Skip to main content

Theory of Mind Machine

  • Chapter
  • First Online:
Global Sustainability
  • 106 Accesses

Abstract

The activation of imagination power (Ip) and its transformation into a mind energy (Me) and then further into an energy state travel machine (Tm) have been modeled to travel anywhere in the multiverse. Since imagination power (Ip) is the hidden element that initiated from the human brain, thus, the clarification of the imagination power (Ip) is being computed considering the quantum electrodynamics (QED) of the human brain. Naturally, the reconfiguration of this QED has been computed considering its nano-point dynamics to transform imagination power (Ip) into the mind energy (Me) to initiate it into an activated state energy. Naturally, this activated mind energy (Me) is being further remodeled to convert it into energy state travel machine energy (Tm) by the implementation of Higgs boson (H → γγ) electromagnetic fields of the human body to transform this energy into a travel machine. The generation of mind energy (Me) from the imagination power (Ip) and then its transformation into energy state travel machine (Tm) are being confirmed by a series of mathematical tests, which reveals that the generation of energy state travel machine (Tm) by the activation of imagination power (Ip) and then mind energy (Me) is quite possible, which, perhaps, would be the ultimate transportation system ever to travel anywhere in the universe and multiverse in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boettcher, I., Pawlowski, J. M., & Diehl, S. (2012). Ultracold atoms and the functional renormalization group. Nuclear Physics B-Proceedings Supplements, 228, 63–135.

    Article  Google Scholar 

  2. Broz, M., Contreras, J. G., & Takaki, J. T. (2020). A generator of forward neutrons for ultra-peripheral collisions: nOOn. Computer Physics Communications, 253, 107181.

    Article  MathSciNet  Google Scholar 

  3. Chang, D. E., Sørensen, A. S., Demler, E. A., & Lukin, M. D. (2007). A single-photon transistor using nanoscale surface plasmons. Nature Physics, 3(11), 807–812.

    Article  Google Scholar 

  4. Chen, G., Chen, S., Li, C., & Chen, Y. (2013). Examining non-locality and quantum coherent dynamics induced by a common reservoir. Scientific Reports, 3(1), 1–6.

    Google Scholar 

  5. Chen, J., Wang, C., Zhang, R., & Xiao, J. (2012). Multiple plasmon-induced transparencies in coupled-resonator systems. Optics Letters, 37(24), 5133–5135.

    Article  Google Scholar 

  6. Cheng, M., & Song, Y. (2012). Fano resonance analysis in a pair of semiconductor quantum dots coupling to a metal nanowire. Optics Letters, 37(5), 978–980.

    Article  Google Scholar 

  7. Douglas, J. S., Habibian, H., Hung, C., Gorshkov, A. V., Kimble, H. J., & Chang, D. E. (2015). Quantum many-body models with cold atoms coupled to photonic crystals. Nature Photonics, 9(5), 326–331.

    Article  Google Scholar 

  8. Dupuis, N., Canet, L., Eichhorn, A., Metzner, W., Pawlowski, J. M., Tissier, M., & Wschebor, N. (2021). The nonperturbative functional renormalization group and its applications. Physics Reports, 910, 1–114.

    Article  MathSciNet  MATH  Google Scholar 

  9. Eichler, J., & Stöhlker, T. (2007). Radiative electron capture in relativistic ion–atom collisions and the photoelectric effect in hydrogen-like high-Z systems. Physics Reports, 439(1–2), 1–99.

    Article  Google Scholar 

  10. Englund, D., Majumdar, A., Faraon, A., Toishi, M., Stoltz, N., Petroff, P., & Vučković, J. (2010). Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity. Physical Review Letters, 104(7), 073904.

    Article  Google Scholar 

  11. Fernández, J., & Martín, F. (2009). Electron and ion angular distributions in resonant dissociative photoionization of H2 and D2 using linearly polarized light. New Journal of Physics, 11(4), 043020.

    Article  Google Scholar 

  12. Gazi, V., & Passino, K. M. (2005). Stability of a one-dimensional discrete-time asynchronous swarm. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(4), 834–841.

    Article  Google Scholar 

  13. Hencken, K., Baur, G., & Trautmann, D. (2006). Transverse momentum distribution of vector mesons produced in ultraperipheral relativistic heavy ion collisions. Physical Review Letters, 96(1), 012303.

    Article  Google Scholar 

  14. Jahnke, V., Luna, A., Patino, L., & Trancanelli, D. (2014). More on thermal probes of a strongly coupled anisotropic plasma. Journal of High Energy Physics, 2014(1), 1–40.

    Article  Google Scholar 

  15. Jiaqi, L., Yi, Z., Chengkai, T., & Xingxing, Z. (2019). INS aided high dynamic single-satellite position algorithm. Paper presented at the 2019 IEEE international conference on signal processing, communications and computing (ICSPCC), pp. 1–5.

    Google Scholar 

  16. Johnson, B. R., Reed, M. D., Houck, A. A., Schuster, D. I., Bishop, L. S., Ginossar, E., & Girvin, S. M. (2010). Quantum non-demolition detection of single microwave photons in a circuit. Nature Physics, 6(9), 663–667.

    Article  Google Scholar 

  17. Md. Faruque Hossain. (2022). Ultraviolet germicidal irradiation (UVGI) application in building design to terminate pathogens naturally. Material Today Sustainability. https://doi.org/10.1016/j.mtsust.2022.100161. (Springer).

  18. Md. Faruque Hossain. (2021). Sustainable building technology: Thermal control of solar energy to cool and heat the building naturally. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-020-01212-z. (Springer).

  19. Md. Faruque Hossain. (2020). Modeling of global temperature control. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-020-00924-6. (Springer).

  20. Md. Faruque Hossain. (2018). Green science: Advanced building design technology to mitigate energy and environment. Renewable and Sustainable Energy Reviews, 81(2), 3051–3060. (Elsevier).

    Article  Google Scholar 

  21. Md. Faruque Hossain. (2018). Photon energy amplification for the design of a micro-PV panel. International Journal of Energy Research. https://doi.org/10.1002/er.4118. (Wiley).

  22. Md. Faruque Hossain. (2018). Design and construction of ultra-relativistic collision PV panel and its application into building sector to mitigate total energy demand. Journal of Building Engineering, 9, 147–154. (Elsevier).

    Article  Google Scholar 

  23. Md. Faruque Hossain. (2017). Green science: Independent building technology to mitigate energy, environment, and climate change. Renewable and Sustainable Energy Reviews, 73, 695–705. (Elsevier).

    Article  Google Scholar 

  24. Md. Faruque Hossain. (2016). Solar energy integration into advanced building design for meeting energy demand. International Journal of Energy Research, 40, 1293–1300. (Wiley).

    Article  Google Scholar 

  25. Md. Faruque Hossain. (2016). Theory of global cooling. Energy, Sustainability, and Society, 6, 24. (Springer).

    Google Scholar 

  26. Naghiloo, M., Foroozani, N., Tan, D., Jadbabaie, A., & Murch, K. W. (2016). Mapping quantum state dynamics in spontaneous emission. Nature Communications, 7(1), 1–7.

    Article  Google Scholar 

  27. Reinhard, P., & Nazarewicz, W. (2021). Nuclear charge densities in spherical and deformed nuclei: Toward precise calculations of charge radii. Physical Review C, 103(5), 054310.

    Article  Google Scholar 

  28. Shalm, L. K., Hamel, D. R., Yan, Z., Simon, C., Resch, K. J., & Jennewein, T. (2013). Three-photon energy–time entanglement. Nature Physics, 9(1), 19–22.

    Article  Google Scholar 

  29. Stehle, C., Zimmermann, C., & Slama, S. (2014). Cooperative coupling of ultracold atoms and surface plasmons. Nature Physics, 10(12), 937–942.

    Article  Google Scholar 

  30. Szafron, R., & Czarnecki, A. (2016). High-energy electrons from the muon decay in orbit: Radiative corrections. Physics Letters B, 753, 61–64.

    Article  Google Scholar 

  31. Tame, M. S., McEnery, K. R., Özdemir, Ş. K., Lee, J., Maier, S. A., & Kim, M. S. (2013). Quantum plasmonics. Nature Physics, 9(6), 329–340.

    Article  Google Scholar 

  32. Md. Faruque Hossain. (2022). Implementation of hybrid wind and solar energy in the transportation sector to mitigate global energy and environmental vulnerability. Clean Technologies and Environmental Policy. https://doi.org/10.1007/s10098-022-02437-4

  33. Md. Faruque Hossain. (2020). Application of wind energy into the transportation sector. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-020-00235-1

  34. Md. Faruque Hossain. (2019). Green technology: Transformation of transpiration vapor to mitigate global water crisis. Polytechnica. https://doi.org/10.1007/s41050-019-00009-y

  35. Md. Faruque Hossain. (2018). Global environmental vulnerability and the survival period of all living beings on earth. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-018-1722-y

  36. Md. Faruque Hossain. (2018). Transformation of dark photon into sustainable energy. International Journal of Energy and Environmental Engineering, 9, 99–110.

    Article  Google Scholar 

  37. Md. Faruque Hossain. (2017). Invisible transportation infrastructure technology to mitigate energy and environment. Energy, Sustainability, and Society, 7, –27. https://doi.org/10.1186/s13705-017-0128-x

  38. Md. Faruque Hossain. (2017). Application of advanced technology to build a vibrant environment on planet Mars. International Journal of Environmental Science and Technology, 14(12), 2709–2720.

    Article  Google Scholar 

  39. Md. Faruque Hossain. (2016). Integration of wind into running vehicles to meet its total energy demand. Energy, Ecology, and Environment, 2(1), 35–48.

    Article  Google Scholar 

  40. Md. Faruque Hossain. (2016). Production of clean energy from cyanobacterial biochemical products. Strategic Planning for Energy and the Environment, 3, 6–23.

    Google Scholar 

Download references

Acknowledgments

The author, Md. Faruque Hossain, declares that any findings, predictions, and conclusions described in this article are solely performed by the author, and it is confirmed that there is no conflict of interest for publishing this research paper in a suitable journal and/or publisher.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hossain, M.F. (2023). Theory of Mind Machine. In: Global Sustainability . Springer, Cham. https://doi.org/10.1007/978-3-031-34575-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34575-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34574-6

  • Online ISBN: 978-3-031-34575-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics