Skip to main content

Optical Transmission Technologies

  • Chapter
  • First Online:
Space-Division Multiplexing in Optical Communication Systems

Abstract

For a drastic increase of the optical fiber capacity, extremely advanced optical transmission technologies are indispensable. This chapter reviews such technologies including advanced modulation formants for higher spectral efficiency, transmission technologies using new types of fiber for space division multiplexing, and signal processing technologies providing a variety of functions in high-speed optical transmission systems.

Itsuro Morita, Toshihiko Hirooka, and Hidehiko Takara are chapter editors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Onaka, H. Miyata, G. Ishikawa, K. Otsuka, H. Ooi, Y. Kai, S. Kinoshita, M. Seino, H. Nishimoto, T. Chikama, 1.1 Tb/s WDM transmission over a 150 km 1.3 µm zero-dispersion single-mode fiber, in Proceedings of Optical Fiber Communication Conference, paper PD19 (1996)

    Google Scholar 

  2. T. Morioka, H. Takara, S. Kawanshi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, H. Ono, 100 Gbit/s x 10 channel OTDM/WDM transmission using a single supercontinuum WDM source, in Proceedings of Optical Fiber Communication Conference, paper PD21 (1996)

    Google Scholar 

  3. A.H. Gnauck, A.R. Chraplyvy, R.W. Thach, J.L. Zyskind, J.W. Sulhoff, A.J. Lucero, Y. Sun, R.M. Jopson, F. Forghieri, R.M. Derosier, C. Wolf, A.R. McCormick, One terabit/s transmission experiment, in Proceedings of Optical Fiber Communication Conference, paper PD20 (1996)

    Google Scholar 

  4. S. Bigo, Y. Frignac, G. Charlet, W. Idler, S. Borne, H. Gross, R. Dischler, W. Poehlmann, P. Tran, C. Simonneau, D. Bayart, G. Veith, A. Jourdan, J.P. Hamaide, 10.2 Tbit/s (256 x 42.7 Gbit/s PDM/WDM) transmission over 100 km teralight fiber with 1.28 bit/s/Hz spectral efficiency, in Proceedings of Optical Fiber Communication Conference, paper PD25 (2001)

    Google Scholar 

  5. K. Fukuchi, T. Kasamatsu, M. Morie, R. Ohhira, T. Ito, K. Sekiya, D. Ogasahara, T. Ono, 10.92-Tb/s (273 x 40-Gb/s) triple-band/ultra-dense WDM optical-repeatered transmission experiment, in Proceedings of Optical Fiber Communication Conference, paper PD24 (2001)

    Google Scholar 

  6. A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, H. Ishii, 69.1-Tb/s (432 x 171-Gb/s) C- and extended L-band transmission over 240 km using PDM-16-QAM modulation and digital coherent detection, in Proceedings of Optical Fiber Communication Conference, paper PDPB7 (2010)

    Google Scholar 

  7. D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang,Y. Shao, J. Hu, T. Wang, 101.7-Tb/s (370 × 294-Gb/s) PDM-128QAM-OFDM transmission over 3 × 55-km SSMF using pilot-based phase noise mitigation, in Proceedings of Optical Fiber Communication Conference, paper PDPB5 (2011)

    Google Scholar 

  8. M. Nakazawa, M. Yoshida, K. Kasai, J. Hongou, 20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilised laser. Electron. Lett. 42(12), 710–712 (2006)

    Google Scholar 

  9. J. Hongo, K. Kasai, M. Yoshida, M. Nakazawa, 1-Gsymbol/s 64-QAM coherent optical transmission over 150 km. IEEE Photon. Technol. Lett. 19(9), 638–640 (2007)

    Google Scholar 

  10. M. Nakazawa, Challenges to FDM-QAM coherent transmission with ultrahigh spectral efficiency, in European Conference on Optical Communication (ECOC 2008), Tu.1.E.1 (2008)

    Google Scholar 

  11. M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, M. Yoshida, 256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz. IEEE Photon. Technol. Lett. 22(3), 185–187 (2010)

    Google Scholar 

  12. T. Omiya, M. Yoshida, M. Nakazawa, 1 Tbit/s 256 QAM-OFDM transmission over 560 km with 14.3 bit/s/Hz spectral efficiency, in OptoElectronics and Communications Conference (OECC 2013), MR1-2 (2013)

    Google Scholar 

  13. S. Okamoto, K. Toyoda, T. Omiya, K. Kasai, M. Yoshida, M. Nakazawa, 512 QAM (54 Gbit/s) coherent optical transmission over 150 km with an optical bandwidth of 4.1 GHz, in European Conference on Optical Communication (ECOC 2011), PD 2.3 (2011)

    Google Scholar 

  14. R. Schmogrow, D. Hillerkuss, S. Wolf, B. Bäuerle, M. Winter, P. Kleinow, B. Nebendahl, T. Dippon, P. C. Schindler, C. Koos, W. Freude, J. Leuthold, 512QAM Nyquist sinc-pulse transmission at 54 Gbit/s in an optical bandwidth of 3 GHz. Opt. Express 20(6), 6439–6447 (2012)

    Google Scholar 

  15. Y. Koizumi, K. Toyoda, M. Yoshida, M. Nakazawa, 1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km. Opt. Express 20(11), 12508–12514 (2012)

    Google Scholar 

  16. M.-F. Huang, D. Qian, E. Ip, 50.53-Gb/s PDM-1024QAM-OFDM transmission using pilot-based phase noise mitigation, in OECC 2011, PDP1.6 (2011)

    Google Scholar 

  17. S. Beppu, K. Kasai, M. Yoshida, M. Nakazawa, 2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz. Opt. Express 23(4), 4960–4969 (2015)

    Google Scholar 

  18. M. Terayama, S. Okamoto, K. Kasai, M. Yoshida, M. Nakazawa, 4096 QAM (72 Gbit/s) single-carrier coherent optical transmission with a potential SE of 15.8 bit/s/Hz in all-Raman amplified 160 km fiber link, in OFC 2018, Th1F.2 (2018)

    Google Scholar 

  19. A. Sano, T. Kobayashi, S. Yamanaka, A. Matsuura, H. Kawakami, Y. Miyamoto, K. Ishihara, H. Masuda, 102.3-Tb/s (224 x 548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone, in Optical Fiber Communication Conference (OFC 2012), PDP5C.3 (2012)

    Google Scholar 

  20. P.J. Winzer, A.H. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, B. Zhu, Generation and 1,200-km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator, in European Conference on Optical Communication (ECOC 2010), PD2.2 (2010)

    Google Scholar 

  21. G. Raybon, A. Adamiecki, P.J. Winzer, M. Montoliu, S. Randel, A. Umbach, M. Margraf, J. Stephan, S. Draving, M. Grove, K. Rush, All-ETDM 107-Gbaud PDM-16QAM (856-Gb/s) transmitter and coherent receiver, in ECOC 2013, PD.2.D.3 (2013)

    Google Scholar 

  22. S. Okamoto, T. Omiya, K. Kasai, M. Yoshida, M. Nakazawa, 140 Gbit/s coherent optical transmission over 150 km with a 10 Gsymbol/s polarization-multiplexed 128 QAM signal, in Optical Fiber Communication Conference (OFC 2010), OThD5 (2010)

    Google Scholar 

  23. A.H. Gnauck, P. Winzer, A. Konczykowska, F. Jorge, J. Dupuy, M. Riet, G. Charlet, B. Zhu, D.W. Peckham, Generation and transmission of 21.4 Gbaud PDM 64 QAM using a high power DAC driving a single I/Q modulator, in OFC 2011, PDPB2 (2011)

    Google Scholar 

  24. T. Kobayashi, A. Sano, A. Matsuura, Y. Miyamoto, K. Ishihara, Nonlinear tolerant long-haul WDM transmission over 1200 km using 538 Gb/s/ch PDM-64QAM SC-FDM signals with pilot tone, in OFC 2012, OM2A.5 (2012)

    Google Scholar 

  25. W.-R. Peng, H. Takahashi, T. Tsuritani, I. Morita, 50-GHz-spaced, 8 x 499-Gb/s WDM transmission over 720-km SSMF using per-channel 41.6-GBd PDM-64QAM, in ACP 2012, AF4C1 (2012)

    Google Scholar 

  26. S. Randel, D. Pilori, S. Corteselli, G. Raybon, A. Adamiecki, A. Gnauck, S. Chandrasekhar, P. Winzer, L. Altenhain, A. Bielik, R. Schmid, All-electronic flexibly programmable 864-Gb/s single-carrier PDM-64-QAM, in OFC 2014, Th5C.8 (2014)

    Google Scholar 

  27. J. G. Proakis, Digital Communications, 4th edn. (McGraw Hill, 2000)

    Google Scholar 

  28. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)

    Google Scholar 

  29. T. Mizuochi, Recent progress in forward error correction for optical communication systems. IEICE Trans. Commun. E88-B, 1934–1946 (2005)

    Google Scholar 

  30. K. Kasai, A. Suzuki, M. Yoshida, M. Nakazawa, Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser. IEICE Electron. Express 3, 487–492 (2006)

    Article  Google Scholar 

  31. K. Sato, N. Kobayashi, M. Namiwaka, K. Yamamoto, T. Kita, H. Yamada, H. Yamazaki, High output power and narrow linewidth silicon photonic hybrid ring-filter external cavity wavelength tunable lasers, in ECOC 2014, PD.2.3 (2014)

    Google Scholar 

  32. L. Stolpner, S. Lee, S. Li, A. Mehnert, P. Mols, S. Siala, J. Bush, Low noise planar external cavity laser for interferometric fiber optic sensors. Proc. SPIE 7004, 700457 (2008)

    Google Scholar 

  33. H.T. Quynhanh, A. Suzuki, M. Yoshida, T. Hirooka, M. Nakazawa, A λ/4-shifted distributed-feedback laser diode with a fiber ring cavity configuration having an OSNR of 85 dB and a linewidth of 7 kHz. IEEE Photon. Technol. Lett. 20(18), 1578–1580 (2008)

    Google Scholar 

  34. W. Liang, V.S. Ilchenko, A.A. Savchenkov, A.B. Matsko, D. Seidel, L. Maleki, Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser. Opt. Lett. 35(16), 2822–2824 (2010)

    Google Scholar 

  35. S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, M. Izutsu, Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides. IEEE Photon. Technol. Lett. 13, 364–366 (2001)

    Article  ADS  Google Scholar 

  36. N. Kikuchi, Y. Shibata, K. Tsuzuki, H. Sanjoh, T. Sato, E. Yamada, T. Ishibashi, H. Yasaka, 80-Gb/s low-driving-voltage InP DQPSK modulator with an n-p-i-n structure. IEEE Photon. Technol. Lett. 21, 787–789 (2009)

    Article  ADS  Google Scholar 

  37. H. Yamazaki, T. Yamada, T. Goh, Y. Sakamaki, A. Kaneko, 64QAM modulator with a hybrid configuration of silica PLCs and LiNbO3 phase modulators. IEEE Photon. Technol. Lett. 22, 344–346 (2010)

    Article  ADS  Google Scholar 

  38. D.-S. Ly-Gagnon, S. Tsukamoto, K. Katoh, K. Kikuchi, Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation. J. Lightwave Technol. 24, 12–21 (2006)

    Article  ADS  Google Scholar 

  39. K. Kikuchi, T. Okoshi, M. Nagamatsu, N. Henmi, Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator. J. Lightwave Technol. LT-2, 1024–1033 (1984)

    Google Scholar 

  40. K. Kasai, J. Hongo, M. Yoshida, M. Nakazawa, Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers. IEICE Electron. Express 4, 77–81 (2007)

    Article  Google Scholar 

  41. C.R. Doerr, L. Zhang, P.J. Winzer, N. Weimann, V. Houtsma, T.-C. Hu, N.J. Sauer, L.L. Buhl, D.T. Neilson, S. Chandrasekhar, Y.K. Chen, Monolithic InP dual-polarization and dual-quadrature coherent receiver. IEEE Photon. Technol. Lett. 23, 694–696 (2011)

    Article  ADS  Google Scholar 

  42. A. Antoniou, Digital Signal Processing: Signals, Systems, and Filters (McGraw-Hill Professional, 2005)

    Google Scholar 

  43. D. Falconer, S.L. Ariyavisitakul, A. Benyamin-Seeyar, B. Eidson, Frequency domain equalisation for single-carrier broadband wireless systems. IEEE Commun. Mag. 40(4), 58–66 (2002)

    Article  Google Scholar 

  44. M.V. Clark, Adaptive frequency-domain equalisation and diversity combining for broadband wireless communications. IEEE J. Sel. Areas Commun. 16(8), 1385–1395 (1998)

    Article  Google Scholar 

  45. K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, E. Yamada, H. Masuda, Y. Miyamoto, Frequency-domain equalisation for optical transmission systems. Electron. Lett. 44, 870–871 (2008)

    Article  ADS  Google Scholar 

  46. J.P. Gordon, L.F. Mollenauer, Phase noise in photonic communication systems using linear amplifiers. Opt. Lett. 15, 1351–1353 (1990)

    Article  ADS  Google Scholar 

  47. A.D. Ellis, J. Zhao, D. Cotter, Approaching the non-linear Shannon limit. J. Lightwave Technol. 28(4), 423–433 (2010)

    Article  ADS  Google Scholar 

  48. R.-J. Essiambre, G. Kramer, P.J. Winzer, G.J. Foschini, B. Goebel, Capacity limits of optical fiber networks. J. Lightwave Technol. 28(4), 662–701 (2010)

    Article  ADS  Google Scholar 

  49. C. Paré, A. Villeneuve, P.-A. Bélanger, N.J. Doran, Compensating for dispersion and the nonlinear Kerr effect without phase conjugation. Opt. Lett. 21(7), 459–461 (1996)

    Article  ADS  Google Scholar 

  50. X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, G. Li, Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing. Opt. Express 16, 880–888 (2008)

    Article  ADS  Google Scholar 

  51. P.K.A. Wai, C.R. Menyuk, H.H. Chen, Stability of solitons in randomly varying birefringent fibers. Opt. Lett. 16(16), 1231–1233 (1991)

    Article  ADS  Google Scholar 

  52. K. Kasai, J. Hongo, H. Goto, M. Yoshida, M. Nakazawa, The use of a Nyquist filter for reducing an optical signal bandwidth in a coherent QAM optical transmission. IEICE Electron. Express 5(1), 6–10 (2008)

    Google Scholar 

  53. H. Nyquist, Certain topics in telegraph transmission theory. AIEE Trans. 47, 617–644 (1928)

    Google Scholar 

  54. S. Hara, R. Prasad, Multicarrier Techniques for 4G Mobile Communications (Artech House, Boston, 2003)

    Google Scholar 

  55. Y. Ma, Q. Yang, Y. Tang, S. Chen, W. Shieh, 1-Tb/s per channel coherent optical OFDM transmission with subwavelength bandwidth access, in Optical Fiber Communication Conference (OFC 2009), PDPC1 (2009)

    Google Scholar 

  56. S. Chandrasekhar, X. Liu, B. Zhu, D. Peckham, Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber, in European Conference on Optical Communication (ECOC 2009), PD2.6 (2009)

    Google Scholar 

  57. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, 26 Tbits-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing. Nat. Photonics 5, 364–371 (2011)

    Google Scholar 

  58. H. Takahashi, K. Takeshima, I. Morita, H. Tanaka, 400-Gbit/s optical OFDM transmission over 80 km in 50-GHz frequency grid, in European Conference on Optical Communication (ECOC 2010), Tu.3.C.1 (2010)

    Google Scholar 

  59. X. Liu, S. Chandrasekhar, T. H. Lotz, P. J. Winzer, H. Haunstein, S. Randel, S. Corteselli, B. Zhu, and D. Peckham, Generation and FEC-decoding of a 231.5-Gb/s PDM-OFDM signal with 256-iterative-polar-modulation achieving 11.15-b/s/Hz intrachannel spectral efficiency and 800-km reach, in Optical Fiber Communication Conference (OFC 2012), PDP5B.3 (2012)

    Google Scholar 

  60. C. Zhang, Y. Mori, M. Usui, K. Igarashi, K. Katoh, and K. Kikuchi, Straight-line 1,073-km transmission of 640-Gbit/s dual-polarization QPSK signals on a single carrier, in Proceedings of European Conference on Optical Communication (ECOC), Vienna, Austria, 2009, Postdeadline paper PD2.8 (2009)

    Google Scholar 

  61. T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, J.K. Fischer, C. Schubert, Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection, in Optical Fiber Communication Conference (OFC 2011), PDPA9 (2011)

    Google Scholar 

  62. K. Kasai, T. Omiya, P. Guan, M. Yoshida, T. Hirooka, M. Nakazawa, Single-channel 400-Gb/s OTDM-32 RZ/QAM coherent transmission over 225 km using an optical phase-locked loop technique. IEEE Photon. Technol. Lett. 22(8), 562–564 (2010)

    Google Scholar 

  63. M. Nakazawa, T. Hirooka, P. Ruan, P. Guan, Ultrahigh-speed orthogonal TDM transmission with an optical Nyquist pulse train. Opt. Express 20(2), 1129–1140 (2012)

    Google Scholar 

  64. K. Harako, D. Seya, T. Hirooka, M. Nakazawa, 640 Gbaud (1.28 Tbit/s/ch) optical Nyquist pulse transmission over 525 km with substantial PMD tolerance. Opt. Express 21(18), 21063–21076 (2013)

    Google Scholar 

  65. H. Hu, D. Kong, E. Palushani, J.D. Andersen, A. Rasmussen, B.M. Sørensen, M. Galili, H.C.H. Mulvad, K.J. Larsen, S. Forchhammer, P. Jeppesen, L.K. Oxenløwe, 1.28 Tbaud Nyquist signal transmission using time-domain optical fourier transformation based receiver, in CLEO 2013, CTh5D.5 (2013)

    Google Scholar 

  66. H.N. Tan, K. Tanizawa, T. Inoue, T. Kurosu, S. Namiki, Seamless spectral defragmentation of Nyquist OTDM-WDM signals in add-drop node for all-optical elastic network, in ECOC 2013, We.1.C.5 (2013)

    Google Scholar 

  67. K. Kimura, J. Nitta, M. Yoshida, K. Kasai, T. Hirooka, M. Nakazawa, Single-channel 7.68 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 9.7 bit/s/Hz. Opt. Express 26(13), 17418–17428 (2018)

    Google Scholar 

  68. K. Harako, D.O. Otuya, K. Kasai, T. Hirooka, M. Nakazawa, High-performance TDM demultiplexing of coherent Nyquist pulses using time-domain orthogonality. Opt. Express 22(24), 29456–29464 (2014)

    Google Scholar 

  69. T. Hirooka, R. Hirata, J. Wang, M. Yoshida, M. Nakazawa, Single-channel 10.2 Tbit/s (2.56 Tbaud) optical Nyquist pulse transmission over 300 km. Opt. Express 26(21), 27221–27236 (2018)

    Google Scholar 

  70. E. Yamazaki, S. Yamanaka, Y. Kisaka, T. Nakagawa, K. Murata, E. Yoshida, T. Sakano, M. Tomizawa, Y. Miyamoto, S. Matsuoka, J. Matsui, A. Shibayama, J. Abe, Y. Nakamura, H. Noguchi, K. Fukuchi, H. Onaka, K. Fukumitsu, K. Komaki, O. Takeuchi, Y. Sakamoto, H. Nakashima, T. Mizuochi, K. Kubo, Y. Miyata, H. Nishimoto, S. Hirano, K. Onohara, Fast optical channel recovery in field demonstration of 100-Gbit/s ethernet over OTN using real-time DSP. Opt. Express 19(14), 13179–13184 (2011)

    Google Scholar 

  71. M. Tomizawa, A. Hirano, Y. Miyamoto, Safety issues in high-power optical fiber communication systems, including distributed Raman amplification systems, in International Laser Safety Conference ILSC2003 (2003), pp. 291–297

    Google Scholar 

  72. T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, F. Poletti, Enhancing optical communications with brand new fibers. IEEE Commun. Mag. 50(2), s31–s42 (2012)

    Google Scholar 

  73. J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, M. Watanabe, 109-Tb/s (7×97×172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber, in Optical Fiber Communication Conference (2011), p. PDPB

    Google Scholar 

  74. B. Zhu, X. Liu, S. Chandrasekhar, T.F. Taunay, M. Fishteyn, M.F. Yan, J.M. Fini, E.M. Monberg, F.V. Dimarcello, 112-Tb/s (7×160×107Gb/s) space-division multiplexed DWDM transmission over a 76.8-km multicore fiber, in European Conference and Exhibition on Optical Communication (2011), p. Tu.5.B.5

    Google Scholar 

  75. J. Sakaguchi, B.J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, M. Watanabe, 19-core fiber transmission of 19 x 100 x 172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s, in Optical Fiber Communication Conference (2012), p. PDP5C.1

    Google Scholar 

  76. H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, T. Morioka, 1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency, in European Conference and Exhibition on Optical Communication (2012), p. Th.3.C.1

    Google Scholar 

  77. B.J. Puttnam, R.S. Luís, W. Klaus, J. Sakaguchi, J.-M. Delgado Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, J. Marciante, 2.15 Pb/s transmission using a 22 core homogeneous singlemode multi-core fiber and wideband optical comb, in European Conference and Exhibition on Optical Communication (2015), p. PDP.3.1

    Google Scholar 

  78. T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Yamada, H. Masuda, T. Morioka, 2 x 344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation, in European Conference and Exhibition on Optical Communication (2013), p. PD3.E.4

    Google Scholar 

  79. K. Igarashi, T. Tsuritani, I. Morita, M. Suzuki, Ultra-long-haul high-capacity super-Nyquist-WDM transmission experiment using multi-core fibers. IEEE J. Lightwave Technol. 33(5), 1027–1036 (2015)

    Google Scholar 

  80. P. Winzer, A. Gnauck, A. Konczykowska, F. Jorge, J.-Y. Dupuy, Penalties from in-band crosstalk for advanced optical modulation formats, in 37th European Conference and Exposition on Optical Communications (2011), p. Tu.5.B.7

    Google Scholar 

  81. F. Ye, J. Tu, K. Saitoh, H. Takara, T. Morioka, Wavelength-dependent crosstalk in trench-assisted multi-core fibers, in OECC/ACOFT 2014 (2014), pp. 308–309

    Google Scholar 

  82. R. Ryf, R. Essiambre, A.H. Gnauck, S. Randel, M.A. Mestre, C. Schmidt, P.J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, T. Hayashi, T. Taru, T. Sasaki, Space-division multiplexed transmission over 4200-km 3-core microstructured fiber, in Optical Fiber Communication Conference, 2012 (2012), p. PDP5C.2

    Google Scholar 

  83. R.S. Luís, B.J. Puttnam, J.M. Delgado Mendinueta, W. Klaus, Y. Awaji, N. Wada, Comparing inter-core skew fluctuations in multi-core and single-core fibers, in Proceedings of CLEO, SM3L.5, San Jose (2015)

    Google Scholar 

  84. R.S. Luís, B.J. Puttnam, A.V.T. Cartaxo, W. Klaus, J.M.D. Mendinueta, Y. Awaji, N. Wada, T. Nakanishi, T. Hayashi, T. Sasaki, Time and modulation frequency dependence of crosstalk in homogeneous multi-core fibers. IEEE J. Lightwave Technol. 34(2), 441–447 (2016)

    Google Scholar 

  85. M.D. Feuer, L.E. Nelson, X. Zhou, S.L. Woodward, R. Isaac, B. Zhu, T.F. Taunay, M. Fishteyn, J.M. Fini, M.F. Yan, Joint digital signal processing receivers for spatial superchannels. IEEE Photon. Technol. Lett. 24, 1957–1960 (2012)

    Article  ADS  Google Scholar 

  86. B.J. Puttnam, R.S. Luís, J.M. Delgado Mendinueta, Y. Awaji, N. Wada, E. Agrell, Linear block-coding across >5 Tb/s PDM-64QAM spatial-super-channels in a 19-core Fiber, in Proceedings of ECOC, paper P.5.6 (2015)

    Google Scholar 

  87. D.S. Millar, T. Koike-Akino, S.Ö. Arık, K. Kojima, K. Parsons, T. Yoshida, T. Sugihara, High-dimensional modulation for coherent optical communications systems. Opt. Express 22(7), 8798–8812 (2014)

    Article  ADS  Google Scholar 

  88. A. Sano, H. Takara, T. Kobayashi, Y. Miyamoto, Crosstalk-managed high capacity long haul multicore fiber transmission with propagation-direction interleaving. J. Lightwave Technol. 32(16), 2771–2779 (2014)

    Article  ADS  Google Scholar 

  89. K. Takenaga, Multicore fiber with dual-ring structure, in OECC/ACOFT 2014 (2014), pp. 51–53

    Google Scholar 

  90. J.G. Proakis, M. Salehi, Digital Communications, 5th edn. (McGraw-Hill, 2008)

    Google Scholar 

  91. G. Bosco, A. Carena, P. Poggiolini, F. Forghieri, Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems. IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010)

    Google Scholar 

  92. J. Li, E. Tipsuwannakul, T. Eriksson, M. Karlsson, P.A. Andrekson, Approaching Nyquist limit in WDM systems by low-complexity receiver-side duobinary shaping. J. Lightwave Technol. 30(11), 1664–1676 (2012)

    Google Scholar 

  93. J. Zhang, J. Yu, Z. Dong, Z. Jia, H.C. Chien, Y. Cai, C. Ge, S. Shi, Y. Chen, H. Wang, Y. Xia, Transmission of 20×440-Gb/s super-Nyquist-filtered signals over 3600 km based on single-carrier 110-GBaud PDM QPSK with 100-GHz grid, in OFC 2014, Los Angeles, CA, USA, Th5B.3 (2014)

    Google Scholar 

  94. G.D. Forney Jr., Maximum-likelihood sequence estimation of digital sequences and the presence of intersymbol interference. IEEE Trans. Inform. Theory IT-15(3), 363–378 (1972)

    Google Scholar 

  95. D. Chang, F. Yu, Z. Xiao, N. Stojanovic, F.N. Hauske, Y. Cai, C. Xie, L. Li, X. Xu, Q. Xiong, LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission, in OFC 2012, Los Angeles, CA, USA, OW1H.4 (2012)

    Google Scholar 

  96. S. Chandrasekhar, A.H. Gnauck, X. Liu, P.J. Winzer, Y. Pan, E.C. Burrows, B. Zhu, T.F. Taunay, M. Fishteyn, M.F. Yan, J.M. Fini, E.M. Monberg, F.V. Dimarcello, WDM/SDM transmission of 10 × 128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 km·bit/s/Hz, in ECOC 2011, Geneva, Switzerland, Th.3.C4 (2011)

    Google Scholar 

  97. Y. Mori, Z. Chao, K. Kikuchi, Novel FIR-filter configuration tolerant to fast phase fluctuations in digital coherent receivers for higher-order QAM signals, in OFC 2012, Los Angeles, CA, USA, OTh4C.4 (2012)

    Google Scholar 

  98. P.J. Winzer, Spatial multiplexing: the next frontier in network capacity scaling, in Proceedings of European Conference on Optical Communication, Paper We.1.D.1 (2013)

    Google Scholar 

  99. P.M. Krummrich, Optical amplification and optical filter based signal processing for cost and energy efficient spatial multiplexing. Opt. Express 19(17), 16636–16652 (2011)

    Google Scholar 

  100. K.S. Abedin, J.M. Fini, T.F. Thierry, V.R. Supradeepa, B. Zhu, M.F. Yan, L. Bansal, E.M. Monberg, D.J. DiGiovanni, Multicore erbium doped fiber amplifiers for space division multiplexing systems. J. Lightwave Technol. 32(16), 2800–2808 (2014)

    Google Scholar 

  101. Y. Tsuchida, K. Maeda, R. Sugizaki, Multicore EDFA for space division multiplexing, in Proceedings of 18th OptoElectronics and Communications Conference, Paper TuS1-1 (2013)

    Google Scholar 

  102. K. Takeshima, T. Tsuritani, Y. Tsuchida, K. Maeda, T. Saito, K. Watanabe, T. Sasa, K. Imamura, R. Sugizaki, K. Igarashi, I. Morita, WDM/SDM transmission of 76 x 128-Gbit/s Nyquist-pulse-shaped DP-QPSK signals over 4,200 km using cladding pumped 7-core EDFA, in Proceedings of 20th OptoElectronics and Communications Conference, Paper JThA.13 (2015)

    Google Scholar 

  103. K.S. Abedin, T.F. Taunay, M. Fishteyn, D.J. DiGiovanni, V.R. Supradeepa, J.M. Fini, M.F. Yan, B. Zhu, E.M. Monberg, F.V. Dimarcello, Cladding-pumped erbium-doped multicore fiber amplifier. Opt. Express 20, 20191–20200 (2012)

    Article  ADS  Google Scholar 

  104. Y. Tsuchida, K. Maeda, K. Watanabe, T. Saito, S. Takasaka, M. Tadakuma, R. Sugizaki, H. Ogoshi, K. Doi, H. Matsuura, K. Takeshima, T. Tsuritani, I. Morita, Cladding-pumped L-band multicore EDFA with reduced power consumption, in IEEE Summer Topicals, ME2.2 (2014)

    Google Scholar 

  105. S. Takasaka, H. Matsuura, W. Kumagai, M. Tadakuma, Y. Mimura, Y. Tsuchida, K. Maeda, R. Miyabe, K. Aiso, K. Doi, R. Sugizaki, Cladding-pumped seven-core EDFA using a multimode pump light coupler, in Proceedings of European Conference on Optical Communication, Paper We.4.A.5 (2013)

    Google Scholar 

  106. K. Igarashi, T. Tsuritani, I. Morita, Y. Tsuchida, K. Maeda, M. Tadakuma, T. Saito, K. Watanabe, R. Sugizaki, M. Suzuki, 1.03-exabit/s·km super-Nyquist-WDM transmission over 7,326-km seven-core fiber, in Proceedings of European Conference on Optical Communication, Paper PDP3.E.3 (2013)

    Google Scholar 

  107. K. Igarashi, K. Takeshima, T. Tsuritani, H. Takahashi, S. Sumita, I. Morita, Y. Tsuchida, M. Tadakuma, K. Maeda, T. Saito, K. Watanabe, K. Imamura, R. Sugizaki, M. Suzuki, 110.9-Tbit/s SDM transmission over 6,370 km using a full C-band seven-core EDFA. Opt. Express 21(15), 18053–18060 (2013)

    Google Scholar 

  108. Y. Kawaguchi, T. Tsuritani, Ultra-long-haul multicore fiber transmission over 5,000 km using cladding pumped seven-core EDFA, in OECC 2017, 3-1K-3 (2017)

    Google Scholar 

  109. S. Todoroki, Fiber Fuse (Springer, 2014)

    Google Scholar 

  110. D.G. Foursa, H.G. Batshon, H. Zhang, M. Mazurczyk, J.-X. Cai, O. Sinkin, A. Pilipetskii, G. Mohs, N.S. Bergano, 44.1 Tb/s transmission over 9,100 km using coded modulation based on 16QAM signals at 4.9 bits/s/Hz spectral efficiency, in European Conference on Optical Communication (ECOC) (2013), p. PD3.E.1

    Google Scholar 

  111. T. Morioka, New generation optical infrastructure technologies: EXAT initiative towards 2020 and beyond, in OECC2009, FT4 (2009)

    Google Scholar 

  112. D. Soma, K. Igarashi, Y. Wakayama, K. Takeshima, Y. Kawaguchi, N. Yoshikane, T. Tsuritani, I. Morita, M. Suzuki, 2.05 Peta-bit/s super-Nyquist-WDM SDM transmission using 9.8-km 6-mode 19-core fiber in full C band, in Proceedings of ECOC 2015, Valencia, PD Papers, PDP3.2 (2015)

    Google Scholar 

  113. L. Dou, Z. Tao, L. Li, W. Yan, T. Tanimura, T. Hoshida, J.C. Rasmussen, A low complexity pre-distortion method for intra-channel nonlinearity, in OFC 2011, OThF5 (2011)

    Google Scholar 

  114. K. Kikuchi, Electric post-compensation for nonlinear phase fluctuations in a 1000-km 20-Gbit/s optical quadrature phase-shift keying transmission system using the digital coherent reciever. Opt. Express 16(2), 889–896 (2008)

    Article  ADS  Google Scholar 

  115. A. Yariv, D. Fekete, D.M. Pepper, Compensation for channel dispersion by nonlinear optical phase conjugation. Opt. Lett. 4, 52–54 (1979)

    Article  ADS  Google Scholar 

  116. S. Watanabe, T. Chikama, G. Ishikawa, T. Terahara, H. Kuwahara, Compensation of pulse shape distortion due to chromatic dispersion and Kerr effect by optical phase conjugation. IEEE photon. Technol. Lett. 5, 1241–1243 (1993)

    Article  ADS  Google Scholar 

  117. T. Umeki, T. Kazama, H. Ono, Y. Miyamoto, H. Takenouchi, Spectrally efficient optical phase conjugation based on complementary spectral inversion for nonlinearity mitigation, in ECOC 2015, Valencia, Spain, We.2.6.2 (2015)

    Google Scholar 

  118. A.D. Ellis, I.D. Phillips, M. Tan, M.F.C. Stephens, M.E. McCarthy, M.A.Z. Al Kahteeb, M.A. Iqbal, A. Perentos, S. Fabbri, V. Gordienko, D. Lavery, G. Liga, G. Saavedra, M.R. Maher, S. Sygletos, P. Harper, N.J. Doran, P. Bayvel, S.K. Turitsyn, Enhanced superchannel transmission using phase conjugation, in ECOC 2015, Valencia, Spain, We.2.6.4 (2015)

    Google Scholar 

  119. M. Koga, A. Mizutori, T. Ohata, H. Takara, Optical diversity transmission with signal and its phaseconjugate lights through multi-core fiber, in OFC 2015, Th1D.4 (2015)

    Google Scholar 

  120. M. Koga, M. Moroi, H. Takara, Optical diversity transmission with WDM signal and phase-conjugate lights through multi-core fiber. Opt. Express 24(9), 9340–9352 (2016)

    Article  ADS  Google Scholar 

  121. T. Iida, A. Mizutori, M. Koga, Optical diversity transmission and maximum-ratio combine in multi-core fiber to mitigate fiber non-linear distortion, in OECC 2012, Busan, Korea, July 2012, 6B2-5 (2012), pp. 757–758

    Google Scholar 

  122. S. Stein, Maximum-ratio combining, in Communication Systems and Techniques (IEEE Press, NJ, 1966), pp. 440–441

    Google Scholar 

  123. V.A.J.M. Sleiffer, Y. Jung, V. Veljanovski, R.G.H. van Uden, M. Kuschnerov, Q. Kang, L. Grüner-Nielsen, Y. Sun, D.J. Richardson, S. Alam, F. Poletti, J.K. Sahu, A. Dhar, H. Chen, B. Inan, A.M.J. Koonen, B. Corbett, R. Winfield, A.D. Ellis, H. de Waardt, 73.7 Tb/s (96 x 3 x 256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA, in Proceedings of ECOC, Amsterdam, PD Papers, Th.3.C.4 (2012)

    Google Scholar 

  124. E. Ip, M.-J. Li, K. Bennett, Y.-K. Huang, A. Tanaka, A. Korolev, K. Koreshkov, W. Wood, E. Mateo, J. Hu, Y. Yano, 146λ×6×19-Gbaud wavelength- and mode-division multiplexed transmission over 10×50-km spans of few-mode fiber with a gain-equalized few-mode EDFA, in Proceedings of OFC/NFOEC, Anaheim, PD Papers, PDP5A.2 (2013)

    Google Scholar 

  125. M. Esmaeelpour, R. Ryf, N.K. Fontaine, H. Chen, A.H. Gnauck, R.-J. Essiambre, J. Toulouse, Y. Sun, R. Lingle Jr., Transmission over 1050-km few-mode fiber based on bidirectional distributed Raman amplification. IEEE J. Lightwave Technol. 34(8), 1864–1871 (2016)

    Google Scholar 

  126. R. Ryf, S. Randel, N.K. Fontaine, M. Montoliu, E. Burrows, S. Corteselli, S. Chandrasekhar, A.H. Gnauck, C. Xie, R.-J. Essiambre, P.J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Grüner-Nielsen, R.V. Jensen, R. Lingle Jr., 32-bit/s/Hz spectral efficiency WDM transmission over 177-km few-mode fiber, in Proceedings of OFC, Anaheim, PD Papers, PDP5A.1 (2013)

    Google Scholar 

  127. Y. Chen, A. Lobato, Y. Jung, H. Chen, R.V. Jensen, Y. Sun, L. Grüner-Nielsen, D.J. Richardson, V.A.J.M. Sleiffer, M. Kuschnerov, N.K. Fontaine, R. Ryf, I.P. Giles, R. Chen, V. Carcia-Munoz, A.M.J. Koonen, B. Lankl, nd N. Hanik, 41.6 Tb/s C-band SDM OFDM transmission through 12 spatial and polarization modes over 74.17 km few mode fiber, in Proceedings of ECOC, Cannes, Mo.3.3.3 (2014)

    Google Scholar 

  128. T. Mizuno, H. Takara, A. Sano, Y. Miyamoto, Dense space division multiplexed transmission systems using multi-core and multi-mode fiber. IEEE J. Lightwave Technol. 34(2), 582–592 (2016)

    Google Scholar 

  129. P. Sillard, M.B.-Astruc, D. Molin, Few-mode fibers for mode-division-multiplexed systems. IEEE J. Lightwave Technol. 32(16), 2824–2829 (2014)

    Google Scholar 

  130. T. Sakamoto, T. Mori, T. Yamamoto, S. Tomita, Differential mode delay managed transmission line for WDM-MIMO system using multi-step index fiber. IEEE J. Lightwave Technol. 30(17), 2783–2787 (2012)

    Google Scholar 

  131. T. Mizuno, T. Kobayashi, H. Takara, A. Sano, H. Kawakami, T. Nakagawa, Y. Miyamoto, Y. Abe, T. Goh, M. Oguma, T. Sakamoto, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, T. Morioka, 12-core × 3-mode dense space division multiplexed transmission over 40 km employing multi-carrier signals with parallel MIMO equalization, in Proceedings of OFC, San Francisco, PD Papers, Th5B.2 (2014)

    Google Scholar 

  132. K. Shibahara, D. Lee, T. Kobayashi, T. Mizuno, H. Takara, A. Sano, H. Kawakami, Y. Miyamoto, H. Ono, M. Oguma, Y. Abe, T. Matsui, R. Fukumoto, Y. Amma, T. Hosokawa, S. Matsuo, K. Saitoh, M. Yamada, T. Morioka, Dense SDM (12-core × 3-mode) transmission over 527 km with 33.2-ns mode-dispersion employing low-complexity parallel MIMO frequency-domain equalization. IEEE J. Lightwave Technol. 34(1), 196–204 (2016)

    Google Scholar 

  133. T. Mizuno, H. Takara, K. Shibahara, A. Sano, Y. Miyamoto, Dense space division multiplexed transmission over multicore and multimode fiber for long-haul transport systems, IEEE J. Lightwave Technol. 34(6), 1484–1493 (2016)

    Google Scholar 

  134. Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, Few-mode multicore fiber with 36 spatial modes (three modes (LP01, LP11a, LP11b) × 12 cores). IEEE J. Lightwave Technol. 33(5), 964–970 (2015)

    Google Scholar 

  135. H. Ono, T. Hosokawa, K. Ichii, S. Matsuo, M. Yamada, Improvement of differential modal gain in few-mode fibre amplifier by employing ring-core erbium-doped fibre. Electron. Lett. 51(2), 172–173 (2015)

    Google Scholar 

  136. A. Lobato, F. Ferreira, M. Kuschnerov, D. Borne, S.L. Jansen, A. Napoli, B. Spinnler, B. Lankl, Impact of mode coupling on the mode dependent loss tolerance in few-mode fiber transmission. Opt. Express 20(28), 29776–29783 (2012)

    Article  ADS  Google Scholar 

  137. R. Ryf, H. Chen, N.K. Fontaine, A.M. Velazquez-Benitez, J. Antonio-Lopez, C. Jin, B. Huang, M. Bigot-Astruc, D. Molin, F. Achten, P. Sillard, R. Amezcua-Correa, 10-mode mode-multiplexed transmission over 125-km single-span multimode fiber, in Proceedings of ECOC, Valencia, PDP.3.3 (2015)

    Google Scholar 

  138. N.K. Fontaine, R. Ryf, H. Chen, A.V. Benitez, J.E.A. Lopez, R.A. Correa, B. Guan, B. Ercan, R.P. Scott, S.J. Ben Yoo, L. Grüner-Nielsen, Y. Sun, R.J. Lingle, 30 x 30 MIMO transmission over 15 spatial modes, in Proceedings of OFC, Los Angeles, PD Papers, Th5C.1 (2015)

    Google Scholar 

  139. K. Shibahara, T. Mizuno, D. Lee, Y. Miyamoto, H. Ono, K. Nakajima, Y. Amma, K. Takenaga, K. Saitoh, DMD-unmanaged long-haul SDM transmission over 2500-km 12-core × 3-mode MC-FMF and 6300-km 3-mode FMF employing intermodal interference canceling technique. IEEE J. Lightwave Technol. 37(1), 138–147 (2019)

    Google Scholar 

  140. T. Mizuno, K. Shibahara, H. Ono, Y. Miyamoto, Long-distance PDM-32QAM 3-mode fibre transmission over 1000 km using hybrid multicore EDFA/Raman repeated amplification with cyclic mode permutation, in Proceedings of ECOC, Sept 2018, Mo3G.6

    Google Scholar 

  141. K. Shibahara, T. Mizuno, H. Kawakami, T. Kobayashi, M. Nakamura, K. Shikama, K. Nakajima, Y. Miyamoto, Full C-band 3060-km DMD-unmanaged 3-mode transmission with 40.2-Tb/s capacity using cyclic mode permutation, in Proceedings of OFC, San Diego, Mar 2019, W3F.2

    Google Scholar 

  142. T. Mizuno, Y. Miyamoto, High-capacity dense space division multiplexing transmission. Opt. Fiber Technol. 35, 108–117 (2017)

    Google Scholar 

  143. R.G.H. van Uden, R. Amezcua Correa, E. Antonio-Lopez, F.M. Huijskens, G. Li, A. Schulzgen, H. de Waardt, A.M.J. Koonen, C.M. Okonkwo, 1 km hole-assisted few-mode multi-core fiber 32QAM WDM transmission, in Proceedings of ECOC, Cannes, Mo.3.3.4 (2014)

    Google Scholar 

  144. K. Shibahara, T. Mizuno, D. Lee, Y. Miyamoto, Advanced MIMO signal processing techniques enabling long-haul dense SDM transmissions. IEEE J. Lightwave Technol. 36(2), 336–348 (2018)

    Google Scholar 

  145. K. Igarashi, D. Souma, Y. Wakayama, K. Takeshima, Y. Kawaguchi, N. Yoshikane, T. Tsuritani, I. Morita, M. Suzuki, Ultra-dense spatial-division-multiplexed transmission over 6-mode 19-core fibers. Opt. Express 24(10), 10213–10231 (2016)

    Article  ADS  Google Scholar 

  146. J. Sakaguchi, W. Klaus, J.-M.D. Mendinueta, B.J. Puttnam, R.S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, T. Kobayashi, Realizing a 36-core, 3-mode fiber with 108 spatial channels, in Proceedings of OFC, Los Angeles, PD Papers, Th5C.2 (2015)

    Google Scholar 

  147. T. Mizuno, K. Shibahara, F. Ye, Y. Sasaki, Y. Amma, K. Takenaga, Y. Jung, K. Pulverer, H. Ono, Y. Abe, M. Yamada, K. Saitoh, S. Matsuo, K. Aikawa, M. Bohn, D.J. Richardson, Y. Miyamoto, T. Morioka, Long-haul dense space-division multiplexed transmission over low-crosstalk heterogeneous 32-core transmission line using a partial recirculating loop system. IEEE J. Lightwave Technol. 35(3), 488–498 (2017)

