Skip to main content

Transformerless Three-Phase Solar Photovoltaic Power Conversion Systems 

  • Chapter
  • First Online:
Advances in Control Techniques for Smart Grid Applications

Abstract

Solar photovoltaic (SPV) energy is one of the promising and dominant renewable energy sources for clean and sustainable electricity production. Typically, a power conditioning unit (PCU) along with a low-frequency transformer on the AC side is utilized to integrate the photovoltaic (PV) source with the grid. However, they offer low efficiency, high cost, and low power density. Transformerless inverters gained more attention in grid-connected PV systems due to demands of power density, high efficiency, reliability, and low cost. However, leakage current is produced through the stray capacitances between the PV array and the ground. It is generated due to the fluctuation of common-mode voltages between PV neutral and grid. Also, it enhances DC injection into the grid due to the absence of galvanic isolation. Consequently, it causes fundamental safety problems and the degradation of the system’s performance. This chapter aims to study and compare leakage current minimization approaches through converter topology modifications and pulse width modulation schemes in transformerless PV systems. The key performance of each inverter topology in terms of leakage current is holistically evaluated through simulation studies in MATLAB software. Finally, the merits and demerits of each power converter topology for transformerless solar systems are summarized in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

P :

Power (W)

D :

Diode

S :

Switching device

L :

Inductor (mH)

I PV :

PV array output current (A)

V PV :

PV array output voltage (V)

C pv :

Stray capacitance of PV panel (μF)

V dc :

Input DC voltage (V)

Van, Vbn, Vcn:

Phase voltages of converter (V)

n :

Neutral point

a, b, c :

Terminals of a 3-phase system

V 0 to V 7 :

State vectors

I leakage :

Leakage current (A)

V CM :

Common-mode voltage (V)

R g :

Ground resistance (Ω

PV:

Photovoltaic

PCU:

Power conditioning unit

PVS:

Photovoltaic systems

IEA:

International Energy Agency

PVES:

Photovoltaic energy systems

Hz:

Hertz

LFT:

Low-frequency transformer

HFT:

High-frequency transformer

kWh:

Kilowatt hour

THDs:

Total harmonic distortions

EMI:

Electromagnetic interference

CMV:

Common-mode voltage

DC:

Direct current

MPPT:

Maximum power point tracking

CI:

Central inverter

SI:

String inverter

PWM:

Pulse width modulation

UPS:

Uninterrupted power supply

RMS:

Root mean square

AC:

Alternating current

kHz:

Kilo Hertz

IGBTs:

Insulated gate bipolar transistors

V:

Volt

kW:

Kilo watt

GW:

Giga watt

VSI:

Voltage source inverter

CSI:

Current source inverter

MPPT:

Maximum power point tracker

MPP:

Maximum power point

I-V:

Current versus voltage

P-V:

Power versus voltage

A:

Ampere

s:

Seconds

MOSFET:

Metal oxide semiconductor field-effect transistor

W:

Watt

LC:

Inductor-capacitor

SPWM:

Sine pulse width modulation

SVM:

Space vector modulation

NSPWM:

Near-state PWM

AZPWM:

Active zero state PWM

RSPWM:

Remote state PWM

MSVPWM:

Multilevel space vector pulse width modulation

References

  1. International Energy Agency. Snapshot of global photovoltaic markets. Technical report, 2018 [online]. Available https://iea-pvps.org/snapshot-reports/snapshot-2020/

  2. S. Kouro, J.I. Leon, D. Vinnikov, L.G. Franquelo, Grid-connected photovoltaic systems: an overview of recent research and emerging PV converter technology. IEEE Ind. Electron. Mag. 9(1), 47–61 (2015)

    Google Scholar 

  3. R. Panigrahi, S.K. Mishra, S.C. Srivastava, A.K. Srivastava, N.N. Schulz, Grid integration of small-scale photovoltaic systems in secondary distribution network—a review. IEEE Trans. Ind. Appl. 56(3), 3178–3195 (2020)

    Google Scholar 

  4. J. Young-Hyok, J. Doo-Yong, K. Jun-Gu, K. Jae-Hyung, L. Tae-Won, W. Chung-Yuen, A real maximum power point tracking method for mismatching compensation in PV array under partially shaded conditions. IEEE Trans. Power Electron. 26(4), 1001–1009 (2011)

    Article  Google Scholar 

  5. R.M. Hudson, M.R. Behnke, R. West, S. Gonzalez, J. Ginn, Design considerations for three-phase grid-connected photovoltaic inverters, in Proceedings of photovoltaic specialists conference (2002), pp. 1396–1401

    Google Scholar 

  6. Q. Yan, X. Wu, X. Yuan, Y. Geng, Q. Zhang, Minimization of the DC component in transformerless three-phase grid-connected photovoltaic inverters. IEEE Trans. Power Electron. 30(7), 3984–3997 (2015)

    Article  Google Scholar 

  7. O. Lopez et al., Eliminating ground current in a transformerless photovoltaic application. IEEE Trans. Energy Convers. 25(1), 140–147 (2010)

    Article  Google Scholar 

  8. S. Essakiappan, P. Enjeti, R.S. Balog, S. Ahmed, Analysis and mitigation of common-mode voltages in photovoltaic power systems, in Proceedings of IEEE Energy Conversion Congress and Exposition, Phoenix, AZ (2011), pp. 28–35

    Google Scholar 

  9. H.I. Yunus, R.M. Bass, Comparison of VSI and CSI topologies for single-phase active power filters, in PESC Record. 27th Annual IEEE Power Electronics Specialists Conference, vol. 2 (1996), pp. 1892–1898

    Google Scholar 

  10. R.J. Mustafa, M.R. Gomaa, M. Al-Dhaifallah, H. Rezk, Environmental impacts on the performance of solar photovoltaic systems. Sustainability 12(2), 608 (2020)

    Article  Google Scholar 

  11. F. Spertino, G. Graditi, Power conditioning units in grid-connected photovoltaic systems: a comparison with different technologies and wide range of power ratings. Sol. Energy 108, 219–229 (2014)

    Article  Google Scholar 

  12. R. Panigrahi, S.K. Mishra, S.C. Srivastava, A.K. Srivastava, N.N. Schulz, Grid integration of small-scale photovoltaic systems in secondary distribution network—a review. IEEE Trans. Ind. App. 56(3), 3178–3195 (2020)

    Google Scholar 

  13. S. Kouro, C. Fuentes, M. Perez, J. Rodriguez,Single DC-link cascaded H-bridge multilevel multi-string photovoltaic energy conversion system with inherent balanced operation, in IECON 2012–38th Annual Conference on IEEE Industrial Electronics Society (IEEE, 2012), pp. 4998–5005

    Google Scholar 

  14. IEEE standard for interconnecting distributed resources with electric power systems, in IEEE Std 1547–2003 (2003), pp.1–28

    Google Scholar 

  15. IEEE recommended practice for utility interface of photovoltaic (PV) systems, in IEEE Std 929–2000 (2000), pp. i

    Google Scholar 

  16. A.B. Acharya, M. Ricco, D. Sera, R. Teoderscu, L.E. Norum, Performance analysis of medium-voltage grid integration of PV plant using modular multilevel converter. IEEE Trans. Energy Convers. 34(4), 1731–1740 (2019)

    Google Scholar 

  17. M.R. Islam, Y. Guo, J. Zhu, A multilevel medium-voltage inverter for step-up-transformer-less grid connection of photovoltaic power plants. IEEE J. Photovoltaics 4(3), 881–889 (2014)

    Article  Google Scholar 

  18. M. Rabiul Islam, A.M. Mahfuz-Ur-Rahman, K.M. Muttaqi, D. Sutanto, State-of-the-art of the medium-voltage power converter technologies for grid integration of solar photovoltaic power plants. IEEE Trans. Energy Convers. 34(1), 372–384 (2019)

    Google Scholar 

  19. M.R. Islam, Y. Guo, J. Zhu, A high-frequency link multilevel cascaded medium-voltage converter for direct grid integration of renewable energy systems. IEEE Trans. Power Electron. 29(8), 4167–4182 (2014)

    Article  Google Scholar 

  20. M.R. Islam, Y. Guo, J. Zhu, Multilevel converters for step-up-transformer-less direct integration of renewable generation units with medium voltage smart microgrids, in Large Scale Renewable Power Generation (Springer, Singapore, 2014), pp. 127–149

    Google Scholar 

  21. P.C. Sarker, et al., Solar photovoltaic power plants: necessity and techno-economical development, in Renewable Energy and the Environment (Springer, Singapore, 2018), pp. 41–69

    Google Scholar 

  22. A.M. Pavan, S. Castellan, S. Quaia, S. Roitti, G. Sulligoi, Power electronic conditioning systems for industrial photovoltaic fields: centralized or string inverters?, in 2007 International Conference on Clean Electrical Power (2007), pp. 208–214

    Google Scholar 

  23. J. Imhoff, J.R. Pinheiro, J.L. Russi, D. Brum, R. Gules, H.L. Hey, DC-DC converters in a multi-string configuration for stand-alone photovoltaic systems, in 2008 IEEE Power Electronics Specialists Conference (2008), pp. 2806–2812

    Google Scholar 

  24. D. Leuenberger, J. Biela, PV-module-integrated AC inverters (AC modules) With subpanel MPP tracking. IEEE Trans. Power Electron. 32(8), 6105–6118 (2017)

    Article  Google Scholar 

  25. K.K. Gupta, P. Bhatnagar, H. Vahedi, K. Al-Haddad, Carrier based PWM for even power distribution in cascaded H-bridge multilevel inverters within single power cycle, in IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society (2016), pp. 6470–6475

    Google Scholar 

  26. R.W. Erickson, D. Maksimovic, Fundamentals of Power Electronics (Springer Science & Business Media, 2007)

    Google Scholar 

  27. İ Çolak, E. Kabalcı, G. Keven, Conventional H-bridge and recent multilevel inverter topologies, Multilevel Inverters (Academic Press, 2021), pp. 57–110

    Google Scholar 

  28. S. Kouro, C. Fuentes, M. Perez, J. Rodriguez, Single DC-link cascaded H-bridge multilevel multi-string photovoltaic energy conversion system with inherent balanced operation, in IECON 2012—38th Annual Conference on IEEE Industrial Electronics Society (2012), pp. 4998–5005

    Google Scholar 

  29. K. Zhou, D. Wang, Relationship between space-vector modulation and three-phase carrier-based PWM: a comprehensive analysis [three-phase inverters]. IEEE Trans. Ind. Elec. 49(1), 186–196 (2002)

    Article  Google Scholar 

  30. E. Un, A.M. Hava, A near state PWM method with reduced switching frequency and reduced common mode voltage for three-phase voltage source inverters, in 2007 IEEE International Electric Machines & Drives Conference (2007), pp. 235–240

    Google Scholar 

  31. M.C. Cavalcanti, K.C. de Oliveira, A.M. de Farias, F.A.S. Neves, G.M.S. Azevedo, F.C. Camboim, Modulation techniques to eliminate leakage currents in transformerless three-phase photovoltaic systems. IEEE Trans. on Ind. Elec. 57(4), 1360–1368 (2010)

    Article  Google Scholar 

  32. D. Ronanki, P.H. Sang, V. Sood, S.S. Williamson, Comparative assessment of three-phase transformerless grid-connected solar inverters, in 2017 IEEE International Conference on Industrial Technology (ICIT), Toronto, ON, Canada (2017), pp. 66–71

    Google Scholar 

  33. T.K.S. Freddy, N.A. Rahim, W. Hew, H.S. Che, Modulation techniques to reduce leakage current in three-phase transformerless H7 photovoltaic inverter. IEEE Trans. on Ind. Elec. 62(1), 322–331 (2015)

    Article  Google Scholar 

  34. R. Rahimi, S. Farhangi, B. Farhangi, G.R. Moradi, E. Afshari, F. Blaabjerg, H8 inverter to reduce leakage current in transformerless three-phase grid-connected photovoltaic systems. IEEE J Emerg Sel Topics Power Electron 6(2), 910–918 (2018)

    Article  Google Scholar 

  35. X. Guo, D. Xu, B. Wu, Three-phase seven-switch inverter with common-mode voltage reduction for transformerless photovoltaic system, in IECON 2014—40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, TX, USA (2014), pp. 2279–2284

    Google Scholar 

  36. A.K. Gupta, H. Agrawal, V. Agarwal, A novel three-phase transformerless H-8 topology with reduced leakage current for grid-tied solar PV applications, IEEE Trans. Ind. App. 55(2), 1765–1774 (2019)

    Google Scholar 

  37. X. Guo, R. He, J. Jian, Z. Lu, X. Sun, J.M. Guerrero, Leakage current elimination of four-leg inverter for transformerless three-phase PV systems. IEEE Trans. Power Electron. 31(3), 1841–1846 (2016)

    Article  Google Scholar 

  38. D. Han, S. Li, W. Choi, B. Sarlioglu, Design, implementation, and evaluation of a GaN-based four-leg inverter with minimal common-mode voltage generation, in 2017 IEEE Energy Conversion Congress and Exposition (ECCE) (2017), pp. 5383–5388

    Google Scholar 

  39. X. Guo, D. Xu, B. Wu, New control strategy for DCM-232 three-phase PV inverter with constant common-mode voltage and anti-islanding capability, in 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA (2014), pp. 5613–5617

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Ronanki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ronanki, D., Karneddi, H. (2022). Transformerless Three-Phase Solar Photovoltaic Power Conversion Systems . In: Das, S.K., Islam, M.R., Xu, W. (eds) Advances in Control Techniques for Smart Grid Applications. Springer, Singapore. https://doi.org/10.1007/978-981-16-9856-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9856-9_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9855-2

  • Online ISBN: 978-981-16-9856-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics