Skip to main content

Waste-Based Zeolites and their Advanced Composites for Wastewater and Environmental Remediation Applications

  • Chapter
  • First Online:
Advanced Composites

Abstract

The drinking water crisis has shaped into a major threat for the human race nowadays due to heavy and unwanted wastage of water for different purposes. To overcome such issues, the treatment of wastewater through several techniques for removing unwanted pollutants has proved to be beneficial. Adsorption being an efficient technique utilizes a physical and chemical process to remove harmful metal ions, anions, and chemical pollutants from the wastewater. Various synthetic and natural adsorbents were utilized by researchers for studying the adsorption process. Zeolite nowadays has been explored as a very eminent material for carrying out adsorption studies for wastewater treatment. This chapter discusses the preparation techniques of zeolite by both conventional and advanced techniques. The utilization of various industrial waste sources for preparing zeolite has been mainly focused on in this chapter. Moreover, the synthesis of various advanced zeolite-based composites is described along with their specific utilization toward environmental remediation applications. This chapter also points out the recent advancements and future scope of advanced zeolite composite materials which can prove to be more efficient in remediation-based applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Misaelides, Application of natural zeolites in environmental remediation: A short review. Microporous Mesoporous Mater. 144, 15–18 (2011). https://doi.org/10.1016/j.micromeso.2011.03.024

  2. N.S. Samanta, P.P. Das, P. Mondal, U. Bora, M.K. Purkait, Physico-chemical and adsorption study of hydrothermally treated zeolite A and FAU-type zeolite X prepared from LD (Linz–Donawitz) slag of the steel industry. Int. J. Environ. Anal. Chem. 00, 1–23 (2022). https://doi.org/10.1080/03067319.2022.2079082

    Article  CAS  Google Scholar 

  3. N. Shekhar, P.P. Das, P. Mondal, M. Changmai, M.K. Purkait, Journal of the Indian Chemical Society Critical review on the synthesis and advancement of industrial and biomass waste-based zeolites and their applications in gas adsorption and biomedical studies. J. Indian Chem. Soc. 99, 100761 (2022). https://doi.org/10.1016/j.jics.2022.100761

    Article  CAS  Google Scholar 

  4. N.S. Samanta, S. Banerjee, P. Mondal, Anweshan, U. Bora, M.K. Purkait, Preparation and characterization of zeolite from waste Linz-Donawitz (LD) process slag of steel industry for removal of Fe3+ from drinking water. Adv. Powder Technol. 32, 3372–3387 (2021). https://doi.org/10.1016/j.apt.2021.07.023

  5. S. Dhara, N.S. Samanta, R. Uppaluri, M.K. Purkait, High-purity alkaline lignin extraction from Saccharum ravannae and optimization of lignin recovery through response surface methodology. Int. J. Biol. Macromol. 234, 123594 (2023). https://doi.org/10.1016/j.ijbiomac.2023.123594

  6. S.K. Dentel, A.I. Jamrah, D.L. Sparks, orption and cosorption of 1,2,4-trichlorobenzene and tannic acid by organo-clays, Water Research, 32, 3689–3697 (1998). https://doi.org/10.1016/S0043-1354(98)00148-1

  7. P.P. Das, Anweshan, M.K. Purkait, Treatment of cold rolling mill (CRM) effluent of steel industry. Sep. Purif. Technol. 274, 119083 (2021). https://doi.org/10.1016/j.seppur.2021.119083

  8. G.M. Evans, J.C. Furlong, Environmental biotechnology: theory and application, 2nd edn. Environ. Biotechnol. Theory. Appl. (John Wiley & Sons, Ltd, 2010), pp.1–11. https://doi.org/10.1002/9780470975152

  9. B. Prasad, K. Sangita, B.K. Tewary, Reducing the hardness of mine water using transformed fly ash. Mine Water Environ. 30, 61–66 (2011). https://doi.org/10.1007/s10230-010-0130-4

    Article  CAS  Google Scholar 

  10. Report of the New England Association of Chemistry Teachers, J. Chem. Educ. 31, 328 (1954). https://doi.org/10.1021/ed031p328

  11. G.T. Kerr, G.T. Kerr, Chemistry of Crystalline Aluminosilicates. I. Factors Affecting the Formation of Zeolite A , J. Phys. Chem. 70, 1047–1050 (1966). https://doi.org/10.1021/j100876a015

  12. X. Ren, R. Qu, S. Liu, H. Zhao, W. Wu, H. Song, C. Zheng, X. Wu, X. Gao, Synthesis of zeolites from coal fly ash for removal of harmful gaseous pollutants: a review, aerosol air. Qual. Res. 20, 1127–1144 (2020). https://doi.org/10.4209/aaqr.2019.12.0651

    Article  CAS  Google Scholar 

  13. X. Querol, J.C. Umana, A. Alastuey, C. Bertrana, A. Lopez-Soler, F. Plana, Physicochemical characterization of Spanish fly ashes, Energy Sources, 21(10), 883–898 (1999). https://doi.org/10.1080/00908319950014263

  14. J.D.C. Izidoro, D.A. Fungaro, F. S. D. Santos, S. Wang, Characteristics of Brazilian coal fly ashes and their synthesized zeolites, Fuel Processing Technology 97, 38–44 (2012). https://doi.org/10.1016/j.fuproc.2012.01.009

    Article  Google Scholar 

  15. M. Inada, Y. Eguchi, N. Enomoto, J. Hojo, Synthesis of zeolite from coal fly ashes with different silica-alumina composition. Fuel 84, 299–304 (2005). https://doi.org/10.1016/j.fuel.2004.08.012

    Article  CAS  Google Scholar 

  16. G.G. Hollman, G. Steenbruggen, M. Janssen-Jurkovičová, Two-step process for the synthesis of zeolites from coal fly ash. Fuel 78, 1225–1230 (1999). https://doi.org/10.1016/S0016-2361(99)00030-7

    Article  CAS  Google Scholar 

  17. R. Moriyama, S. Takeda, M. Onozaki, Y. Katayama, Large-scale synthesis of artificial zeolite from coal fly ash with a small charge of alkaline solution 84, 1455–1461 (2005). https://doi.org/10.1016/j.fuel.2005.02.026

    Article  CAS  Google Scholar 

  18. Y. Wang, T. Du, H. Jia, Z. Qiu, Y. Song, Synthesis, characterization and CO2 adsorption of NaA, NaX and NaZSM-5 from rice husk ash. Solid State Sci. 86, 24–33 (2018). https://doi.org/10.1016/j.solidstatesciences.2018.10.003

  19. N. Czuma, P. Baran, W. Franus, P. Zabierowski, K. Zarębska, Synthesis of zeolites from fly ash with the use of modified two-step hydrothermal method and preliminary SO2 sorption tests. Adsorpt. Sci. Technol. 37, 61–76 (2018). https://doi.org/10.1177/0263617418810607

    Article  CAS  Google Scholar 

  20. N. Shigemoto, K. Shirakami, S. Hirano, H. Hayashi, Preparation and characterization of zeolites from coal ash. Japan: N. p. 5, 484–492 (1992). https://www.osti.gov/etdeweb/biblio/7045960

  21. V. Berkgaut, A. Singer, High capacity cation exchanger by hydrothermal zeolitization of coal fly ash 10, 369–378 (1996)

    CAS  Google Scholar 

  22. S. Rayalu, S.U. Meshram, M.Z. Hasan, Highly crystalline faujasitic zeolites from flyash. J. Hazard. Mater. 77, 123–131 (2000). https://doi.org/10.1016/S0304-3894(00)00212-0

  23. L. Yang, X. Qian, P. Yuan, H. Bai, T. Miki, F. Men, H. Li, T. Nagasaka, Green synthesis of zeolite 4A using fly ash fused with synergism of NaOH and Na2CO3. J. Clean. Prod. 212, 250–260 (2019). https://doi.org/10.1016/j.jclepro.2018.11.259

  24. S. Sivalingam, S. Sen, Optimization of synthesis parameters and characterization of coal fly ash derived microporous zeolite X. Appl. Surf. Sci. 455, 903–910 (2018). https://doi.org/10.1016/j.apsusc.2018.05.222

    Article  CAS  Google Scholar 

  25. N.F. Gao, S. Kume, K. Watari, Zeolite–carbon composites prepared from industrial wastes: (II) evaluation of the adaptability as environmental materials. Mater. Sci. Eng. A. 404, 274–280 (2005). https://doi.org/10.1016/j.msea.2005.05.090

  26. X. Querol, A. Lo, J.M. Andre, R. Juan, P. Ferrer, C.R. Ruiz, A fast method for recycling fly ash: microwave-assisted zeolite synthesis 31, 2527–2533 (1997)

    CAS  Google Scholar 

  27. H. Tanaka, A. Fujii, S. Fujimoto, Y. Tanaka, Microwave-assisted two-step process for the synthesis of a single-phase Na-A zeolite from coal fly ash. Adv. Powder Technol. 19, 83–94 (2008). https://doi.org/10.1163/156855208X291783

    Article  CAS  Google Scholar 

  28. M. Inada, H. Tsujimoto, Y. Eguchi, N. Enomoto, J. Hojo, Microwave-assisted zeolite synthesis from coal fly ash in hydrothermal process 84, 1482–1486 (2005). https://doi.org/10.1016/j.fuel.2005.02.002

    Article  CAS  Google Scholar 

  29. S.S. Bukhari, J. Behin, H. Kazemian, S. Rohani, Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: a review. Fuel 140, 250–266 (2015). https://doi.org/10.1016/j.fuel.2014.09.077

  30. R. Anuwattana, P. Khummongkol, Conventional hydrothermal synthesis of Na-A zeolite from cupola slag and aluminum sludge. J. Hazard. Mater. 166, 227–232 (2009). https://doi.org/10.1016/j.jhazmat.2008.11.020

  31. A.D. Sontakke, M.K. Purkait, Fabrication of ultrasound-mediated tunable graphene oxide nanoscrolls, Ultrason. Sonochem. 63, 104976 (2020). https://doi.org/10.1016/j.ultsonch.2020.104976

  32. N.M. Musyoka, L.F. Petrik, E. Hums, Ultrasonic assisted synthesis of zeolite A from coal fly ash using mine waters ( acid mine drainage and circumneutral mine water ) as a substitute for ultra pure water. IMWA 423–428 (2011)

    Google Scholar 

  33. S. S, R. Bukhari, Microwave and Ultrasound Assisted Zeolitization of Coal Fly Ash. The University of Western Ontario, 2016

    Google Scholar 

  34. O. Dere, O. Sabriye, A novel synthesis method of zeolite X from coal fly ash: alkaline fusion followed by ultrasonic-assisted synthesis method. Waste Biomass Valoriz. 10, 143–154 (2019). https://doi.org/10.1007/s12649-017-0050-7

    Article  CAS  Google Scholar 

  35. D. Vaičiukyniene, A. Kantautas, V. Vaitkevičius, L. Jakevičius, Ž Rudžionis, M. Paškevičius, Effects of ultrasonic treatment on zeolite NaA synthesized from by-product silica. Ultrason. Sonochem. 27, 515–521 (2015). https://doi.org/10.1016/j.ultsonch.2015.06.001

    Article  CAS  Google Scholar 

  36. M. Park, C. Lyeal, W. Taik, M. Chul, J. Choi, N. Ho, Molten-salt method for the synthesis of zeolitic materials I. Zeolite Form. Alkaline Molten-Salt Syst. 37, 81–89 (2000)

    CAS  Google Scholar 

  37. T. Fukasawa, A. Horigome, A.D. Karisma, N. Maeda, A.-N. Huang, K. Fukui, Utilization of incineration fly ash from biomass power plants for zeolite synthesis from coal fly ash by microwave hydrothermal treatment. Adv. Powder Technol. 29, 450–456 (2018). https://doi.org/10.1016/j.apt.2017.10.022

  38. M.H. Nada, S.C. Larsen, E.G. Gillan, Mechanochemically-assisted solvent-free and template-free synthesis of zeolites ZSM-5 and mordenite. Nanoscale Adv. 1, 3918–3928 (2019). https://doi.org/10.1039/c9na00399a

    Article  CAS  Google Scholar 

  39. S. Narayanan, P. Tamizhdurai, V.L. Mangesh, C. Ragupathi, P. Santhana krishnan, A. Ramesh, Recent advances in the synthesis and applications of mordenite zeolite—review. RSC Adv. 11, 250–267 (2021). https://doi.org/10.1039/D0RA09434J

  40. A.J. Schwanke, R. Balzer, S. Pergher, Microporous and mesoporous materials from natural and inexpensive sources microporous and mesoporous materials from natural and inexpensive sources, in Handbook of Ecomaterials, ed. by L. Martínez, O. Kharissova, B. Kharisov (Springer, Cham, 2017), pp. 1–22. https://doi.org/10.1007/978-3-319-48281-1_43-1

    Article  Google Scholar 

  41. L. Bandura, R. Panek, M. Rotko, W. Franus, Synthetic zeolites from fly ash for an effective trapping of BTX in gas stream. Microporous Mesoporous Mater. 223, 1–9 (2016). https://doi.org/10.1016/j.micromeso.2015.10.032

    Article  CAS  Google Scholar 

  42. N. Murayama, H. Yamamoto, J. Shibata, Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction. Int. J. Miner. Process. 64, 1–17 (2002). https://doi.org/10.1016/S0301-7516(01)00046-1

    Article  CAS  Google Scholar 

  43. X.S. Zhao, G.Q. Lu, H.Y. Zhu, Effects of ageing and seeding on the formation of zeolite Y from coal fly ash. J. Porous Mater. 4, 245–251 (1997). https://doi.org/10.1023/A:1009669104923

    Article  CAS  Google Scholar 

  44. Y. Kuwahara, T. Ohmichi, T. Kamegawa, K. Mori, H. Yamashita, A novel conversion process for waste slag: synthesis of a hydrotalcite-like compound and zeolite from blast furnace slag and evaluation of adsorption capacities. J. Mater. Chem. 20, 5052–5062 (2010). https://doi.org/10.1039/c0jm00518e

    Article  CAS  Google Scholar 

  45. M.W. Munthali, M.A. Elsheikh, E. Johan, N. Matsue, Proton adsorption selectivity of zeolites in aqueous media: effect of Si/Al ratio of zeolites, Molecules 19, 20468–20481 (2014). https://doi.org/10.3390/molecules191220468

    Article  Google Scholar 

  46. E. Cataldo, L. Salvi, F. Paoli, M. Fucile, G. Masciandaro, D. Manzi, C.M. Masini, G.B. Mattii, Application of zeolites in agriculture and other potential uses: a review. Agronomy 11, 1–14 (2021). https://doi.org/10.3390/agronomy11081547

    Article  CAS  Google Scholar 

  47. P. Kabwadza-corner, M.W. Munthali, E. Johan, N. Matsue, Comparative study of copper adsorptivity and selectivity toward Zeolites, American Journal of Analytical Chemistry, 5, 395–405 (2014). https://doi.org/10.4236/ajac.2014.57048

    Article  Google Scholar 

  48. H. Methods, P. Tayraukham, N. Jantarit, N. Osakoo, Synthesis of pure phase NaP2 zeolite from the gel of NaY by conventional and microwave-assisted (2020)

    Google Scholar 

  49. P.Y. He, Y.J. Zhang, H. Chen, Z.C. Han, L.C. Liu, One-step synthesis of rod-shaped phillipsite using circulating fluidized bed fly ash and its application for removal heavy metal. Ferroelectrics 547, 51–58 (2019). https://doi.org/10.1080/00150193.2019.1592483

    Article  CAS  Google Scholar 

  50. M.K. Naskar, D. Kundu, M. Chatterjee, Coral-like hydroxy sodalite particles from rice husk ash as silica source. Mater. Lett. 65, 3408–3410 (2011). https://doi.org/10.1016/j.matlet.2011.07.084

    Article  CAS  Google Scholar 

  51. T. Hui, H.J. Sun, T.J. Peng, Preparation and characterization of cordierite-based ceramic foams with permeable property from asbestos tailings and coal fly ash. J. Alloys Compd. 885, 160967 (2021). https://doi.org/10.1016/j.jallcom.2021.160967

    Article  CAS  Google Scholar 

  52. N. Moreno, X. Querol, F. Plana, J.M. Andres, M. Janssen, H. Nugteren, Pure zeolite synthesis from silica extracted from coal fly ashes. J. Chem. Technol. Biotechnol. 77, 274–279 (2002). https://doi.org/10.1002/jctb.578

    Article  CAS  Google Scholar 

  53. C. Belviso, State-of-the-art applications of fly ash from coal and biomass: a focus on zeolite synthesis processes and issues. Prog. Energy Combust. Sci. 65, 109–135 (2018). https://doi.org/10.1016/j.pecs.2017.10.004

    Article  Google Scholar 

  54. A.M. Cardoso, A. Paprocki, L.S. Ferret, C.M.N. Azevedo, M. Pires, Synthesis of zeolite Na-P1 under mild conditions using Brazilian coal fly ash and its application in wastewater treatment. Fuel 139, 59–67 (2015). https://doi.org/10.1016/j.fuel.2014.08.016

    Article  CAS  Google Scholar 

  55. K. Sangita, B. Prasad, G. Udayabhanu, Synthesis of zeolite from waste fly ash by using different methods. Asian J. Chem. 28, 1435–1439 (2016). https://doi.org/10.14233/ajchem.2016.19682

  56. Deepti, A. Sinha, P. Biswas, S. Sarkar, U. Bora, M.K. Purkait, Utilization of LD slag from steel industry for the preparation of MF membrane. J. Environ. Manage. 259, 110060 (2020). https://doi.org/10.1016/j.jenvman.2019.110060

  57. W. Liu, T. Aldahri, S. Ren, C.C. Xu, S. Rohani, B. Liang, C. Li, Solvent-free synthesis of hydroxycancrinite zeolite microspheres during the carbonation process of blast furnace slag. J. Alloys Compd. 847, 156456 (2020). https://doi.org/10.1016/j.jallcom.2020.156456

    Article  CAS  Google Scholar 

  58. A. Kotoulas, D. Agathou, I.E. Triantaphyllidou, T.I. Tatoulis, C.S. Akratos, A.G. Tekerlekopoulou, D. V. Vayenas, Zeolite as a potential medium for ammonium recovery and second cheese whey treatment. Water (Switzerland) 11 (2019). https://doi.org/10.3390/w11010136

  59. T. Murakami, Y. Sugano, T. Narushima, Y. Iguchi, C. Ouchi, Recovery of calcium from BF slag and synthesis of zeolite a using its residue. ISIJ Int. 51, 901–905 (2011). https://doi.org/10.2355/isijinternational.51.901

    Article  CAS  Google Scholar 

  60. Y. Li, T. Peng, W. Man, L. Ju, F. Zheng, M. Zhang, M. Guo, Hydrothermal synthesis of mixtures of NaA zeolite and sodalite from Ti-bearing electric arc furnace slag. RSC Adv. 6, 8358–8366 (2016). https://doi.org/10.1039/c5ra26881h

    Article  CAS  Google Scholar 

  61. T. Wajima, Synthesis of zeolite from blast furnace slag using alkali fusion with addition of EDTA. Adv. Mater. Res. 1044–1045, 124–127 (2014). https://doi.org/10.4028/www.scientific.net/AMR.1044-1045.124

    Article  CAS  Google Scholar 

  62. D.J. Londeree, Silica-Titania composites for water treatment. Univ. Florida. 53, 62 (2002)

    Google Scholar 

  63. T. Wajima, O. Kiguchi, K. Sugawara, T. Sugawara, Synthesis of zeolite-A using silica from rice husk ash. J. Chem. Eng. Japan. 42, 61–66 (2009). https://doi.org/10.1252/jcej.08we139

    Article  Google Scholar 

  64. S. Mukherjee, S. Barman, G. Halder, Fluoride uptake by zeolite NaA synthesized from rice husk: isotherm, kinetics, thermodynamics and cost estimation. Groundw. Sustain. Dev. 7, 39–47 (2018). https://doi.org/10.1016/j.gsd.2018.03.003

    Article  Google Scholar 

  65. R.M. Mohamed, Rice husk ash as a renewable source for the production of zeolite NaY and its characterization 48–53 (2015). https://doi.org/10.1016/j.arabjc.2012.12.013

  66. P. Worathanakul, P. Kongkachuichay, SUZ-4 zeolite synthesis derived from rice husk ash (2016)

    Google Scholar 

  67. R. Husk, J. Wong, E. Ng, F. Adam, Microscopic investigation of nanocrystalline zeolite l synthesized from rice husk ash 808, 805–808 (2012). https://doi.org/10.1111/j.1551-2916.2011.04995.x

    Article  CAS  Google Scholar 

  68. B. Jha, D.N. Singh, ChemInform abstract: a review on synthesis, characterization and industrial applications of flyash zeolites (2012). https://doi.org/10.1002/chin.201225227

    Article  Google Scholar 

  69. C. Zhang, S. Li, S. Bao, Sustainable synthesis of ZSM-5 zeolite from rice husk ash without addition of solvents. Waste Biomass Valoriz. 10, 2825–2835 (2019). https://doi.org/10.1007/s12649-018-0356-0

    Article  CAS  Google Scholar 

  70. V. Davina, P.S. Utama, E. Saputra, S. Bahri, Zeolite Na-P1 derived from palm oil mill fly ash: synthesis and characterization. J. Phys. Conf. Ser. 1351, 12103 (2019). https://doi.org/10.1088/1742-6596/1351/1/012103

    Article  CAS  Google Scholar 

  71. A. Kongnoo, S. Tontisirin, P. Worathanakul, C. Phalakornkule, Surface characteristics and CO2 adsorption capacities of acid-activated zeolite 13X prepared from palm oil mill fly ash. Fuel 193, 385–394 (2017). https://doi.org/10.1016/j.fuel.2016.12.087

    Article  CAS  Google Scholar 

  72. P.S. Aman, E. Utama, Saputra, high purity silica from palm oil mill fly ash for catalyst ZSM-5 zeolite synthesis. Appl. Sci. Technol. 1, 267–272 (2017)

    Google Scholar 

  73. S.A. Khairuddin, S. Nurdin, H.A.M. Sukri, C.C.Wooi, Characterization and optimization of palm industry ash waste (PIAW) derived zeolites using central composite cesign (CCD). Journal 1, 27–33 (2018)

    Google Scholar 

  74. W. Tangchirapat, T. Saeting, C. Jaturapitakkul, K. Kiattikomol, A. Siripanichgorn, Use of waste ash from palm oil industry in concrete 27, 81–88 (2007). https://doi.org/10.1016/j.wasman.2005.12.014

    Article  CAS  Google Scholar 

  75. C.W. Purnomo, C. Salim, H. Hinode, Synthesis of pure Na–X and Na–A zeolite from bagasse fly ash. Microporous Mesoporous Mater. 162, 6–13 (2012). https://doi.org/10.1016/j.micromeso.2012.06.007

  76. P. Thuadaij, P. Mukda, Synthesis and characterization of zeolite derived from Buriram sugarcane bagasse ash and Narathiwat kaolinite 8, 320–326 (2016)

    Google Scholar 

  77. J.A. Oliveira, F.A. Cunha, L.A.M. Ruotolo, Synthesis of zeolite from sugarcane bagasse fly ash and its application as a low-cost adsorbent to remove heavy metals. J. Clean. Prod. 229, 956–963 (2019). https://doi.org/10.1016/j.jclepro.2019.05.069

  78. M.P. Moisés, C.T.P. da Silva, J.G. Meneguin, E.M. Girotto, E. Radovanovic, Synthesis of zeolite NaA from sugarcane bagasse ash. Mater. Lett. 108, 243–246 (2013). https://doi.org/10.1016/j.matlet.2013.06.086

  79. F. Batool, A. Masood, M. Ali, Characterization of sugarcane bagasse ash as pozzolan and influence on concrete properties. Arab. J. Sci. Eng. 45, 3891–3900 (2020). https://doi.org/10.1007/s13369-019-04301-y

    Article  CAS  Google Scholar 

  80. H. Faghihian, M. Moayed, A. Firooz, M. Iravani, Comptes rendus chimie evaluation of a new magnetic zeolite composite for removal of Cs+ and Sr2+ from aqueous solutions: kinetic, equilibrium and thermodynamic studies. Comptes Rendus Chim. 17, 108–117 (2014). https://doi.org/10.1016/j.crci.2013.02.006

    Article  CAS  Google Scholar 

  81. W. Chunfeng, L.I. Jiansheng, W. Lianjun, S.U.N. Xiuyun, Adsorption of dye from wastewater by zeolites synthesized from fly ash: kinetic and equilibrium studies *, Chinese. J Chem. Eng. 17, 513–521 (2009). https://doi.org/10.1016/S1004-9541(08)60239-6

    Article  Google Scholar 

  82. X. Ji, M. Zhang, Y. Wang, Y. Song, Y. Ke, Y. Wang, Immobilization of ammonium and phosphate in aqueous solution by zeolites synthesized from fly ashes with different compositions. J. Ind. Eng. Chem. 22, 1–7 (2015). https://doi.org/10.1016/j.jiec.2014.06.017

  83. J. Fernández-Catalá, M. Sánchez-Rubio, M. Navlani-García, Á. Berenguer-Murcia, D. Cazorla-Amorós, Synthesis of TiO2/nanozeolite composites for highly efficient photocatalytic oxidation of propene in the gas phase. ACS Omega 5, 31323–31331 (2020). https://doi.org/10.1021/acsomega.0c04793

    Article  CAS  Google Scholar 

  84. V.K. Gupta, S. Agarwal, T.A. Saleh, Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J. Hazard. Mater. 185, 17–23 (2011). https://doi.org/10.1016/j.jhazmat.2010.08.053

    Article  CAS  Google Scholar 

  85. L. Zhu, J. Ji, S. Wang, C. Xu, K. Yang, M. Xu, Removal of Pb(II) from wastewater using Al2O3-NaA zeolite composite hollow fiber membranes synthesized from solid waste coal fly ash. Chemosphere 206, 278–284 (2018). https://doi.org/10.1016/j.chemosphere.2018.05.001

  86. R. Panek, M. Wdowin, W. Franus, D. Czarna, L.A. Stevens, H. Deng, J. Liu, C. Sun, H. Liu, C.E. Snape, Fly ash-derived MCM-41 as a low-cost silica support for polyethyleneimine in post-combustion CO2 capture. J. CO2 Util. 22, 81–90 (2017). https://doi.org/10.1016/j.jcou.2017.09.015

  87. T. Li, Y. Ren, D. Wu, W. Zhang, M. Shi, C. Ji, L. Lv, M. Hua, W. Zhang, A novel water-stable two-dimensional zeolitic imidazolate frameworks thin-film composite membrane for enhancements in water permeability and nanofiltration performance. Chemosphere 261, 127717 (2020). https://doi.org/10.1016/j.chemosphere.2020.127717

  88. R.V. Kumar, A.K. Basumatary, A.K. Ghoshal, G. Pugazhenthi, RSC Advances Performance assessment of an analcime-C zeolite—ceramic composite membrane by removal of Cr ( VI ) from aqueous solution, 6246–6254 (2015). https://doi.org/10.1039/c4ra14527e

  89. M. Wdowin, M. Macherzyński, R. Panek, J. Górecki, W. Franus, Investigation of the sorption of mercury vapour from exhaust gas by an Ag-X zeolite. Clay Miner. 50, 31–40 (2015). https://doi.org/10.1180/claymin.2015.050.1.04

  90. D. Geopolymers, A. Contain, N. Zeolites, Reexamination of existing results. Society, 3075–3085 (2005)

    Google Scholar 

  91. M. Minelli, E. Papa, V. Medri, F. Miccio, P. Benito, F. Doghieri, E. Landi, Characterization of novel geopolymer—zeolite composites as solid adsorbents for CO2 capture. Chem. Eng. J. 341, 505–515 (2018). https://doi.org/10.1016/j.cej.2018.02.050

    Article  CAS  Google Scholar 

  92. H. Katsuki, S. Komarneni, Journal of solid state chemistry synthesis of Na-A and/or Na-X zeolite/porous carbon composites from carbonized rice husk. J. Solid State Chem. 182, 1749–1753 (2009). https://doi.org/10.1016/j.jssc.2009.04.022

    Article  CAS  Google Scholar 

  93. H. Katsuki, S. Furuta, T. Watari, S. Komarneni, ZSM-5 zeolite/porous carbon composite: conventional- and microwave-hydrothermal synthesis from carbonized rice husk. Microporous Mesoporous Mater. 86, 145–151 (2005). https://doi.org/10.1016/j.micromeso.2005.07.010

    Article  CAS  Google Scholar 

  94. V.K. Jha, M. Nagae, M. Matsuda, M. Miyake, Zeolite formation from coal fly ash and heavy metal ion removal characteristics of thus-obtained Zeolite X in multi-metal systems. J. Environ. Manage. 90, 2507–2514 (2009). https://doi.org/10.1016/j.jenvman.2009.01.009

    Article  CAS  Google Scholar 

  95. M. Miyake, Y. Kimura, T. Ohashi, M. Matsuda, Preparation of activated carbon—zeolite composite materials from coal fly ash 112, 170–177 (2008). https://doi.org/10.1016/j.micromeso.2007.09.028

  96. R. Soni, D.P. Shukla, Chemosphere synthesis of fly ash based zeolite-reduced graphene oxide composite and its evaluation as an adsorbent for arsenic removal. Chemosphere 219, 504–509 (2019). https://doi.org/10.1016/j.chemosphere.2018.11.203

    Article  CAS  Google Scholar 

  97. W.A. Khanday, F. Marrakchi, M. Asif, B.H. Hameed, Journal of the Taiwan institute of chemical engineers mesoporous zeolite—activated carbon composite from oil palm ash as an effective adsorbent for methylene blue. J. Taiwan Inst. Chem. Eng. 70, 32–41 (2017). https://doi.org/10.1016/j.jtice.2016.10.029

    Article  CAS  Google Scholar 

  98. L. Lin, Y. Lin, C. Li, D. Wu, H. Kong, Synthesis of zeolite/hydrous metal oxide composites from coal fly ash as efficient adsorbents for removal of methylene blue from water. Int. J. Miner. Process. 148, 32–40 (2016). https://doi.org/10.1016/j.minpro.2016.01.010

  99. Z. Tauanov, P.E. Tsakiridis, S.V. Mikhalovsky, V.J. Inglezakis, Synthetic coal fly ash-derived zeolites doped with silver nanoparticles for mercury (II) removal from water. J. Environ. Manage. 224, 164–171 (2018). https://doi.org/10.1016/j.jenvman.2018.07.049

    Article  CAS  Google Scholar 

  100. Z. Shui, L. Yao, X. Pu, L. Yang, W. Jiang, X. Jiang, Synthesis of a novel zeolite—activated carbon composite using lithium—silicon-powder waste for ammonia-nitrogen and methylene blue removal (2020). https://doi.org/10.1021/acs.iecr.0c00617

  101. K.P. Id, N. Setthaya, M. Thala, P. Chindaprasirt, geopolymer/zeolite composite materials with adsorptive and photocatalytic properties for dye removal, 1–20 (2020). https://doi.org/10.1371/journal.pone.0241603

  102. T.A. Vereshchagina, S.N. Vereshchagin, N.N. Shishkina, O.A. Mikhaylova, L.A. Solovyov, A.G. Anshits, Microporous and mesoporous materials one-step fabrication of hollow aluminosilicate microspheres with a composite zeolite/glass crystalline shell. Microporous Mesoporous Mater. 169, 207–211 (2013). https://doi.org/10.1016/j.micromeso.2012.11.010

    Article  CAS  Google Scholar 

  103. C. Liu, R. Zhang, S. Wei, J. Wang, Y. Liu, M. Li, R. Liu, Selective removal of H2S from biogas using a regenerable hybrid TiO2/zeolite composite. Fuel 157, 183–190 (2015). https://doi.org/10.1016/j.fuel.2015.05.003

  104. B. Baheri, R. Ghahremani, M. Peydayesh, M. Shahverdi, T. Mohammadi, matrix membrane adsorbents: preparation. Res. Chem. Intermed. 42, 5309–5328 (2016). https://doi.org/10.1007/s11164-015-2362-1

    Article  CAS  Google Scholar 

  105. S.K. Brown, M.R. Sim, M.J. Abramson, C.N. Gray, Concentrations of volatile organic compounds in indoor air—a review. Indoor Air 4, 123–134 (1994). https://doi.org/10.1111/j.1600-0668.1994.t01-2-00007.x

    Article  CAS  Google Scholar 

  106. N.A. Ibrahim, M.D.H. Wirzal, N.A.H. Nordin, N.S. Abd Halim, Development of Polyvinylidene fluoride (PVDF)-ZIF-8 Membrane for wastewater treatment. IOP Conf. Ser. Earth Environ. Sci. 140, 12021 (2018). https://doi.org/10.1088/1755-1315/140/1/012021

  107. M. Rostami, M. Mofarahi, R. Karimzadeh, D. Abedi, Preparation and characterization of activated carbon-zeolite composite for gas adsorption separation of CO2/N2 system. J. Chem. Eng. Data. 61, 2638–2646 (2016). https://doi.org/10.1021/acs.jced.6b00374

    Article  CAS  Google Scholar 

  108. U. Habiba, A.M. Afifi, A. Salleh, B.C. Ang, Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+. J. Hazard. Mater. 322, 182–194 (2017). https://doi.org/10.1016/j.jhazmat.2016.06.028

  109. Y. Yurekli, Removal of heavy metals in wastewater by using zeolite nano-particles impregnated polysulfone membranes. J. Hazard. Mater. 309, 53–64 (2016). https://doi.org/10.1016/j.jhazmat.2016.01.064

    Article  CAS  Google Scholar 

  110. B. Baheri, R. Ghahremani, M. Peydayesh, M. Shahverdi, T. Mohammadi, Dye removal using 4A-zeolite/polyvinyl alcohol mixed matrix membrane adsorbents: preparation, characterization, adsorption, kinetics, and thermodynamics. Res. Chem. Intermed. 42, 5309–5328 (2016). https://doi.org/10.1007/s11164-015-2362-1

    Article  CAS  Google Scholar 

  111. A. Priyadarshini, S. Wei, P. Jin, L. Hong, Zeolite Y-carbonaceous composite membrane with a pseudo solid foam structure assessed by nano filtration of aqueous dye solutions. J. Memb. Sci. 567, 146–156 (2018). https://doi.org/10.1016/j.memsci.2018.09.025

    Article  CAS  Google Scholar 

  112. L. Yang, Z. Wang, J. Zhang, Highly permeable zeolite imidazolate framework composite membranes fabricated via a chelation-assisted interfacial reaction. J. Mater. Chem. A. 5, 15342–15355 (2017). https://doi.org/10.1039/C7TA03244G

    Article  CAS  Google Scholar 

  113. U. Habiba, T.A. Siddique, T. Chin, A. Salleh, B. Chin, A.M. Afifi, Synthesis of chitosan/polyvinyl alcohol/zeolite composite for removal of methyl orange, Congo red and chromium (VI) by flocculation/adsorption. Carbohydr. Polym. 157, 1568–1576 (2017). https://doi.org/10.1016/j.carbpol.2016.11.037

    Article  CAS  Google Scholar 

  114. H.J. Salonen, A.-L. Pasanen, S.K. Lappalainen, H.M. Riuttala, T.M. Tuomi, P.O. Pasanen, B.C. Bäck, K.E. Reijula, Airborne concentrations of volatile organic compounds, formaldehyde and ammonia in Finnish office buildings with suspected indoor air problems. J. Occup. Environ. Hyg. 6, 200–209 (2009). https://doi.org/10.1080/15459620802707835

    Article  CAS  Google Scholar 

  115. S. Aguado, A.C. Polo, P. Bernal, J. Santamar, Removal of pollutants from indoor air using zeolite membranes 240, 159–166 (2004). https://doi.org/10.1016/j.memsci.2004.05.004

    Article  CAS  Google Scholar 

  116. V.K. Jha, M. Matsuda, M. Miyake, Sorption properties of the activated carbon-zeolite composite prepared from coal fly ash for Ni2+ , Cu2+ , Cd2+ and Pb2+ 160, 148–153 (2008). https://doi.org/10.1016/j.jhazmat.2008.02.107

  117. M. Kr, P. Ro, Geopolymer-zeolite composites : a review 230 (2019). https://doi.org/10.1016/j.jclepro.2019.05.152

  118. J. Xie, Z. Wang, D. Wu, H. Kong, Synthesis and properties of zeolite/hydrated iron oxide composite from coal fly ash as efficient adsorbent to simultaneously retain cationic and anionic pollutants from water. Fuel 116, 71–76 (2014). https://doi.org/10.1016/j.fuel.2013.07.126

    Article  CAS  Google Scholar 

  119. R. Soni, D.P. Shukla, Synthesis of fly ash based zeolite-reduced graphene oxide composite and its evaluation as an adsorbent for arsenic removal. Chemosphere 219, 504–509 (2019). https://doi.org/10.1016/j.chemosphere.2018.11.203

    Article  CAS  Google Scholar 

  120. W. Liu, T. Aldahri, C. Xu, C. Li, S. Rohani, Journal of Environmental Chemical Engineering Synthesis of sole gismondine-type zeolite from blast furnace slag during CO2 mineralization process. J. Environ. Chem. Eng. 9 (2021) 104652. https://doi.org/10.1016/j.jece.2020.104652

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihir K. Purkait .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Samanta, N.S., Mondal, P., Purkait, M.K. (2024). Waste-Based Zeolites and their Advanced Composites for Wastewater and Environmental Remediation Applications. In: Ikhmayies, S.J. (eds) Advanced Composites. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-42731-2_14

Download citation

Publish with us

Policies and ethics