Skip to main content

Part of the book series: The Springer International Series in Engineering and Computer Science ((SECS,volume 186))

  • 279 Accesses

Abstract

Military trends suggest a growing need for complex and comprehensive space borne communication links. To provide such a facility in what is an increasingly hostile operational environment demands a significantly different type of satellite communications system from those currently in service, and changes in the way the space and ground segments of the system are utilised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. “MIMIC: Improving Military Electronic Systems for the 1990s ”; E. Cohen, Defence Electronics November 1987

    Google Scholar 

  2. “C3 and Microwave Technology a Systems Perspective” Walter R. Beam, Microwave Journal December 1986

    Google Scholar 

  3. “MMIC T/R Modules and Applications”, R.Hunter Chiltern, Microwave Journal, September 1987

    Google Scholar 

  4. “Comparing ADC Architectures is a Designers Best Bet”, Mike Koen, Electronic Design January 1987

    Google Scholar 

  5. “These Chips are Breaking the Linear Bottleneck”, Lawrence Curren, Electronics December 1987

    Google Scholar 

  6. “The Future of Bipolar Technology for Avionics” B. Dunbridge, AGARD Conference Proceedings No 380

    Google Scholar 

  7. “ Monolithic Silicon Bipolar Circuits for GigabitApplications”, U. Lanmann, AGARD Conference Proceedings No 380

    Google Scholar 

  8. “ICNIA- Software Programmable Integrated CNI Avionics”, Charles W. Ward, 5 th Digital Avionics System Conference Proceedings.

    Google Scholar 

  9. “Gate Array, Standard Cell, and Fully Custom: Building Blocks for the Digital Avionics Designer”, H.L. Owen, AIAA Publication 1984.

    Google Scholar 

  10. “VHSIC Impact on Signal Processing Architecture”, T.E. Daly and W. P. Snay, AIAA Publication 1986.

    Google Scholar 

  11. “Alternative Computer Architectures Reduce Bottlenecks”, James W Hess, EDN November 1987.

    Google Scholar 

  12. “Advanced Computer Architectures”, G.C. Fox and P.C. Messina, Scientific American, March 1988.

    Google Scholar 

  13. “The Impact of Advanced Computer Systems on Avionic Reliability”, A.G. Borden, Defence Electronics November 1988.

    Google Scholar 

  14. “The Impact of Advanced Computational Techniques on Digital Avionic Signal Processing” W.M. Vojir, AIAA Publication 1984.

    Google Scholar 

  15. “1988 Technology Forecast”, Electronic Design, Jan. 1988.

    Google Scholar 

  16. P.M. Bakken and Arne Ronnekleiv: “SAW-Based Chirp Fourier Transform and its Application to Analogue On-Board Processing”, International Journal of Satellite Communications, Vol.7, 283–293 (1989).

    Article  Google Scholar 

  17. M.A. Jack, P.M. Grant and J.H. Collins: “The Theory Design and Application of Surface Acoustic Wave Fourier-Transform Processors”. Proceedings of IEEE, 68,pp. 450–468 (1980).

    Article  Google Scholar 

  18. M.D. Semprucei: “The First Switchboard in the Sky”: An Autonomous Satellite-Based Access/Resource Controller“. The Lincoln Laboratory Journal, Vol. 1, No. 1 (1988).

    Google Scholar 

  19. V. Ringset, P.M. Bakken, A. Ronnekleiv, E. Olsen and G. Bjornstrom, “SAW Technology for Multicarrier Demodulation in Advanced Payloads”, European Conference on Satellite Communication -1, Munich 1989.

    Google Scholar 

  20. Arne Ronnekleiv: “Amplitude and Phase Compensation of RAC-type Chirp Lines on Quartz”, Proceedings of the 1988 IEEE Ultrasonics Symposium, 1988.

    Google Scholar 

  21. C.K. Campbell: “Applications of Surface Acoustic and Shallow Bulk Acoustic Wave Devices”, Proceedings of the IEEE, 77,pp. 1453–1484, No, Oct. 1989.

    Article  Google Scholar 

  22. V.S. Dolat, J.H. Sedlacek and D.J. Ehrlich: “Laser Direct Write Compensation of Reflective Array Compressors, IEEE 1987, Ultrasonics Symposium Proceedings, pp. 203–208.

    Google Scholar 

  23. R.E. Chrochiere and L.R. Rabiner: “Multirate Digital Signal Processing”, Prentice-Hall, Inc. Englewood Cliffs, NJ 07632, ISBN 0–13–605162–6,1983.

    Google Scholar 

  24. C.R. Galand, H.J. Nussbaumer: New Quadrature Filter Banks“, IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol. ASSP-32, pp. 522–530, No.3, June 1984.

    Article  Google Scholar 

  25. M.A. Jack. P.M. Grant and J.H. Collins. “The theory, design and application of surface acoustic wave Fourier transform processors”, Proceeding of the IEEE. 68.450–468 (1980).

    Article  Google Scholar 

  26. David P. Morgan. “Surface -Wave Devices for Signal Processing”, Elsevier. Amsterdam. 1985. Chapter 9.

    Google Scholar 

  27. V.S. Dolat. J.H.C. Sedlacek and D.J. Ehrlich. “Laser direct write compensation of reflective array compressors”, IEEE 1987 Ultrasonics Symposium Proceedings. pp. 203–208.

    Google Scholar 

  28. A. ROnnekleiv. “Amplitude and phase compensation of RAC—type chirp lines on quartz”, IEEE 1988 Ultrasonics Symposium Proceedings. pp. 169–173.

    Google Scholar 

  29. P.M. Bakken. V. Ringset. A. Ronnekleiv and E. Olsen. “Multicarrier demodulator using analog and digital signal processing”, Tirrenia International Workshop on Digital Communications. September 1987. Proceedings published by Elsevier, Amsterdam, The Netherlands, 1988.

    Google Scholar 

  30. V. Ringset. P.M. Bakken. A. Ronnekleiv. G. BjOrnstrom and E. Olsen. “SAW technology for multicarrier demodulation in advanced payloads”. First European Conference on Satellite Communications. Munich, September 1989

    Google Scholar 

  31. L.J. Ricardi, “Adaptive and multibeam antenna systems,”Chap.6 in Satellite Communuication Antenna Techonology, R. Mittra et. al.eds.,Elsevier Science Publishers (North-Holland),1983.

    Google Scholar 

  32. J.T. Mayhan.“Area covarage adaptive nulling from geosynchronous satellites: phased arrays versus`multiple-beam antennas,” IEEE Trans. Antennas Propagation,vol.AP-34,pp.410–419,March 1986.

    Article  Google Scholar 

  33. R.J. Mailloux,“Basic parameters of antennas”, for AGARD Advisory Report No: 232

    Google Scholar 

  34. D.M. Pozar and D. H. Schaubert, “Analysis of an Infinite Array of Rectangular Microstrip Patches with Idealized Probe Feeds”, IEEE Trans, AP-32, No. 10. Oct 1984, pp. 1101–1107.

    Article  Google Scholar 

  35. R.J. Mailloux, “Printed Slot Arrays with Dielectric Substrates”, IEEE Symposium on Antennas and Propagation, June 1985.

    Google Scholar 

  36. English, W.:“ Study on Intersatellite laser Communication Links,” Final Report, ESTEC Contract No. 3555 (1979)

    Google Scholar 

  37. Leeb, W.R.:“ Prospects of laser communications in space,” Proc. ESA Workshops on Space laser Applications and Technology, Les Diablerets, 26–30 March 1984 (ESA SP-202, May 1984)

    Google Scholar 

  38. Kazovsky, L.G.:“ Coherent optical receivers: performance analysis and laser linewidth requirements,” Optical Engineering, April 1986, Vol. 25, No.4, pp. 575–579

    Google Scholar 

  39. Okoshi, T. et.al.:“ Computation of bit-error rate of various heterodyne and coherent-type optical communication systems,” J. of Optical Communications, 2 (1981), pp. 89–96

    Google Scholar 

  40. Scholtz, A.L. et.al.:“ Receiver Concepts for Data Transmission at 10 Microns,” ESA SP-202, pp. 107, 1984

    Google Scholar 

  41. Philipp, H.K. et.al.:“ Costas loop experiments for a 10.6 ¡.lm communications receiver,” IEEE Trans. on Communications, Vol. Com-31, No. 8, August 1983, pp. 1000–1002

    Google Scholar 

  42. Zhou, B. et.al.:“ Efficient, frequency stable laser-diode-pumped Nd: YAG laser,” Optics Letters, Vol. 10, No.2, February 1985, pp. 62–64

    Google Scholar 

  43. Sun, Y.L. and Byer, R.L.:“ Sub-megahertz frequency-stabilized Nd:YAG oscillator,” Optics Letters, Vol.7, No.9, September 1982, pp. 408–410.

    Article  Google Scholar 

  44. Ross, M. et.al.:“ Space Optical Communications with the Nd:YAG laser,” Proc. IEEE, Vol.66, No.3 (1978)

    Google Scholar 

  45. K. Wallmeroth, “High Power, CW Single-Frequency TEM.., Diode-laser-Pumped Nd:YAG laser”. Electronics Letter, 18.8.1988, Vol.24, No:17.

    Google Scholar 

  46. L.L. Jeromin and V.W.S. Chan, “M-ary FSK Performance for Coherent Optical Communications Systems Using Semiconductor lasers”, IEEE Transcations on Communications, Vol. COM-34, No. 4, April 1986.

    Google Scholar 

  47. D. Welford and S.B. Alexander, “Equalization of Semiconductor Diode laser Frequency Modulation With A Passive Network”, Electronics Letters, Vol. 21, No. 9, April 1985, pp. 361–362.

    Google Scholar 

  48. Kobayashi and T. Kimura, “Optical Phase Modulation in an Injection Locked AIGaAs Semiconductor laser”, IEEE Journal of Quantum Electronics, Vol. QE-18, No. 10, October 1982, pp. 1662–1669.

    Article  Google Scholar 

  49. G.L. Abbas, V.W.S. Chan, and T.K. Yee, “A Dual-Detector Optical Heterodyne Receiver for Local Oscillator Noise Suppression”, IEEE Journal of Lightwave Technology, Vol. LT-3, No. 5, October 1985.

    Google Scholar 

  50. G.L. Abbas et al, “Near Quantum-Limited Operation of a GaAIAs laser Heterodyne Communication System”, OSA Conference on lasers and Electro-optics, Baltimore, MD, May 1985

    Google Scholar 

  51. K.A. Winick and P.K umar, “Spatial Mode Matching Efficiencies for Heterodyned GaAIAs Semiconductor lasers”, IEEE Journal of Lightwave Technology, Vol. 6, No. 4, April 1988.

    Google Scholar 

  52. F.G. Walther, S.D. Lowney, and J.E. Kaufmann, “Frequency Tracking for Heterodyne Optical Communications Using Semiconductor lasers”, Paper FC3, OSA Conference on lasers and Electro-optics, Washington D.C., June 1983.

    Google Scholar 

  53. V. Chan, L. Jeromin, and J. Kaufmann, “Heterodyne laserCOM Systems Using GaAs lasers for ISL Applications”, IEEE International Conference on Communications, June 19–22, 1983, Boston, MA.

    Google Scholar 

  54. P.Van Hove and V.W.S. Chan, “Spatial Acquisition Algorithms and Systems for Optical ISL”, IEEE International Conference on Communications, Paper E1.6, Boston, MA, June 19–22, 1983.

    Google Scholar 

  55. J.E. Kaufmann and L.L. Jeromin, “Optical Heterodyne Intersatellite Links Using Semiconductor lasers”, IEEE Global Telecommunications Conference, Paper 28.4, Atlanta, GA, November 26–29, 1984.

    Google Scholar 

  56. T.F. Wiener et al., “The Role of Blue/Green Laser Systems in Strategic Submarine Communications” IEEE Trans. on Com., Vol. COM-28, No.9, Sept.1980.

    Google Scholar 

  57. J.B. Schultz, “Navy, DARPA Evaluate Blue-Green Lasers as Communications Link With Submarines”, Defence Electronics, Nov. 1983.

    Google Scholar 

  58. F.C. Painter, “Submarine Laser Communications Best of TACAMO, ELF?, Jan. 1986, DS&E.

    Google Scholar 

  59. R.S. Clark, “Getting the Laser Word to Subs”, Photonics Spectra, March 1988.

    Google Scholar 

  60. “Spacecraft Materials in a Space Environment”, Toulouse 8–11 June 1982 ESA SP-178

    Google Scholar 

  61. “Third European Symposium on Spacecraft Materials in a Space Enviroment”, ESTEC Noordwijk The Netherlands 1–4 October 1985

    Google Scholar 

  62. “Advanced Composites Technology, Papers presented at The Conference on Advanced Composite Technology El Segundo California 14–16 March 1978

    Google Scholar 

  63. Lenoe E.M.., Oplinger D.W & Burke J.J. (Eds),“ Fibrous Composites in Structural Design”, Plenum Press 1980

    Book  Google Scholar 

  64. “ICCM VI & ECCM 2”, Second European Conference on Composite Materials 20–24 July 1987, Imperial College of Science and Technology, London, UK

    Google Scholar 

  65. Hansen J.S., and Tennyson R.C. “Simulated Space Environmental Effects on Fibre-reinforced Polymeric Composites”, AIAA-83–0589, AIAA 21st Aerocpace Sciences meeting, 10–13 January 1983, Reno, Nevada

    Google Scholar 

  66. Gerharz JJ and Schulz D, “Literature Research on the Mechanical Properties of Fibre -Composite Materials-Analysis of the State of the Art”, Volume 1, Royal Aircraft Establishment, Library Translation 2045, August 1980.

    Google Scholar 

  67. King R.L. “Statistical Derivation of Design Data for Composite Materials Computed Aided Design in Composite Material Technology”, Proceedings of the International Conference, University of Southampton, UK.

    Google Scholar 

  68. “Materials in Aerospace”, 2–24 April 1986 Proceedings, Volumes I and II Royal Aeronautical Society

    Google Scholar 

  69. Hoggatt J.T., Hill S. G. and Johnson J.C. (Eds.),“ Materials for Space--- The Gathering Momentum”, 18th International SAMPE Technical Conference, Red Lion Inn, Seattle, Washington 7–9 October 1986

    Google Scholar 

  70. Williamson, J.R., “Advanced Materials for Space Structures”, 41 st Congress of the International Asronautical Federation, Oct. 6–12, 1990, Dresden.

    Google Scholar 

  71. M.R. Beasley: “High-Temperature Superconductive Films” Proceedings of the IEEE, Vol. 77, No. 8, Aug. 1989 (pp. 1155–1163).

    Article  Google Scholar 

  72. P.L. Richards and Q. Hu: “Superconducting Components for Infrared and Millimeter-Wave Receivers”, Proceedings of the IEEE, Vol. 77, No.8, Aug. 1989 (pp. 1233–1246).

    Article  Google Scholar 

  73. R.S. Withers and R.W. Ralston: “Superconductive Analog Signal Processing Devices”, Proceedings of the IEEE, Vol. 77, No. 8, Aug. 1989.

    Google Scholar 

  74. James, J.R., Hall, P.S. and Wood, C. “Microstrip Antenna theory and Design”, Peter Peregrinus, 1981.

    Book  Google Scholar 

  75. Harting, W.H. “Superconducting resonators and devices”, IEEE, 61, pp. 58–70, 1973.

    Article  Google Scholar 

  76. Danielsen, M, “Superconducting lead cavities at 35 GHz”, Proc. IEEE, 61, pp. 71–75, 1973.

    Article  Google Scholar 

  77. Vig, J.R., and Gikow, E. “A superconductive tuner with broad tuning range”, Proc. IEEE, 61, pp. 122–123, 1973.

    Article  Google Scholar 

  78. Jimenez, J.J., Benard, J, Sudraud, P and Septier, A. “Attainment of a low noise high power and highly stable Gunn oscillator by coupling to a superconducting cavity”, Proc. IEEE, 61, pp. 123–124, 1973.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ince, A.N. (1992). Technology Review. In: Ince, A.N. (eds) Digital Satellite Communications Systems and Technologies. The Springer International Series in Engineering and Computer Science, vol 186. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3578-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3578-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6590-7

  • Online ISBN: 978-1-4615-3578-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics