Skip to main content

Cellular Automata Music Composition: From Classical to Quantum

  • Chapter
  • First Online:
Quantum Computer Music

Abstract

We are interested in developing cellular automata systems to support the creation of original music. Cellular automata are of interest to musicians because they generate visual patterns that can be translated into musical ones. It could be said that cellular automata evolve time-based patterns, resembling how composers sometimes develop variations on musical forms. Emerging quantum technology is already opening new avenues for exploring musical composition using quantum cellular automata. The chapter begins with a brief introduction to cellular automata focusing on one-dimensional and two-dimensional discrete automata for classical computing. It briefly shows how they can be leveraged to generate music. Then, it moves on to quantum cellular automata. To develop a technique that is meaningfully non-classical, we use partitioned quantum cellular automata (PQCA) instead of regular, classical cellular automata. PQCA are intrinsically universal, capable of simulating all of the various quantum extensions of cellular automata that have been proposed to date. After an introduction to PQCA, the chapter presents the methods we have been developing for generating music with PQCA and shows practical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The meaning of ‘discrete’ here is that space, time and properties of the automata can have only a finite, countable number of states.

  2. 2.

    To create a cellular automaton the transition function must know how to act on every combination of states. We have only stated one of the rules used in our example automaton.

  3. 3.

    But note, this is a subtly different notion of universal to the one about to be discussed below.

  4. 4.

    This music was not generated from the output shown in Fig. 6.17. It comes for a different run of 20 cycles.

  5. 5.

    Of course, you, the user, are free to make your own choices.

References

  1. Arrighi, P., & Grattage, J. (2010) Partitioned quantum cellular automata are intrinsically universal. arxiv:1010.2335.

  2. Beyls, P. (1989). The musical universe of cellular automata. In Proceedings of the International Computer Music Conference (ICMC) (pp. 34–41). USA.

    Google Scholar 

  3. Bilotta, E., Pantano, P., Talarico, V. Synthetic harmonies: An approach to musical semiosis by means of cellular automata. In Artificial Life VII: Proceedings of the Seventh International Conference on Artificial Life (p. 200). The MIT Press. https://doi.org/10.7551/mitpress/1432.001.0001.

  4. Brubaker, B. (2021). How bell’s theorem proved ‘spooky action at a distance’ is real. Quanta magazine. https://www.quantamagazine.org/how-bells-theorem-proved-spooky-action-at-a-distance-is-real-20210720.

  5. Burks, A. W. (Ed.). (1971). Essays on cellular automata. University of Illinois Press. ISBN: 9780252000232.

    Google Scholar 

  6. Dodge, T., & Jerse, T. A. (1985). Computer music: Synthesis, composition and performance. Schirmer Books.

    Google Scholar 

  7. Epstein, J. M., & Axtell, R. (1996). Growing artificial societies: Social sciences from the bottom up. The MIT Press. ISBN: 978-0262550253.

    Google Scholar 

  8. Ermentrout, G. B., & Edelstein-Keshet, L. (1993). Cellular automata approaches to biological modeling. Journal of Theoretical Biology, 160.

    Google Scholar 

  9. Farrelly, T. (2020). A review of quantum cellular automata. Quantum, 4. https://doi.org/10.22331/q-2020-11-30-368.

  10. Gardner, M. (1970). The fantastic combinations of john Conway’s new solitaire game “life’’. Scientific American, 223(4), 120–123. https://doi.org/10.1038/scientificamerican1070-120

    Article  Google Scholar 

  11. Hepokoski, J., & Darcy, W. (Eds.). Elements of sonata theory: Norms, types, and deformations in the late-eighteenth-century sonata. Oxford University Press. ISBN: 9780195146400.

    Google Scholar 

  12. Hoffmann, P. (2002). Towards an automated art: Algorithmic processes in Xenakis’ compositions. Contemporary Music Review, 21(2–3), 121–131.

    Article  Google Scholar 

  13. Hogeweg, P. (1988). Cellular automata as a paradigm for ecological modeling. Applied Mathematics and Computation, 27.

    Google Scholar 

  14. Hsü, K. J., & Hsü, A. J. (1990). Fractal geometry of music. Proceedings of the National Academy of Sciences, Physics, 87, 938–941.

    Article  MathSciNet  Google Scholar 

  15. Inokuchi, S., & Mizoguchi, Y. (2003). Generalized partitioned quantum cellular automata and quantization of classical ca. arxiv:quant-ph/0312102.

  16. Kelemen, J., & Sosik, P. (Eds.). (2001). Advances in artificial life—Lecture notes in artificial intelligence (Vol. 2159). Springer.

    Google Scholar 

  17. Loy, G. (2011). Musimathics: The mathematical foundations of music (Vol. 1). The MIT Press. ISBN: 978-0262516556.

    Google Scholar 

  18. MathWorld. Wolfram mathworld. (1999). https://mathworld.wolfram.com/ElementaryCellularAutomaton.html. Accessed 19 Feb 2022.

  19. McAlpine, K., Miranda, E., & Hoggar, S. (1999). Making music with algorithms: A case-study system. Computer Music Journal, 23(3).

    Google Scholar 

  20. Miranda, E. R. (1993). Cellular automata music: An interdisciplinary project. Interface, 22(1).

    Google Scholar 

  21. Miranda, E. R. (1995a). Granular synthesis of sounds by means of cellular automata. Leonardo, 28(4), 297–300.

    Google Scholar 

  22. Miranda, E. R. (1995b). Entre l’absurde et le mystère. https://soundcloud.com/ed_miranda/entre-labsurde-et-le-mystere. Accessed 05 Mar 2022.

  23. Miranda, E. R. (2007). Cellular automata music: From sound synthesis to musical forms. In E. R. Miranda & J. A. Biles (Eds.), Evolutionary computer music. Springer. https://doi.org/10.1007/978-1-84628-600-1_8.

  24. Miranda, E. R. (2011). A-life for music: Music and computer models of living systems. A-R Editions. ISBN: 978-0-89579-673-8.

    Google Scholar 

  25. Miranda, E. R. (2014). Thinking music: The inner workings of a composer’s mind. University of Plymouth Press.

    Google Scholar 

  26. Miranda, E. R., (Ed.). (2021). Handbook of artificial intelligence for music foundations, advanced approaches, and developments for creativity. Springer International Publishing. https://doi.org/10.1007/978-3-030-72116-9.

  27. Miranda, E. R., & Biles, J. A. (2007). Evolutionary computer music. Springer.

    Google Scholar 

  28. Nachman, B., Urbanek, M., de Jong, W. A., & Bauer, C. W. (2020). Unfolding quantum computer readout noise. npj Quantum Information, (6). https://doi.org/10.1038/s41534-020-00309-7.

  29. Preston, K., & McDuff, M. J. B. (1984). Modern cellular automata: Theory and applications. Springer. ISBN: 9781489903952.

    Google Scholar 

  30. Schuld, M., & Petruccione, F. (2021). Machine learning with quantum computers. Springer. ISBN: 9783030830984.

    Google Scholar 

  31. Shaib, A., Naim, M. H., Fouda, M. E., Kanj, R., & Kurdahi, F. (2021). Efficient noise mitigation technique for quantum computing. https://doi.org/10.48550/arXiv.2109.05136.

  32. Shaw, A. (2021). Classical-quantum noise mitigation for NISQ hardware. https://doi.org/10.48550/arXiv.2105.08701.

  33. Wolfram, S. (1983). Statistical mechanics of cellular automata. Reviews of Modern Physics, 55, 601–644.

    Article  MathSciNet  MATH  Google Scholar 

  34. Wolfram, S. (1984). Cellular automata as models of complexity. Nature, 311, 419–424.

    Article  Google Scholar 

  35. Wootters, W. K., & Zurek, W. H. (1982). A single quantum cannot be cloned. Nature, 299, 802–803. https://doi.org/10.1038/299802a0

    Article  MATH  Google Scholar 

  36. Worral, D. (1996). Studies in metamusical methods for sound image and composition. Organised Sound, 1(3), 183–194.

    Article  Google Scholar 

  37. Xenakis, I. (1971). Formalized music. Indiana University Press.

    Google Scholar 

Download references

Acknowledgements

This project was funded by the QuTune Project. QuTune kick-started in the Spring of 2021 thanks to funding kindly provided by the UK National Quantum Technologies Programme’s QCS Hub: [https://iccmr-quantum.github.io/].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Reck Miranda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miranda, E.R., Miller-Bakewell, H. (2022). Cellular Automata Music Composition: From Classical to Quantum. In: Miranda, E.R. (eds) Quantum Computer Music. Springer, Cham. https://doi.org/10.1007/978-3-031-13909-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13909-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13908-6

  • Online ISBN: 978-3-031-13909-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics