Skip to main content

Adipogenic Fate Commitment of Muscle-Derived Progenitor Cells: Isolation, Culture, and Differentiation

  • Protocol
  • First Online:
Animal Models for Stem Cell Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1213))

Abstract

Skeletal muscle harbors several types of cells, among which a population of progenitors committed to the adipogenic lineage has only recently been identified. Potential sources of white and brown adipocytes, the latter representing a potential target to treat obesity, are of considerable interest to the field. Fluorescence-activated cell sorting (FACS) provides an elegant strategy for prospective isolation of closely defined cell populations. Here we describe a flow cytometric method to isolate muscle-resident adipogenic progenitor cells with a default potential to undergo white adipogenesis. We further describe an approach to induce commitment to a lineage of brown-like adipocytes upon exposure to bone morphogenetic protein 7 (BMP7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551

    CAS  PubMed  Google Scholar 

  3. Zammit PS, Partridge TA, Yablonka-Reuveni Z (2006) The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem 54:1177–1191

    Article  CAS  PubMed  Google Scholar 

  4. Uezumi A, Fukada S, Yamamoto N et al (2010) Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol 12:143–152

    Article  CAS  PubMed  Google Scholar 

  5. Joe AWB, Yi L, Natarajan A et al (2010) Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 12:153-U144

    Article  Google Scholar 

  6. Schulz TJ, Huang TL, Tran TT et al (2011) Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc Natl Acad Sci U S A 108:143–148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Cerletti M, Jurga S, Witczak CA et al (2008) Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell 134:37–47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Heredia JE, Mukundan L, Chen FM et al (2013) Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 153:376–388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Mozzetta C, Consalvi S, Saccone V et al (2013) Fibroadipogenic progenitors mediate the ability of HDAC inhibitors to promote regeneration in dystrophic muscles of young, but not old Mdx mice. EMBO Mol Med 5:626–639

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Almind K, Manieri M, Sivitz WI et al (2007) Ectopic brown adipose tissue in muscle provides a mechanism for differences in risk of metabolic syndrome in mice. Proc Natl Acad Sci U S A 104:2366–2371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Qu Z, Balkir L, van Deutekom JC et al (1998) Development of approaches to improve cell survival in myoblast transfer therapy. J Cell Biol 142:1257–1267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Rando TA, Blau HM (1994) Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J Cell Biol 125:1275–1287

    Article  CAS  PubMed  Google Scholar 

  13. Richler C, Yaffe D (1970) The in vitro cultivation and differentiation capacities of myogenic cell lines. Dev Biol 23:1–22

    Article  CAS  PubMed  Google Scholar 

  14. Arsic N, Mamaeva D, Lamb NJ et al (2008) Muscle-derived stem cells isolated as non-adherent population give rise to cardiac, skeletal muscle and neural lineages. Exp Cell Res 314:1266–1280

    Article  CAS  PubMed  Google Scholar 

  15. Qu-Petersen ZQ, Deasy B, Jankowski R et al (2002) Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol 157:851–864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Gharaibeh B, Lu A, Tebbets J et al (2008) Isolation of a slowly adhering cell fraction containing stem cells from murine skeletal muscle by the preplate technique. Nat Protoc 3:1501–1509

    Article  CAS  PubMed  Google Scholar 

  17. Jankowski RJ, Haluszczak C, Trucco M et al (2001) Flow cytometric characterization of myogenic cell populations obtained via the preplate technique: potential for rapid isolation of muscle-derived stem cells. Hum Gene Ther 12:619–628

    Article  CAS  PubMed  Google Scholar 

  18. Conboy IM, Conboy MJ, Smythe GM et al (2003) Notch-mediated restoration of regenerative potential to aged muscle. Science 302:1575–1577

    Article  CAS  PubMed  Google Scholar 

  19. Sherwood RI, Christensen JL, Conboy IM et al (2004) Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell 119:543–554

    Article  CAS  PubMed  Google Scholar 

  20. Steenhuis P, Pettway GJ, Ignelzi MA Jr (2008) Cell surface expression of stem cell antigen-1 (Sca-1) distinguishes osteo-, chondro-, and adipoprogenitors in fetal mouse calvaria. Calcif Tissue Int 82:44–56

    Article  CAS  PubMed  Google Scholar 

  21. Pisani DF, Clement N, Loubat A et al (2010) Hierarchization of myogenic and adipogenic progenitors within human skeletal muscle. Stem Cells 28:2182–2194

    Article  PubMed  Google Scholar 

  22. Ieronimakis N, Balasundaram G, Reyes M (2008) Direct isolation, culture and transplant of mouse skeletal muscle derived endothelial cells with angiogenic potential. PLoS One 3. doi:10.1371/journal.pone.0001753

  23. Pasut A, Oleynik P, Rudnicki MA (2012) Isolation of muscle stem cells by fluorescence activated cell sorting cytometry. Methods Mol Biol 798:53–64

    Article  CAS  PubMed  Google Scholar 

  24. Ratajczak MZ, Majka M, Kucia M et al (2003) Expression of functional CXCR4 by muscle satellite cells and secretion of SDF-1 by muscle-derived fibroblasts is associated with the presence of both muscle progenitors in bone marrow and hematopoietic stem/progenitor cells in muscles. Stem Cells 21:363–371

    Article  CAS  PubMed  Google Scholar 

  25. Beauchamp JR, Heslop L, Yu DS et al (2000) Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151:1221–1234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Blanco-Bose WE, Yao CC, Kramer RH et al (2001) Purification of mouse primary myoblasts based on alpha 7 integrin expression. Exp Cell Res 265:212–220

    Article  CAS  PubMed  Google Scholar 

  27. Hulspas R (2010) Titration of fluorochrome-conjugated antibodies for labeling cell surface markers on live cells. Curr Protoc Cytom 54:6.29.1–6.29.9

    Google Scholar 

  28. Petrovic N, Walden TB, Shabalina IG et al (2010) Chronic peroxisome proliferator-activated receptor gamma (PPAR gamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 285:7153–7164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Bostrom P, Wu J, Jedrychowski MP et al (2012) A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468

    Article  PubMed Central  PubMed  Google Scholar 

  30. Fisher FM, Kleiner S, Douris N et al (2012) FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 26:271–281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Rodeheffer MS, Birsoy K, Friedman JM (2008) Identification of white adipocyte progenitor cells in vivo. Cell 135:240–249

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the German Research Foundation (DFG; grant # SCHU 2445/2-1) and the European Research Council (grant # ERC-StG-2012-311082) to TJS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim J. Schulz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lau, AM., Tseng, YH., Schulz, T.J. (2014). Adipogenic Fate Commitment of Muscle-Derived Progenitor Cells: Isolation, Culture, and Differentiation. In: Christ, B., Oerlecke, J., Stock, P. (eds) Animal Models for Stem Cell Therapy. Methods in Molecular Biology, vol 1213. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1453-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1453-1_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1452-4

  • Online ISBN: 978-1-4939-1453-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics