Skip to main content

Virtual Production of Filaments and Fleeces

  • Chapter
Currents in Industrial Mathematics

Abstract

For many years, the Fraunhofer ITWM has been working to virtualize the production of filaments and fleeces in cooperation with a broad spectrum of industrial clients. This application area, embedded in the field of fluid-structure interactions, offers a multitude of mathematical challenges, since the complexity of the processes renders them unamenable to standard simulation techniques. For numerous key aspects, the Fraunhofer ITWM has developed its own models and tools, so that, today, we can generate simulation-based solutions for our clients’ process design and control problems. Here, new modeling approaches, such as turbulent aerodynamic drag models for filament dynamics and stochastic surrogate models for fleece formation, have opened up interesting subject areas for applied mathematics. The contribution in this chapter is based on the Cosserat theory and offers a coherent overview of the models, algorithms, and software building blocks involved. The current state of development is illustrated by means of industrial applications of the spunbond process and the rotational spinning of glass wool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Publications of the Authors

  1. Arne, W., Marheineke, N., Meister, A., Wegener, R.: Numerical analysis of Cosserat rod and string models for viscous jets in rotational spinning processes. Math. Models Methods Appl. Sci. 20(10), 1941–1965 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arne, W., Marheineke, N., Meister, A., Schiessl, S., Wegener, R.: Finite volume approach for the instationary Cosserat rod model describing the spinning of viscous jets. J. Comp. Phys. 294, 20–37 (2015)

    Article  MathSciNet  Google Scholar 

  3. Arne, W., Marheineke, N., Schnebele, J., Wegener, R.: Fluid-fiber-interactions in rotational spinning process of glass wool manufacturing. J. Math. Ind. 1, 2 (2011)

    Article  MathSciNet  Google Scholar 

  4. Arne, W., Marheineke, N., Wegener, R.: Asymptotic transition of Cosserat rod to string models for curved viscous inertial jets. Math. Models Methods Appl. Sci. 21(10), 1987–2018 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bonilla, L.L., Götz, T., Klar, A., Marheineke, N., Wegener, R.: Hydrodynamic limit for the Fokker–Planck equation describing fiber lay-down models. SIAM J. Appl. Math. 68(3), 648–665 (2007)

    Article  MathSciNet  Google Scholar 

  6. Götz, T., Klar, A., Marheineke, N., Wegener, R.: A stochastic model and associated Fokker–Planck equation for the fiber lay-down process in nonwoven production processes. SIAM J. Appl. Math. 67(6), 1704–1717 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Götz, T., Klar, A., Unterreiter, A., Wegener, R.: Numerical evidence for the non-existence of solutions to the equations describing rotational fiber spinning. Math. Models Methods Appl. Sci. 18(10), 1829–1844 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Grothaus, M., Klar, A., Maringer, J., Stilgenbauer, P., Wegener, R.: Application of a three-dimensional fiber lay-down model to non-woven production processes. J. Math. Ind. 4, 4 (2014)

    Article  MathSciNet  Google Scholar 

  9. Hietel, D., Wegener, R.: Simulation of spinning and laydown processes. Tech. Text. 3, 145–148 (2005)

    Google Scholar 

  10. Hübsch, F., Marheineke, N., Ritter, K., Wegener, R.: Random field sampling for a simplified model of melt-blowing considering turbulent velocity fluctuations. J. Stat. Phys. 150(6), 1115–1137 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Klar, A., Marheineke, N., Wegener, R.: Hierarchy of mathematical models for production processes of technical textiles. Z. Angew. Math. Mech. 89, 941–961 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Klar, A., Maringer, J., Wegener, R.: A 3d model for fiber lay-down in nonwoven production processes. Math. Models Methods Appl. Sci. 22(9), 1250020 (2012)

    Article  MathSciNet  Google Scholar 

  13. Klar, A., Maringer, J., Wegener, R.: A smooth 3d model for fiber lay-down in nonwoven production processes. Kinet. Relat. Models 5(1), 57–112 (2012)

    Article  MathSciNet  Google Scholar 

  14. Lorenz, M., Marheineke, N., Wegener, R.: On simulations of spinning processes with a stationary one-dimensional upper convected Maxwell model. J. Math. Ind. 4, 2 (2014)

    Article  MathSciNet  Google Scholar 

  15. Marheineke, N., Liljo, J., Mohring, J., Schnebele, J., Wegener, R.: Multiphysics and multimethods problem of rotational glass fiber melt-spinning. Int. J. Numer. Anal. Model. B 3(3), 330–344 (2012)

    MATH  MathSciNet  Google Scholar 

  16. Marheineke, N., Wegener, R.: Fiber dynamics in turbulent flows: General modeling framework. SIAM J. Appl. Math. 66(5), 1703–1726 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Marheineke, N., Wegener, R.: Fiber dynamics in turbulent flows: Specific Taylor drag. SIAM J. Appl. Math. 68(1), 1–23 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Marheineke, N., Wegener, R.: Asymptotic model for the dynamics of curved viscous fibers with surface tension. J. Fluid Mech. 622, 345–369 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Marheineke, N., Wegener, R.: Modeling and application of a stochastic drag for fiber dynamics in turbulent flows. Int. J. Multiph. Flow 37, 136–148 (2011)

    Article  Google Scholar 

  20. Panda, S., Marheineke, N., Wegener, R.: Systematic derivation of an asymptotic model for the dynamics of curved viscous fibers. Math. Methods Appl. Sci. 31, 1153–1173 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Tiwari, S., Antonov, S., Hietel, D., Kuhnert, J., Olawsky, F., Wegener, R.: A meshfree method for simulations of interactions between fluids and flexible structures. In: Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential Equations III. Lecture Notes in Computational Science and Engineering, vol. 57, pp. 249–264. Springer, Berlin (2006)

    Chapter  Google Scholar 

Dissertations on This Topic at the Fraunhofer ITWM

  1. Arne, W.: Viskose Jets in rotatorischen Spinnprozessen. Ph.D. thesis, Universität Kassel (2012)

    Google Scholar 

  2. Cibis, T.M.: Homogenisierungsstrategien für Filament–Strömung–Wechselwirkungen. Ph.D. thesis, FAU Erlangen-Nürnberg (2015)

    Google Scholar 

  3. Dhadwal, R.: Fibre spinning: Model analysis. Ph.D. thesis, Technische Universität Kaiserslautern (2005)

    Google Scholar 

  4. Leithäuser, C.: Controllability of shape-dependent operators and constrained shape optimization for polymer distributors. Ph.D. thesis, Technische Universität Kaiserslautern (2013)

    Google Scholar 

  5. Lorenz, M.: On a viscoelastic fibre model—Asymptotics and numerics. Ph.D. thesis, Technische Universität Kaiserslautern (2013)

    Google Scholar 

  6. Marheineke, N.: Turbulent fibers—On the motion of long, flexible fibers in turbulent flows. Ph.D. thesis, Technische Universität Kaiserslautern (2005)

    Google Scholar 

  7. Maringer, J.: Stochastic and deterministic models for fiber lay-down. Ph.D. thesis, Technische Universität Kaiserslautern (2013)

    Google Scholar 

  8. Panda, S.: The dynamics of viscous fibers. Ph.D. thesis, Technische Universität Kaiserslautern (2006)

    Google Scholar 

  9. Repke, S.: Adjoint-based optimization approaches for stationary free surface flows. Ph.D. thesis, Technische Universität Kaiserslautern (2011)

    Google Scholar 

  10. Schröder, S.: Stochastic methods for fiber-droplet collisions in flow processes. Ph.D. thesis, Technische Universität Kaiserslautern (2013)

    Google Scholar 

Further Literature

  1. Antman, S.S.: Nonlinear Problems of Elasticity. Springer, New York (2006)

    Google Scholar 

  2. Audoly, B., Clauvelin, N., Brun, P.T., Bergou, M., Grinspun, E., Wardetzky, M.: A discrete geometric approach for simulating the dynamics of thin viscous threads. J. Comp. Phys. 253, 18–49 (2013)

    Article  MathSciNet  Google Scholar 

  3. Audoly, B., Pomeau, Y.: Elasticity and Geometry. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  4. Barrett, J.W., Knezevic, D.J., Süli, E.: Kinetic Models of Dilute Polymers: Analysis, Approximation and Computation. Nećas Center for Mathematical Modeling, Prague (2009)

    Google Scholar 

  5. Batchelor, G.K.: Slender-body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech. 44(3), 419–440 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bechtel, S.E., Forest, M.G., Holm, D.D., Lin, K.J.: One-dimensional closure models for three-dimensional incompressible viscoelastic free jets: von Karman flow geometry and elliptical cross-section. J. Fluid Mech. 196, 241–262 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bonilla, L.L., Klar, A., Martin, S.: Higher order averaging of linear Fokker–Planck equations with periodic forcing. SIAM J. Appl. Math. 72(4), 1315–1342 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bonilla, L.L., Klar, A., Martin, S.: Higher order averaging of Fokker–Planck equations for nonlinear fiber lay-down processes. SIAM J. Appl. Math. 74(2), 366–391 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chiu-Webster, S., Lister, J.R.: The fall of a viscous thread onto a moving surface: a ‘fluid-mechanical sewing machine’. J. Fluid Mech. 569, 89–111 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cosserat, E., Cosserat, F.: Théorie des corps déformables. Hermann, Paris (1909)

    Google Scholar 

  11. Cox, R.G.: The motion of long slender bodies in a viscous fluid. Part 1. General theory. J. Fluid Mech. 44(4), 791–810 (1970)

    Article  MATH  Google Scholar 

  12. Decent, S.P., King, A.C., Simmons, M.J.H., Parau, E.I., Wallwork, I.M., Gurney, C.J., Uddin, J.: The trajectory and stability of a spiralling liquid jet: Viscous theory. Appl. Math. Model. 33(12), 4283–4302 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Desvilettes, L., Villani, C.: On the trend to global equilibrium for spatially inhomogeneous entropy-dissipating systems: The linear Fokker–Planck equation. Commun. Pure Appl. Math. 54, 1–42 (2001)

    Article  Google Scholar 

  14. Dewynne, J.N., Ockendon, J.R., Wilmott, P.: A systematic derivation of the leading-order equations for extensional flows in slender geometries. J. Fluid Mech. 244, 323–338 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Doulbeault, J., Klar, A., Mouhot, C., Schmeiser, C.: Exponential rate of convergence to equilibrium for a model describing fiber lay-down processes. Appl. Math. Res. Express 2013, 165–175 (2013)

    Google Scholar 

  16. Doulbeault, J., Mouhot, C., Schmeiser, C.: Hypocoercivity for linear kinetic equations conserving mass. arXiv:1005.1495 (2010)

  17. Eggers, J.: Nonlinear dynamics and breakup of free-surface flow. Rev. Mod. Phys. 69, 865–929 (1997)

    Article  MATH  Google Scholar 

  18. Eggers, J., Dupont, T.: Drop formation in a one-dimensional approximation of the Navier–Stokes equation. J. Fluid Mech. 262, 205–221 (2001)

    Article  MathSciNet  Google Scholar 

  19. Elliott, F., Majda, A.J.: A new algorithm with plane waves and wavelets for random velocity fields with many spatial scales. J. Comp. Phys. 117, 146–162 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Entov, V.M., Yarin, A.L.: The dynamics of thin liquid jets in air. J. Fluid Mech. 140, 91–111 (1984)

    Article  MATH  Google Scholar 

  21. Ferziger, J.H., Perić, M.: Computational Methods for Fluid Dynamics, 3rd edn. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  22. Forest, M.G., Wang, Q.: Dynamics of slender viscoelastic free jets. SIAM J. Appl. Math. 54(4), 996–1032 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  23. Forest, M.G., Wang, Q., Bechtel, S.E.: 1d models for thin filaments of liquid crystalline polymers: Coupling of orientation and flow in the stability of simple solutions. Physics D 99(4), 527–554 (2000)

    Article  Google Scholar 

  24. Frisch, U.: Turbulence. The Legacy of A.N. Kolmogorov. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  25. Geyling, F.T., Homsey, G.M.: Extensional instabilities of the glass fiber drawing process. Glass Technol. 21, 95–102 (1980)

    Google Scholar 

  26. Gidaspow, D.: Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions. Academic Press, San Diego (1994)

    MATH  Google Scholar 

  27. Glowinski, R., Pan, T.W., Hesla, T.I., Joseph, D.D., Périaux, J.: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow. J. Comp. Phys. 169, 363–426 (2001)

    Article  MATH  Google Scholar 

  28. Gospodinov, P., Roussinov, V.: Nonlinear instability during the isothermal drawing of optical fibers. Int. J. Multiph. Flow 19, 1153–1158 (1993)

    Article  MATH  Google Scholar 

  29. Grothaus, M., Klar, A.: Ergodicity and rate of convergence for a non-sectorial fiber lay-down process. SIAM J. Math. Anal. 40(3), 968–983 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Grothaus, M., Klar, A., Maringer, J., Stilgenbauer, P.: Geometry, mixing properties and hypocoercivity of a degenerate diffusion arising in technical textile industry. arXiv:1203.4502 (2012)

  31. Grothaus, M., Stilgenbauer, P.: Geometric Langevin equations on submanifolds and applications to the stochastic melt-spinning process of nonwovens and biology. Stoch. Dyn. 13(4), 1350001 (2013)

    Article  MathSciNet  Google Scholar 

  32. Hagen, T.C.: On viscoelastic fluids in elongation. Adv. Math. Res. 1, 187–205 (2002)

    MathSciNet  Google Scholar 

  33. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, Nonstiff Problems, 2nd edn. Springer, Berlin (2009)

    Google Scholar 

  34. Hartmann, S., Meister, A., Schäfer, M., Turek, S. (eds.): Fluid-Structure Interaction—Theory, Numerics and Application. Kassel University Press, Kassel (2009)

    Google Scholar 

  35. Herty, M., Klar, A., Motsch, S., Olawsky, F.: A smooth model for fiber lay-down processes and its diffusion approximations. Kinet. Relat. Models 2(3), 489–502 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  36. Hlod, A., Aarts, A.C.T., van de Ven, A.A.F., Peletier, M.A.: Three flow regimes of viscous jet falling onto a moving surface. IMA J. Appl. Math. 77(2), 196–219 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  37. Hoerner, S.F.: Fluid-Dynamic Drag. Practical Information on Aerodynamic Drag and Hydrodynamic Resistance. (1965) Published by the author. Obtainable from ISVA

    Google Scholar 

  38. Howell, P.D., Siegel, M.: The evolution of a slender non-axisymmetric drop in an extensional flow. J. Fluid Mech. 521, 155–180 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  39. Jung, P., Leyendecker, S., Linn, J., Ortiz, M.: A discrete mechanics approach to Cosserat rod theory—Part I: Static equilibria. Int. J. Numer. Methods Eng. 85, 31–60 (2010)

    Article  MathSciNet  Google Scholar 

  40. Keller, J.B., Rubinow, S.I.: Slender-body theory for slow viscous flow. J. Fluid Mech. 75(4), 705–714 (1976)

    Article  MATH  Google Scholar 

  41. Kirchhoff, G.: Über das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes. J. Reine Angew. Math. 56, 285–316 (1859)

    Article  MATH  MathSciNet  Google Scholar 

  42. Kolb, M., Savov, M., Wübker, A.: (Non-)ergodicity of a degenerate diffusion modeling the fiber lay down process. SIAM J. Math. Anal. 45(1), 1–13 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  43. Kurbanmuradov, O., Sabelfeld, K.: Stochastic spectral and Fourier-wavelet methods for vector Gaussian random fields. Monte Carlo Methods Appl. 12(5–6), 395–445 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  44. Kutoyants, Y.: Statistical Inference for Ergodic Diffusion Processes. Springer, London (2004)

    Book  MATH  Google Scholar 

  45. Lamb, H.: On the uniform motion of a sphere through a viscous fluid. Philos. Mag. 6(21), 113–121 (1911)

    Google Scholar 

  46. Launder, B.E., Spalding, B.I.: Mathematical Models of Turbulence. Academic Press, London (1972)

    MATH  Google Scholar 

  47. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Cambridge University Press, Cambridge (1927)

    MATH  Google Scholar 

  48. Lu, Q.Q.: An approach to modeling particle motion in turbulent flows—I. Homogeneous isotropic turbulence. Atmos. Environ. 29(3), 423–436 (1995)

    Article  Google Scholar 

  49. Maddocks, J.H.: Stability of nonlinearly elastic rods. Arch. Ration. Mech. Anal. 85(4), 311–354 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  50. Maddocks, J.H., Dichmann, D.J.: Conservation laws in the dynamics of rods. J. Elast. 34, 83–96 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  51. Mahadevan, L., Keller, J.B.: Coiling of flexible ropes. Proc. Roy. Soc. Lond. A 452, 1679–1694 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  52. Majda, A.J.: Random shearing direction models for isotropic turbulent diffusion. J. Stat. Phys. 75(5–6), 1153–1165 (1994)

    Article  MATH  Google Scholar 

  53. Malkan, S.R.: An overview of spunbonding and meltblowing technologies. Tappi J. 78(6), 185–190 (1995)

    Google Scholar 

  54. Matovich, M.A., Pearson, J.R.A.: Spinning a molten threadline. Steady-state isothermal viscous flows. Ind. Eng. Chem. Fundam. 8(3), 512–520 (1969)

    Article  Google Scholar 

  55. Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68, 1703–1759 (2005)

    Article  MathSciNet  Google Scholar 

  56. Pearson, J.R.A.: Mechanics of Polymer Processing. Elsevier, New York (1985)

    Google Scholar 

  57. Pearson, J.R.A., Matovich, M.A.: Spinning a molten threadline. Stability. Ind. Eng. Chem. Fundam. 8(3), 605–609 (1969)

    Article  Google Scholar 

  58. Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  59. Pinchuk, L.S., Goldade, V.A., Makarevich, A.V., Kestelman, V.N.: Melt Blowing: Equipment, Technology and Polymer Fibrous Materials. Springer Series in Materials Processing. Springer, Berlin (2002)

    Book  Google Scholar 

  60. Pismen, L.M., Nir, A.: On the motion of suspended particles in stationary homogeneous turbulence. J. Fluid Mech. 84, 193–206 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  61. Renardy, M.: Mathematical analysis of viscoelastic flows. Annu. Rev. Fluid Mech. 21, 21–36 (1989)

    Article  MathSciNet  Google Scholar 

  62. Ribe, N.M.: Coiling of viscous jets. Proc. Roy. Soc. Lond. A 2051, 3223–3239 (2004)

    Article  MathSciNet  Google Scholar 

  63. Ribe, N.M., Habibi, M., Bonn, D.: Stability of liquid rope coiling. Phys. Fluids 18, 084102 (2006)

    Article  MathSciNet  Google Scholar 

  64. Ribe, N.M., Lister, J.R., Chiu-Webster, S.: Stability of a dragged viscous thread: Onset of ‘stitching’ in a fluid-mechanical ‘sewing machine’. Phys. Fluids 18, 124105 (2006)

    Article  Google Scholar 

  65. Rubin, M.B.: Cosserat Theories. Kluwer, Dordrecht (2000)

    MATH  Google Scholar 

  66. Schewe, G.: On the force fluctuations acting on a circular cylinder in cross-flow from subcritical up to transcritical Reynolds numbers. J. Fluid Mech. 133, 265–285 (1983)

    Article  Google Scholar 

  67. Schlichting, H.: Grenzschicht-Theorie. Verlag G. Braun, Karlsruhe (1982)

    MATH  Google Scholar 

  68. Schultz, W.W., Davis, S.H.: One-dimensional liquid fibres. J. Rheol. 26, 331–345 (1982)

    Article  MATH  Google Scholar 

  69. Shah, F.T., Pearson, J.R.A.: On the stability of non-isothermal fibre spinning. Ind. Eng. Chem. Fundam. 11, 145–149 (1972)

    Article  Google Scholar 

  70. Simo, J.C., Vu-Quoc, L.: Three-dimensional finite strain rod model. Part I: Computational aspects. Comput. Methods Appl. Mech. Eng. 58, 79–116 (1986)

    Article  MATH  Google Scholar 

  71. Simo, J.C., Vu-Quoc, L.: On the dynamics in space of rods undergoing large motions—a geometrically exact approach. Comput. Methods Appl. Mech. Eng. 66, 125–161 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  72. Stokes, Y.M., Tuck, E.O.: The role of inertia in extensional fall of viscous drop. J. Fluid Mech. 498, 205–225 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  73. Sumer, B.M., Fredsoe, J.: Hydrodynamics Around Cylindrical Structures. World Scientific, New Jersey (2006)

    MATH  Google Scholar 

  74. Taylor, G.I.: Analysis of the swimming of long and narrow animals. Proc. Roy. Soc. Lond. A 214, 158–183 (1952)

    Article  MATH  Google Scholar 

  75. Tiwari, S., Kuhnert, J.: Finite pointset method based on the projection method for simulations of the incompressible Navier–Stokes equations. In: Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol. 26, pp. 373–387. Springer, Berlin (2003)

    Chapter  Google Scholar 

  76. Tomotika, S., Aoi, T.: An expansion formula for the drag on a circular cylinder moving through a viscous fluid at small Reynolds number. Q. J. Mech. Appl. Math. 4, 401–406 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  77. Tomotika, S., Aoi, T., Yosinobu, H.: On the forces acting on a circular cylinder set obliquely in a uniform stream at low values of Reynolds number. Proc. Roy. Soc. Lond. A 219(1137), 233–244 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  78. VDI-Gesellschaft: VDI-Wärmeatlas, 10th edn. Springer, Berlin (2006)

    Google Scholar 

  79. Wallwork, I.M., Decent, S.P., King, A.C., Schulkes, R.M.S.M.: The trajectory and stability of a spiralling liquid jet. Part 1. Inviscid theory. J. Fluid Mech. 459, 43–65 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  80. Whitman, A.B., DeSilva, C.N.: An exact solution in a nonlinear theory of rods. J. Elast. 4, 265–280 (1974)

    Article  MATH  Google Scholar 

  81. Yarin, A.L.: Free Liquid Jets and Films: Hydrodynamics and Rheology. Longman, New York (1993)

    MATH  Google Scholar 

  82. Yarin, A.L., Gospodinov, P., Gottlieb, O., Graham, M.D.: Newtonian glass fiber drawing: Chaotic variation of the cross-sectional radius. Phys. Fluids 11(11), 3201–3208 (1999)

    Article  MATH  Google Scholar 

  83. Zdravkovich, M.M.: Flow Around Circular Cylinders. Fundamentals, vol. 1. Oxford University Press, New York (1997)

    MATH  Google Scholar 

  84. Ziabicki, A., Kawai, H.: High Speed Melt Spinning. Wiley, New York (1985)

    Google Scholar 

Download references

Acknowledgement

The simulation results presented in this chapter are based on the work of the members of the Fraunhofer ITWM Transport Processes Department mentioned in Sect. 3. We are particularly indebted to them. Important works of the authors have been supported by the German Research Society (WE 2003/3-1, WE 2003/4-1, and MA 4526/2-1), as well as by the Federal Ministry for Education and Research (Consortium project ProFil, 05M10WEA, 05M10AMB, Consortium project OPAL, 05M13WEA, and 05M13AMD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raimund Wegener .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wegener, R., Marheineke, N., Hietel, D. (2015). Virtual Production of Filaments and Fleeces. In: Neunzert, H., Prätzel-Wolters, D. (eds) Currents in Industrial Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48258-2_6

Download citation

Publish with us

Policies and ethics