89,[90]. In the case of R(D™), as we do not have yet lattice information on the
form factor Pp, we can use the exact endpoint relation Pi(wWmax) = As(wmax) and
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results from HQET and QCDSR. Depending on the estimate of the correspond-
ing theory uncertainty one obtains different theoretical errors for the prediction of
R(D™). As soon as we have lattice results for P1 [68], the different fits will stabilize
and we expect a similar consensus as for R(D). Despite the most recent experi-
mental results being closer to the SM predictions, the R(D(*)) anomaly persists
and remains a tough challenge for model builders.

2.5 Semileptonic B — D** ¢ decays

Semileptonic B decays to the four lightest excited charm mesons, D** = {Dg, DT,
D1, D3}, are important both because they are complementary signals of possible
new physics contributions to b — c¢7v, and because they are substantial back-
grounds to the R(D™)) measurements (as well as to some |Vp| and |Vy;| mea-
surements). Thus, the correct interpretation of future B — D™ ¢ measurements
requires consistent treatment of the D** modes.

The spectroscopy of the D** states is important, because in addition to the
impact on the kinematics, it also affects the expansion of the form factors [91,92] in
HQET [9394]. The isospin averaged masses and widths for the six lightest charm
mesons are shown in Table In the HQS [95.[96] limit, the spin-parity of the
light degrees of freedom, s}, is a conserved quantum number, yielding doublets of
heavy quark symmetry, as the spin s; is combined with the heavy quark spin [97].
The ground state charm mesons containing light degrees of freedom with spin-
parity s;' = %_ are the {D, D* } The four lightest excited D** states correspond
in the quark model to combining the heavy quark and light quark spins with L =1

orbital angular momentum. The s] = 1% states are {DS, DT} while the s = %+

2
states are {Dl, D;} The s]' = %+ states are narrow because their D)z decays
only occur in a d-wave or violate heavy quark symmetry. In the case of Bs decays,
all four D}* states are narrow.

A simplifying assumption used in Refs. [91L02] to reduce the number of sub-
leading Isgur-Wise functions was to neglect certain O(Aqcp/me,p) contributions
involving the chromomagnetic operator in the subleading HQET Lagrangian, mo-
tivated by the fact that the mass splittings in both the s’ = %—,— and s]' = %+
doublets were measured to be much smaller than mp+~ —mp. This is not supported
by the more recent data (see Table[2.4), so Ref. [I00] extended the predictions of
Refs. [91192] accordingly, including deriving the HQET expansions of the form

factors which do not contribute in the my; = 0 limit. The impact of arbitrary

Particle s  JU  m (MeV) I (MeV)
D} 1T ot 2349 236
D* it 2427 384
Dy 3T 1t 2 31
Dy 3t ot 2461 47
D* 1T 2009 0.

D 1= oo 1866 0.

Table 2.4 Isospin averaged masses and widths of the six lightest charm mesons, rounded to
1MeV [98] (from Ref. [99]).
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new physics operators was analyzed in Ref. [99], including the O(Aqcp/me,p) and
(as) corrections in HQET. The corresponding results in the heavy quark limit
were obtained in Ref. [101].

The large impact of the O(Aqcp/me,b) contributions to the form factors can be
understood qualitatively by considering how heavy quark symmetry constrains the
structure of the expansions near zero recoil. It is useful to think of a simultaneous
expansion in powers of (w — 1) and (Aqcp/mecp). (The kinematic ranges are
0 <w-—1<0.2 for 7 final states, and 0 < w — 1 < 0.3 for e and p.) The decay
rates to the spin-1 D** states, which are not helicity suppressed near w = 1, are
of the form

dFDl,D{

du ~Vw? -1 [<O(HQS)+0(HQS)E+62+...)—i—(w—l) (Eo—l-s—l—...)—l—...}.

(2.44)
Here ¢ is a power-counting parameter of order Aqcp/me,p, and the 0-s are conse-
quences of heavy quark symmetry. The €2 term in the first parenthesis is fully de-
termined by the leading order Isgur-Wise function and hadron mass splittings [91]
92,[T00,[99]. The same also holds for those new physics contributions to B — Dg 4w,
which are not helicity suppressed. This explains why the O(Aqcp/me,,) correc-
tions to the form factors are very important, and can make O(1) differences in
physical predictions, without being a sign of a breakdown of the heavy quark
expansion. The sensitivity of the D** modes to new physics is complementary
and sometimes greater than those of the D and D* modes [I01,99]. Thus, using
HQET, the predictions for B — D**70 are systematically improvable by better
data on the e and p modes, just like they are for B — D)7 [73], and are being
implemented in HAMMER [102/[I03/[104].

2.6 New physics in B — D™ 7y

Independently of the recent discussion on form factor parametrizations and their
influence on the extraction of V., (covered in Sec. it is clear from Tablethat
the SM cannot accomodate the present experimental data on R(D)). Even after
the inclusion of the most recent Belle measurement [I05], the significance of the
anomaly remains 3.1c. This leaves, apart from an underestimation of systematic
uncertainties on the experimental side, NP as an exciting potential explanation.
The required size of such a contribution comes as a surprise, however: defining
R(X) = R(X)/R(X)sm, the new average corresponds to R(D) = 1.14 & 0.10
and R(D*) = 1.14 + 0.06; for NP to accommodate these data, a contribution of
5 — 10% relative to a SM tree-level amplitude is required for NP interfering with
the SM, and O(40%) for NP without interference. An effect of this size can be
clearly identified with upcoming measurements by LHCb and Belle II [I06}107].
It would also immediately imply large effects in other observables.

The potential of R(D™)) as discovery modes does not diminish the importance
of additional measurements with b-hadrons. Specifically, even with a potential
discovery, model discrimination will require measurements beyond these ratios.
These additional measurements fall in four categories:

— Additional R(X) measurements (mainly R(D**), R(Ac), R(Xc), R(J/v¢) and
R(B{™)) are important crosschecks to establish R(D™*)) as NP with indepen-
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Fig. 2.2 State-of-the-art fit results in single-mediator models for selected pairs of observables
in B — D™ 7v decays (following Ref. [I13] for form factor and input treatment). All outer
ellipses correspond to 95% confidence level, inner (where present) to 68%. We show the SM
prediction in grey, the experimental measurement/average in yellow (where applicable) and
scenarios I, IT, III IV and V in dark green, green, dark blue, dark red and red, respectively,
see text. Contours outside the experimental ellispse imply that the measured central values
cannot be accomodated within that scenario. The limit BR(B. — 7v) < 30% has been applied
throughout, but affects only the fits with scalar coefficients. Dark green contours are missing
in the two graphs on the right, because the predictions of scenario I are identical to the SM
ones.

dent systematics and provide independent NP sensitivity (especially R(A.) and
R(X¢.)), as discussed in subsections and

— Integrated angular and polarization asymmetries and polarization fractions
are excellent model discriminators. In many models they are completely deter-
mined once the measurements of R(D(*)) are taken into account. For instance,
the recent measurement of the longitudinal polarization fraction of the D* in
B — D*tv, FL(D*), was able to rule out solutions that remained compati-
ble with the whole set of the remaining b — crv data [108[109,TT0ITTLI12]
113]. The model-discriminating potential of both R(D™)) and selected angular
quantities is visualized in Fig. where fit results for pairs of B — D) 7v ob-
servables within all phenomenologically viable single-mediator scenarios with
left-handed neutrinos to the state-of-the-art data are shown.

— Differential distributions in ¢? and the different angles are extremely power-
ful in distinguishing between NP models, as can be seen for instance from a
recent analysis of data with light leptons in the final state [84]. They require,
however, large amounts of data and the insufficient information on the decay
kinematics can pose difficulties for the interpretation of the data, as discussed
in subsection However, already the rather rough available information on
the differential rates dI'/dg*(B — D™ 7v) [5356] is excluding relevant parts
of the parameter space [114L[IT5116L1T7,113].

— An analysis of the flavor structure of the observed effect, e.g. in b — c(e, p)v,
b — urv and t — brv transitions.

In addition to the above observables, the leptonic decay B. — Tv plays a special
role. Although it is not expected to be measured in the foreseeable future, it
provides nevertheless a strong constraint on NP, since the relative influence of
scalar NP is enhanced in this mode. A limit can then be obtained even from the
total width of the B. meson [II8]. Theoretical estimates for the partial width
assumed unaffected by NP can be used to strengthen these bounds [119,120L116],



Challenges in Semileptonic B Decays 27

and also data from LEP [121]. Both approaches rely on additional assumptions,
however, see Refs. [II0|[I11] for recent extensive discussions.

The constraints discussed so far are relevant in any scenario trying to address
the existing anomalies. An interesting subclass of such models is that where the
existence of a single mediator coupling to only the known SM degrees of freedom
is assumed, classified in [I15], creating only a subset of the possible operators at
the b scale. Among those, only five scenarios remain that can reasonably well ac-
comodate the data described above, see also Refs. [82|[TT0LIT5117,122]123]124,
125[126] for comparisons (additional constraints in specific scenarios are com-
mented on below): Scenario I yields only a left-handed vector operator, created
by either a heavy color-less vector particle [127,[128,[129[130] (phenomenologically
highly disfavoured) or a leptoquark, see Refs. [TI8|[T31}[132]133|134,135136l137,
138,139, (140} 1411 142,143,144} 145,146, 147,148 149,150] for this and other lepto-
quark variants. Scenario II includes Scenario I, but yields also a right-handed
scalar operator, realized for example by a vector leptoquark. Scenario III involves
both left- and right-handed scalar operators, generated for instance by a charged
Higgs [1511811 152116l 153,154155156] (with a limited capability to accomodate
R(D*) due to the B. constraint discussed above). Scenarios IV and V involve
the left-handed scalar and tensor operator which are generated proportionally to
each other (Cs, = £4Cr at the NP scale A), in the latter case with the addi-
tion of the left-handed vector operator, again realized in leptoquark models. It is
also possible to analyze the available data in more general contexts. For example,
within SMEFT the right-handed vector current is expected to be universal [I57,
158 [159], see [I13] for a global analysis in this framework, while this does not
hold when the electroweak symmetry breaking is realized non-linearly [I59]. Al-
lowing for additional light degrees of freedom beyond the SM opens the possibility
of contributions with right-handed neutrinos, see Refs. [160L144)T61)162,163164,
T65,166].

Once specific models are considered, typically additional constraints apply. Im-
portant ones include high-pr searches, looking for collider signatures of the medi-
ators related to the anomaly [167,168169,170], RGE-induced flavor-non-universal
effects in T decays [I71], lepton-flavor violating decays [I71], precision universal-
ity tests in quarkonia decays [172], charged-lepton magnetic moments [168] and
electric dipole moments in models with non-vanishing imaginary parts [I73].

2.7 Interpretation of experimental results

The reconstructed kinematic distributions used in measurements are sensitive to
both the modeling of required non-perturbative inputs (e.g., form factors, light-
cone meson wave functions), and to assumptions about the underlying fundamental
theory (e.g. possible presence of operators with chiral structures different from
those found in the SM). Current measurements assume the SM operator structure,
and include the non-perturbative uncertainties as they are known at the time of
publication. While this is a valid strategy for testing the SM, if in future the
presence of a non-SM contribution with a different chiral structure is established
then past measurements will require reinterpretation.

In order to present experimental results in such a way to allow a-posteriori
analyses to have maximum flexibility in the description of non-perturbative inputs



28 P. Gambino! et al.

and BSM content, the following strategies might be considered. The techniques to
allow for reinterpretation of results overlap with those used to make differential
measurements designed to be sensitive to the chiral structure and non-perturbative
quantities.

A first possibility, is the publication of unfolded distributions (see, for instance,
the B — D*{v spectrum presented in Ref. [51]). This method offers the possibility
to fit with ease the experimental results to arbitrary parametrizations of the form
factors [52L[63[73]; its downside is that it requires relatively high statistics and that
the unfolded distributions do not contain the whole experimental information.

A second option, which has been employed in the untagged Belle analysis of
ref. [49], is to provide folded distributions in which detector effects are not removed
and no extrapolation is performed, together with experimental efficiencies and the
detector response matrix (which reproduces detector effects to a given accuracy).
This allows the use of any parametrization of SM and BSM effects in compar-
ing with the experimental result. This approach, while requiring slightly more
involved a posteriori fitting strategies, avoids the statistical problems associated
with unfolding and can be extended more easily to higher dimensions.

Finally, the most complete information is contained in the Likelihood function
which depends on a set of SM parameters (e.g., for B — wfév they could be
the coefficients of the z-expansion of the form factors and V) and on the Wilson
coefficients of BSM operators). This method has not been currently pursued in any
B decay measurement, in part because of difficulties related to the extremely large
amount of information that would need to be presented. Two differing approaches
are to publish the full experimental Likelihood in the full parameter space of BSM
Wilson coefficients and SM non-perturbative coefficients, or to publish the tools for
external readers to be able to repeat the full experimental fit with the signal model
varied. For representing the experimental Likelihood in a high-dimensional space,
possible approaches include the use of Markov chain sampling, or MVA surface
modelling. These are the only strategies which would allow the entirety of the
experimental information to be available in a posteriori theoretical investigations.
It is essential to this approach for the experimental measurement to cover the full
parameter space in a sufficiently general way, including alternative Likelihoods
with different parametrizations for nonperturbative effects.

2.8 HAMMER

Future new physics searches in b — c7vr,; decays are a challenging endeavour:
most experimental results make use of kinematic properties of the process to dis-
criminate between the signal of interests and backgrounds. For instance recent
measurements from the B-factories BaBar and Belle used the lepton momentum
spectrum and measurements of LHCb use fits to the four-momentum transfer ¢2.
In new physics scenarios, these distributions change and alter the analysis ac-
ceptance, efficiencies, and extracted signal yields. In addition, large samples of
simulated decay processes play an integral part in those measurements. In most,
one of the leading systematic uncertainties is due to the limited availability of such
samples. Thus producing large enough simulation samples for a wide range of new
physics points, needed to take into account the aforementioned changes in accep-
tance, etc. is not a viable path. This is where the HAMMER tool [LI04,[I03] can
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help: it implements an event-level reweighing, assigning a weight based on the ratio
of new physics to simulated matrix element, which allows one to re-use the already
generated events. In addition, it is capable of providing histograms for arbitrary
new-physics parameter values (including also form factor variations), which can
be used in e.g. template fits to kinematic observables. These event weights can
completely account for acceptance changes and will enable Belle IT and LHCb to
directly extract limits on the Wilson coefficients present in b — ¢ 7v transitions.

3 Heavy-to-light exclusive

In this section we present an overview of b — u exclusive decays. We start with a
discussion of the lattice calculations of the b hadron decay form factors to a light
pseudoscalar, vector meson or baryon. We then review the light-cone sum rule
calculation of the same form factors and the current experimental situation, as
well as the prospects at Belle IT and LHCDb. Finally, we briefly discuss a few related
subjects, such as the semitauonic decays, b — ~fv,, the non-resonant B — nwmlv
decays, and some subtlety of the z-expansion.

3.1 Form factors for semileptonic b-hadron decays into light hadrons from lattice

QCD
3.1.1 Form factor parametrizations

The matrix elements that describe the hadronic part of the semileptonic transitions
B — X/lv or B — X/ are parametrized in terms of the form factors in Eqs. (2.1])—
, where X now denotes a pion or kaon. The transitions B — X*fv or B —
X" are parametrized in terms of the form factors in Egs. 7, where
X™ now denotes a p, K*, or ¢ meson. As discussed in Sec. modern theoretical
calculations of the form factors employ z-parametrizations to describe their shapes,
which can be implemented in a model-independent way, being based on analyticity
and unitarity constraints. For the case at hand, an often used choice for the z-
parameter defined in Eq. is to = (M 4+ m)/(vVM — \/m)?, which results
in a range |z| < 0.3, centered around z = 0. In general, the small range of z
coupled with unitarity constraints on the coefficients ensure that the polynomial
expansions converge quickly. As discussed already in Sec. for B-meson decays
to light hadrons with their larger ¢* range, the BCL parametrization [8] is the
standard choice, as the resulting forms satisfy the expected asymptotic ¢? and
near threshold scaling behaviors [9,[10]:

N.,—1
1 N n n—N, M N
Fo@®) = — 3 b (ho) ( (N, ) (3.1)
1-¢?/Mp.-y i= N:
1 ok
fo(@?) = ——— ST B0 (20) 2" 3.2
) = 1= 2 ) (32
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3.1.2 Lattice QCD results for B-meson decay form factors to light pseudoscalars

Lattice-QCD calculations of the form factors for semileptonic B(,)-meson decays
to light hadrons proceed along the same lines as discussed in Sec. [2:2} In particu-
lar, there are a number of different, well-developed strategies for dealing with the
heavy b-quark in lattice QCD, see Ref. [3] for a review. The same two- and three-
point functions as for the heavy-to-heavy case are needed here, albeit with the
appropriate valence quark propagators, to describe the heavy-to-light decay pro-
cess. While this affects the statistical errors in the next step, the fits to the spectral
representations of the correlation functions to obtain the desired matrix elements
on each gauge ensemble and each recoil momentum, the procedure is essentially
the same. The resulting “lattice data” are then used in combined chiral-continuum
fits coupled with a systematic errors analysis to obtain the form factors in the con-
tinuum over the range of recoil energies that are included in the simulations. Here,
a well known challenge is that the recoil energies that are accessible in lattice-QCD
calculations cover only a fraction of the entire kinematic region. A related chal-
lenge is that the validity of Chiral Perturbation Theory (used to extrapolate or
interpolate to the physical pion mass) is limited to pion energies of ~ 1 GeV. The
final step is the z-expansion fit, from which the form factors are obtained over the
entire kinematic range, albeit with larger errors in the region not directly covered
in the lattice calculation.

Lattice-QCD calculations of the B — 7 vector current form factors f+ and fo
can be used to determine |V,;| from experimental measurements of the B — mév
decay rate. There are currently two independent, published lattice-QCD compu-
tations that employ the modern methods outlined above, including the model-
independent z-expansion [I74L[I75]. The RBC/UKQCD collaboration [I74] uses
ensembles with Ny = 2+1 flavors of Domain Wall fermions at two lattice spacings
with sea-pion masses in the range [300,400] MeV. The Fermilab/MILC collabora-
tion [I75] uses ensembles with Ny = 2 + 1 flavors of asqtad (improved staggered)
fermion at four lattice spacings covering the range a = 0.045—0.12 fm and a range
of sea-pion masses down to 177 MeV. Earlier work [I76] used a subset of these en-
sembles. The treatment of the b-quark is similar in the two works; Ref. [I74] uses a
variant of the Fermilab approach, called the relativistic heavy quark (RHQ) action,
while Ref. [I75] employs the original Fermilab formalism. Both groups also use the
mostly nonperturbative renormalization method to compute the renormalization
factors. The form factors obtained by the two lattice groups are in good agreement
with each other, and can be combined in joint fits together with experimental data
for an improved |Vp| determination [3].

Ongoing work by RBC/UKQCD is extending the calculation to include more
ensembles [43]. Ongoing work by the Fermilab/MILC collaboration employs the
HISQ Ny = 2+ 1+ 1 ensembles with sea-pion masses at (or near) the physical
point, and the Fermilab formalism for the b-quark [I77]. The HPQCD collaboration
has published a calculation of the scalar form factor for the B — 7 transition at
zero recoil fo(qfnax) on a subset of the Ny = 2 4+ 14 1 HISQ ensembles and
treating the b -quark in NRQCD [I78], which provides a nice test of the soft-
pion theorem, but cannot be used in |V,;| determinations. Ongoing work includes
a calculation of the B — 7 form factors over a range of ¢ on a subset of the
asqtad ensembles using NRQCD b-quarks and HISQ light-valence quarks [179].
The JLQCD collaboration has an ongoing project to calculate the B — 7 form
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factors on Ny = 2 + 1 Domain Wall ensembles using also Domain Wall fermions
for the heavy and light valence quarks [I80]. They focus their calculation on small
lattice spacings (a ~ 0.044 — 0.080 fm) and include a series of heavy-quark masses
to extrapolate to the physical b-quark mass.

The vector current form factors f+ and fo needed for rare B — wéf decay are
the same as for B — wfv decay (up to small isospin corrections), but the tensor
form factor fr is also needed to describe the rare process in the SM, while it can
contribute to B — 7fv decay only in BSM theories. So far, fr has been calcu-
lated only by the Fermilab/MILC collaboration [I81] using the same ensembles
and methods as for the vector current form factors. However, most (if not all) of
the ongoing projects described above, now include the complete set of form fac-
tors in their analyses, and new results for this form factor will therefore also be
forthcoming.

The Bs; — K{v process can be used for an alternate determination of |V, and
there currently are three independent, published lattice-QCD computations of the
vector-current form factors [182[1741[183]. In Ref. [I82] the HPQCD collaboration
used NRQCD b-quarks and HISQ light-valence quarks to calculate the form factors
on a subset of asqtad ensembles. The RBC/UKQCD [I74] work is already described
above, since they calculated the Bs — K and B — w transition form factors
together. The Fermilab/MILC collaboration [183] used the same methods and set-
up as for their B — 7 project [I75] but on a subset of asqtad ensembles. Both
Fermilab/MILC [I83] and, in a follow-up paper, HPQCD [I84] also computed
ratios of Bs — K and Bs — D; observables, which can be used in combination
with LHCb measurements to determine |Vip/Vep|.

3.1.3 Challenges of vector mesons

Lattice calculations of B decay form factors with vector mesons (p, K™, ¢)
in the final state are substantially more challenging, as these vector mesons are
unstable resonances for sufficiently light quark masses. The asymptotic final state
in the continuum then contains (at least) two hadrons, and the relation with the
finite-volume matrix elements computed on the lattice becomes nontrivial. The
formalism that allows a mapping of finite-volume to infinite-volume 1 — 2 hadron
matrix elements has been developed [I85[186L187,[188189,190,191] and will be
discussed in more detail below. First numerical applications to a form factor with
nonzero momentum transfer have been published for the electromagnetic process
my* — 7w, where the 7 final state in a P wave couples to the p resonance [192]
193,194].

The lattice QCD calculations of B, — V form factors published to date did
not implement this 1 — 2 formalism. For the B — p form factors, there is only
an early study by the UKQCD collaboration [195], performed in the quenched ap-
proximation and with heavy up and down quark masses for which the p is stable.
For the B — K*, Bs — K", Bs — ¢ form factors, an unquenched lattice QCD cal-
culation is available [I96]. This work used three different ensembles of lattice gauge
field configurations with pion masses of approximately 310, 340, and 520 MeV. For
the lower two pion masses, the K™ is expected to be unstable, but the analysis
was performed as if the K* were stable. This entails using only a quark-antiquark
interpolating field for the K*, and assuming that the information extracted from
exponential fits to the two-point and three-point correlation functions corresponds
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to the “K™*” contribution. The systematic errors introduced by this treatment are
difficult to quantify. For unstable K*, none of the actual discrete finite-volume
energy levels directly corresponds to the resonance, and the actual ground state
may be far from the resonance location (for typical lattice volumes, this problem
is more severe at nonzero momentum). However, a quark-antiquark interpolating
field couples more strongly to energy levels in the vicinity of the resonance, and
ground-state saturation is typically not seen in the correlation functions before
the statistical noise becomes overwhelming. In these cases, exponential fits are
still dominated by one or multiple energy levels in the vicinity of the resonance.

In the following, we will denote the vector meson resonance as V', and the
two pseudoscalar mesons whose scattering shows the resonance as P; and P». The
finite-volume energy levels for a given total momentum and irreducible represen-
tation of the appropriate symmetry group are determined by the Liischer quan-
tization condition [197] and its generalizations, as reviewed in Ref. [I98]. In the
absence of interactions, they would consist of P1 P> scattering states with energies
equal to the sums of the P; and P> energies, where the P; and P> momenta take
on the discrete values allowed by the periodic boundary conditions. Through the
P1 P> interactions, these energy levels are shifted away from their noninteracting
values in a volume-dependent way. In the simplest case (considering only elastic
scattering and neglecting the partial-wave mixing induced by the finite volume),
each interacting finite-volume energy level can be mapped to a corresponding value
of the infinite-volume P; P> scattering phase shift, or, equivalently, scattering am-
plitude; more complicated cases with coupled channels and partial-wave mixing
can also be treated. The dependence of the scattering amplitude on the PP
invariant-mass-squared, s, can be described by a Breit-Wigner-type function. By
analytically continuing the scattering amplitude to complex s, one finds poles on
the second Riemann sheet at s = (my + il /2)?, where I'y is the width of the
resonance. This procedure has been applied successfully to the p, K*, and other
resonances (see Ref. [198] for a review).

The B(sy — V form factors correspond to the residues at the pole at s = (my —
il'y /2)? in the B(s)y — P1 P, form factors, where the P P» final state is projected to
the £ = 1 partial wave. These B(,) — P1 P> form factors are functions of ¢% and s.
In the single-channel case, the lattice computation involves the following steps: (i)
Determine the P; P> finite-volume energy spectrum, and the B,y — P1 Pz finite-
volume matrix elements both for the ground states and multiple excited states.
(ii) Obtain the infinite-volume P; P> scattering amplitude from the finite-volume
energy spectrum using the Liischer method, and fit a suitable parametrisation of
the s-dependence to the data. (iii) Map the finite-volume By — P1P» matrix
elements to infinite-volume B,y — P1P> matrix elements using the Lellouch-
Liischer factor, which depends on the energy-derivative of the scattering phase
shift and a known finite-volume function.

The finite-volume formalism requires the center-of-mass energy +/s to be small
enough so that no more than two particles can be produced by the scattering
through the strong interaction (however, the total momentum of the P; P> system
can in principle be arbitrarily large). For example, in the case of the B — 7w form
factors, the formalism requires /s < 4 mx, which becomes more restrictive when
performing the calculation at lighter quark masses. However, it is likely that the
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coupling to four pions has negligible effects even at somewhat higher values of /s,
as needed to map out the p resonance region when using physical quark masses.

8.1.4 Ay — p and Ay — A form factors from lattice QCD

The Ap — p form factors relevant for the decay Ay — pu~ v have been computed
in lattice QCD together with the A, — A. form factors [16]; some aspects of this
work were already discussed in Sec. The lattice data for A, — p cover the
kinematic range from ¢* &~ 15 GeV? to near g2, ~ 22 GeV?, and consequently
the predicted A, — pu~ 7, differential decay rate is most precise in this range.
The integrated decay rates in the Standard Model were found to be

1

Vo2 D(Ap = pp~ ) = (25.7 4 2.6 stat + 4.6 5yst) Ps (3.3)
u

and

dg® = (12.31 £ 0.76 st £ 0.77 syst) Ps . (3.4)

1 /q?nax dIN(Apy — pp~ o)
|Vub|2 15 GeV?2 dg?

The latter has a total uncertainty of 8.8% (corresponding to a 4.4% theory un-
certainty in a |V,;| determination from this rate), and the ratio to the partially
integrated Ap — Acp” U decay rate has a total uncertainty of 9.8%, corre-
sponding to a 4.9% theory uncertainty in the determination of |Vyp/Ves| performed
by LHCb [I99], commensurate with the experimental uncertainty. The A, — p
form factors from Ref. [16] can also be used to predict the Standard-Model value
of the baryonic b — ufv lepton-flavor-universality ratio,

Ay = p170r)
T S pu iy 0.689 £ 0.058stat £ 0.064 syst. (3.5)
By increasing statistics, removing the partially quenched data sets (cf. Sec. ,
adding one ensemble with physical light-quark masses, and another ensemble with
a third, finer lattice spacing, it will likely be possible to reduce the uncertainties
in both the A, — p and A, — A, form factors by a factor of 2 in the near future.

The same methods have also been used to compute the A, — A [200], Ac —
p [201], and Ac — A [202] form factors with lattice QCD. The latter calculation
already includes an ensemble with the physical pion mass, and gave results for
the A. — Aetve and A, — Autv, branching fractions consistent with, and two
times more precise than, the measurements performed recently by the BESIII
Collaboration [203204]. This is a valuable test of the lattice methods used to
determine the heavy-baryon decay form factors.

A lattice-QCD calculation is also in progress for the A, — A*(1520) form
factors (in the narrow-width approximation) [205], which are relevant for the rare
decay Ay — A*(— pK)pTp~. As with A, — A, discussed in Sec. this
initial calculation only reaches ¢* in the vicinity of ¢2,ax.
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3.2 Light-cone sum rules calculations of heavy-to-light form factors

QCD sum rules on the light cone (LCSR) is a non-perturbative method for cal-
culating hadronic quantities [2061207,208]. It has been applied to obtain the form
factors for B decays (see the definitions in Section 2.I). The first LCSR calcu-
lations relevant for V,,;, were performed in 1997 when the next-to-leading order
(NLO) twist-2 corrections to f(q?) were calculated [209,210]. The leading order
(LO) corrections up to twist-4 were calculated in Ref. [211]. Since the LO twist-3
contribution was found to be large, further improvements were made by calculat-
ing the smaller NLO corrections [212]. A more recent update where the MS mass
is used in place of the pole mass for my; can be found in Ref. [2132T4] for the
B — 7 case and in Ref. [215] for the Bs; — K case. Here we will discuss a selection
of the more recent LCSR calculations.

For B — m, a NNLO (O(a2f0)) calculation of f(0) was performed, with the
result f4(0) = (0.2627005%) with uncertainties < 9% [216]. This calculation tested
the argument that radiative corrections to fy fp and fp should cancel when both
calculated in sum rules (the 2-loop contribution to fg in QCDSR is sizeable). It
was found that despite ~ 9% O(a2fo) change to fp, the effect on fy(0) was only
~ 2%.

More recently unitarity bounds and extrapolation were used to perform a
Bayesian analysis of the form factor fi(¢®) for B — m [217]. Prior distributions
were taken for inputs, a likelihood function was constructed based on fulfilling the
sum rule for mp to 1%, and posterior distributions were obtained using Bayes’
theorem. The posterior distributions of the inputs differed only for sg, which was
pushed to higher values sop = 41 &4 GeV (mainly due to the choice of my). Fi-
nally the results were fit to the BCL parametrisation, finding a central value of
f+(0) = 0.31 + 0.02. Obtaining f+(¢?) and the first two derivatives at 0 and 10
GeV? has allowed the extrapolation to higher ¢? using improved unitarity bounds.

Vb can also be obtained from the channels B — p/w, and updated LCSR re-
sults were made available in 2015 [218]. The improvements in these results include:
the computation of full twist-4 (4partial twist-5) 2-particle DA contribution to
FFs, plus the determination of certain so-far unknown twist-5 DAs in the asymp-
totic limit; a discussion of the non-resonant background for vector meson final
states; the determination and usage of updated hadronic matrix elements, specifi-
cally the decay constants; fits with full error correlation matrix for the z expansion
coefficients, as well as an interpolation to the most recent lattice computation. The
result for |Vp| from B — plv has comparable errors to the B — 7 determination.
In general the B — V results agree with previous exclusive determinations and
global fits within errors.

Future prospects for exclusive V,,;, from LCSR include extending the subset
of NNLO corrections calculated both in ¢? and to include all NNLO twist 2 and
3 contributions. It would also be beneficial to perform a Bayesian uncertainty
analysis of all B — P,D — P LCSRs (along the lines of the aforementioned
analysis for B — « [217]). Finally the measurement of B; — K{v at LHCb/Belle
IT will allow an important complementary determination of V,,; using results from
Ref. [219].
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3.3 Measuring |V,,5| exclusively and the prospects for Belle 1T

The most precise exclusive determinations of |V,,;| will ultimately come from the
most theoretically clean b — ul”#; modes: B® — #1175, B! — K11~ 5 and
AY — pl~ 1, which involve ground state hadrons in the final state. The main
challenge facing measurements of |V,,;| from these modes is the large background
from b — ¢l decays, which is O(|Ves|?/|Vas|?) = 100 more likely to occur.
This background is difficult to separate from signal given the need to partially
reconstruct the missing signal neutrino.

Several measurements of exclusive B — 711~ 5 decays were made at the B
factories CLEO, BaBar and Belle. These measurements fall in to two categories of
tagged and untagged measurements, which exploit the unique e”e™ — 7(45) —
BB topology and fully hermetic detector design of the B factories. In tagged mea-
surements [220] the non-Signal B meson in the event is first reconstructed in a
number of hadronic modes before selecting the signal pion and lepton. Exploiting
the known energies and momenta of the interacting ete™ beams allows for neu-
trino 4-momentum, p, to be reconstructed and the signal to be extracted using the
missing mass squared of the neutrino, M? = p2. In untagged measurements [221],
222) the signal pion and lepton are first selected with a tight selection to reduce
background from b — ¢l™ ; decays. The neutrino is then reconstructed by inclu-
sively reconstructing the other B in the event as a sum of remaining tracks and
photons. The beam constrained mass, Mp., and beam energy difference E| are used
as fit variables to simultaneously extract the signal. While tagged measurements
give a high purity and better ¢? resolution they suffer from a much lower effi-
ciency resulting from the branching fractions and reconstruction efficiencies for
tagged modes.

In both tagged and un-tagged measurements the exclusive B® — 77177 sig-
nal is fitted in bins of ¢ to determine the partial branching fraction in each bin.
These measurements together with LQCD and LCSR predictions can be used as
constraints to simultaneously fit the form factors of decays and determine the pa-
rameter |Vy|. HFLAV performed a fit for |V,;| the B® — 7t~ form factor,
f+(q%), under a BCL parametrisation utilising BaBar and Belle tagged and un-
taggged datasets and state of the art theory predictions [66]. This resulted in the
most precise determination of |V, to date, |Vys| = 3.67 £0.09(exp) £ 0.12(theo),
which has a total uncertainty of 4%.

Untagged and tagged measurements of |Vyp| from BY — 77177 decays at
Belle II will significantly improve the precision on |V,|. In order to project the
reduction in uncertainty both tagged and untagged analyses were performed on
simulated Belle IT Monte Carlo. The expected uncertainty on |V,,| was determined
for a given luminosity by extracting the partial branching fractions from pseudo-
datasets generated from Monto Carlo expectations and fitting these together with
LQCD predictions. With 50 ab~! and future expected improvements in LQCD
predictions the projected uncertainties on |V,p| from B° = nti iy decays were
1.7% (tagged) and 1.3% (untagged). The dominant systematic for the tagged anal-
ysis is the calibration of the tagging efficiency which is assumed irreducible at 1%
on |V,p|. For the untagged analysis the dominant systematic uncertainty results

3 Here My, = y/E;2 ~— P32 and AE = E

beam Beam
B meson energies in the centre of mass frame.

* * *
— E% where Ej, - and ET are beam and
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from the uncertainty on the number of BB pairs which is assumed irreducible
at 0.5%. Several systematics relating to the branch fractions and form factors of
b — cl”p; and b — ul” 7 decays are also considered irreducible in the untagged
analysis given the lower purity than the tagged analysis.

3.4 Measuring |Vyp|/|Ves| at LHCb

All b-hadron species are accessible at hadron colliders thus opening to LHCb a
wide possibility of |V,| measurements from exclusive b — u transitions, while in-
clusive |V,p| measurements do not seem feasible at the moment. In proton-proton
collision at high energy bb quark pairs are produced mainly from gluon splitting
and hadronize independently, as a consequence b-hadrons have a wide continuum
momentum spectrum and the reconstruction of semileptonic decays can not profit
of the beam-energy constraints used at B-factories. However, thanks to the large
boost acquired by the b-hadrons, the direction of the momentum can be well deter-
mined by the vector connecting the primary vertex of proton-proton interactions
and the b-hadron decay vertex. By imposing the b-hadron mass constraint, the
missing neutrino momentum can be calculated with a two-fold ambiguity. A small
fraction of unphysical solutions arises from the imperfect reconstruction of ver-
tices positions. The best way to choose between the two solutions depends on
the specific decay mode under study. The choice can be optimized considering
additional variables related to the decay kinematics by using linear regression al-
gorithms [223].

The precise determination of an absolute branching fraction requires the precise
knowledge of the total b-hadron production rate and of the experimental detection
efficiency, which includes reconstruction, trigger and final states selection. To min-
imize the experimental uncertainty it is preferred to determine ratios of branching
fractions, normalizing the b-hadron decay mode under study to a well-known b-
hadron decay mode, that has as similar as possible decay topology. Choosing a
decay of the same b-hadron removes the dependence on the production fraction of
the specific b-hadron.

The first determination of |V,;| at LHCb was done with baryons, measuring
the branching fractions for A, — pu~ 7 and A) — AT~ decays [199]. What is
directly determined is the ratio of the CKM matrix elements

Vaol* _ B(Ay »pp77)

Va2 = BUAO = Adpw)

cb b c

where Rpr is the ratio of the relevant form factors, calculated using LQCD. The
ratio represents a band in the |V,;| versus |Vg| plane and can be converted into
a measurement of |V,,;| using existing measurements of |Vg,|. Approximately 10%
of b-hadrons produced at LHC are A, and a clean signal identification is possible
imposing stringent proton identification requirements. The large background from
b-hadron decays with additional charged tracks in the decay products is strongly
reduced employing isolation criteria by means of multivariate machine-learning
algorithms. The signal yields are determined from a x? fit to the B corrected mass
distributions of AY — pu~ 7 and AY — A ;1”7 candidates. The corrected mass is

defined as meorr = 4 /mfm + pi + p1 where p is the momentum of the hadron-pu

pair transverse to the A9 flight direction.
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The LQCD form-factors that are used in the calculation of |V,;| [16] are most
precise in the kinematic region where ¢2, the invariant mass squared of the leptonic
system, is high. When the branching fractions of the b — u (b — ¢) decays are
integrated in the region ¢* > 15(7)GeV? the theory uncertainty on |Vip|/|Ves| is
4.9%. This measurements, performed with Run 1 data, gives |Vip|/|Ves| = 0.83 £
0.004 (stat) £0.004 (syst), consistent with previous exclusive measurements of the
two CKM matrix elements.

A new measurement of this type is currently under study at LHCb. It uses
B - K T4~ 7 decays whose branching fraction is predicted to be of the same
order of magnitude of the A) — pu~ 7 one.

The signal selection is challenging due to the large background from partially
reconstructed decays of all species of b-hadrons, but it can exploit the good effi-
ciency and purity of kaon and muon identification provided by the LHCb detector,
the separation of the Kpu vertex from primary vertex and the already mentioned
isolation tools. The chosen normalization mode BY — Dfp v, DY - K- Ktrnt
benefits of small uncertainty in the D7 branching fraction. The good identifica-
tion of this decay mode, despite the large feed-down from BY decays to excited Ds
mesons with un-reconstructed neutral particles, has been proven to be possible at
LHCD with the measurement of BY lifetime [224].

Form factors for the Bg mesons decays to K and Ds have been calculated with
LQCD by several groups [I82L[I74]. The calculation are performed in the high q>
region and extrapolated to the full region with BGL or BCL z-expansions. Dif-
ferent calculations agree at high ¢2, but there is currently a disagreement in the
¢% = 0 extrapolated value. For B — K1~ 7 in the low ¢? region (up to 12 GeVQ)
form factors calculated with LCSR are also available [219]. The uncertainties on
the experimental measurement of the BY — KT ;™7 yield increase at high ¢° (low
kaon momentum) due to the reduced efficiency and the larger background contam-
ination. It is foreseen to perform the measurement in few g2 bins so that the use
of different calculations of form factors will be possible. Larger data samples, ac-
cumulated during the LHCb Upgrade period will allow a differential measurement
in finer ¢? bins.

Purely leptonic B~ — u~ v decays are not accessible at LHCb. An alternate
way has been tested, searching for the decay B~ — pu~ ou’p~ where an hard
photon is irradiated from the initial state and materializes into two muons. This
decay has the experimental advantage of the presence of additional particles in the
final state and of a larger branching fraction, due to the removal of the helicity
suppression. An upper limit on the branching fraction of 1.6 x 10~ has been de-
termined with 4.7 fb~! of integrated luminosity [4], making it a possible candidate
for a |V,s| measurement in the LHCb Upgrade period [225].

3.5 Related issues
3.5.1 Ry
The experimental signature of B — wrv; is challenging: low in rate due to CKM

suppression, this final state can only be isolated from backgrounds using multi-
variate analysis techniques. Due to the pseudoscalar nature of the pion in the final
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state, an increased sensitivity to certain new physics models involving scalar ex-
change particles is expected and measurements of this branching fraction offer an
orthogonal path to probe the anomalies observed in R(D) and R(D™). The first
limit on the branching fraction using leptonic and one-prong 7 decay modes was
reported by Ref. [226]. They reported

B(B® -7 7t u) <28x107" at 95% CL, (3.6)

using a frequentist method. This result can be converted into a value of Rr =
I(B® - 7= 7% v,;)/I(B° = = " v;) with £ = e, pu of

Ry =1.05+0.51, (3.7
which can in turn be compared to the SM prediction of Refs. [I75,227] of
Ry =0.641 +0.016 . (3.8)

Although the current precision is very limited, this result can already exclude
the model parameter space of new physics models e.g. charged Higgs bosons, cf.
Ref. [227]. Albeit a challenging signature, the final state with a charged pion
has excellent prospects to be discovered in the large future Belle II data set. A
naive extrapolation of Eq. [3.7] using assuming SM couplings results in evidence
with 4 ab™! and discovery with 11 ab™! of integrated luminosity. The theoretical
precision in R, will further increase with progress in lattice and with combined
light lepton and lattice fits (the measured spectra can constrain the low ¢? region,
which the lattice has difficulties in predicting reliably).

3.5.2 Experimental status and prospects of B — Ly

The experimental study of B — fv,y with £ = e, u is challenging and requires
the clean laboratory of an et e~ machinery: in such a setting the known initial
state and the full reconstruction of the second B-meson produced in the collision
provide the necessary constraint to successfully identify this signature. In addition,
to not be overwhelmed with background, only photons at high energies ( &~ 1 GeV
or larger) can be studied this way. The difficulties lie in the low efficiency of
the reconstruction performance of the second B-meson, which have to happen
in low branching fraction hadronic modes, and the still sizeable cross-feed from
B — 7%, and B — 1l decays. These two semileptonic processes produce
very similar final states, namely B — fvyy~, but can be reduced by looking for
a unassigned second high-energetic photon in the collision event under study. To
separate B — fvyy from such decays successfully a fit to

me =~ Miiss = (PB4, — Do — Pr)° (3.9)
can be carried out. Here py and p, denote the reconstructed four-vectors of the
visible final states of B — fvyy. The four-vector of the decaying signal B-meson,
DB, can be reconstructed using the information from the reconstructed tag-side
B-meson. Correctly reconstructed signal decays peak at m2 ~ 0 GeV?, whereas
the dominant semileptonic decays are shifted to higher values due to the absence
of the additional photon in the four-vector sum. The sensitivity can be further
increased by explicitly reconstructing the semileptonic backgrounds and combine



Challenges in Semileptonic B Decays 39

1.2- AB(B+ g €+I/Z’Y)Eﬁ,>l,(]Gc\"
Belle 711h~*

107 Bellell 5ab
Belle I 50 ab™

< 0.8-
o
<
= 0.6-
0.4-
0.2-
I T T I
2 4 6 8
[Vio| x 10°

Fig. 3.1 Projection of the extraction of Ag and |V,;| for the expected Belle II data sets. The
ellipses correspond to the expected uncertainty. The figure is from Ref.[230].

this information into a global analysis. This was the strategy pursuit by Ref. [22§],
which constrained the 7° semileptonic background this way. The current experi-
mental limit with a lower photon energy cut of 1 GeV is

AB(B — fvpy) < 3.0x 107°  at 95% CL. (3.10)

The above limit was determined using a flat Bayesian prior.

The discovery prospects for this decay at Belle II are excellent: the improved
tracking capabilities, better calorimeter electronics, and the continuous develop-
ment of modern tagging algorithms such as Ref. [229] will help improving the
sensitivity. Extrapolating from the central value and uncertainty of the currently
most precise limit of Eq. of AB(B — fugy) = (1.4+1.1) x 107°, evidence
should be possible with 5 ab~! and a discovery is possible with 50 ab™! [230].
In principle, after discovery the value of |V,;| could be extracted from this de-
cay as well, along with the first inverse momentum of the light-cone distribution
amplitude, Ap. An extrapolation from the current sensitivity is shown in Fig-
ure based on the numbers from Ref. [230]. The sensitivity for |V,,| will not be
competitive with other methods (leptonic and semileptonic), but the achievable
precision on Ap will help measurements and interpretations, which rely on our
understanding of the light-cone distribution amplitude properties.

3.5.8 Theoretical progress for B — vy,

The photoleptonic decay B — vfvy; determined by two independent form factors
is the simplest probe of the B-meson light-cone distribution amplitudes (LCDAs),
which represent one of the most important inputs in the theory of semileptonic and
nonleptonic B-decays based on QCD factorization and LCSRs. The calculation of
the form factors in HQET and at large photon recoil in the leading power is well
developed and can be found in Ref. [231]. The 1/my and 1/E, power suppresed



40 P. Gambino! et al.

effects, expressed in a form of the soft overlap part of the form factors, were
quantified using a technique [232] based on dispersion relations and quark-hadron
duality (see also Ref. [233]). The most advanced calculation of the B — ~fv, form
factors, including power suppressed terms, was done recently [234] resulting in
the prediction of the decay branching fraction at E, > 1.0 GeV as a function
of the key unknown theoretical quantity: the inverse moment Ap of the B-meson
LCDA. An alternative approach [235] calculates the power-suppressed corrections
due to photon emission at long distances in terms of the photon LCDAs in the
LCSR framework. The proof of concept for a lattice QCD calculation of radiative
leptonic decays was recently done in [236], see also [237].

3.5.4 B — wmlyy decay beyond p

Calculations of B — p form factors both in lattice QCD and from LCSRs usually
adopt a narrow p approximation and by default ignore the influence of nonresonant
effects(radially excited p’s) in the mass interval around p. The role of these effects
has to be assessed at a quantitative level. In Refs. [238][239] the first attempt to cal-
culate more general B — 77 form factors from LCSRs, using two-pion LCDAs at
low mass of dipion system and at large recoil, was undertaken. The currently lim-
ited knowledge of these nonperturbative inputs calls for their further development
and also for alternative methods. In Ref. [240)] a different version of LCSRs with
B meson LCDAs was obtained which predicts the convolutions of the B® — 7 7°
form factors in P wave with the timelike pion form factor. In the narrow p-meson
limit these sum rules reproduce analytically the known LCSRs for B — p form
factors. Using data for the pion vector form factor from 7 decay, the finite-width
effects and the contribution of excited p-resonances to the B — wm form factors
were found to amount up to ~ 20% in the small dipion mass region where they can
be interpreted as a nonresonant (P-wave) background to the B — p transition.

3.5.5 Remarks on the z expansion

The use of the so-called z expansion for form factors has become a standard prac-
tice for semileptonic decays, see Refs. [24111242] for a pedagogical discussion. In the
workshop several issues concerning it were discussed, in particular its application
to baryon form factors.

Form factors which parametrize matrix elements of the form (L|J|H) have
known analytic structure. In particular, they are analytic in the complex ¢ =
¢° plane outside a cut on the real axis. The cut starts at some positive tcut
equals to the invariant mass squared of the lightest state the current J can pro-
duce. The domain of analyticity can be mapped onto the unit circle via z =
(\/tcut —t—Vteut —to) / (\/tcut —t+ /tcut — to), where to is a free parameter
denoting the point that is mapped to z = 0. The form factor can be expanded
as a Taylor series in z which is a model-independent parametrization. For heavy-
to-light form factors the maximum value of z is related to the distance between
(mmg — mL)2 and tcus. As a result, increasing tcyt decreases the maximum value
of z leading to a faster convergence of the series.

Naively one might assume that the lightest state is the two-particle state HL.
This would imply that tcus = (my + mL)Q, but this is not the case in general. For
example, for the proton electric and magnetic form factors (H = L = p) the cut
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starts at the two-pion threshold and not at the pp threshold. As another example,
for one of the B —  form factors (f4) the cut starts at m%.. Since this is a simple
pole, it can be easily “removed” by considering (¢ — mp-)f+ as a Taylor series in
z. For (t —mp-)fy the cut starts at (mp +mx)?. If one uses a higher value of tcut
than the physical one, one faces the danger of trying to expand the form factor in
a region where it is not analytic. One of the immediate results of the workshop was
the identification of such a problem in the literature. For baryon form factors, e.g.
Ap — p, analyses have used the wrong value of tcus = (ma, +myp)?, see Ref. [243)
and arXiv.org version 2 of Ref. [I6]. In fact, tcut for the baryon form factors is the
same as for the meson form factors of analogous decays.

Another issue discussed in the workshop is the use (or lack of use) of bounds
on the coefficients of the z expansion. Although the form factor is expressed as
an infinite series, in practice the series is truncated after a few terms. One would
like to ensure that the value of a physical parameter such as |V,| is independent
of the number of parameters used, by bounding the coefficients. For example, one
can use a unitarity bound [244] or a bound from the heavy quark expansion [245].
It seems that currently there is no consistent use of bounds in extraction of |V
As the analysis [246] shows, this can be a problem as the data improve and the
number of necessary parameters increases. This can be especially problematic if
one needs to use the z-expansion for extrapolation. The community needs to be
aware of this issue and at least test that results do not change if bounds are applied
to the coefficients.

The unitarity bounds for meson decays such as B — 7 rely on the fact that
for (t — mp~)f+ the cut starts at the (mp + mx)?. For baryon decays such as
Ap — p, unitarity can only constrain the region above (ma, + mp)Q. The region
between (mp-+myx)? and (ma, +mp)? is left unconstrained. Following the analysis
of Ref. [246] one might worry that the contribution of the latter region is the
dominant one. While considering together mesons and baryons contributions to
the dispersive bounds might overcome the problem [87], further study is warranted.

4 Quark masses and leptonic decays
4.1 Quark masses

In the Standard Model (and many extensions), quark masses and the CKM matrix
all stem from Higgs-Yukawa couplings between the quark fields and the Higgs
doublet. It is therefore natural to consider the bottom-quark mass, my, in this
report. As discussed in Sec. |5 m; can be extracted from the inclusive semileptonic
B decay distributions, along with |Vi|. In the theory of inclusive decays, the
charm-quark mass, m., is also needed to control an infrared sensitivity; see Sec.

Figure compares results from lattice QCD with realistic sea content of
ny =2+141 or 2+1 sea quarks with the FLAG 2019 [3] average for the 2+1+1
sea. The average for m; is dominated by the very precise result from the Fermilab
Lattice, MILC, and TUMQCD Collaborations, while that for m. is dominated
by the corresponding Fermilab/MILC/TUMQCD result together with two sep-
arate results from the HPQCD Collaboration. Note also that m. is pulled high
by the somewhat inconsistent results from the Europearﬁ Twisted Mass (ETM)

4 Since 2016 known as “Extended” instead of “European”.
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Collaboration. The FLAG 2019 averages are

= my, 35(my, 315) = 4.198(12) GeV, (4.1)
e = m, 55 (M. xis) = 1.280(13) GeV, (4.2)

based on Refs. [248/[249,[27250,251] and [247[248|[2511252/[253], respectively. Note
that the most precise results [247,[248|[251] all use the very high statistics MILC

HISQ ensembles with staggered fermions for the sea quarks [27223]. In the future,
other groups [273L274.[275.[276] will have to collect similar statistics to enable a
complete cross check.

Four distinct methods are used in the results shown in Fig. 1) converting
the bare lattice mass to the MS scheme, 2) fitting to a formula for the heavy-light
hadron mass in the heavy-quark expansion [277,278], and 3) computing moments
of quarkonium correlation functions mmaThe first two require an intermedi-
ate renormalization scheme that can be defined for any ultraviolet regulator: quark
masses defined this way can be computed with lattice gauge theory or dimensional
regularization. For example, HPQCD 13 (7" decays) [257] uses two-loop lattice per-
turbation theory to convert the bare NRQCD mass to the pole mass [281282],
and dimensional regularization to convert the pole mass into the MS mass.

Instead of the pole mass, one can use a regularization-independent momentum-
subtracted mass [283]. Like the MS scheme these RI-MOM schemes are mass-
independent renormalization schemes, but they depend on the gauge. In lattice
gauge theory, Landau gauge is easily obtained on each gauge-field configuration
via a minimization procedure [284]. The mass renormalization factor, Z,,, can be

5 Lattice methods with no results in Fig. are not discussed here.
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Fig. 4.1 Comparison of results for the bottom-quark mass my, = my, 575(my, 575) (left) and
the charm-quark mass mc = m, 5r5(m, 555) (right). Squares denote lattice-QCD calculations
with 24 1+ 1 flavors of sea quark [247][248|[2491[271[2501[2511[252][253]; triangles denote lattice-
QCD calculations with 2 + 1 flavors of sea quark [25412551[25612571258]; circles denote results

extracted from ete™ collisions near QQ threshold [25912601261126212631264.265 2661267268,
[269,270127T]. The vertical band shows the FLAG 2019 average for 2 4+ 1 + 1 sea flavors. Note
that 2 4+ 1-flavor calculations are in rough (good) agreement for bottom (charm).
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computed from the three point function for the scalar or pseudoscalar density,
because Z,," = Zs = Zp (up to technical details for Wilson fermions). For exam-
ple, the matrix element (p’| P|p), between gauge-fixed quark states, can be used to
define Zp using the same formulas for lattice gauge theory as for continuum gauge
theory (with dimensional regularization) [283]. The schemes labeled RI-MOM and
RI’-MOM use p’ = p and slightly different definitions of the quark-field normaliza-
tion Za; for a review see Ref. [285]. The momentum transfer ¢ = p’ — p = 0 here,
namely it is “exceptional” in the sense of Weinberg’s theorem [286]. On the other
hand, the RI-sMOM scheme [287] chooses p’ and p such that p? = ¢* = p'? = p°.
Without the exceptional momentum, the extraction of Zp is more robust. It would
be interesting to see whether RI-sMOM on the ETM 2+1+1 ensembles yields my
favoring the RI’-MOM results or the RI-sMOM results on MILC’s ensembles.

The HQE method starts with the HQE formula for a heavy-light hadron
mass [288/[289],

2 2
M:m+/1+“—”—dJ“G(m) +
2m 2m

where M is the hadron mass, which is computed in lattice QCD as a function of
the quark mass, m, and d; depends on the spin of the hadron. The quantities
can be identified with the energy of gluons and light quarks, A, the Fermi motion
of the heavy quark, ,u?r, and the hyperfine splitting, u2G. (u2G depends logarith-
mically on m.) Although this idea is not new [277,[278], to be precise one has to
confront the definition of m. Although the pole mass is natural in the context of
the HQE, it is not suitable in practice, because of its infrared sensitivity. The MS
mass, on the other hand, breaks the power counting: mpole — My X AsMpole-
Instead, one chooses mass definitions that, in some sense, lie in between these
two choices. Gambino et al. [249] choose the kinetic mass [290], while Fermi-
lab/MILC/TUMQCD [248] choose the minimal renormalon subtracted (MRS)
mass [291]. After extracting myin or myps from fitting Eq. , the result can
be converted to the MS scheme with three- and four-loop perturbation theory,
respectively. In addition to the different matching, the error bar from Fermi-
lab/MILC/TUMQCD is so small because it is based on the largest data set of
all calculations in Fig. See Sec. for further discussion and results for A,
uZ, ué, and higher-dimension corrections to the HQE.

One can avoid an intermediate scheme by computing a short-distance quan-
tity in lattice QCD, taking the continuum limit, and analyzing the result with
MS perturbation theory. For example, on can compute moments of quarkonium
correlation functions [279,280],

(4.3)

G =3 "t"Gr(), (4.4)
Gr(t) = cr Y (QrQ(z,t) QIQ(0,0)), (4.5)

for some Dirac matrix I'. In lattice gauge theory, the pseudoscalar density needs
no renormalization if I' = 75 and c,5s = m?Q. The moments Ggﬂn) are physical
observables with a good continuum limit, which is proportional to mg to the
appropriate power, multiplied by a dimensionless function of as(mg). Thus, these
moments also yield determinations of the strong coupling as well as quark masses.
In Fig. results obtained in this way are labeled “moments”.
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The same moments G(Fn) can be obtained from the cross section for eTe™ anni-

hilation into QQ hadrons via a suitably subtracted dispersion relation. In this case,
I' = 4" for the electromagnetic current, and ¢+ because the electromagnetic cur-
rent is conserved. Thus, the same perturbative calculations (only changing I") can
be used to extract the bottom- and charm-quark masses and « from experimental
measurements. The dispersion relation, related sum rules, and the perturbative se-
ries for the moments are the basis of the result labeled ete™ — bb and ete™ — cé
in Fig. The order o, p =1, 2, 3, became available in 1993 [292], 1997 [293],
and 2006 [2941270], respectively.

4.2 Leptonic decays

Instead of semileptonic decays, CKM matrix elements can also be determined from
purely leptonic decays. For example, a goal of Belle II is to improve the determi-
nation of Vi, from BT — 77v, as well as Vyq from DT — ¢*v and V., from
D — ¢*v, and a goal of LHCb is to observe B. — 7v. The rates for leptonic
decays suffer a helicity suppression, making tauonic and muonic decays preferred
experimentally. Leptonic decays are mediated by the axial-vector part of the elec-
troweak current, as well as possible pseudoscalar currents, so they complement
semileptonic decays in this way.

The hadronic quantity describing the decay is known as the decay constant,
defined by

(067" +°u| BT (p)) = ip" f5+, (4.6)

where p* is the four-momentum of the B meson and fg+ is the decay constant.
For other mesons, the axial currents and notation change in obvious ways. From
the partial conservation of the flavor-nonsinglet axial current, the pseudoscalar
density can also be used to compute the decay constant:

(mp + mu) 010y ul BY (p)) = Mg+ i+, (4.7)

where m; and m,, are bare quark masses.

Equations and are the basis of lattice-QCD calculations. In general,
the axial current used is not a Noether current, so it is not absolutely normalized.
Fermion formulations with good chiral symmetry (staggered, overlap, domain wall)
provide an absolutely normalized pseudoscalar density. Until recently, however,
lattice spacings have not been small enough to use these approaches for the b quark.
Methods developed especially for heavy quarks have therefore been used, and they
do not provide any absolutely normalized bI'u bilinears.

Figure [£:2] compares results from lattice QCD with realistic sea content of
ny =2+141 or 2+1 sea quarks with the FLAG 2019 [3] average for the 2+1+1
sea. Because the Fermilab/MILC results dominate the FLAG average, we simply
quote them [23]:

fB+ == 189.4(0 S)Stat(l 1)syst(0 3)f7r.PDG [0 1]EM scheme MeV, (48)
fro =190.5(0.8)stat (1.0)syst (0-3) £, pp [0-1]EM scheme MeV, (4.9)
fB, = 230.7(0.8)stat (1.0)syst (0.2) £, 1pe [0-2]EM scheme MeV. (4.10)
fpo = 211.6(0.3)stat (0.5)syst (0.2) £, ppe [0-2]EM scheme MeV, (4.11)
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Fig. 4.2 Comparison of results for the B(,)-meson (top) and the D ,)-meson (bottom) decay
constants. Squares denote lattice-QCD calculations with 2+ 1+ 1 flavors of sea quark [23/[295]
2712961[297]; triangles denote lattice-QCD calculations with 2+ 1 flavors of sea quark [2761[298],
25612991[3001[3011[302120]. The vertical bands show the FLAG 2019 average for 2+ 1 + 1 sea
flavors [3].

fD+ = 212'7(0'3)St3«t(0'4)Sy5t(0'2)f7r,PDG [OQ}EM scheme MeV, (412)
fp. = 249-9(0-3)stat(0-2)syst(O-Q)fw,pnc [0.2]EM scheme MeV, (4.13)

where the systematic uncertainties stem from different choices in choosing fit
ranges for the correlation functions and checking the continuum extrapolation
by adding a coarser lattice; the third “fr ppg” error comes from converting from
lattice units to MeV with the pion decay constant of the PDG [9§]; the last uncer-
tainty stems from ambiguities in estimating electromagnetic effects in the context
of a QCD calculation omitting QED. The results are arguably precise enough for
the foreseeable future.

The results in Eqgs. f again use the very high statistics MILC HISQ
ensembles with staggered fermions for the sea quarks. Here the lattice spacing is,
for some ensembles, small enough to reach the b quark, so the calculation uses
the HISQ action for all b and light quarks alike. Thus, an absolutely normalized
pseudoscalar density is available, so the uncertainty is essentially statistical, as
propagated through a fit to the continuum limit with physical quark mass. Again,
other groups will have to collect similar statistics in the future to enable a complete
cross check.
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To go beyond the precision quoted here, analyses of leptonic decays will have
to include QED radiative corrections to the measured rates. The issues and an
elegant solution for light mesons (pion and kaon) can be found in Refs. [303|
304.[305]. Radiative corrections for heavy-light mesons will be more difficult to
incorporate, because of the hierarchy of soft scales Aqcp, A%CD/mQ, A%CD/mé,
etc.

5 Heavy-to-heavy inclusive
5.1 Heavy Quark Expansion for b — ¢
5.1.1 Review of the Current Status

The heavy quark expansion (HQE) for the inclusive semileptonic b — ¢ transitions
starts form a correlation function for the b — ¢ current

dI oc Y (2m)*6* (P — Px — @){B(v)[b:(1 = 75)¢|X) (X|ev (1 = 75)b| B(v))
X

- / d'z " (B(v)[b(x)7u (1 — v5)c(@)evw (1 — 75)b| B(v))
—2Tm / &z ¢ (B(0)|T{b(2)7 (1 — 73)e(@)er (1 — 75)b} | B()) (5.1)
=21Im / d*z e DB (0)| T{by () (1 — 35)c(2)ev (1 = 75)bu } B(v))

with 4
b(x) = e by ().

The time ordered product in the last line can be expanded in an operator product
expansion which for large m; and m. yields an expansion in terms of local hadronic
matrix elements which parametrize the hadronic input. Within this approach, the
differential rate can be expressed as a series in 1/m

Agop \? Aqep \? Agep \*
Al = dly + (7> drs + (7) drs + <7) drs
mp mp mpy

A 5 A 377 2
o (2 (5 ()
mp myp me

+. +dly (AQCD)3 (AQCD)4 (5.2)

my me

The coefficients dI’; are given by

ar; = 3 ¢ (B(v)[0}"|B()) (5:8)
k

where the OZ( ) are operators of mass-dimension 443 and the sum over k runs over

all elements of the operator basis, C’i(k) are coefficients that can be calculated in
QCD perturbation theory as a series in as(my). Note that starting at order 1/mj
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the b — ¢ HQE exhibits an infrared sensitivity to the charm quark mass; for the
total rate, I'3 contains a log(mz) while I's contains inverse powers of m?2 which are
explicitly shown in Eq. .

The leading term dIp is the partonic result which turns out to be indepen-
dent of any unknown hadronic matrix element. This term is fully known (triple
differential rate) at tree level, at order as [306,307] and order o2 [307,308,309,
310,311).

Due to heavy quark symmetry, there is no term dI and the leading power
corrections appear at order 1/m?. These are given in terms of two non-perturbative
matrix elements

2Mpus = —(B(0)|by(iD)?by| B(v)) (5.4)
2Mpug = —i(B(v)[buoyu (iD")(iD” )bu| B(v)) (5.5)

The coefficients of these two matrix elements are known to order «, [312,[313/[314]
315,1316]. At order 1/mj there are again only two matrix elements which are given
by

2Mupp = —(B(v)[bu(iDy) (i D)(iD" )by | H (v)) (5.6)
IMpts = —i(B(0)|byou (iD")(ivD)(iD" )by | B(v)) (5.7)

For these matrix elements only the tree level coefficients are known. Furthermore,
if the matrix elements are defined as aboveﬂ the coefficient of p? ¢ vanishes for
the total rate, which is related to reparametrization invariance of the HQE [317].

The HQE predictions of the inclusive semileptonic rates depend on m; and
me, and the size of the perturbative QCD corrections depends on the choice of the
quark-mass scheme. The quark masses are discussed in detail in a different section
of this paper, and we refer the reader to this section.

5.1.2 Higher power corrections

At order 1 /m;,1 and higher the number of independent nonperturbative parame-
ters starts to proliferate. In addition, due to the dependence on powers of 1/m.
the power counting needs to be re-defined: since we have parametrically m2 ~
Aqcpmp one has to count the term dlsaz as a part of dIy, see (5.2]). Thus the
full complexity of the dim-8 operators already enters an analysis of the 1/mj
contribution.

We shall not list the independent matrix elements appearing at order 1 /m;1
and 1/mj, rather we refer the reader to the list given in Refs. [318,319]. However,
the proper counting of the number of independent operators has been settled only
recently [320], using the method of Hilbert series. It turns out that at tree level
there are 9 dimension 7 operators [318] while QCD corrections will increase this
number to 11 [320].

The reason is very simple. At order 1/ mﬁ we have operators with four covariant
derivatives, which can be written as (E?) (chromoelectric field squared) and (B?)
(chromomagnetic field squared) where E and B are both color-octets. Thus the
combination appearing at tree level is

E?>=E®-E’ T°T® and likewise for B* . (5.8)

6 More commonly used definitions differ by O(1/m;) terms.
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However, the symmetric product of 7% and T® contains a singlet and an octet
component

%(T“Tb +TPT) = 6% 4 d™°T°. (5.9)

The two terms on the right-hand side acquire different coefficients once QCD
corrections are taken into account, and thus become independent operators. Al-
though this observation [320] is correct, it has no impact unless QCD corrections
are considered at order 1/mj. The same argument explains the different counting
at order 1/mj where we have 18 parameters at tree level [318], while the general
case involves 25 matrix elements [320].

Clearly the number of independent parameters appearing at order 1 /mg’5 is
too large to extract them from experiment, even if data will become very precise in
the future. To this end, one has to rely on some additional theoretical input, which
should better be model dependent. A systematic approach has been proposed in
Ref. [318] and refined in Ref. [319]: it is based on the “lowest-lying state saturation
Ansatz” (LLSA) and corresponds to a naive factorization of the matrix elements.
The LSSA allows us to write all matrix elements appearing in 1/mj and 1/m} in
terms of four parameters, which are u2 and ,uQG (see Egs. 1) and ) and € /7
and e3/9, where ¢; are the excitation energies of the lowest orbitally excited spin
symmetry doublets with j the spin of the light degrees of freedom. Note that in
this setup also pp and prs can be computed which may serve as a check, since
these parameters can also be extracted from experiment.

The LLSA has been used to study the impact of the l/m;f’5 terms on the
extraction of V., in Ref. [32I]. It turns out that, even if a generous margin is
allowed for the uncertainties, the shift in the extracted V,; remains well below 1%,
and with the default choices of Ref. [321] a shift of —0.25% is found.

Recently the impact of the reparametrization invariance on the HQE has been
re-investigated. In Ref. [317}[322] it has been shown that the number of indepen-
dent parameters in higher orders can be reduced by reparametrization invariance,
for the total rate and the ¢> moments. While the number of HQE parameters up
to order 1/mj is still two, there is only one parameter at 1/mj, since the spin-orbit
term can be absorbed into uZ. At order 1/mj there will be only four parameters,
which opens up the possibility of constraining the higher dimensional matrix ele-
ments directly with experimental data, at least if Belle II will be able to measure
several moments of the ¢* distribution.

5.1.8 Heavy Quark Ezxpansion for B — X Tv

The recent data on the exclusive decays B — D™ 1 indicate that the branching
ratios of these channels lie above the prediction of the SM. This issue is discussed
in detail in sec. but we may also consider the inclusive decay B — X 77 for
which the HQE provides us with a precise prediction.

While a new measurement of B — X .77 has to wait until Belle II has collected
a sufficient data sample, we may compare with a measurement performed at LEP
resulting in [98]

Br(b-admix — X77) = (2.41 £ 0.23)%

where b-admix refers to the b-hadron admixture produced in a Z decay. Since to

leading order the inclusive semitauonic branching fraction of all b-hadrons are the
same, we may take this as an estimate of B — X .70.
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Fig. 5.1 Fit of the data to the parameters o and S. The green ellipse represents the fit result
to the exclusive channels, the green band represents the LEP measurement, the red band the
SM result obtained form the HQE.

This has to be compared with the measured sum of B — D7 and B — D* 71
Br(B — [D + D*|rv) = (2.68 £ 0.16)%,

indicating that the two ground states tend to oversaturate the inclusive decay.
The decay B — X7 has been studied in the HQE [323] up to 1/mj and o?
in the 15 scheme, resulting in

Br(B~ — X.70) = (2.42 + 0.05)%.

More recently, sizable effects of order 1/mj have been found [324], which using
the kinetic scheme, but without O(a?) contributions, found

Br(B~ — X.7) = (2.26 + 0.05)%.

The additional inclusion of O(ag) effects in the kinetic scheme appears to lead to
a very similar value [325]. These HQE calculations are compatible with the LEP
measurement.

However, the LEP measurement is not very precise and thus leaves room for
new physics contributions. In the context of R(D(*)) many new physics scenarios
have been discussed, and we will not repeat any of this here. Instead we use a very
simple ansatz to explore qualitatively the effect of new physics. To this end, we
add an additional interaction of the form

GF Vcb

H =
NP \/5

(aOy4a+B0s_p) (5.10)
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with

Ovia = (@yu(1+7)b) (T (1 —y5)v), (5.11)
Os—p = (e(1 —5)b) (T(1 — y5)v)

We may fit the two parameters a and S to the data on B — D™ 1 and find
a = —0.15+0.04 and 5 = 0.35 £ 0.08 [324]. This may be inserted back into the
calculation of the total rate for B — X 77 for which we find

Br(B~ — X.m7) = (3.15+0.19)% (5.12)

indicating a significant shift of the inclusive rate. This result is graphically pre-
sented in fig[5.1] and indicates that generically the exclusive and inclusive data are
in tension, unless the new physics is such that it almost cancels in the inclusive
rate.

5.2 Inclusive processes in lattice QCD

Until recently, the application of lattice QCD has been limited to the calculation
of form factors of exclusive processes such as B — D")¢v or B — wlv, for which
initial and final states contain a single hadron. A first proposal to evaluate the
structure functions relevant to the inclusive decays B — X, fv in lattice QCD
was put forward in [326]. As mentioned above, the differential decay rate for the
inclusive decay B(pg) — Xc(px)¢(ps)v(p,) may be written in terms of the struc-
ture functions of W, (ps, ¢), which contains the sum over all possible final states:

W (p,@) = Y (20)°5* (01 ——px) 55— (B ILX (o)) (X (01, | B pn).
X

where J,, stands for the b — ¢ weak current and ¢" = (p¢+p.)* is the momentum
transfer. The optical theorem relates this to the forward scattering matrix element
TMV (pB ) Q)a

1

oary BEs)TU@ 10} B@Es),  (513)

Ty (pB,q) = i/d4x el
as —(1/m)ImT,, = Wy, see for instance [327)[328].

One can calculate these forward matrix elements on the lattice as long as the
momenta pp and g are in the region where no singularity develops. It means that
the lattice calculation is possible in an unphysical kinematical region where no
real decay is allowed. This kinematical region corresponds to the situation where
the energy given to the final charm system p% is too small to create real states
such as the D and D* mesons or the D7 continuum states. The connection to
the physical region can be established by using Cauchy’s integral on the complex
plane of p%. An alternative method is to reconstruct the spectral density (of the
states X appearing in the sum) directly from the lattice correlation function [329].

An exploratory lattice calculation has been performed at relatively light b
quark masses [326]. The numerical results suggest that the matrix element is nearly
saturated by the ground state D™ meson contribution at the zero-recoil limit.
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Since the non-perturbative lattice calculation may be obtained at the kine-
matical point away from the resonance region, it may also be used to validate the
heavy quark expansion (HQE) method. So far, the HQE calculation is available
in the unphysical region only at the tree-level, O(a2). The one-loop and two-loop
corrections have been calculated for the differential decay rate. They have to be
transformed to the unphysical kinematical point by applying the Cauchy integral.
Such work is in progress.

As already mentioned, the lattice calculation can be made only in the unphys-
ical kinematical region and its comparison with the experimentally observed B
decay distribution is not straightforward. One should first perform an integral of
the experimental data with an appropriate weight to reproduce Cauchy’s integral
in the complex plane of p%, which requires the experimental data obtained as a
function of two kinematical variables ¢% and pg - g. It still doesn’t cover the whole
complex plane, and one need to supplement by a perturbative QCD calculation
for the region of p% > p%. The perturbative expansion in this unphysical region
should be well-behaved, but the details should be investigated further.

More recently, a different approach that in principle allows to calculate the total
decay rate has been proposed [330]. In the new method, the integral corresponding
to the phase space of the B — X lv is directly performed rather than the Cauchy’s
integral. As a result, information about the unphysical kinematical region is no
longer necessary. A first comparison with the HQE with a small m; ~ 2.7GeV
shows good agreement with the lattice calculation, despite large uncertainties.
This method may open an opportunity to compute the inclusive decay rate fully
non-perturbatively using lattice QCD, and can also be applied to calculate various
moments of the B — X ¢ v decays, as well as the more challenging B — X, fv
decays.

5.3 HQE matrix elements from lattice QCD

The same hadronic parameters appearing in the OPE analysis of inclusive semilep-
tonic B-meson decays appear also in the HQE of the pseudoscalar (PS) and vector
(V) heavy-light meson masses. Therefore, one can try to determine them from a
lattice calculation of the latter at different values of the heavy quark mass. After
the pioneering work of Ref. [278], new unquenched results have been presented re-
cently [248[249]. These papers are mentioned in Sec. for their results on quark
masses.

In Ref. [249] a precise lattice computation of PS and V heavy-light meson
masses has been performed for heavy-quark masses ranging from the physical
charm mass up to ~ 4 times the physical b-quark mass, adopting the gauge
configurations generated by the European Twisted Mass Collaboration (ETMC)
with Ny = 2+ 14 1 dynamical quarks at three values of the lattice spacing
(a ~ 0.062,0.082,0.089 fm) with pion masses in the range M, ~ 210-450 MeV.
The heavy-quark mass is simulated directly on the lattice up to ~ 3 times the
physical charm mass. The interpolation to the physical b-quark mass is obtained
with the ETMC ratio method [26,27], based on ratios of the spin-averaged me-
son masses computed at nearby heavy-quark masses, and the kinetic scheme is
adopted. The extrapolation to the physical pion mass and to the continuum limit
yields mi™(1 GeV) = 4.61(20) GeV, corresponding to iy (7,) = 4.26(18) GeV



52 P. Gambino! et al.

in the MS scheme, in agreement with other m; determinations; see Sec. The
ratio method is applied above the physical b-quark mass to provide heavy-light
meson masses towards the static point. The lattice data are analyzed in terms of
the HQE and the matrix elements of dimension-4 and dimension-5 operators are
determined with good precision, namely:

A =0.552 (26) GeV, (5.14)
p2 =0.321 (32) GeV?, (5.15)
p&(my) = 0.253 (25) GeV>. (5.16)

The size of two combinations of the matrix elements of dimension-6 operators is
also determined:

Y — P — p = 0.153 (34) GeV? | (5.17)
pic +ph — phg = —0.158 (84) GeV® | (5.18)

with the full covariance matrix provided in Ref. [249]. Although all the above
results refer to the asymptotic limit, namely to infinitely heavy quarks, and differ
from the matrix elements extracted in the inclusive fits described above by higher
power corrections, they are found to be mutually consistent. In the future lattice
results could be used as additional constraints in the semileptonic fits. Another
interesting future application concerns the heavy-quark sum rules for the form
factor entering the semileptonic decay B — D*fv at zero-recoil; here the non-
local correlators pa,s,~r,~c play an important role; see Ref. [331].

The analysis by the Fermilab, MILC and TUMQCD Collaborations [248], based
on [291], employs only PS mesons and the minimal renormalon subtracted (MRS)
heavy quark mass. The results are obtained using MILC ensembles with five values
of lattice spacing ranging from approximately 0.12 fm to 0.03 fm, enabling good
control over the continuum extrapolation, and both physical and unphysical values
of the two light and the strange sea-quark masses. This leads to

Anmrs = 0.555 (31) GeV (5.19)

while power corrections are controlled by the difference u2 — pZ (my). Assuming
pé(my) = 0.35(7)GeV? as a prior, the authors find 2 = 0.05(21)GeV?. Notice
that the definition of u2 used here still has a renormalon ambiguity of order AQQCD.

5.4 Experimental status
5.4.1 Measurements of inclusive observables in B — X Alv

Several experiments have measured the partial branching fraction of the inclusive
decay B — X lv (£ = e,p) as a function of the lower threshold on the lepton
momentum (Feyt ), or other inclusive observables in this decay such as the moments
of the lepton energy and of the X. mass distribution. Available measurements are
listed in Table where it should be noted that the most recent experimental
result is from the year 2010.

The Belle collaboration has measured spectra of the lepton energy F, and the
hadronic mass M(X.) in B — X.fv using 152 million 7' (4S) — BB events [334]
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Table 5.1 List of available measurements of inclusive moments in B — X fv. We also specify
the types of the lepton energy F; and hadronic mass M (X.) spectrum moments which have
been determined in the respective publications. The zeroth order moment of the lepton energy
spectrum (n = 0) refers to a measurement of the partial branching fraction.

Experiment  Lepton spectrum moments (E}')  Hadron spectrum moments (M2")

BaBar n=0,1,2,3 [3321[333] n=1,2,3[332]
Belle n=0,1,2,3 [334] n=1,2 [335]
CDF n=1,2 [3306]
CLEO n=1,2 337
DELPHI n=123 [338] n=1,2 [338]
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Fig. 5.2 Belle measurements of the electron energy (left) and hadronic mass (right) spec-
tra [3341335).

335)]. These analyses proceed as follows: first, the decay of one B meson in the event
is fully reconstructed in a hadronic mode (Biag). Next, the semileptonic decay of
the second B meson in the event (Bsig) is identified by searching for a charged
lepton amongst the remaining particles in the event. In Ref. [334], the electron
momentum spectrum in the B meson rest frame is measured down to 0.4 GeV. In
[335], all remaining particles in the event, excluding the charged lepton (electron or
muon), are combined to reconstruct the hadronic X system. The M (X.) spectrum
is measured for different lepton energy thresholds in the B meson rest frame. The
observed spectra are distorted by resolution and acceptance effects and cannot
be used directly to obtain the moments. In the Belle analyses, acceptance and
finite resolution effects are corrected by unfolding the observed spectra using the
Singular Value Decomposition (SVD) algorithm [339]. Belle measures the energy
moments (Ef) for K =0,1,2,3,4 and minimum lepton energies ranging from 0.4
to 2.0 GeV. Moments of the hadronic mass (M%) are measured for k = 2,4 and
minimum lepton energies from 0.7 to 1.9 GeV.

BaBar has measured the lepton energy and hadronic mass moments in B —
Xclv [333332]. Furthermore, first measurements of combined hadronic mass and
energy moments of the form (n%) with k = 2,4, 6 are presented. They are defined
as nk = M% — 2AEx + /T2, where Mx and Ex are the mass and the energy
of the X system and the constant A is taken to be 0.65 GeV. The most recent
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analysis is the one of hadronic mass M (X.) moments, which are determined using
a data sample of 232 million 7 (45) — BB events [332]. The experimental method
is similar to the Belle analysis discussed previously, i.e., one B meson is fully
reconstructed in a hadronic mode and a charged lepton with momentum above
0.8 GeV in the B meson frame identifies the semileptonic decays of the second
B. The remaining particles in the event are combined to reconstruct the hadronic
system X. The resolution in M (X,) is improved by a kinematic fit to the whole
event, taking into account 4-momentum conservation and constraining the missing
mass to zero. To derive the true moments from the reconstructed ones, BaBar
applies a set of linear corrections. These corrections depend on the charged particle
multiplicity of the X system, the normalized missing mass, Fniss — Pmiss, and the
lepton momentum. In this way, BaBar measures the moments of the hadronic mass
spectrum up to (M%) for minimum lepton energies ranging from 0.8 to 1.9 GeV.

5.4.2 Determination of |Ves| from inclusive decays

The Heavy flavor Averaging Group (HFLAV) has used the measurements dis-
cussed in the previous section to determine |Vp| from a fit to HQEs of inclu-
sive observables [66]. Using expressions in the so-called kinetic scheme [340}[341]

3111[3141[342] and a precise determination of the c-quark mass, mys(fi GeV) =
0.986 £+ 0.013 GeV [269], as external input, HFLAV obtains

[Ves| = (42.19 £0.78) x 102 | (5.20)
mE™ = 4.554 4 0.018 GeV | (5.21)
p2 = 0.464 + 0.076 GeV? . (5.22)

The x? of the fit is 15.6 for 43 degrees of freedom. Using expressions in the so-called
1S scheme [3431[344] the same set of measurements results in

[Ves| = (41.98 £0.45) x 102, (5.23)
mp® = 4.691 £ 0.037 GeV | (5.24)
A1 = —0.362 £ 0.067 GeV? | (5.25)

with a x? of the fit of 23.0 for 59 degrees of freedom. This analysis uses measure-
ments of the photon energy moments in B — X [345,[346,3471[348] to constrain
the b-quark mass and does not include higher order corrections of O(a?) and
O(as/m3).

As mentioned above, the semileptonic moments have been analysed also in-
cluding higher order power corrections estimated using the LSSA [321]. In this
case a kinetic scheme fit to the experimental data that additionally includes a
constraint my™ = 4.550(42)GeV from PDG (after scheme conversion) leads to a
slightly more precise value,

Ve = (42.00 +0.64) x 107 . (5.26)
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6 Heavy-to-light inclusive
6.1 Introduction and theoretical background

Inclusive semileptonic heavy to light decays can in principle be analyzed similarly
to B — X lv by using a local OPE. In practice, due to the large charm back-
ground, experimental cuts are generally imposed and reduce the “inclusivity” of
the theoretical prediction. In particular, the local OPE does not converge well
when the invariant mass of the hadronic system is Mx < Mp. In such a case
the decay spectra are described using a “non-local” OPE [349/[350,[351], where
perturbative coefficients are convoluted with non-perturbative “Shape Functions”
(SFs), the B meson analogs of parton distribution functions. In this SF region, the
perturbative coefficients themselves can be factorized into “hard” and “jet” pieces,
where the former has a typical scale of m; and the latter has a typical scale of
/myAqcep- In the infinite mass limit my — oo there is a single non-perturbative
SF. Power corrections start at 1/m;p and include multiple “subleading” SFs [352]
3533541 3551356].

One can classify the terms based on their suppression by 1/m; and as. The
perturbative components of the leading power term are known at O(ozg) [357,
358.[359,3601[3611[362]. The 1/m;p power corrections include terms convoluted with
the leading power SF whose perturbative parts are known at O(as) [363] and
terms convoluted with subleading SFs whose perturbative parts are known at
0(a?) [352,353,8354]. At this order one can still use subleading functions of one
light-cone variable. The inclusion of O(as) contributions of subleading SF's requires
functions of multiple light-cone momenta in analogy to higher twist effects in Deep
Inelastic Scattering [364]. Schematically, in the SF region we have the factorization
formula

1 1 . 1

dFNH-J®S+mb;h-Jo@)sz—i-mb;h-jk@S—i- O(mg> . (6.1)
where H is the leading power hard function, J is the leading power jet function,
both known at O(a?), Jo is the O(a?) part of J, h = 1 + O(as), s; are given in
Refs. [3521[3531854], and jj in Ref. [363]. The symbol ® denotes an integral over
the light-cone momentum.

The moments of the leading and subleading SFs are related to the HQE pa-
rameters measured in the inclusive semileptonic decays to charm. The relations
are known for the leading SF up to at least the fifth moment [365], although the
current large uncertainty of higher HQE parameters [318[321] might limit the use
of higher moments relations. The formalism in Ref. [365] allows to construct such
relations for the subleading SF's too, but at present only the first three moments
are known [355[366]. A detailed knowledge of the SF's is necessary only in a por-
tion of the phase space where py = Ex — px ~ Aqcp; elsewhere only the first
few moments of the SF's are relevant and one recovers the local OPE description.

The present |V,,5| determination by HFLAV [66] is based on various approaches
which are all rooted in and differ in the inclusion and treatment of pertur-
bative and nonperturbative contributions, see Ref. [367] for a detailed discussion.

The approach known as BLNP (Bosch-Lange-Neubert-Paz) [368] aimed at a
precision extraction of |V,;| from B — X, fv and B — X+, based on the knowl-
edge in 2005. It used the first two terms in , in particular the O(as) expression
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for H-J®S and the O(a2) expression for the h-Jo®s; terms. Kinematical correc-
tions that scale as s /myp and as/mj [369], as well as 1/mj corrections [327,328],
for which factorization formulas were not known, were also included by convolution
with the leading power shape function. Using Renormalisation Group methods H
is evolved from “hard” to the “jet” scale to resum Sudakov double logs. As for
the non-perturbative inputs, the leading order SF was to be taken from B — X7
and subleading SFs s; to be modeled using ~ 700 models. In practice, the cur-
rent treatment of S by experiments is to use an exponential or Gaussian model
constrained by the first two moments of S obtained from the global fit of HQE
parameters in the kinetic scheme [66].

Since Ref. [368] appeared, there have been many theoretical advances. Two-
loop calculations of H [3581[359[360,[361] and J [370] as well as one-loop calculation
of ji [363] became available. The free quark differential decay rate were calculated
at O(a?fo) BTIB72B73,357) and at complete O(a?) [362]. Running effects from
the “hard” to the “jet” at O(a?2) were studied [374]. It was found there that
the factorization of the perturbative coefficient into jet and hard functions is not
strictly necessary. More recently, three loop calculations of J [375] and the partonic
S [376] were performed. Implementing these within the BLNP framework would
probably require also the calculation of H at three-loops, which is not available
yet. There were also theoretical advances in the description of non-perturbative
effects in B — Xy [B77B78379]. In particular, new subleading shape functions
unique to B — Xsv were identified [378], making it more difficult to use data
from radiative B decays as input for the extraction of |Vi|. These new features
are not yet implemented in the BLNP approach. An alternative implementation
of the same conceptual framework has been presented in Ref. [380], together with
a systematic procedure to account for the uncertainties in the modelling of the
leading SF, to be discussed below.

The GGOU (Gambino-Giordano-Ossola-Uraltsev) approach [381] avoids the
expansion in 1/m; and the introduction of subleading SFs. The perturbative coef-
ficients are computed at fixed order to O(a?fp) in the kinetic scheme. The effect
of RGE evolution in the SF region and all subleading SFs are absorbed into three
¢*-dependent SF F;(k, ¢*), whose first moments are fixed by present semileptonic
fits. The uncertainty due to the functional form is estimated comparing ~ 100
models.

The emergence of the SF can also be seen in perturbation theory: soft-gluon
resummation together with an infrared prescription gives rise to a b quark SF. In
the DGE (Dressed-Gluon Exponentiation) approach [382][383] this is achieved by
an internal resummation of running coupling corrections in the Sudakov exponent,
thus providing a perturbative model for the leading SF. A somewhat similar line
of action is followed in Ref. [384] where the infrared prescription is provided by
the so-called analytic QCD coupling.

The so-called Weak Annihilation (WA) contributions are a source of theo-
retical uncertainty common to all approaches. In the local OPE they emerge at
O(1/m}) but are enhanced by a large Wilson coefficient [385] and may give rise to
a difference between BT and BY decays. As they are expected to be much more
important in charm decays, the latter constrain them most effectively at present.
In particular, the D°, DT and D, total semileptonic rates and the electron spec-
tra measured by the CLEO Collaboration [386] have been employed [387,[388.389].
From the absence of clear indications for WA effects in semileptonic charm decays,
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one can conclude that the WA correction to the total rate of B — X, fv must be
smaller than about 2% [389]. However, WA is localized in the high ¢? region and
therefore the related uncertainty on |V,s| depends on the kinematical cuts, and
this is taken into account in the current HFLAV averages. Because the high ¢?
tail is particularly sensitive to higher power corrections (and not to the SFs), see
for instance Refs. [390,372,381], one might eventually expect the cleanest deter-
minations of |V,;| to come from the low ¢ region only. An upper cut on q> might
therefore be beneficial [368/[381].

A few recent experimental analyses [391392] have relaxed the kinematic cuts,
making use of experimental information to subtract the background. As a result,
most of the B — X, /v phase space is taken into account and the sensitivity to
the SF's is substantially reduced, while a description based on the local OPE sets
in. In these cases the quoted theoretical uncertainties are smaller, but one should
keep in mind that these analyses still depend on the SFs treatment and modelling
for the determination of the reconstruction efficiencies, whose uncertainty con-
tribute to the final experimental systematic error. As will be discussed later on, a
realistic signal simulation requires the implementation of so-called hybrid models
that transform the inclusive predictions of the approaches mentioned above into
individual final hadronic states. The uncertainties related to such hybrid models
remain a major issue for the inclusive determination of |V

6.2 Status of the experimental results

The most difficult task of the inclusive measurements is the discrimination be-
tween the B — X,fv signal and the much more abundant decays involving
Cabibbo-favoured B — X fv decays. The signal events are studied in restricted
regions of the phase space to improve the signal-to-background ratio. Compared
to B — X lv events, the signal tends to have higher lepton momenta py, lower
invariant mass of the X, state Mx, higher ¢2, and smaller values of the light-cone
momentum Py = Ex — |px|, where Ex and px are energy and momentum of
the hadronic system X, in the B meson rest frame. As explained above, these
restrictions introduce difficulties in the calculation of the expected partial branch-
ing fraction, enhancing perturbative and nonperturbative QCD corrections which
lead to large theoretical uncertainties in the measurement of |Vp|.

The measurement of the partial branching fraction AB can be obtained with
tagged or untagged analyses.

6.2.1 Tagged Analyses

In tagged analyses, the T(4S) — BB events are identified by reconstructing one
of the B mesons, Breco, via fully hadronic decays. The signal decay of the second
B meson (Bsignai) is identified just by the presence of an electron or a muon. The
tracks and neutral objects not associated with the Byeco can be uniquely assigned
to the signal side, so that the inclusive X, state can be clearly reconstructed.
The neutrino four-momentum p, can be estimated from the missing momentum
Dmiss = Pe+e— —DBroo, —PX, — D¢, Where po+.— is the initial state four-momentum.
From this, all the kinematic variables of the signal state can be easily computed.
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Because the momentum of the signal B meson is determined from of the Bieco,
the signal decay products can be computed directly in the B-meson rest frame,
resulting in an improved resolution of the accessible observables. Moreover, the
constrained kinematics allow for a better separation of the signal from the back-
ground.

The downside of the tagged analysis is the low signal efficiency (about 0.3-
0.5%) which implies that for kinematic variables like the lepton momentum py,
the untagged analyses at the B-factories can give competitive or better results.
Undetected and poorly reconstructed tracks or photons lead to irreducible back-
ground from the dominant B — X, decays even in regions of the phase space
potentially free of such background, and this can affect the final resolution on the
signal kinematics.

Belle published a measurement [391] of B — X, /v partial branching fraction,
requiring only p, > 1 GeV which covers about 90% of the signal phase space.
The analysis was done performing a fit in Mx and ¢°. BaBar determined the
partial branching fraction in the same p; > 1 GeV region, but also in other several
restricted regions of the phase space [392].

6.2.2 Untagged Analyses

The untagged measurements allow to collect large samples but are affected by
considerable backgrounds. The untagged measurements have access only to a few
kinematic variables, namely the lepton momentum p,, and the ¢ spectra,

— lepton spectrum: this can be studied inclusively without requirements on the
rest of the event. In this case the momentum spectrum can only be given in
the 7°(45) rest frame.

— ¢2 distribution: this requires the reconstruction of the neutrino 4-momentum,
which exploits the high hermeticity of the B factories’ detectors. The neutrino
4-momentum is given by the event missing 4-momentum, pmiss = Pete- —
Puvis, where p.+.- is the initial state 4-momentum, and p,;s is the total visible
4-momentum determined by all the charged tracks from the collision point,
identified pairs of charged tracks from K, A and v — eTe™, and energy
deposits in the electromagnetic calorimeter.

The lepton momentum spectrum is affected by large backgrounds from B —
Xclvp via the Dv, D*lv, D**fv (where by D** is a mixture of charm excited
state and non resonant D) —n7 transitions), Ds K¢vX and also secondary leptons
from D mesons decays, and a background from e™e™ — ¢g events, where the main
contribution comes from c¢, which is assessed from control data samples recorded
below the 7°(4S) resonance. Because of the large background, usually the signal
is extracted only for regions with high momentum lepton, typically p, > 1.9 — 2.1
GeV. Old analyses of the lepton endpoints are from CLEO [393], Belle [394] and
BaBar [395].

Recently, BaBar published a study [396] of the lepton spectrum using the full
data set, and exploiting all the knowledge about the rate and the form factors
of the various B — X fv exclusive decays which are the major source of back-
grounds. The signal is extracted from a fit to the electron momentum spectrum,
which is described as the sum of predicted signal (model dependent shape) and
various specific backgrounds yields with shapes fixed by MC. The fit covers lepton
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Fig. 6.1 Measurements of inclusive |V,;| and their averages based on BLNP, DGE and GGOU
calculations. The HFLAV average of |V,;| results from B — 7wlv, decay is also reported for
comparison.

momentum in the 7°(4S) rest frame from 0.8 to 2.7 GeV, in 50 MeV bins, except
for the data in the interval 2.1 to 2.7 GeV which are combined in a single bin
to avoid effects from differences in the shape of the theoretically predicted signal
spectrum. In a given momentum interval, the excess of events above the sum of
the fitted background contributions is taken as the number of signal events.

An important difference of this analysis with respect to the other ones is that
different theoretical models are considered in the extraction of the partial branch-
ing fractions. Instead, all other measurements determine the partial branching
fraction by using a single model, and its partial rate is then converted in a mea-
surement of |V,,| by taking the corresponding partial rate predicted by the theory
calculations.

The extracted inclusive signal branching fractions and the values of |V,,;| agree
well for GGOU and DGE, although they are about 13% smaller than the average
of the other measurements. This difference can be attributed to the shape of the
predicted signal spectrum and/or the shapes of some of the large background
contributions above 2 GeV where the signal fraction is largest. On the other hand,
the value of |V,;| based on BLNP agrees well with other measurements.

A subset of all the measurements of the inclusive |V,;| are reported in Fig
for the various frameworks considered, see [47] for more details.

6.2.3 Lessons learned from the past
The measurements based on tagged samples have considerably larger statistical

uncertainties. The sample size allows for only a few bins in the 2D fit, but there
are regions of the phase space (e.g. low Mx) where the background fractions are
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Fig. 6.2 Model of the hadronic invariant mass M x for the signal B — X, fv events, separately
for BY (top) and Bt (bottom).

modest. The current sensitivity to the details of the shapes of the signal and
background distributions is however limited.

For untagged measurements only the high end of the spectrum is sensitive
to the signal and also to the background near their kinematic endpoints. Both
approaches have their pros and cons, given the size of the currently available data.
The latest BaBar measurement of the lepton spectrum, shows a high dependence
of the result from the signal model. The same effect, even if not directly evident,
was observed also in tagged measurements from the sensitivity of the signal yield
extraction on the shape function parameters in the analyses that cover larger
portion of the phase space.

Semileptonic B — X, fv decays are simulated as a combination of resonant
decays with X,, = 7, 1,1, p,w, and decays to nonresonant hadronic final states
Xu. The latter is simulated with a continuous invariant mass spectrum following
the theory predictions by De Fazio and Neubert [369], which depend on the SF
parameters and myp. The nonresonant and the resonat part are combined such
that the sum of their branching fractions is equal to the measured one for the
inclusive B — X, fv. The events generated with this model, are reweighted to
obtain predictions for different SF parameters and different branching fraction of
the resonant states. This model is usually called "hybrid model”. Belle in [391],
corrects the hybrid model to match the moments of the My and ¢ distributions
predicted by the the GGOU model. A picture of the model of the invariant mass
Mx shape used to describe the B — X, fv is reported in Figl5.2]

Another effect not considered so far, is the impact of the fragmentation of the
generated uw quark into final state hadrons, which is performed using JETSET.
The modeling of the final state multiplicity could affect both the signal efficiency
and the signal templates used to separate signal from background.

The measurement of the partial branching fraction separately for neutral and
changed B mesons has been used to constrain the WA contribution. Both tagged
approach, in various regions of the phase space [392], and untagged approach, in
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the high lepton region [397], have been used, but these have given weak upper
limits mainly because of the large statistical uncertainties. More stringent upper
limit on WA has been obtained by CLEO which used a model dependent approach
studying the high ¢® region in B — X,/fv decays [398]. Both these bounds are
milder than those estimated from D and D, semileptonic decays in Refs. [388][389]
which were mentioned above.

In the tagged measurements the suppression of the b — ¢ background is per-
formed by vetoing events where a KT or a K9 is detected in the hadronic X system.
This causes a loss in the signal contribution where a s3 pair is produced (usually
called ss-popping). The fraction of these events is about 12% of the non-resonant
component and it is fixed in the fragmentation parameters of JETSET/PYTHIA.
The uncertainty on this fraction is assumed to be about 30%, so for analyses that
aim to cover larger regions of the phase space, with higher statistics this could be
an irreducible source of systematic uncertainty. This is another point that should
be improved in future analyses at Belle II.

6.3 Fitting distributions: SIMBA and NNVub

As we discussed above, SFs modelling is an important source of theoretical un-
certainty in the study of B — X, /v and particularly in the extraction of |Vis|
from these decays. While the first few moments of the SFs must satisfy OPE con-
straints, direct experimental information on the SF's is somewhat limited. Indeed,
the measured photon spectrum in B — X7 is sensitive to a different set of sub-
leading SFs. However differential distributions in B — X, v such as the lepton
energy and the invariant mass distributions depend directly on all the SFs and
can therefore be used to constrain them. Conversely, they can be used to validate
SFs models and approaches where the SFs are calculated, such as DGE. The high
luminosity expected makes the measurement of differential distributions possible
at Belle II.

The extraction of |V,p| performed by HFLAV in the BLNP and GGOU frame-
works assumes a set of two-parameter functional forms, and it is unclear to what
extent the chosen set is representative of the available functional space, and whether
the estimated uncertainty really reflects the limited knowledge of the SFs. This
point was first emphasized in Ref. [380], where a different strategy was proposed,
based on the expansion of the leading SF in a basis of orthogonal functions, whose
coefficients are fitted to the B — X spectrum, and on the modeling of the sub-
leading SFs. The SIMBA project [399] aims at performing a global fit to B — X~
and B — X, lv spectra, to simultaneously determine |Vy3|, my, the leading SF, as
well as the Wilson coefficient of radiative b decays. Additional external constraints,
such from B — X fv, can also be employed.

Another strategy, called NNVub and explored in [400] for the GGOU approach,
employs artificial neural networks as unbiased interpolants for the SFs, in a way
similar to what the NNPDF Collaboration do in fitting for Parton Distribution
Functions [401]. This method allows for unbiased estimates of the SFs functional
form uncertainty, and for a straightforward implementation of new experimental
data, including B — Xsv and B — X, fv spectra and other inputs on quark
masses and OPE matrix elements. Both SIMBA and NNVub appear well posed to
analyse the Belle II data in a model independent and efficient way.
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Fig. 6.3 Belle II projection for a global fit in the SIMBA approach of |V,;| with 1 ab™! and
5 ab~1. Theory uncertainties are not included in the fit and are expected to be of similar size.

Table 6.1 Expected percentage uncertainties in inclusive |V,;,| measurements with the Belle
full data sample, 5 ab~! and 50 ab—! Belle II data [I07].

Systematic

Int. Luminosity Statistical (reducible, irreducible) Total Exp. Theory Total
605 fb~ T (old B tag) 4.5 (3.7, 1.6) 6.0 2.5-4.5 6.5-7.5
5 ab~! 1.1 (1.3, 1.6) 2.3 2.5-4.5 3.4-5.1

50 ab~! 0.4 (0.4, 1.6) 1.7 2.5-4.5 3.0-4.8

6.4 Prospect for the future: Belle II outlook

The measurements of fully differential spectra on the kinematic variables, e.g. ¢2,
M%, p)i(, FEy, and separate measurements for charged and neutral B-meson decays
are required to allow for an improved extraction of |V,,;| in the long term. There-
fore, the future measurements should provide these unfolded spectra independent
of theoretical assumptions.

Combining both B — X,lv and B — Xsv as well as constraints on the SF
moments from B — X lv in a global fit can simultaneously provide the inclusive
|Vus| and the leading SF functional form with its uncertainties as they follow from
the uncertainties in the included experimental measurements. Fig. [6.3] shows the
projections for a global fit in the SIMBA framework with two projected single-
differential spectra of Mx and Ej for B — X,lv and a E, spectrum for B — X,y
from 1 ab=! and 5 ab™! Belle II data set [I07].

The new tagging algorithm developed for Belle II can perform better than the
old neural network method used in the previous Belle publications with about 3
times higher efficiency [229]. With a larger data set, the systematic uncertainties
counted for reconstruction efficiencies, fake leptons and continuum background
knowledge are expected to improve for this measurement. The projections for
inclusive |Vyp| are summarized in Table
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7 Outlook

We have summarized our main results in Sec. 1. In this final Section, we would like
to look at the prospects of our field over the next five years. What can we expect
for semileptonic b decays at the two main experiments? What kind of progress can
we reasonably anticipate in lattice QCD and continuum calculations?

Belle II has started data taking with a complete detector in March 2019 and
recorded about 10/fb in its first year of operation. The By = 1 mm optics, which
were commissioned in the autumn 2019 run, were also used in spring 2020 and
allowed to achieve an instantaneous luminosity of 1.94 x 1034 /cm? /s at the peak
— already approaching the record value at Belle of 2.2 x 103! /cm?/s. By June
3rd, 2020 Belle II has recorded an integrated luminosity of 55/fb on the 7'(4S5)
resonance and expects to achieve close to 100/fb by the end of the run in July
2020. Assuming the luminosity evolves as planned, Belle IT will accumulate a data
set equivalent to the Belle luminosity of about 1/ab by the end of 2021. In 2022
the experiment will enter a long shutdown to install the second pixel detector layer
and replace the silicon photomultipliers in the barrel particle identification device.
Data taking will resume in 2023 and by 2025 Belle II expects to have recorded a
data sample exceeding 10/ab.

Given these luminosity prospects, competitive Belle II results for semileptonic
B decays can be expected in the years to follow. In addition, a three times more
efficient hadronic tag and better low momentum tracking of the slow pion from the
D* decay will further benefit semileptonic analyses in particular. This will allow
to take a fresh look at the CKM matrix element magnitudes |Vep| and |Vp| and
to improve measurements which are still statistically limited, such as R(D) and
R(D™).

The LHCD experiment has shown great capabilities with the results on R(D™),
|Viub|/|Ves| with Ap decays, and |V,| with Bs decays. These measurements are
based on the data collected in 2011 and 2012 (Run 1), corresponding at 3/fb of
integrated luminosity. The data collected in 2015-2018 (Run 2) at pp collision
energy of v/s = 13 TeV, correspond to about 6/fb of integrated luminosity. There
are various ongoing analyses on the full dataset. Most of the measurements are
limited by systematic uncertainties, among which the largest ones are generally
due to external inputs from other experiments and to the limited available samples
of Monte Carlo simulations. Nevertheless the large dataset available is going to be
fully exploited.

The LHCb experiment is at present undergoing a major upgrade of the de-
tector. The construction and commissioning should end in 2021, when LHC will
resume the activity. The upgrade will allow to collect data at higher instanta-
neous luminosity, so about five pp collisions per bunch crossing are foreseen, to
be compared with about one-two pp collisions in Runl and Run2. To handle the
higher occupancy expected in the detector, besides the improvements in the var-
ious subdetectors, a full software LO trigger will be employed. The software L0
trigger will add flexibility to the data taking, allowing to reduce the thresholds for
muon and hadron trigger decisions, enlarging in this way the physics capabilities.
The analyses of semileptonic decays with taus and electrons will benefit from the
lower trigger thresholds in terms of signal efficiencies. With this upgraded detector,
LHCD is planning to integrate a luminosity of 23/fb by 2024, and to collect a total
sample of 50/fb by 2028-2029, after LHC will have switched to higher luminosity.
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By now, lattice QCD is the tool of choice for the form factors describing
semileptonic decays of b-hadrons. At present, the most urgent need is the ¢ (or,
equivalently, w) dependence of the form factors of B — D*lv, both to see how the
form-factor slopes affect the |V.;| determination and to solidify the SM prediction
of R(D*). A few such calculations are underway. Given the success of LHCb with
Ay semileptonic decays, updates of the baryon form factors are desirable, and we
encourage other lattice-QCD practitioners to turn their attention to these decays.
Another topic for future research are rigorous calculations with a p or ¢ vector
meson in the final state.

The leptonic decay constants are now at the subpercent level of uncertainty,
and the prospects for extending these methods to semileptonic form factors are
underway. In general, near-term lattice-QCD calculations of this precision will be
based on the MILC collaboration’s HISQ ensembles, which, among all lattice data
sets, span the largest range of lattice spacing at physical light-quark masses and
with high statistics. We consider it important that other ensemble sets be extended
to a similar range, to enable further (sub)percent-level calculations with different
systematics from the fermion discretization.

The inclusive determination of |Vcp| will benefit from the calculation of new
higher order effects, such as the O(ozg) contributions to the total width, and from
a reassessment of QED effects. However, the next frontier is represented by the
integration with lattice QCD calculations to improve the determination of HQE
matrix elements, and eventually by the calculation of the inclusive rates directly
on the lattice. For what concerns inclusive charmless decays, the general theoreti-
cal framework appears solid but needs to be updated in the light of recent higher
order calculations and should be extensively validated by experimental data which
will become available at Belle II. In particular, the measurement of the lepton en-
ergy and hadronic invariant mass distributions will provide important information
on the Shape Functions, while the ¢? distribution will allow us to constrain and
possibly avoid the effect of Weak Annihilation. The wealth of data expected at
Belle II, a close cooperation between theorists and experimentalists, and hope-
fully new lattice data should help resolve various open issues, so that we might
eventually expect the uncertainty on inclusive |V,;| to become lower than 3%.
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