FERMILAB-SLIDES-10-003-PPD

Nuts and Bolts of the Measurement

R. Tschirhart for the P996 collaboration

> Fermilab March 12th, 2010

w Kover

P-996 Collaboration Submitted a Proposal to Fermilab November 2009

Proposal:

- Arizona State University, USA.
- Brookhaven National Laboratory, USA.
- Fermilab, USA.
- Institute for Nuclear Research Russia
- Istituto Nazionale di Fisica Nucleare Pisa, Italy.
- TRIUMF Vancouver British Columbia, Canada
- University of British Columbia -Vancouver Canada.
- University of Texas at Austin, USA.
- University of Illinois, Urbana, USA.
- University of Northern British Columbia –
 Prince George Canada.
- Universidad Autonoma de San Luis Potosi -Mexico.
- Tsinghua University, Beijing, China.

- >5 Countries, 12 institutes
- >3 US universities, growing
- >2 US National Laboratories

>Leadership from all US rare kaon decay experiments from the past 20 years.

PAC:

"The Experiment [P996] meets the criteria of Stage-I Approval...."

March 12th 2010.

The Tevatron Stretcher Concept

FERMILAB'S ACCELERATOR CHAIN

The Tevatron Stretcher Concept

• Can be readily realized after Run-II.

- Good use of a SC machine:
 - 1) Match Tevatron energy to Main Injector energy. No ramping.
 - 2) Clean single pulse transfer from MI to the Tevatron at 120-150 GeV.
 - 3) Slow spill beam out of the Tevatron with very high duty factor.
- 10 % impact on NuMI operations, no impact on 8 GeV program.
- Slow beam extraction is easier at high energy. Beam-charge/Beam-power is x15 better than at 8 GeV for example. Required Slow-Extracted-Beam performance is comparable to 1997 TeV Fixed Target Run.
- Keeping Tevatron "on ice" about ~\$6M/year. Tevatron Stretcher power and cryo is \$8M/year + staff, estimated total of \$15M/year.

March 12th 2010.

Continuous High Power Beam...

Continuous beam is*the* key to rare-decay facilities

KEK-B factory sets record of 550 pb⁻¹ in an 8-hour shift! (June 2009)

March 12th 2010.

The Stretcher: A World-Leading Machine for the Field...

Slow-Spill	Beam	Beam Power	Duty Factor	Hours/year
proton facility	Energy	(average)		K ⁺ decays/year
BNL AGS	22 GeV	40 kW	50%	1000
(E949)	1. 2. 2			2×10 ¹²
CERN SPS	450 GeV	13 kW	30%	1400
(NA62)				5×10 ¹²
JPARC MR	30 GeV	1 kW	20-30%	2000
国际公共 国际通道		Plan: 50 kW		
		Goal: +100 kW		
FNAL Tevatron (97,99 FT runs)	800 GeV	65kW	30-50%	5000
FNAL Stretcher	150 GeV	Plan: +80kW	95%	5000
(P996)				60×1012
Project-X	3 GeV	Goal: 1000kW	95%	5000
		24. 但此作些是		~600×10 ¹²

March 12th 2010.

The Stretcher: Re-purposing Modern and Well Maintained Accelerator Infrastructure

The Stretcher: Re-purposing Modern and Well Maintained Accelerator Infrastructure

P996 Experiment Site Options

P996 Experiment Site Options

Beamline and Detector at CDF hall (B0)

K⁺ Beamline: Focus a low energy separated charged beam on a stopping target. Measure kaon decays at Rest!

Rate of Incident Kaons

The expected rate of kaons incident on P996:

$$egin{aligned} N_{K}(ext{P996})/ ext{spill} &= N_{K}(ext{E949})/ ext{spill} imes R_{ ext{surv}} imes R_{ ext{proton}} imes R_{K/p} \ &= 12.8 imes 10^{6} imes 1.1048 imes 1.48 imes (6.8 \pm 1.7) \ &= (142 \pm 36) imes 10^{6}. \end{aligned}$$

 R_{surv} = 1.1048, the relative rate of survival of 550 MeV/c kaons in the 13.74m P996 K⁺ beamline compared to 710 MeV/c K⁺ in the 19.6m E949 beamline,

• $R_{\rm proton} = (96 \times 10^{12})/(65 \times 10^{12})$ protons per spill,

R_{K/p} = 6.8 ± 1.7, the relative production rate of *K*⁺ into the P996 and E949 kaon beamline acceptance as determined from MARS-LAQSGM simulation.

