Skip to main content

The Neuroprotective Efficacy of Vitamins

  • Chapter
  • First Online:
Brain Protection in Schizophrenia, Mood and Cognitive Disorders

Abstract

It has been known for a long time that vitamins are essential nutrients for humans and animals. These substances are important for regular cell function, growth and development. Relatively small amounts of vitamins are needed to perform vital functions. As a rule vitamins promote the actions of enzymes in order to improve its efficiency and in this role they are called coenzymes.

There are 13 essential vitamins vitamin A, vitamin B1 (thiamine), vitamin B2 (riboflavin), vitamin B3 (niacin), pantothenic acid, biotin, vitamin B6 (pyridoxine), folate (folic acid, vitamin B9), vitamin B12, vitamin C, vitamin D, vitamin E, and vitamin K, which are needed for normal functioning of mammalians’ life.

Normal neurosystem functioning depends on its structural and functional perfection. During life, the human body is exposed to many elements, which create free radicals. These free radicals are known to date as distractive agents for many biological systems include the neurosystem. Free radicals are atoms or groups of atoms with unpaired number of electrons and can be formed when oxygen interacts with certain molecules. Once these highly reactive radicals are formed, they can start a chain reaction – “domino effect”, which produces membranes damage. To prevent this damage, the body has an antioxidation defense system. Antioxidants are molecules, which can safely interact with free radicals and terminate the chain reaction before vital molecules are damaged. Antioxidative agents are intimately involved in the prevention of cellular damage – the common pathway for cancer, aging, and a variety of diseases. The antioxidant defense system is important in maintaining cellular homeostasis and preventing oxidative stress.

According to the present invention, antioxidants like vitamins and other antioxidative agents may be considered as further active components because antioxidants inhibit free radical distractive activities. Antioxidants, especially lipid-soluble antioxidants, can be absorbed into the cell membrane to neutralize oxygen radicals and thereby protect the membrane.

Although there are several enzyme systems within the body that scavenge free radicals, the principle vitamin antioxidants are vitamin E, beta-carotene, vitamin C and vitamins from the B group.

Vitamins C, E and K are known to protect neurons from oxidative damage in stroke and in other neurodegenerative conditions. B vitamins are critically important in maintaining the normal functions of the brain. Deficiency in B vitamins results in a predictable sequence of different neurological and psychiatric disturbances.

This chapter is focused on evidence from clinical and basic science studies supporting a role of several vitamins as potential neuroprotective compounds. Neuroprotective effects of them as add-on therapies merit further investigations in schizophrenia and mood disorders.

With the progress of understanding the illnesses’ reasons, it becomes clearer that to prevent maladies is much easier, than to treat them.

(I.I. Mechnikoff)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s Disease

ADHD:

Attention Deficit Hyperactivity Disorder

ATP:

Adenosine Triphosphate

BARS:

Barnes Akathisia Rating Scale

BPRS:

Brief Psychiatric Rating Scale

CNS:

Central Nervous System

CSF:

Cerebrospinal Fluid

DFE:

dietary folate equivalent

7-DHC:

7-dehydrocholesterol

DNA:

Deoxyribonucleic Acid

GABA:

Gamma-Aminobutyric Acid

5-HT:

Serotonin

L-5HTP:

L-5-hydroxytryptophan

IU:

International Unit

LT:

Lithium-Induced Tremor

mcg:

micrograms

MRI:

Magnetic Resonance Imaging

MRS:

Magnetic Resonance Spectroscopy

NIA:

Neuroleptic-Induced Akathisia

NIH:

National Institutes of Health

nM/L:

Nanomoles per Liter

NMDA:

N-methyl-D-aspartic Acid

PANSS:

Positive and Negative Syndrome Scale

PD:

Parkinson’s Disease

PLP:

Pyridoxal 5-Phosphate

PSNL:

Partial Sciatic Nerve Ligation

RAE:

Retinol Activity Equivalents

RDA:

Recommended Dietary Allowance

RNA:

Ribonucleic Acid

SAS:

Simpson-Angus Scale

SGAs:

Second Generation Agents

SNCI:

Sciatic Nerve Crush Injury

SSRIs:

Selective Serotonin Reuptake Inhibitors

TD:

Tardive Dyskinesia

TH:

Thermal Hyperalgesia

t.i.d.:

three times a day

TMP:

Thiamin Monophosphate

TTP:

Thiamin Triphosphate

TPP:

Thiamin Pyrophosphate

U.S.:

United States of America

USDA:

United States Department of Agriculture

UVB:

Ultraviolet-B

References

  1. Carpenter KJ. A short history of nutritional science: part 2 (1885–1912). J Nutr 2003; 133:975–984

    PubMed  CAS  Google Scholar 

  2. Rosenfeld L. Vitamine – vitamin. The early years of discovery. Clin Chem 1997; 43:680–685

    PubMed  CAS  Google Scholar 

  3. Carpenter KJ. A short history of nutritional science: part 3 (1912–1944). J Nutr 2003; 133:3023–3032

    PubMed  CAS  Google Scholar 

  4. Zempleni J, Rucker RB, Suttie JW, McCormick DB (eds) Handbook of Vitamins, 4th ed. CRC Press, Boca Raton, FL; 2007

    Google Scholar 

  5. Combs GF. The Vitamins: Fundamental Aspects in Nutrition and Health, 3rd ed. Elsevier Academic Press, Burlington; 2008

    Google Scholar 

  6. Clarkson PM. Antioxidants and physical performance. Crit Rev Food Sci Nutr 1995; 35:131–141

    PubMed  CAS  Google Scholar 

  7. Maxwell SR. Prospects for the use of antioxidant therapies. Drugs 1995; 49:345–361

    PubMed  CAS  Google Scholar 

  8. Matill HA. Antioxidants. Annu Rev Biochem 1947; 16:177–192

    Google Scholar 

  9. Wolf G. Discovery of vitamin A. Encyclopedia of Life Sciences: Available at: http://www.mrw.interscience.wiley.com/emrw/9780470015902/els/article/a0003419/current/html; 2001

  10. McCollum EV, Davis M. The necessity of certain lipins in the diet during growth. J Biol Chem 1913; 15:167–175

    CAS  Google Scholar 

  11. Osborne TB, Mendel LB. The relation of growth to the chemical constituents of the diet. J Biol Chem 1913; 15:311–326

    Google Scholar 

  12. Groff JL. Advanced Nutrition and Human Metabolism, 2nd ed. St Paul: West Publishing; 1995

    Google Scholar 

  13. Food and Nutrition Board Institute of Medicine. Vitamin A. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. National Academy Press, Washington DC; 2001

    Google Scholar 

  14. de Pee S, West CE. Dietary carotenoids and their role in combating vitamin A deficiency: a review of the literature. Eur J Clin Nutr 1996; 50(Suppl 3):S38–S53

    PubMed  Google Scholar 

  15. Olson JA. Benefits and liabilities of vitamin A and carotenoids. J Nutr 1996; 126:1208S–1212S

    PubMed  CAS  Google Scholar 

  16. Olson JA, Kobayashi S. Antioxidants in health and disease: overview. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine. New York, NY, 1992; 200:245–247

    Google Scholar 

  17. Paiva SA, Russell RM. Beta-carotene and other carotenoids as antioxidants. J Am Coll Nutr 1999; 18:426–433

    PubMed  CAS  Google Scholar 

  18. Sato Y, Meller R, Yang T, et al. Stereo-selective neuroprotection against stroke with vitamin A derivatives. Brain Research 2008; 1241:188–192

    PubMed  CAS  Google Scholar 

  19. Malaspina A, Michael-Titus AT. Is the modulation of retinoid and retinoid-associated signaling a future therapeutic strategy in neurological trauma and neurodegeneration? J Neurochem 2008; 104:584–595

    PubMed  CAS  Google Scholar 

  20. McCaffery P, Drager DC. High level of a retinoic acid-generating dehydrogenase in the meso telencephalic dopamine system. Proc Natl Acad Sci USA 1994; 91:7772–7776

    PubMed  CAS  Google Scholar 

  21. Nau H, Chahoud I, Dencker L, et al. Teratogenicity of vitamin A and retinoids. In: Blomhoff R (ed) Vitamin A in Health and Disease. Dekker, New York; 1994: 615–663

    Google Scholar 

  22. Satre MA, Ugen KE, Kochhar DM. Developmental changes in endogenous retinoids during pregnancy and embryogenesis in the mouse. Biol Reprod 1992; 46:802–810

    PubMed  CAS  Google Scholar 

  23. Wagner E, Luo T, Drager UC. Retinoic acid synthesis in the postnatal mouse brain marks distinct developmental stages and functional systems. Cereb Cortex 2002; 12:1244–1253

    PubMed  Google Scholar 

  24. Arinami T, Gao M, Hamaguchi H, Toru M. A functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia. Hum Mol Genet 1997; 6:577–582

    PubMed  CAS  Google Scholar 

  25. Balmer JE, Blomhoff R. Gene expression regulation by retinoic acid. J Lipid Res 2002; 43:1773–1808

    PubMed  CAS  Google Scholar 

  26. Krezel W, Ghyselinck N, Samad TA, et al. Impaired locomotion and dopamine signaling in retinoid receptor mutant mice. Science 1998; 279:863–867

    PubMed  CAS  Google Scholar 

  27. Samad TA, Krezel W, Chambon P, Borrelli E. Regulation of dopaminergic pathways by retinoids: activation of the D2 receptor promoter by members of the retinoic acid receptor-retinoid X receptor family. Proc Natl Acad Sci USA 1997; 94:14349–14354

    PubMed  CAS  Google Scholar 

  28. Goodman AB. Three independent lines of evidence suggest retinoids as causal to schizophrenia. Proc Natl Acad Sci USA 1998; 95:7240–7244

    PubMed  CAS  Google Scholar 

  29. Goodman AB. Microarray results suggest altered transport and lowered synthesis of retinoic acid in schizophrenia. Mol Psychiatry 2005; 10:620–621

    PubMed  CAS  Google Scholar 

  30. Etchamendy N, Enderlin V, Marighetto A, et al. Vitamin A deficiency and relational memory deficit in adult mice: relationships with changes in brain retinoid signalling. Behavioural Brain Res 2003; 145:37–49

    CAS  Google Scholar 

  31. Misner DL, Jacobs S, Shimizu Y, et al. Vitamin deprivation results in reversible loss of hippocampal long-term synaptic plasticity. Proc Natl Acad Sci USA 2001; 98:11714–11719

    PubMed  CAS  Google Scholar 

  32. Alfos S, Boucheron C, Pallet V, et al. A retinoic acid receptor antagonist suppresses brain retinoic acid receptor overexpression and reverses a working memory deficit induced by chronic ethanol consumption in mice. Alcoholism, Clin Experimental Res 2001; 25:1506–1514

    CAS  Google Scholar 

  33. Corcoran JP, So PL, Maden M. Disruption of the retinoid signalling pathway causes a deposition of amyloid beta in the adult rat brain. Eur J Neurosci 2004; 20:896–902

    PubMed  Google Scholar 

  34. Goodman AB, Pardee AB. Evidence for defective retinoid transport and function in late onset Alzheimer’s disease. Proc Natl Acad Sci USA 2003; 100:2901–2905

    PubMed  CAS  Google Scholar 

  35. Lane MA, Bailey SJ. Role of retinoid signalling in the adult brain. Prog Neurobiol 2005; 75:275–293

    PubMed  CAS  Google Scholar 

  36. Mey J, McCaffery P. Retinoic acid signaling in the nervous system of adult vertebrates. Neuroscientist 2004; 10:409–421

    PubMed  CAS  Google Scholar 

  37. Lerner V, Miodownik C, Gibel A, et al. Bexarotene as add-on to antipsychotic treatment in schizophrenia patients: a pilot open-label trial. Clinical Neuropharmacol 2008; 31:25–33

    CAS  Google Scholar 

  38. Wang HX, Wahlin A, Basun H, et al. Vitamin B(12) and folate in relation to the development of Alzheimer’s disease. Neurology 2001; 56:1188–1194

    PubMed  CAS  Google Scholar 

  39. McDowell I. Alzheimer’s disease: insights from epidemiology. Aging (Milan, Italy) 2001; 13:143–162

    CAS  Google Scholar 

  40. Mahan LK, Escott-Stump S (eds) Krause’s food, nutrition, and diet therapy, 10th ed. W.B. Saunders Company, Philadelphia; 2000

    Google Scholar 

  41. McCollum EV. A History of Nutrition. Riverside Press, Houghton Mifflin, Cambridge, MA; 1957

    Google Scholar 

  42. Tanphaichitr V. Thiamin. In: Shils M, Olson JA, Shike M, Ross AC (eds) Modern Nutrition in Health and Disease, 9th ed. Williams & Wilkins, Baltimore; 1999: 381–389

    Google Scholar 

  43. Rodriguez-Martin JL, Qizilbash N, Lopez-Arrieta JM. Thiamine for Alzheimer’s disease. Cochrane database of systematic reviews (Online) 2001:CD001498

    Google Scholar 

  44. Barness LA, Tomarelli RM. Paul Gyorgy (1893–1976). A biographical sketch. J Nutr 1979; 109:19–23

    PubMed  CAS  Google Scholar 

  45. Henderson L, Hulse J. Vitamin B6: Relationship to tryptophan metabolism. Human Vitamin B6 Requirements: proceedings of a workshop. National Academy of Sciences, Washington, DC; 1978:21–36

    Google Scholar 

  46. Roman GC. Nutritional disorders of the nervous system. In: Shils ME (ed) Modern Nutrition in Health and Disease, 10th ed. Lippincott Williams & Wilkins, Baltimore; 2006:1363–1380

    Google Scholar 

  47. Sauberlich HE. Vitamin B-6 (pyridoxine). In: Sauberlich HE (ed) Laboratory Tests for the Assessment of Nutritional Status, 2nd ed. CRC Press, Boca Raton; 1999

    Google Scholar 

  48. Clayton PT. B(6)-responsive disorders: A model of vitamin dependency. J Inherit Metab Dis 2006; 29:317–326

    PubMed  CAS  Google Scholar 

  49. Rimland B, Callaway E, Dreyfus P. The effect of high doses of vitamin B6 on autistic children: a double-blind crossover study. Am J Psychiatry 1978; 135:472–475

    PubMed  CAS  Google Scholar 

  50. Lelord G, Muh JP, Barthelemy C, et al. Effects of pyridoxine and magnesium on autistic symptoms – initial observations. J Autism Dev Disord 1981; 11:219–230

    PubMed  CAS  Google Scholar 

  51. Martineau J, Barthelemy C, Lelord G. Long-term effects of combined vitamin B6-magnesium administration in an autistic child. Biol Psychiatry 1986; 21:511–518

    PubMed  CAS  Google Scholar 

  52. Martineau J, Barthelemy C, Garreau B, Lelord G. Vitamin B6, magnesium, and combined B6-Mg: therapeutic effects in childhood autism. Biol Psychiatry 1985; 20:467–478

    PubMed  CAS  Google Scholar 

  53. Agbayewa MO, Bruce VM, Siemens V. Pyridoxine, ascorbic acid and thiamine in Alzheimer and comparison subjects. Can J Psychiatry Revue Canadienne De Psychiatrie 1992; 37:661–662

    CAS  Google Scholar 

  54. Colgan M, Colgan L. Do nutrient supplements and dietary changes affect learning and emotional reactions of children with learning difficulties? A controlled series of 16 cases. Nutrition Health 1984; 3:69–77

    CAS  Google Scholar 

  55. Frye PE, Arnold LE. Persistent amphetamine-induced compulsive rituals: response to pyridoxine(B6). Biol Psychiatry 1981; 16:583–587

    PubMed  CAS  Google Scholar 

  56. Emmanuel NP, Lydiard RB, Reynolds RD, et al. Plasma pyridoxal phosphate in anxiety disorders. Biol Psychiatry 1994; 36:606–608

    PubMed  CAS  Google Scholar 

  57. Wyatt KM, Dimmock PW, Jones PW, et al. Efficacy of vitamin B-6 in the treatment of premenstrual syndrome: systematic review. BMJ 1999; 318:1375–1381

    PubMed  CAS  Google Scholar 

  58. Bucci L. Pyridoxine and schizophrenia. Br J Psychiatry 1973; 122:240

    PubMed  CAS  Google Scholar 

  59. Brooks SC, D’Angelo L, Chalmeta A, et al. An unusual schizophrenic illness responsive to pyridoxine HCl (B6) subsequent to phenothiazine and butyrophenone toxicities. Biol Psychiatry 1983; 18:1321–1328

    PubMed  CAS  Google Scholar 

  60. DeVeaugh-Geiss J, Manion L. High-dose pyridoxine in tardive dyskinesia. J Clin Psychiatry 1978; 39:573–575

    PubMed  CAS  Google Scholar 

  61. Tkacz C. A preventive measure for tardive dyskinesia [letter]. J Int Acad Preventive Med 1984; 8:5

    Google Scholar 

  62. Devaux A. Dyskinesies tardives: role de la pyridoxine dans la prevention. Semin Hop Paris 1987; 63:1476–1480

    Google Scholar 

  63. Sandyk R, Pardeshi, R. Pyridoxine improves drug-induced parkinsonism and psychosis in a schizophrenic patient. Int J Neurosci 1990; 52(3–4):225–232

    PubMed  CAS  Google Scholar 

  64. Bauernfeid JC, Miller ON. Vitamin B6: nutritional and pharmaceutical usage, stability, bioavailability, antagonists, and safety. Human Vitamin B6 Requirements: proceedings of a workshop. National Academy of Sciences, Washington, DC; 1978: 78–110

    Google Scholar 

  65. US Department of Agriculture Agricultural Research Service. USDA Nutrient Database for Standard Reference, Release 16. Nutrient Data Laboratory Home Page Available at: http://www.nal.usda.gov/fnic/cgi-bin/nut_search.pl; 2003

  66. Pfeiffer CC. Mental and Elemental Nutrients. Keats Publishing, Inc., New Canaan, CT; 1975

    Google Scholar 

  67. Marks J. A Guide to the Vitamins: Their Role in Health and Disease. MRP Medical and Technical Publishing Co. Ltd, London; 1979

    Google Scholar 

  68. Braestrup C, Nielsen M. Anxiety. Lancet 1982; 2:1030–1034

    PubMed  CAS  Google Scholar 

  69. Morani AS, Bodhankar SL. Neuroprotective effect of pyridoxine hydrochloride in models of mononeuropathy in rats. Pharmacology on-line 2007; 2:147–157

    Google Scholar 

  70. Dakshinamurti K, Sharma SK, Geiger JD. Neuroprotective actions of pyridoxine. Biochim Biophys Acta 2003; 1647:225–229

    PubMed  CAS  Google Scholar 

  71. Freeman JM, Finkelstein JD, Mudd SH. Folate-responsive homocystinuria and “schizophrenia”. A defect in methylation due to deficient 5,10-methylenetetrahydrofolate reductase activity. N Engl J Med 1975; 292:491–496

    PubMed  CAS  Google Scholar 

  72. Petrie WM, Ban TA, Ananth JV. The use of nicotinic acid and pyridoxine in the treatment of schizophrenia. Int Pharmacopsychiatry 1981; 16:245–250

    PubMed  CAS  Google Scholar 

  73. Lerner V, Liberman M. Movement disorders and psychotic symptoms treated with pyridoxine: a case report [letter]. J Clin Psychiatry 1998; 59:623–624

    Google Scholar 

  74. Ananth JV, Ban TA, Lehmann HE. Potentiation of therapeutic effects of nicotinic acid by pyridoxine in chronic schizophrenics. Can Psychiatr Assoc J 1973; 18:377–383

    PubMed  CAS  Google Scholar 

  75. Ban TA, Lehmann HE, Deutsch M. Negative findings with megavitamins in schizophrenic patients: preliminary report. Communications In Psychopharmacology 1977; 1:119–122

    Google Scholar 

  76. Lerner V, Miodownik C, Kaptsan A, et al. Vitamin B6 as add-on treatment in chronic schizophrenic and schizoaffective patients: a double-blind, placebo-controlled study. J Clin Psychiatry 2002; 63:54–58

    PubMed  CAS  Google Scholar 

  77. Lerner V, Bergman J, Statsenko N, Miodownik C. Vitamin b(6) treatment in acute neuroleptic-induced akathisia: a randomized, double-blind, placebo-controlled study. J Clin Psychiatry 2004; 65:1550–1554

    PubMed  CAS  Google Scholar 

  78. Miodownik C, Lerner V, Statsenko N, et al. Vitamin B6 versus mianserin and placebo in acute neuroleptic-induced akathisia: a randomized, double-blind, controlled study. Clin Neuropharmacol 2006; 29:68–72

    PubMed  CAS  Google Scholar 

  79. Wei IL, Huang YH, Wang GS. Vitamin B6 deficiency decreases the glucose utilization in cognitive brain structures of rats. J Nutr Biochem 1999; 10:525–531

    PubMed  CAS  Google Scholar 

  80. Guilarte TR. Vitamin B6 and cognitive development: recent research findings from human and animal studies. Nutr Rev 1993; 51:193–198

    PubMed  CAS  Google Scholar 

  81. Mulder C, Scheltens P, Barkhof F, et al. Low vitamin B6 levels are associated with white matter lesions in Alzheimer’s disease. J Am Geriatr Soc 2005; 53:1073–1074

    PubMed  Google Scholar 

  82. Malouf R, Grimley Evans J. The effect of vitamin B6 on cognition. Cochrane Database Syst Rev 2003:CD004393

    Google Scholar 

  83. Selhub J, Bagley LC, Miller J, Rosenberg IH. B vitamins, homocysteine, and neurocognitive function in the elderly. Am J Clin Nutr 2000; 71:614S–620S

    PubMed  CAS  Google Scholar 

  84. Riggs KM, Spiro A 3rd, Tucker K, Rush D. Relations of vitamin B-12, vitamin B-6, folate, and homocysteine to cognitive performance in the Normative Aging Study. Am J Clin Nutr 1996; 63:306–314

    PubMed  CAS  Google Scholar 

  85. Sandyk R. L-tryptophan in neuropsychiatric disorders: a review. Int J Neurosci 1992; 67:127–144

    PubMed  CAS  Google Scholar 

  86. Burke RE. Tardive dyskinesia: current clinical issues. Neurology 1984; 34:1348–1353

    PubMed  CAS  Google Scholar 

  87. Cummings JL, Wirshing WC. Recognition and differential diagnosis of tardive dyskinesia. Int J Psychiatry Med 1989; 19:133–144

    PubMed  CAS  Google Scholar 

  88. Klawans H. Recognition and diagnosis of tardive dyskinesia. J Clin Psychiatry 1985; 46:3–7

    PubMed  CAS  Google Scholar 

  89. Fernandez HH, Friedman JH. Classification and treatment of tardive syndromes. Neurologist 2003; 9:16–27

    PubMed  Google Scholar 

  90. Sachdev PS. The current status of tardive dyskinesia. Aust NZ J Psychiatry 2000; 34:355–369

    CAS  Google Scholar 

  91. Tarsy D. History and definition of tardive dyskinesia. Clin Neuropharmacol 1983; 6:91–99

    PubMed  CAS  Google Scholar 

  92. Stacy M, Jankovic J. Tardive tremor. Mov Disord 1992; 7:53–57

    PubMed  CAS  Google Scholar 

  93. Chouinard G. New nomenclature for drug-induced movement disorders including tardive dyskinesia. J Clin Psychiatry 2004; 65(Suppl 9):9–15

    PubMed  Google Scholar 

  94. Storey E, Lloyd J. Tardive tremor. Mov Dis 1997; 12:808–810

    CAS  Google Scholar 

  95. Kane JM. Tardive Dyskinesia. In: Jeste DV, Wyatt RJ (eds) Neuropsychiatric Movement Disorders. American Psychiatric Press, Washington, DC; 1984: 68–95

    Google Scholar 

  96. Jeste DV, Caliguiri MP. Tardive dyskinesia. Schizophr Bull 1993; 19:303–315

    PubMed  CAS  Google Scholar 

  97. Kane JM, Woerner M, Lieberman J. Tardive dyskinesia. Prevalence, incidence and risk factor. J Clin Psychopharmacol 1988; 8:52–56

    Google Scholar 

  98. Barnes TR, McPhillips MA. Novel antipsychotics, extrapyramidal side effects and tardive dyskinesia. Int Clin Psychopharmacol 1998; 13(Suppl 3):S49–S57

    PubMed  Google Scholar 

  99. Caroff SN, Mann SC, Campbell EC, Sullivan KA. Movement disorders associated with atypical antipsychotic drugs. J Clin Psychiatry 2002; 63(Suppl 4):12–19

    PubMed  CAS  Google Scholar 

  100. Glazer WM. Expected incidence of tardive dyskinesia associated with atypical antipsychotics. J Clin Psychiatry 2000; 61(Suppl 4):21–26

    PubMed  CAS  Google Scholar 

  101. Silberbauer C. Risperidone-induced tardive dyskinesia. Pharmacopsychiatry 1998; 31:68–69

    PubMed  CAS  Google Scholar 

  102. Ananth J, Kenan J. Tardive dyskinesia associated with olanzapine monotherapy. J Clin Psychiatry 1999; 60:870

    PubMed  CAS  Google Scholar 

  103. Ghelber D, Belmaker RH. Tardive dyskinesia with quetiapine. Am J Psychiatry 1999; 156:796–797

    PubMed  CAS  Google Scholar 

  104. Herran A, Vazquez-Barquero JL. Tardive dyskinesia associated with olanzapine. Ann Intern Med 1999; 131:72

    PubMed  CAS  Google Scholar 

  105. Molho ES, Factor SA. Possible tardive dystonia resulting from clozapine therapy. Mov Disord 1999; 14:873–874

    PubMed  CAS  Google Scholar 

  106. Bassitt DP, de Souza Lobo Garcia L. Risperidone-induced tardive dyskinesia. Pharmacopsychiatry 2000; 33:155–156

    PubMed  CAS  Google Scholar 

  107. Bella VL, Piccoli F. Olanzapine-induced tardive dyskinesia. Br J Psychiatry 2003; 182:81–82

    PubMed  CAS  Google Scholar 

  108. Ananth J, Burgoyne KS, Niz D, Smith M. Tardive dyskinesia in 2 patients treated with ziprasidone. J Psychiatry Neurosci 2004; 29:467–469

    PubMed  Google Scholar 

  109. Keck ME, Muller MB, Binder EB, et al. Ziprasidone-related tardive dyskinesia. Am J Psychiatry 2004; 161:175–176

    PubMed  Google Scholar 

  110. Ertugrul A, Demir B. Clozapine-induced tardive dyskinesia: a case report. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29:633–635

    Google Scholar 

  111. Soares KV, McGrath JJ. The treatment of tardive dyskinesia–a systematic review and meta-analysis. Schizophr Res 1999; 39:1–16

    PubMed  CAS  Google Scholar 

  112. Dakshinamurti K, Paulose CS, Viswanathan M, et al. Neurobiology of pyridoxine. Ann NY Acad Sci 1990; 585:128–144

    PubMed  CAS  Google Scholar 

  113. Schaeffer MC, Cochary EF, Sadowski JA. Subtle abnormalities of gait detected early in vitamin B6 deficiency in aged and weanling rats with hind leg gait analysis. J Am Coll Nutr 1990; 9:120–127

    PubMed  CAS  Google Scholar 

  114. Paulson GW. Use of pyridoxine in chorea. [letter]. Am J Psychiatry 1971; 127:1091

    PubMed  CAS  Google Scholar 

  115. Lerner V, Kaptsan A, Miodownik C, Kotler M. Vitamin B6 in treatment of tardive dyskinesia: a preliminary case series study. Clin Neuropharmacol 1999; 22:241–243

    PubMed  CAS  Google Scholar 

  116. Miodownik C, Witztum E, Lerner V. Lithium-induced tremor treated with vitamin B6: a preliminary case series. Int J Psychiatry Med 2002; 32:103–108

    PubMed  Google Scholar 

  117. Lerner V, Miodownik C, Kaptsan A, et al. Vitamin B6 in the treatment of tardive dyskinesia: a double-blind, placebo-controlled, crossover study. Am J Psychiatry 2001; 158:1511–1514

    PubMed  CAS  Google Scholar 

  118. Lerner V, Bergman J, Statsenko N, Miodownik C. Vitamin B6 treatment in acute neuroleptic-induced akathisia: a randomized, double-blind, placebo-controlled study. J Clin Psychiatry 2004; 65:1550–1554

    PubMed  CAS  Google Scholar 

  119. Lerner V, Miodownik C, Kaptsan A, et al. Vitamin B6 treatment for tardive dyskinesia: A randomized double-blind, placebo-controlled, crossover study. J Clin Psychiatry 2007; 68: 11:1648–1654

    Google Scholar 

  120. Barnes TR. A rating scale for drug-induced akathisia. Br J Psychiatry 1989; 154:672–676

    PubMed  CAS  Google Scholar 

  121. Burton K. The treatment of tremor. Med J Australia 1987; 147:503–506

    PubMed  CAS  Google Scholar 

  122. Kane J, Rifkin A, Quitkin F, Klein DF. Extrapyramidal side effects with lithium treatment. Am J Psychiatry 1978; 135:851–853

    PubMed  CAS  Google Scholar 

  123. Tyrer P, Alexander MS, Regan A, Lee I. An extrapyramidal syndrome after lithium therapy. Br J Psychiatry 1980; 136:191–194

    PubMed  CAS  Google Scholar 

  124. Tyrer P, Lee I, Trotter C. Physiological characteristics of tremor after chronic lithium therapy. Br J Psychiatry 1981; 139:59–61

    PubMed  CAS  Google Scholar 

  125. Kamen B. Folate and antifolate pharmacology. Seminars Oncol 1997; 24:S18–30–S18–39

    CAS  Google Scholar 

  126. Fenech M, Aitken C, Rinaldi J. Folate, vitamin B12, homocysteine status and DNA damage in young Australian adults. Carcinogenesis 1998; 19:1163–1171

    PubMed  CAS  Google Scholar 

  127. Bottiglieri T. Folate, vitamin B12, and neuropsychiatric disorders. Nutr Rev 1996; 54:382–390

    PubMed  CAS  Google Scholar 

  128. Bottiglieri T, Hyland K, Laundy M, et al. Folate deficiency, biopterin and monoamine metabolism in depression. Psychol Med 1992; 22:871–876

    PubMed  CAS  Google Scholar 

  129. Hutto BR. Folate and cobalamin in psychiatric illness. Compr Psychiatry 1997; 38:305–314

    PubMed  CAS  Google Scholar 

  130. Lowering blood homocysteine with folic acid based supplements: meta-analysis of randomised trials. Homocysteine Lowering Trialists’ Collaboration. BMJ 1998; 316:894–898

    Google Scholar 

  131. Brouwer IA, van Dusseldorp M, Duran M, et al. Low-dose folic acid supplementation does not influence plasma methionine concentrations in young non-pregnant women. Br J Nutr 1999; 82:85–89

    PubMed  CAS  Google Scholar 

  132. Hoffbrand AV, Weir DG. The history of folic acid. Br J Haematol 2001; 113:579–589

    PubMed  CAS  Google Scholar 

  133. Mitchell HK, Snell EE, Williams RJ. The concentration of “folic acid”. J Am Chem Soc 1941; 63:2284

    CAS  Google Scholar 

  134. Dietrich M, Brown CJ, Block G. The effect of folate fortification of cereal-grain products on blood folate status, dietary folate intake, and dietary folate sources among adult non-supplement users in the United States. J Am Coll Nutr 2005; 24:266–274

    PubMed  CAS  Google Scholar 

  135. Suitor CW, Bailey LB. Dietary folate equivalents: interpretation and application. J Am Diet Association 2000; 100:88–94

    CAS  Google Scholar 

  136. Coppen A, Bolander-Gouaille C. Treatment of depression: time to consider folic acid and vitamin B12. J Psychopharmacology (Oxford, England) 2005; 19:59–65

    CAS  Google Scholar 

  137. Taylor MJ, Carney SM, Goodwin GM, Geddes JR. Folate for depressive disorders: systematic review and meta-analysis of randomized controlled trials. J Psychopharmacology (Oxford, England) 2004; 18:251–256

    CAS  Google Scholar 

  138. Gilbody S, Lewis S, Lightfoot T. Methylenetetrahydrofolate reductase (MTHFR) genetic polymorphisms and psychiatric disorders: a HuGE review. Am J Epidemiol 2007; 165:1–13

    PubMed  Google Scholar 

  139. Gilbody S, Lightfoot T, Sheldon T. Is low folate a risk factor for depression? A meta-analysis and exploration of heterogeneity. J Epidemiol Community Health 2007; 61:631–637

    PubMed  Google Scholar 

  140. Reynolds EH. Folic acid, ageing, depression, and dementia. BMJ 2002; 324:1512–1515

    PubMed  CAS  Google Scholar 

  141. Durga J, van Boxtel MP, Schouten EG, et al. Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. Lancet 2007; 369:208–216

    PubMed  CAS  Google Scholar 

  142. Tettamanti M, Garri MT, Nobili A, et al. Low folate and the risk of cognitive and functional deficits in the very old: the Monzino 80-plus study. J Am Coll Nutr 2006; 25:502–508

    PubMed  CAS  Google Scholar 

  143. Schneider JA, Tangney CC, Morris MC. Folic acid and cognition in older persons. Exp Opin Drug Safety 2006; 5:511–522

    CAS  Google Scholar 

  144. Zhang X, Chen S, Li L, et al. Folic acid protects motor neurons against the increased homocysteine, inflammation and apoptosis in SOD1 G93A transgenic mice. Neuropharmacology 2008; 54:1112–1119

    PubMed  CAS  Google Scholar 

  145. Quadri P, Fragiacomo C, Pezzati R, et al. Homocysteine, folate, and vitamin B-12 in mild cognitive impairment, Alzheimer disease, and vascular dementia. Am J Clin Nutr 2004; 80:114–122

    PubMed  CAS  Google Scholar 

  146. Berk M, Sanders KM, Pasco JA, et al. Vitamin D deficiency may play a role in depression. Med Hypotheses 2007; 69:1316–1319

    PubMed  CAS  Google Scholar 

  147. Dogan M, Ozdemir O, Sal EA, et al. Psychotic disorder and extrapyramidal symptoms associated with vitamin B12 and folate deficiency. J Tropical Pediatrics 2009; 55:205–207

    Google Scholar 

  148. Stuerenburg HJ, Mueller-Thomsen T, Methner A. Vitamin B 12 plasma concentrations in Alzheimer disease. Neuro Endocrinol Lett 2004; 25:176–177

    PubMed  CAS  Google Scholar 

  149. Green R, Miller J. Vitamin B12. In: Zempleni J, Rucker RB, McCormick DB, Suttie JW (eds) Handbook of Vitamins. CRC Press, Boca Raton; 2007: 413–488

    Google Scholar 

  150. Doscherholmen A, McMahon J, Ripley D. Vitamin B12 absorption from eggs. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine. New York, NY 1975; 149:987–990

    Google Scholar 

  151. Akaike A, Tamura Y, Sato Y, Yokota T. Protective effects of a vitamin B12 analog, methylcobalamin, against glutamate cytotoxicity in cultured cortical neurons. Eur J Pharmacol 1993; 241:1–6

    PubMed  CAS  Google Scholar 

  152. Garrison RJ, Somer E. The Nutrition Desk Reference. Keats Publishing, Inc., New Canaan, CT; 1998

    Google Scholar 

  153. Lerner V, Kanevsky M, Dwolatzky T, et al. Vitamin B12 and folate serum levels in newly admitted psychiatric patients. Clin Nutr (Edinburgh, Scotland) 2006; 25:60–67

    CAS  Google Scholar 

  154. Calvaresi E, Bryan J. B vitamins, cognition, and aging: a review. J Gerontology 2001; 56:P327–P339

    Google Scholar 

  155. Kim J-S, Sohn YH, Shin H-W. Vitamin B12 and homocysteine in relation to the cognitive dysfunction in Alzheimer’s and Parkinson’s disease. Alzheimer’s and Dementia 2006; 2(Suppl 1):254–255

    Google Scholar 

  156. Nilsson K, Gustafson L, Hultberg B. Improvement of cognitive functions after cobalamin/folate supplementation in elderly patients with dementia and elevated plasma homocysteine. Int Geriatr Psychiatry 2001; 16:609–614

    CAS  Google Scholar 

  157. Cooper JR. The role of ascorbic acid in the oxidation of tryptophan to 5-hydroxytryptophan. Ann NY Acad Sci 1961; 92:208–211

    PubMed  CAS  Google Scholar 

  158. Waugh WA, King CG. Isolation and identification of vitamin C. J Biol Chem 1932; 97:325–331

    CAS  Google Scholar 

  159. Szent-Gyorgyi A. Studies on Biological Oxidation and Some of Its Catalysts. Szeged; 1937

    Google Scholar 

  160. Stone I. The Healing Factor: Vitamin C against Disease. Grosset & Dunlap; 1972

    Google Scholar 

  161. Carr AC, Frei B. Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. Am J Clin Nutr 1999; 69:1086–1107

    PubMed  CAS  Google Scholar 

  162. Johnston CS, Steinberg FM, Rucker RB. Ascorbic Acid. In: Zempleni J, Rucker RB, McCormick DB, Suttie JW (eds) Handbook of Vitamins. CRC Press, Boca Raton, FL; 2007:489–520

    Google Scholar 

  163. Yokoyama T, Date C, Kokubo Y, et al. Serum vitamin C concentration was inversely associated with subsequent 20-year incidence of stroke in a Japanese rural community. The Shibata study. Stroke; J Cerebral Circulation 2000; 31:2287–2294

    CAS  Google Scholar 

  164. Myint PK, Luben RN, Welch AA, et al. Plasma vitamin C concentrations predict risk of incident stroke over 10 y in 20 649 participants of the European Prospective Investigation into Cancer Norfolk prospective population study. Am J Clin Nutr 2008; 87:64–69

    PubMed  CAS  Google Scholar 

  165. Santos LF, Freitas RL, Xavier SM, et al. Neuroprotective actions of vitamin C related to decreased lipid peroxidation and increased catalase activity in adult rats after pilocarpine-induced seizures. Pharmacol Biochem Behavior 2008; 89:1–5

    CAS  Google Scholar 

  166. Horwitt MK. Ascorbic acid requirements of individuals in a large institution. Proc Soc Exp Biol Med 1942; 49:248–250

    CAS  Google Scholar 

  167. Rebec GV, Centore JM, White LK, Alloway KD. Ascorbic acid and the behavioral response to haloperidol: implications for the action of antipsychotic drugs. Science 1985; 227:438–440

    PubMed  CAS  Google Scholar 

  168. Singh RB, Ghosh S, Niaz MA, et al. Dietary intake, plasma levels of antioxidant vitamins, and oxidative stress in relation to coronary artery disease in elderly subjects. Am J Cardiol 1995; 76:1233–1238

    PubMed  CAS  Google Scholar 

  169. Suboticanec K. Vitamin C status in schizophrenia. Bibliotheca nutritio et dieta 1986:173–181

    Google Scholar 

  170. Suboticanec K, Folnegovic-Smalc V, Korbar M, et al. Vitamin C status in chronic schizophrenia. Biol Psychiatry 1990; 28:959–966

    PubMed  CAS  Google Scholar 

  171. Milner G. Ascorbic acid in chronic psychiatric patients: a controlled trial. Br J Psychiatry 1963; 109:294–299

    Google Scholar 

  172. Beauclair L, Vinogradov S, Riney SJ, et al. An adjunctive role for ascorbic acid in the treatment of schizophrenia? J Clin Psychopharmacol 1987; 7:282–283

    PubMed  CAS  Google Scholar 

  173. Sandyk R, Kanofsky JD. Vitamin C in the treatment of schizophrenia. Int J Neurosci 1993; 68:67–71

    PubMed  CAS  Google Scholar 

  174. Smythies JR. The role of ascorbate in brain: therapeutic implications. J Royal Soc Med 1996; 89:241

    CAS  Google Scholar 

  175. Dakhale GN, Khanzode SD, Khanzode SS, Saoji A. Supplementation of vitamin C with atypical antipsychotics reduces oxidative stress and improves the outcome of schizophrenia. Psychopharmacology (Berl) 2005; 182:494–498

    CAS  Google Scholar 

  176. Arvindakshan M, Ghate M, Ranjekar PK, et al. Supplementation with a combination of omega-3 fatty acids and antioxidants (vitamins E and C) improves the outcome of schizophrenia. Schizophr Res 2003; 62:195–204

    PubMed  Google Scholar 

  177. Riviere S, Birlouez-Aragon I, Nourhashemi F, Vellas B. Low plasma vitamin C in Alzheimer patients despite an adequate diet. Int J Geriatr Psychiatry 1998; 13:749–754

    PubMed  CAS  Google Scholar 

  178. Gray SL, Hanlon JT, Landerman LR, et al. Is antioxidant use protective of cognitive function in the community-dwelling elderly? Am J Geriatr Pharmacother 2003; 1:3–10

    PubMed  CAS  Google Scholar 

  179. Zandi PP, Anthony JC, Khachaturian AS, et al. Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: the Cache County Study. Arch Neurol 2004; 61:82–88

    PubMed  Google Scholar 

  180. Engelhart MJ, Geerlings MI, Ruitenberg A, et al. Dietary intake of antioxidants and risk of Alzheimer disease. JAMA 2002; 287:3223–3229

    PubMed  CAS  Google Scholar 

  181. Naylor GJ. Vanadium and manic depressive psychosis. Nutr Health 1984; 3:79–85

    PubMed  CAS  Google Scholar 

  182. Brody S. High-dose ascorbic acid increases intercourse frequency and improves mood: a randomized controlled clinical trial. Biol Psychiatry 2002; 52:371–374

    PubMed  CAS  Google Scholar 

  183. Dolske MC, Spollen J, McKay S, et al. A preliminary trial of ascorbic acid as supplemental therapy for autism. Prog Neuropsychopharmacol Biol Psychiatry 1993; 17:765–774

    PubMed  CAS  Google Scholar 

  184. Joshi K, Lad S, Kale M, et al. Supplementation with flax oil and vitamin C improves the outcome of Attention Deficit Hyperactivity Disorder (ADHD). Prostaglandins Leukot Essent Fatty Acids 2006; 74:17–21

    PubMed  CAS  Google Scholar 

  185. Thiel R, Fowkes SW. Can cognitive deterioration associated with Down syndrome be reduced? Med Hypotheses 2005; 64:524–532

    PubMed  CAS  Google Scholar 

  186. Rimland B. Has vitamin C been used in the treatment of autism? Autism Research Rev Int 1998; 12:3

    Google Scholar 

  187. Replogle WH, Eicke FJ. Megavitamin therapy in the reduction of anxiety and depression among alcoholics. J Orthomolec Med 1988; 4:221–224

    Google Scholar 

  188. Norman AW, Henry HL. Vitamin D. In: Zempleni J, Rucker RB, McCormick DB, Suttie JW (eds) Handbook of Vitamins. CRC Press, Boca Raton, FL; 2007

    Google Scholar 

  189. Brewer LD, Thibault V, Chen KC, et al. Vitamin D hormone confers neuroprotection in parallel with downregulation of L-type calcium channel expression in hippocampal neurons. J Neurosci 2001; 21:98–108

    PubMed  CAS  Google Scholar 

  190. Kalueff AV, Eremin KO, Tuohimaa P. Mechanisms of neuroprotective action of vitamin D(3). Biochemistry 2004; 69:738–741

    PubMed  CAS  Google Scholar 

  191. Mackay-Sim A, Feron F, Eyles D, et al. Schizophrenia, vitamin D, and brain development. Int Rev Neurobiol 2004; 59:351–380

    PubMed  CAS  Google Scholar 

  192. McGrath J. Hypothesis: is low prenatal vitamin D a risk-modifying factor for schizophrenia? Schizophr Res 1999; 40:173–177

    PubMed  CAS  Google Scholar 

  193. Schneider B, Weber B, Frensch A, et al. Vitamin D in schizophrenia, major depression and alcoholism. J Neural Transm 2000; 107:839–842

    PubMed  CAS  Google Scholar 

  194. Yan J, Feng J, Craddock N, et al. Vitamin D receptor variants in 192 patients with schizophrenia and other psychiatric diseases. Neuroscience Lett 2005; 380:37–41

    CAS  Google Scholar 

  195. Anonymus. The Ebers Papyrus. Academy of Scientific Research, Cairo; 1987

    Google Scholar 

  196. Scott BO. The history of ultraviolet therapy. In: Licht S (ed) Therapeutic Electricity and Ultraviolet Radiation Physical Medicine Library. Elizabeth Licht, CT; 1967:196

    Google Scholar 

  197. Mozolowski W, Sniadecki J. On the cure of rickets. Nature 1939; 143:121

    Google Scholar 

  198. Mohr SB. A brief history of vitamin d and cancer prevention. Ann Epidemiol 2009; 19:79–83

    PubMed  Google Scholar 

  199. Carpenter KJ, Zhao L. Forgotten mysteries in the early history of vitamin D. J Nutr 1999; 129:923–927

    PubMed  CAS  Google Scholar 

  200. National Institutes of Health. Office of Dietary Supplements. Available at: http://ods.od.nih.gov/factsheets/vitamind.asp; 2008

  201. McGrath J, Saari K, Hakko H, et al. Vitamin D supplementation during the first year of life and risk of schizophrenia: a Finnish birth cohort study. Schizophr Res 2004; 67:237–245

    PubMed  Google Scholar 

  202. Becker A, Eyles DW, McGrath JJ, Grecksch G. Transient prenatal vitamin D deficiency is associated with subtle alterations in learning and memory functions in adult rats. Behav Brain Res 2005; 161:306–312

    PubMed  CAS  Google Scholar 

  203. Garcion E, Wion-Barbot N, Montero-Menei CN, et al. New clues about vitamin D functions in the nervous system. Trends in endocrinology and metabolism: TEM 2002; 13:100–105

    PubMed  CAS  Google Scholar 

  204. Kiraly SJ, Kiraly MA, Hawe RD, Makhani N. Vitamin D as a neuroactive substance: review. Sci World J 2006; 6:125–139

    CAS  Google Scholar 

  205. Llewellyn DJ, Langa K, Lang I. Serum 25-Hydroxyvitamin D Concentration and Cognitive Impairment. J Geriatric Psychiatry Neurol 2009

    Google Scholar 

  206. Wilkins CH, Sheline YI, Roe CM, et al. Vitamin D deficiency is associated with low mood and worse cognitive performance in older adults. Am J Geriatr Psychiatry 2006; 14:1032–1040

    PubMed  Google Scholar 

  207. Armstrong DJ, Meenagh GK, Bickle I, et al. Vitamin D deficiency is associated with anxiety and depression in fibromyalgia. Clin Rheumatol 2007; 26:551–554

    PubMed  CAS  Google Scholar 

  208. Grant WB. Does vitamin D reduce the risk of dementia? J Alzheimers Dis 2009; 17:151–159

    PubMed  CAS  Google Scholar 

  209. Traber MG, Atkinson J. Vitamin E, antioxidant and nothing more. Free Radical Biol Med 2007; 43:4–15

    CAS  Google Scholar 

  210. Wang X, Quinn PJ. Vitamin E and its function in membranes. Progress Lipid Res 1999; 38:309–336

    CAS  Google Scholar 

  211. Brigelius-Flohe R, Davies KJ. Is vitamin E an antioxidant, a regulator of signal transduction and gene expression, or a ‘junk’ food? Comments on the two accompanying papers: “Molecular mechanism of alpha-tocopherol action” by A. Azzi and “Vitamin E, antioxidant and nothing more” by M. Traber and J. Atkinson. Free Radical Biol Med 2007; 43:2–3

    CAS  Google Scholar 

  212. Atkinson J, Epand RF, Epand RM. Tocopherols and tocotrienols in membranes: a critical review. Free Radical Biol Med 2008; 44:739–764

    CAS  Google Scholar 

  213. Zingg JM, Azzi A. Non-antioxidant activities of vitamin E. Curr Med Chem 2004; 11:1113–1133

    PubMed  CAS  Google Scholar 

  214. Azzi A. Molecular mechanism of alpha-tocopherol action. Free Radical Biol Med 2007; 43:16–21

    CAS  Google Scholar 

  215. Kaput J, Ordovas JM, Ferguson L, et al. The case for strategic international alliances to harness nutritional genomics for public and personal health. Br J Nutr 2005; 94:623–632

    PubMed  CAS  Google Scholar 

  216. D’Souza B, D’Souza V. Oxidative injury and antioxidant vitamins E and C in schizophrenia. Indian J Clin Biochem 2003; 18:87–90

    PubMed  Google Scholar 

  217. Adler LA, Edson R, Lavori P, et al. Long-term treatment effects of vitamin E for tardive dyskinesia. Biol Psychiatry 1998; 43:868–872

    PubMed  CAS  Google Scholar 

  218. Adler LA, Peselow E, Rotrosen J, et al. Vitamin E treatment of tardive dyskinesia. Pm J Psychiatry 1993; 150:1405–1407

    CAS  Google Scholar 

  219. Adler LA, Rotrosen J, Edson R, et al. Vitamin E treatment for tardive dyskinesia. Veterans Affairs Cooperative Study #394 Study Group. Arch Gen Psychiatry 1999; 56:836–841

    PubMed  CAS  Google Scholar 

  220. Barak Y, Swartz M, Shamir E, et al. Vitamin E (alpha-tocopherol) in the treatment of tardive dyskinesia: a statistical meta-analysis. Ann Clin Psychiatry 1998; 10:101–105

    PubMed  CAS  Google Scholar 

  221. Boomershine KH, Shelton PS, Boomershine JE. Vitamin E in the treatment of tardive dyskinesia. Ann Pharmacotherapy 1999; 33:1195–1202

    CAS  Google Scholar 

  222. Dannon PN, Grunhaus L, Iancu I, et al. Vitamin E treatment in tardive dystonia. Clin Neuropharmacol 1997; 20:434–437

    PubMed  CAS  Google Scholar 

  223. Dorevitch A, Kalian M, Shlafman M, Lerner V. Treatment of long-term tardive dyskinesia with vitamin E. Biol Psychiatry 1997; 41:114–116

    PubMed  CAS  Google Scholar 

  224. Egan MF, Hyde TM, Albers GW, et al. Treatment of tardive dyskinesia with vitamin E. Am J Psychiatry 1992; 149:773–777

    PubMed  CAS  Google Scholar 

  225. Gattaz WF. Does vitamin E prevent tardive dyskinesia? Biol Psychiatry 1995; 37:896–897

    PubMed  CAS  Google Scholar 

  226. Lohr JB, Caligiuri MP. A double-blind placebo-controlled study of vitamin E treatment of tardive dyskinesia. J Clin Psychiatry 1996; 57:167–173

    PubMed  CAS  Google Scholar 

  227. Sajjad SH. Vitamin E in the treatment of tardive dyskinesia: a preliminary study over 7 months at different doses. Int Clin Psychopharmacol 1998; 13:147–155

    PubMed  CAS  Google Scholar 

  228. Shriqui CL, Bradwejn J, Annable L, Jones BD. Vitamin E in the treatment of tardive dyskinesia: a double-blind placebo-controlled study. Am J Psychiatry 1992; 149:391–393

    PubMed  CAS  Google Scholar 

  229. Soares KV, McGrath JJ. Vitamin E for neuroleptic-induced tardive dyskinesia. Cochrane database of systematic reviews (Online) 2001:CD000209

    Google Scholar 

  230. Osakada F, Hashino A, Kume T, Katsuki H, Kaneko S, Akaike A. Alpha-tocotrienol provides the most potent neuroprotection among vitamin E analogs on cultured striatal neurons. Neuropharmacology 2004; 47:904–915

    PubMed  CAS  Google Scholar 

  231. Osakada F, Hashino A, Kume T, et al. Neuroprotective effects of alpha-tocopherol on oxidative stress in rat striatal cultures. Eur J Pharmacol 2003; 465:15–22

    PubMed  CAS  Google Scholar 

  232. Roghani M, Behzadi G. Neuroprotective effect of vitamin E on the early model of Parkinson’s disease in rat: behavioral and histochemical evidence. Brain Res 2001; 892:211–217

    PubMed  CAS  Google Scholar 

  233. Post A, Rucker M, Ohl F, et al. Mechanisms underlying the protective potential of alpha-tocopherol (vitamin E) against haloperidol-associated neurotoxicity. Neuropsychopharmacology 2002; 26:397–407

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Lerner MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Miodownik, C., Lerner, V. (2010). The Neuroprotective Efficacy of Vitamins. In: Ritsner, M. (eds) Brain Protection in Schizophrenia, Mood and Cognitive Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8553-5_17

Download citation

Publish with us

Policies and ethics