March 12th 2010.

Rate of Stopped Kaons

For one year of running (5000 hours= 18×10^6 s), the total number of stopped kaons in the experimental target is

$$\begin{split} N_{\rm Kstop}/{\rm year} &= N_{\mathcal{K}}({\rm P996})/{\rm spill}/(t_{spill} + t_{inter}) \times 5000 \text{ hours} \times f_{\rm stop} \\ &= (142 \pm 36) \times 10^6/27.33 \text{s} \times 18 \times 10^6 \times (0.60 \pm 0.13) \\ &= (5.6 \pm 1.9) \times 10^{13}. \end{split}$$

• $t_{spill} = 25.67$ s spill,

- $t_{inter} = 1.67$ s interspill with the stretcher,
- ► f_{stop} = 0.60 ± 0.13, K⁺ stopping fraction estimated with FLUKA-based simulation. The same simulation estimated a 27% stopping fraction for E949 compared to the measured 21% stopping fraction.

E949 P996 Instantaneous Rate (K^+, π^+) 8.4 7.6 MHz

March 12th 2010.

The detector that watches 8-million kaon decays per second

March 12th 2010.

The P996 new detector payload replaces the CDF tracker volume.

March 12th 2010.

The Range Stack measures the π⁺ decay chain, energy, range: Ripe for upgrade

Improvements for P996 Detector acceptance

Detector Acceptance

P996 detector improvements will enable increases in signal acceptance. Expected increases are based largely on E949/E787 data and measurements.

Component	Acceptance factor			
$\pi ightarrow \mu ightarrow e$	2.24 ± 0.07			
Deadtimeless DAQ	1.35			
Larger solid angle	1.38			
1.25-T B field	1.12 ± 0.05			
Range stack segmentation	1.12 ± 0.06			
Photon veto	$1.65^{+0.39}_{-0.18}$			
Improved target	1.06 ± 0.06			
Macro-efficiency	1.11 ± 0.07			
Delayed coincidence	1.11 ± 0.05			
Product ($R_{\rm acc}$)	$11.28^{+3.25}_{-2.22}$			

Additional acceptance gains expected from trigger improvements are not yet quantified.

March 12th 2010.

Improvements for P996 Kaon production and transport

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Events per Year

The number of signal events per 5000-hour year is

$$\begin{split} \mathcal{N}_{K^+ \to \pi^+ \nu \bar{\nu}} &= \mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) \times \mathcal{N}_{\text{Kstop}} \times \mathcal{A}_{\text{E949}} \times \mathcal{R}_{\text{acc}} \\ &= (0.85 \pm 0.07) \times 10^{-10} \times (5.6 \pm 1.9) \times 10^{13} \\ &\times (3.59 \pm 0.36) \times 10^{-3} \times (11.3^{+3.3}_{-2.3}) \\ &= 194^{+89}_{-79} \end{split}$$

where

► R_{acc} = (11.3^{+3.3}_{-2.3}), the product of acceptance factors gained over E949.

March 12th 2010.

Improvements for P996 Kaon production and transport

Summary of Improvement Factors

Ratio P996/E949	
$11.3^{+3.3}_{-2.3}$	Detector acceptance
6.3 ± 2.1	Stopped kaons per hour
5.3	Hours per year

Stopped kaon yield $\equiv R_{\rm prot} \times R_{K/p} \times R_{\rm surv} \times R_{\rm stop}/R_{\rm spill}$ where

- \blacktriangleright $R_{\rm proton}$ is the ratio of protons per spill,
- R_{K/p} is the relative production rate of K⁺ into the P996 and E949 kaon beamline acceptance.
- ▶ R_{surv} is the relative K^+ survival rate in the kaon beamline,
- ▶ R_{stop} is the relative K^+ stopping fractions, and
- ► *R*_{spill} is the relative spill length.

Comparable K^+ , π^+ instantaneous rate in E949 (8.4 MHz) and P996 (7.6 MHz).

March 12th 2010.

Table 10.2: Estimated project cost. All costs in FY10 \$k.							
WBS	S element	Description	Total	60%	Total]	
			Cost	conting.	w/cont.		
1.0		TPC	\$33 M	20M	\$53M]★	
1.1		Accelerator and Beams	7,500	4,500	12,000		
	1.1.1	Tevatron Modifications	940	560	1,500		
	1.1.2	Extraction and Lines	1,250	750	2,000		
	1.1.3	Target and Dump	940	560	1,500		
	1.1.4	Kaon Beam	4,370	2630	7,000		
1.2		Detector	22,390	$13,\!430$	35,820	1	
	1.2.1	Spectrometer Magnet	500	300	800		
	1.2.2	Beam and Target	600	360	960		
	1.2.3	Drift Chamber	1,900	1,140	3,040		
	1.2.4	Range Stack	2,500	1,500	4,000		
	1.2.5	Photon Veto	3,000	1,800	4,800		
	1.2.6	Electronics	4,000	2,400	6,400		
	1.2.7	Trigger and DAQ	2,000	1,200	3,200	1	
	1.2.8	Software and Computing	2,000	1,200	3,200		
	1.2.9	Installation and Integration	5,890	3,530	9,420	1	
1.3		Project Management	2,740	$1,\!640$	4,380]	
1.4		OPC	700	420	1,120		
	1.4.1	R&D	300	180	480		
	1.4.2	Comissioning	400	240	640		

From P996 Proposal

March 12th 2010.

Proposed Schedule..

Figure 11.1: A funding profile that assumes our estimated TPC of \$58M in then-year dollars. While based on general considerations rather than detailed plans, a funding profile close to this will be necessary to meet our proposed schedule.

From P996 Proposal

March 12th 2010.

Progress on Reducing the Experiment TPC

• Direct savings on CDF decommissioning and infrastructure:

- Save \$6-9M in CDF decommissioning (retaining central detector and coil)
- Save \$2-3M on electronics (Racks, power, crates, cooling, monitoring, etc)
- Save \$0.4M on Drift Chamber front-end electronics (ASDQ)
- Save \$0.5M on power and cooling for trigger and DAQ computing.
- CDF re-use reduces TPC estimate by: \$9-13M
- BNL in-kind reduces TPC estimate by: \$3M
- S&C off project reduces TPC by: \$3.2M
- TPC after CDF reductions, BNL in-kind, and removing S&C: \$53M - \$(15-18)M = \$(35-38)M

March 12th 2010.

Extruded Scintillator technologies can lower costs...

Relationship of P996 to Project-X

- Physics from P996 will energize the flavor physics community this decade.
- The P996 detector can be driven with Project-X beam in Stage-II.
- Project-X era experiments are challenging:

The P996 experiment and community will be well positioned to exploit the revolutionary beam power of Project-X.

A Vision for Rare Processes in the Project-X era...

 Mu2e and P996 are the first stage of the Project-X ultra-rare decay research program.

 These experiments will accelerate progress on the Project-X research program much like Run-II has now positioned the US to exploit the potential of the LHC.

 The 2009 Project-X task force effort* identified many (20+) world class experiments driven by the CW linac which would complement the long-baseline neutrino physics research program.

*http://www.fnal.gov/pub/projectx/pdfs/ICD2_Research_Program_Task_Force_v6.pdf

March 12th 2010.

What P996 Needs from OHEP to Advance

• A Path toward Critical Decision Zero for P996 this spring.

 Support for operating the Tevatron after Run-II as a Stretcher machine.

 Support for the US university community to engage in this endeavor.

Resources required from Fermilab in 2010 to make progress:

- Effort to validate CDF/BO as the detector site. Requires Beamline physicists, engineering-physicists, a small amount of of FESS.
- Effort for beamline and target design for detailed costing.
- Computing professional support for setting up simulation infrastructure.
- Chemist, engineering-physicist, technician support for low cost extruded scintillator studies. Work in the context of a Field Work Proposal to OHEP.

March 12th 2010.

Direct Opportunities for OHEP to Support P996 in the Near Term

- Supplemental support for collaborating DOE HEP universities labs to develop conceptual designs for detector sub-systems. Many good opportunities here. (\$200K-300K scope)
- Support for BNL to recover, refurbish and ship beamline quadrapoles and power supplies to Fermilab.
 (\$200K, possibly as part of AGS D&D)
- Consider Field Work Proposal support for developing extruded scintillator to the required P996 performance.
 (estimate FWP scope of \$200K)

March 12th 2010.

>Fermilab Proposal P996 can deliver on the long sought after goal of precisely measuring $K^+ \rightarrow \pi^+ v \overline{v}$. This goal can be achieved with modest resources.

>P996 is a "kaon experiment" in the same way that CMS and ATLAS are "proton experiments". We are using familiar hadrons as tools to explore and study the Terascale.

>P996 is a timely opportunity which accelerates progress toward Project-X and the future discoveries there.

March 12th 2010.

High duty-factor proton beams: Why is this important??

- Experiments that reconstruct an "event" to a particular time from sub-detector elements are intrinsically vulnerable to making mistakes at high instantaneous intensity (I). The probability of making a mistake is proportional to $I^2 x \delta t$, where δt is the event resolving time.
- Searching for rare processes requires high intensity.
- Controlling backgrounds means minimizing the instantaneous rate and maximizing the time resolution performance of the experiment.
- This is a common problem for Run-II, LHC, Mu2e, High-School class reunions, etc.

March 12th 2010.

Slow Extracted Beam: The Standard Tool to Drive Ultra Rare Decay Experiments

- Techniques developed in the late 1960's to "slow spill" beam from a synchrotron.
- Technique operates at the edge of stability---Betatron oscillations are induced which interact with material in the beam (wire septum) to eject particles from the storage ring beam phase space.
- Technique limited by septum heating & damage, beam losses, and space charge induced instabilities. Works better at higher energies where the beam-power/charge ratio is more favorable.
- Performance milestones:

Tevatron 800 GeV FT: 64 kW of SEB in 1997. BNL AGS 24 GeV beam, 50-70 kW of SEB.

• JPARC Goal: 300 kW of SEB someday, a few kW within reach now.

March 12th 2010.

Sensitivity of Kaon Physics Today

- CERN NA62: 100 x 10⁻¹² measurement sensitivity of $K^+ \rightarrow e^+ v$
- Fermilab KTeV: 20 x 10⁻¹² measurement sensitivity of $K_L \rightarrow \mu\mu ee$
- Fermilab KTeV: 20 x 10⁻¹² search sensitivity for $K_L \rightarrow \pi \mu e$, $\pi \pi \mu e$
- BNL E949: 20 x 10⁻¹² measurement sensitivity of $K^+ \rightarrow \pi^+ v \overline{v}$
- BNL E871: 1×10^{-12} measurement sensitivity of $K_L \rightarrow e^+e^-$
- BNL E871: 1×10^{-12} search sensitivity for $K_L \rightarrow \mu e$

Probing new physics above a 10 TeV scale with 20-50 kW of protons. Next goal: 1000-event πvv experiments...10⁻¹⁴ sensitivty.

March 12th 2010.

CDF detector, then and now...

Summary of Options Tev at Liquid Nitrogen Temp.

Dollar Amounts are in	thousands of 2	008 dollar	s, and are di	rect costs only	期 型	Ser Brant	
			CO	ST/FTE w/OH	\$175		
One Time Costs (in sur		M&S	M&S w/OH	Person-years	SWF	TOTAL COST w/OH	
	reu in first year	roniy) ¢n	¢n	6.2	\$1 001	\$1 004	
	Marchantarl	φ0 6057	φ 0 00	0.3	φ1,094	φ1,094	Driver il March Taraha
Miscellaneous	s Mechanical	\$257	\$298	3.2	\$568	\$866	Primarily Mech Techs
Contingency		\$257	\$298	9.5	\$1,662	\$1,960	이지 가격해 전망력의 사망원이 있다. 1970년 - 1984년 1985년 - 1985년 1985년 1970년 - 1985년 1985년 - 1985년 1985년 1985년 1985년 1985년 1985년 1985년 1985년 1985년 1
Per year costs (incurre	ed in all years, i	ncluding t	he first)				
CHL Operation	ns	\$638	\$740	0.5	\$88	\$827	M&S is power: 1300 kW at \$0.056/kW
Helium		\$922	\$1,069			\$1,069	25000 scf/day @ \$10.10/100 scf
Nitrogen		\$1,764	\$2,046			\$2,046	60 Mscf/month @ \$0.245/100 scf
Miscellaneous	Mechanical	\$213	\$247	3.2	\$568	\$815	
Contingency		\$884	\$1,026	3.7	\$655	\$1,681	であったことである目的です。
Year	one costs	\$4,934	\$5,724	26.5	\$4,634	\$10,358	
Out y	ear annualcos	\$4,420	\$5,128	7.5	\$1,310	\$6,438	

Paul C. Czarapata: DOE S&T Review, June 30 - July 2, 2009

March 12th 2010.

1	THE STRUCTURE SAT	COLUMN STREET	J. C. Th	neilacker		ATTAL STREET	ALL REPORT OF
	THE PART OF	and the state	5/1/	/2008	CONTRACT DATE	A CONTRACT OF THE	10-2-12 - 2-3+R+1
	CONTRACTOR OF THE	Notes and the			I CHARTER STATES	States The States	
				CNR On	CNR Off	CNR On	CNR Off
	Maintain	Cool Down	Cool Down	900 GeV	900 GeV	980 GeV	980 GeV
	Tevatron at 300K	Tevatron at 80K	Tevatron at 4.5K	Operation	Operation	Operation	Operation
 Electric							
satellite	0.0 MVV	1.0 MW	9.0 MW	7.0 MW	7.0 MW	7.3 MW	7.3 MW
CHL	0.3 MW	0.3 MW	3.0 MW	3.0 MW	3.0 MW	4.3 MW	4.3 MW
CNR	0.0 MW	0.0 MW	0.0 MW	2.5 MW	0.0 MW	2.5 MW	0.0 MW
Total	0.3 MW	1.3 MW	12.0 MW	12.5 MW	10.0 MW	14.1 MW	11.6 MW
demand	\$0.00 /MW	\$0.00 /MW	\$0.00 /MW	\$0.00 /MVV	\$0.00 /MW	\$0.00 /MW	\$0.00 /MW
demand cost	\$0 /month	\$0 /month	\$0 /month	\$0 /month	\$0 /month	\$0 /month	\$0 /month
rate	\$56.00 /MW-hr	\$56.00 /MW-hr	\$56.00 /MW-hr	\$56.00 /MW-hr	\$56.00 /MW-hr	\$56.00 /MW-hr	\$56.00 /MW-hr
rate cost	\$12,264 /month	\$53,144 /month	\$490,560 /month	\$511,000 /month	\$408,800 /month	\$576,408 /month	\$474,208 /month
subtotal	\$12,264 /month	\$53,144 /month	\$490,560 /month	\$511,000 /month	\$408,800 /month	\$576,408 /month	\$474,208 /month
Helium							
usage	0 scf/day	25,000 scf/day	25,000 scf/day	25,000 scf/day	25,000 scf/day	25,000 scf/day	25,000 scf/day
rate	\$10.10 /100 scf	\$10.10 /100 scf	\$10.10 /100 scf	\$10.10 /100 scf	\$10.10 /100 scf	\$10.10 /100 scf	\$10.10 /100 scf
subtotal	\$0 /month	\$76,802 /month	\$76,802 /month	\$76,802 /month	\$76,802 /month	\$76,802 /month	\$76,802 /month
Nitrogen	purging						
usage	1.5 Mscf/month	60 Mscf/month	90 Mscf/month	20 Mscf/month	80 Mscf/month	41 Mscf/month	101 Mscf/month
rate	\$0.245 /100 scf	\$0.245 /100 scf	\$0.245 /100 scf	\$0.245 /100 scf	\$0.245 /100 scf	\$0.245 /100 scf	\$0.245 /100 scf
subtotal	\$3,675 /month	\$147,000 /month	\$220,500 /month	\$49,000 /month	\$196,000 /month	\$101,537 /month	\$248,537 /month
One-Time Costs		leak check	helium charge				
		75 mm	60,000 liters		AND AND PROPERTY	West on the second	State, Conterna
		\$75,000 /year	\$10.10 /100 scf		The second second		The States
Sale and		\$468,750	\$164,719		C. S. H. L. C. S.	the Barry Carl	The the West
		4.5 m shutdown					
Total Rate	\$15,939 /month	\$276,946 /month	\$787,862 /month	\$636,802 /month	\$681,602 /month	\$754,747 /month	\$799,547 /montl
One-Time Cost		\$468,750	<u>.</u> \$164,719				
	40880						
	56	1 2 Tal and	a standard				
	71.68						
	75.0						
	D L d			Contraction of the second	Contraction in the		and the second

March 12th 2010.

March 12th 2010.

R. Tschirhart - Fermilab

Development required for more precise extrusion and compact photon readout...