    Google Scholar 

  148. S. Matsuo, K. Takenaga, Y. Sasaki, Y. Amma, S. Saito, K. Saitoh, T. Matsui, K. Nakajima, T. Mizuno, H. Takara, Y. Miyamoto, T. Morioka, High-spatial-multiplicity multicore fibers for future dense space-division-multiplexing systems. IEEE J. Lightwave Technol. 34(6), 1464–1475 (2016)

    Google Scholar 

  149. K. Shibahara, T. Mizuno, D. Lee, Y. Miyamoto, H. Ono, K. Nakajima, Y. Amma, K. Takenaga, K. Saitoh, Iterative unreplicated parallel interference canceler for MDL-tolerant dense SDM (12-core × 3-mode) transmission over 3000 km. IEEE J. Lightwave Technol. 37(6), 1560–1569 (2019)

    Google Scholar 

  150. G. Labroille, B. Denolle, P. Jian, P. Genevaux, N. Treps, J.-F. Morizur, Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion. Opt. Express 22(13), 15599–15607 (2014)

    Google Scholar 

  151. Y. Mori, Z. Chao, K. Kikuchi, Novel FIR-filter configuration tolerant to fast phase fluctuations in digital coherent receivers for higher-order QAM sig-nals, in OFC 2012, Los Angeles, CA, USA, OTh4C.4 (2012)

    Google Scholar 

  152. D. Soma, Y. Wakayama, S. Beppu, S. Sumita, T. Tsuritani, T. Hayashi, T. Nagashima, M. Suzuki, H. Takahashi, K. Igarashi, I. Morita, M. Suzuki, 10.16 Peta-bit/s dense SDM/WDM transmission over low-DMD 6-mode 19-core fibre across C+L band, in ECOC 2017, Th.PDP.A.1 (2017)

    Google Scholar 

  153. W. Klaus, J. Sakaguchi, B.J. Puttnam, Y. Awaji, N. Wada, Free-space coupling conditions for multi-core few-mode fibers, in IEEE Photonics Society Summer Topical Meeting 2014 (2014), pp. 182–183

    Google Scholar 

  154. T. Sakamoto, T. Mori, T. Yamamoto, N. Hanzawa, S. Tomita, F. Yamamoto, K. Saitoh, M. Koshiba, Mode-division multiplexing transmission system with DMD-independent low complexity MIMO processing. IEEE J. Lightwave Technol. 31(13), 2192–2199 (2013)

    Article  ADS  Google Scholar 

  155. Special issue on nonlinear-optical signal processing. J. Sel. Top. Quantum Electron. 14(3) (2008)

    Google Scholar 

  156. A.E. Willner, S. Khaleghi, M.R. Chitgarha, O.F. Yilmaz, All-optical signal processing. J. Lightwave Technol. 32(4), 660–680 (2014)

    Article  ADS  Google Scholar 

  157. G.P. Agrawal, Nonlinear Fiber Optics, 3rd edn. (Academic Press, 2001)

    Google Scholar 

  158. G.P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, 2001)

    Google Scholar 

  159. M. Yoshida, K. Kasai, M. Nakazawa, Mode-hop-free, optical frequency tunable 40-GHz mode-locked fiber laser. IEEE J. Quantum Electron. 43(8), 704–708 (2007)

    Article  ADS  Google Scholar 

  160. T. Morioka, S. Kawanishi, K. Mori, M. Saruwatari, Transform-limited, femtosecond WDM pulse generation by spectral filtering of gigahertz supercontinuum. Electron. Lett. 30(14), 1166–1168 (1994)

    Article  ADS  Google Scholar 

  161. I.N. Duling (ed.), Compact Sources for Ultrashort Pulses (Cambridge University Press, 1995)

    Google Scholar 

  162. L. Krainer, D. Nodop, G.J. Spühler, S. Lecomte, M. Golling, R. Paschotta, D. Ebling, T. Ohgoh, T. Hayakawa, K.J. Weingarten, U. Keller, Compact 10-GHz Nd:GdVO4 laser with 0.5-W average out-put power and low timing jitter. Opt. Lett. 29(22), 2629–2631 (2004)

    Google Scholar 

  163. S.Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, Laser mode locking using a saturable absorber incorporating carbon nanotubes. J. Lightwave Technol. 22(1), 51–56 (2004)

    Article  ADS  Google Scholar 

  164. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z.X. Shen, K.P. Loh, D.Y. Tang, Atomic-layer graphene as a saturable absorber for ul-trafast pulsed lasers. Adv. Funct. Mater. 19(19), 3077–3083 (2009)

    Article  Google Scholar 

  165. S. Yamashita, A tutorial on nonlinear photonic applications of carbon nano-tube and graphene (invited tutorial). J. Lightwave Technol. 30(4), 427–447 (2012)

    Article  ADS  Google Scholar 

  166. S. Yamashita, A. Martinez, B. Xu, Short pulse fiber lasers mode-locked by carbon nanotube and graphene (invited). Opt. Fiber Technol. 20(6), 702–713 (2014)

    Article  ADS  Google Scholar 

  167. S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, S.Y. Set, 5 GHz pulsed fiber Fabry-Perot laser mode-locked using carbon nanotubes. IEEE Photon. Technol. Lett. 17(4), 750–752 (2005)

    Google Scholar 

  168. A. Martinez, S. Yamashita, Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes. Opt. Express 19(7), 6156–6163 (2011)

    Article  ADS  Google Scholar 

  169. A. Martinez, S. Yamashita, 10 GHz fundamental mode fiber laser using a graphene saturable absorber. Appl. Phys. Lett. 101, 041118 (2012)

    Google Scholar 

  170. M. Onishi, T. Okuno, T. Kashiwada, S. Ishikawa, N. Akasaka, M. Nishimura, Highly nonlinear dispersion-shifted fibers and their application to broadband wavelength converter. Opt. Fiber Technol. 4(2), 204–214 (1998)

    Article  ADS  Google Scholar 

  171. J.H. Lee, Novel dispersion properties of photonic crystal fiber. Jpn. J. Appl. Phys. 46(8B), 5408–5413 (2007)

    Article  ADS  Google Scholar 

  172. N. Sugimoto, Erbium doped fiber and highly non-linear fiber based on bismuth oxide glasses. J. Non-Cryst. Solids 354, 1205–1210 (2008)

    Article  ADS  Google Scholar 

  173. M.D. Pelusi, V.G. Ta’eed, L. Fu, E. Magi, M.R.E. Lamont, S. Madden, D.Y. Choi, D.A.P. Bulla, B. Luther-Davies, B.J. Eggleton, Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing. J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008)

    Google Scholar 

  174. S. Watanabe, F. Futami, R. Okabe, R. Ludwig, C. Schmidt-Langhorst, B. Huettl, C. Schubert, H.G. Weber, An optical parametric amplified fiber switch for optical signal processing and regeneration. J. Sel. Top. Quantum Electron. 14(3), 674–680 (2008)

    Google Scholar 

  175. M. Tani, S. Yamashita, Dispersion compensation with an SBS-suppressed fiber phase conjugator using synchronized phase modulation. Electron. Lett. 39(19), 1375–1377 (2003)

    Google Scholar 

  176. K. Seki, S. Yamashita, Narrowband and tunable optical parametric ampli-fication in bismuth-oxide-based highly nonlinear fiber. Opt. Express 16(18), 13871–13877 (2008)

    Google Scholar 

  177. P.V. Mamyshev, All-optical data regeneration based on self-phase modulation effect, in ECOC98, Sept. 1998, pp. 475–476

    Google Scholar 

  178. S. Yamashita, M. Shahed, Optical 2R regeneration using cascaded fiber four wave mixing with suppressed spectral spread. IEEE Photon. Technol. Lett. 18(9), 1064–1066 (2006)

    Google Scholar 

  179. K.Y. Song, M.G. Herráez, L. Thévenaz, Long optically controlled delays in optical fibers. Opt. Lett. 30(14), 1782–1784 (2005)

    Article  ADS  Google Scholar 

  180. B.J. Eggleton, Inducing and harnessing stimulated Brillouin scattering in pho-tonic integrated circuits. Adv. Opt. Photon. 5, 536–587 (2013)

    Article  Google Scholar 

  181. K.K. Chow, S. Yamashita, Four-wave mixing in a single-walled carbon-nanotube-deposited D-shaped fiber and its application in tunable wavelength conversion. Opt. Express 17(18), 15608–15613 (2009)

    Google Scholar 

  182. K.K. Chow, S. Yamashita, S.Y. Set, Four-wave mixing based wavelength conversion using a single-walled carbon-nanotube-deposited planar lightwave circuit waveguide. Opt. Lett. 35(12), 2070–2072 (2010)

    Google Scholar 

  183. K.K. Chow, S. Yamashita, Self-phase modulation based optical regeneration of 10 Gb/s, 1.8ps RZ signal using carbon nanotube device, in Conference on Lasers and Electro Optics (CLEO2010), San Jose, USA, May 2010, no. CWI6

    Google Scholar 

  184. B. Xu, A. Martinez, S. Yamashita, Mechanically exfoliated graphene for four wave mixing based wavelength conversion. IEEE Photon. Technol. Lett. 24(20), 1792–1794 (2012)

    Google Scholar 

  185. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, J. Leuthold, All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nat. Photonics 3, 216–219 (2009)

    Google Scholar 

  186. B.J. Puttnam, R.S. Luís, E. Agrell, G. Rademacher, J. Sakaguchi, W. Klaus, G.M. Saridis, Y. Awaji, N. Wada, High capacity transmission systems using homogeneous multi-core fibers. J. Lightwave Technol. 35, 1157–1167 (2017)

    Article  ADS  Google Scholar 

  187. M.D. Feuer, L.E. Nelson, K. Abedin, X. Zhou, T.F. Taunay, J.F. Fini, B. Zhu, R. Isaac, R. Harel, G. Cohen, D.M. Marom, ROADM system for space division multiplexing with spatial superchannels, in Optical Fiber Communication Conference (Optical Society of America, Technical Digest 2013), PDP5B.8 (2013)

    Google Scholar 

  188. L.E. Nelson, M.D. Feuer, K. Abedin, X. Zhou, T.F. Taunay, J.M. Fini, B. Zhu, R. Isaac, R. Harel, G. Cohen, D.M. Marom, Spatial superchannel routing in a two-span ROADM system for space division multiplexing. J. Lightwave Technol. 32(4), 783–789 (2014)

    Google Scholar 

  189. B.J. Puttnam, R.S. Luís, J.M.D. Mendinueta, J. Sakaguchi, W. Klaus, Y. Kamio, M. Nakamura, N. Wada, Y. Awaji, A. Kanno, T. Kawanishi, T. Miyazaki, Self-homodyne detection in optical communication systems. Photonics 1(2), 110 (2014)

    Article  Google Scholar 

  190. E. Le Taillandier de Gabory, M. Arikawa, Y. Hashimoto, T. Ito, K. Fukuchi, A shared carrier reception and processing scheme for compensating frequency offset and phase noise of space-division multiplexed signals over multicore fibers, in Optical Fiber Communication Conference (Optical Society of America, Technical Digest 2013), paper OM2C.2 (2013)

    Google Scholar 

  191. B.J. Puttnam, T.A. Eriksson, J.-M. Delgado Mendinueta, R.S. Luís, W. Klaus, J. Sakaguchi, Y. Awaji, N. Wada, M. Karlsson, E. Agrell, Modulation formats for multi-core fiber transmission. Opt. Express 22(26), 32457–32469 (2014)

    Google Scholar 

  192. T. Miyazaki, F. Kubota, PSK self-homodyne detection using a pilot carrier for multibit/symbol transmission with inverse-RZ signal. IEEE Photon. Technol. Lett. 17(6), 1334–1336 (2005)

    Article  ADS  Google Scholar 

  193. T. Miyazaki, Linewidth-tolerant QPSK homodyne transmission using a polarization-multiplexed pilot carrier. IEEE Photon. Technol. Lett. 18(2), 388–390 (2006)

    Article  ADS  Google Scholar 

  194. B.J. Puttnam, J. Sakaguchi, W. Klaus, Y. Awaji, J.-M. Delgado Mendinueta, N. Wada, A. Kanno, T. Kawanishi, Investigating self-homodyne coherent detection in a 19-core spatial-division-multiplexed transmission link, in Procedings of the European Conference and Exhibition on Optical Communications (ECOC) 2012, paper Tu.3.C.3 (2012)

    Google Scholar 

  195. B.J. Puttnam, J. Sakaguchi, J.-M. Delgado Mendinueta, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, Investigating self-homodyne coherent detection in a 19 channel space-division-multiplexed transmission link. Opt. Express 21(2), 1561–1566 (2013)

    Google Scholar 

  196. J.M. Delgado Mendinueta, B.J. Puttnam, J. Sakaguchi, R.S. Luis, W. Klaus, Y. Awaji, A. Kanno, T. Kawanishi, Investigation of receiver DSP carrier phase estimation rate for self-homodyne space-division multiplexing communication systems, in Optical Fiber Communication Conference (Optical Society of America, Technical Digest 2013), paper JTh2A.48 (2013)

    Google Scholar 

  197. J.M. Delgado Mendinueta, B.J. Puttnam, J. Sakaguchi, R.S. Luis, W. Klaus, Y. Awaji, A. Kanno, T. Kawanishi, Energy efficient carrier phase recovery for self-homodyne polarization-multiplexed QPSK, in Proceedings of OptoElectronics and Communications Conference, 2013, paper ThR3-5 (2013)

    Google Scholar 

  198. G.-W. Lu, M. Nakamura, Y. Kamio, T. Miyazaki, 40-Gb/s QPSK and 20-Gb/s PSK with inserted pilot symbols using self-homodyne detection. Opt. Express 15(12), 7660–7666 (2007)

    Article  ADS  Google Scholar 

  199. M. Nakamura, Y. Kamio, G.-W. Lu, T. Miyazaki, Ultimate linewidth-tolerant 20-Gbps QPSK-homodyne transmission using a spectrum-sliced ASE light source, in Optical Fiber Communication Conference (Optical Society of America, Technical Digest 2013), paper OThD4 (2013)

    Google Scholar 

  200. Y. Kamio, M. Nakamura, T. Miyazaki, 80-Gb/s 256-QAM signals using phase noise and DGD-tolerant pilot-carrier-aided homodyne detection, in Proceedings of the European Conference and Exhibition on Optical Communications (ECOC) 2007, paper P089 (2007)

    Google Scholar 

  201. M. Sjödin, E. Agrell, P. Johannisson, G.-W. Lu, P.A. Andrekson, M. Karlsson, Filter optimization for self-homodyne coherent WDM systems using interleaved polarization division. J. Lightwave Technol. 29(9), 1219–1226 (2011)

    Article  ADS  Google Scholar 

  202. P. Johannisson, M. Sjödin, M. Karlsson, E. Tipsuwannakul, P. Andrekson, Cancellation of nonlinear phase distortion in self-homodyne coherent systems. IEEE Photon. Technol. Lett. 22(11), 802–824 (2010)

    Article  ADS  Google Scholar 

  203. R. Luis, B.J. Puttnam, J.-M. Delgado Mendinueta, W. Klaus, J. Sakaguchi, Y. Awaji, A. Kanno, T. Kawanishi, N. Wada, OSNR penalty of self-homodyne coherent detection in spatial-division-multiplexing systems. IEEE Photon. Technol. Lett. 26(5), 477–479 (2014)

    Google Scholar 

  204. Z. Qu, S. Fu, M. Zhang, M. Tang, P. Shum, D. Liu, Analytical investigation on self-homodyne coherent system based on few-mode fiber. IEEE Photon. Technol. Lett. 26(1), 74–77 (2014)

    Article  ADS  Google Scholar 

  205. B.J. Puttnam, J.-M. Delgado Mendinueta, J. Sakaguchi, R. Luis, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, 105Tb/s transmission system using low-cost, MHz linewidth DFB lasers enabled by self-homodyne coherent detection and a 19-core fiber, in Optical Fiber Communication Conference (Optical Society of America, Technical Digest 2013), paper OW1I.1 (2013)

    Google Scholar 

  206. B.J. Puttnam, S.L. Ruben, J.M.D. Mendinueta, J. Sakaguchi, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, Long distance transmission in a multi-core fiber with self-homodyne detection, in Optical Fiber Communication Conference, Los Angeles, Mar 2015

    Google Scholar 

  207. R. Luis, B.J. Puttnam, J.-M. Delgado Mendinueta, Y. Awaji, N. Wada, Photonics in switching ‘impact of spatial channel skew on the performance of spatial-division multiplexed self-homodyne transmission systems’, in Proceedings of Photonics in Switching (2015)

    Google Scholar 

  208. R. Luis, B.J. Puttnam, J.-M. Delgado Mendinueta, Y. Awaji, N. Wada, Experimental demonstration of a polarization-insensitive self-homodyne detection receiver for optical access, in Proceedings of ECOC 2015, paper Tu.3.4.7 (2015)

    Google Scholar 

  209. R. Luis, B.J. Puttnam, J.-M. Delgado Mendinueta, J. Sakaguchi, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, In-service method of path length alignment in SDM systems with self-homodyne detection, in Proceedings of OptoElectronics and Communications Conference 2013, paper ThR3-3 (2013)

    Google Scholar 

  210. R. Noé, H. Heidrich, D. Hoffmann, Endless polarization control systems for coherent optics. IEEE J. Lightwave Technol. 1988(6), 1199–1207 (1988)

    Article  ADS  Google Scholar 

  211. B. Koch, R. Noé, V. Mirvoda, H. Griesser, S. Bayer, H. Wernz, Record 59-krad/s polarization tracking in 112-Gb/s640-km PDM-RZ-DQPSK transmission. IEEE Photon. Technol. Lett. 2010(22), 1407–1409 (2010)

    Article  ADS  Google Scholar 

  212. B. Koch, R. Noé, V. Mirvoda, D. Sandel, O. Jan, K. Puntsri, 20-Gb/s PDM-RZ-DPSK transmission with 40 krad/s endless optical polarization tracking. IEEE Photon. Technol. Lett. 2013(25), 798–801 (2013)

    Article  ADS  Google Scholar 

  213. N. Amaya, M. Irfan, G. Zervas, R. Nejabati, D. Simeonidou, V. Rancano, F. Parmigiani, P. Petropoulos, D. Richardson, J. Sakaguchi, W. Klaus, B. Puttnam, T. Miyazawa, Y. Awaji, N. Wada, I. Henning, First fully-elastic multi-granular network with space/frequency/time switching using multi-core fibres and programmable optical nodes, in Proceedings of the European Conference and Exhibition on Optical Communication, London, UK, 16–20 Sept 2012

    Google Scholar 

  214. N. Amaya, M. Irfan, G. Zervas, R. Nejabati, D. Simeonidou, J. Sakaguchi, W. Klaus, B.J. Puttnam, T. Miyazawa, Y. Awaji, N. Wada, I. Henning, Fully-elastic multi-granular network with space/frequency/time switching using multi-core fibres and programmable optical nodes. Opt. Express 21, 8658–8872 (2013)

    Article  Google Scholar 

  215. J. Sakaguchi, W. Klaus, B.J. Puttnam, T. Miyazawa, Y. Awaji, J.M.D. Mendinueta, R.S. Luis, N. Wada, SDM-WDM hybrid reconfigurable add-drop nodes for self-homodyne photonic networks, in Proceedings of the IEEE Photonics Society Summer Topical Meeting Series, Waikoloa, HI, USA, 8–10 July 2013

    Google Scholar 

  216. N. Amaya, S. Yan, M. Channegowda, B.R. Rofoee, Y. Shu, M. Rashidi, Y. Ou, E. Hugues-Salas, G. Zervas, R. Nejabati, D. Simeonidou, B.J. Puttnam, W. Klaus, J. Sakaguchi, T. Miyazawa, Y. Awaji, H. Harai, N. Wada, First demonstration of software defined networking (SDN) over space division multiplexing (SDM) optical networks, in Proceedings of the 39th European Conference and Exhibition on Optical Communication (ECOC 2013), London, UK, 22–26 Sept 2013

    Google Scholar 

  217. N. Amaya, S. Yan, M. Channegowda, B.R. Rofoee, Y. Shu, M. Rashidi, Y. Ou, E. Hugues-Salas, G. Zervas, R. Nejabati, D. Simeonidou, B.J. Puttnam, W. Klaus, J. Sakaguchi, T. Miyazawa, Y. Awaji, H. Harai, N. Wada, Software defined networking (SDN) over space division multiplexing (SDM) optical networks: features, benefits and experimental demonstration. Opt. Express 22, 3638–3647 (2014)

    Article  ADS  Google Scholar 

  218. T.A. Eriksson, P. Johannisson, E. Agrell, P.A. Andrekson, M. Karlsson, Frequency and polarization switched QPSK, in Proceedings of the European Conference on Optical Communications (ECOC 2013), paper Th.2.D.4 (2013)

    Google Scholar 

  219. H. Sugiyama, K. Nosu, MPPM: a method for improving the band-utilization efficiency in optical PPM. IEEE J. Lightwave Technol. 7(3), 465–472 (1989)

    Article  ADS  Google Scholar 

  220. H. Bülow, Polarization QAM modulation (POL-QAM) for coherent detection schemes, in Proceedings of OFC/NFOEC 2009, San Diego, CA, 22–26 Mar 2009, OWG2 (2009)

    Google Scholar 

  221. E. Agrell, M. Karlsson, Power-efficient modulation formats in coherent transmission systems. IEEE J. Lightwave Technol. 27(22), 5515–5526 (2009)

    Article  Google Scholar 

  222. M. Karlsson, E. Agrell, Which is the most power-efficient modulation format in optical links? Opt. Express 17(13), 10814–10819 (2009)

    Article  ADS  Google Scholar 

  223. T.A. Eriksson, P. Johannisson, B.J. Puttnam, E. Agrell, P.A. Andrekson, M. Karlsson, K-over-L multidimensional position modulation. IEEE J. Lightwave Technol. 32(12), 2254–2262 (2014)

    Article  ADS  Google Scholar 

  224. J. Pierce, Optical channels: practical limits with photon counting. IEEE Trans. Commun. 26, 1819–1821 (1978)

    Article  Google Scholar 

  225. A.J. Philips, R.A. Cryan, J.M. Senior, Performance evaluation of optically pre-amplified PPM Systems. IEEE Photon. Technol. Lett. 6(5), 651–653 (1994)

    Article  ADS  Google Scholar 

  226. M. Noshad, M. Brandt-Pearce, Expurgated PPM using symmetric balanced incomplete block designs. IEEE Commun. Lett. 16(7), 968–971 (2012)

    Article  Google Scholar 

  227. M. Karlsson, E. Agrell, Generalized pulse-position modulation for optical power-efficient communication, in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (Optical Society of America 2011), paper Tu.6.B.6 (2011)

    Google Scholar 

  228. X. Liu, T. Wood, R. Tkach, S. Chandrasekhar, Demonstration of record sensitivity in an optically pre-amplified receiver by combining PDM-QPSK and 16-PPM with pilot-assisted digital coherent detection, in Optical Fiber Communication Conference (Optical Society of America, Technical Digest 2011), PDPB.1 (2011)

    Google Scholar 

  229. A. Ludwig, M. Schulz, P. Schindler, K. Kuder, S. Wolf, C. Koos, W. Freude, J. Leuthold, Stacking modulation formats for highest-sensitivity, in Advanced Photonics for Communications, OSA Technical Digest (online), paper JM2B.2 (Optical Society of America, 2014) (2014)

    Google Scholar 

  230. J.H.B. Nijhof, Generalized L-out-of-K pulse position modulation for improved power efficiency and spectral efficiency, in Optical Fiber Communication Conference (Optical Society of America, Technical Digest 2012), paper OW3H.7 (2012)

    Google Scholar 

  231. R.S. Tucker, Green optical communications—part I: energy limitations in transport. IEEE J. Lightwave Technol. 17(2), 245–260 (2011)

    Google Scholar 

  232. P. Poggiolini, A. Carena, V. Curri, G. Bosco, F. Forghieri, Experimental demonstration of a highly reliable multicore-fiber-based optical network. IEEE Photon. Technol. Lett. 23(11), 742–744 (2011)

    Article  ADS  Google Scholar 

  233. G. Ungerboeck, Channel coding with multilevel/phase signals. IEEE Trans. Inform. Theory 28, 55–67 (1982)

    Article  MATH  Google Scholar 

  234. L.D. Coelho, N. Hanik, Global optimization of fiber-optic communication systems using four-dimensional modulation formats, in Proceedings of the European Conference on Optical Communications (ECOC 2011), paper Mo.2.B.4 (2011)

    Google Scholar 

  235. T.A. Eriksson, M. Sjödin, P. Johannisson, P.A. Andrekson, M. Karlsson, Comparison of 128-SP-QAM and PM-16QAM in long-haul WDM transmission. Opt. Express 21(16), 19269–19279 (2013)

    Article  ADS  Google Scholar 

  236. M. Sjödin, P. Johannisson, J. Li, E. Agrell, P.A. Andrekson, M. Karlsson, Comparison of 128-SP-QAM with PM-16-QAM. Opt. Express 20(8), 8356–8366 (2012)

    Article  ADS  Google Scholar 

  237. B.J. Puttnam, J.-M. Delgado Mendinueta, R.S. Luís, T.A. Eriksson, Y. Awaji, N. Wada, E. Agrell, Single parity check multi-core modulation for power efficient spatial super-channels, in Proceedings of the European Conference on Optical Communications (ECOC 2014), paper MO.3.3.5 (2014)

    Google Scholar 

  238. T.A. Eriksson, R.S. Luís, B.J. Puttnam, J.M. Delgado-Mendinueta, P.A. Andrekson, M. Karlsson, Y. Awaji, N. Wada, E. Agrell, Single parity check-coded 16QAM over spatial superchannels in multicore fiber transmission. Opt. Express 23(11), 14569–14582 (2015)

    Article  ADS  Google Scholar 

  239. J.-X. Cai, H.G. Batshon, M. Mazurczyk, H. Zhang, Y. Sun, O.V. Sinkin, D. Foursa, A.N. Pilipetskii, 64QAM based coded modulation transmission over transoceanic distance with > 60 Tb/s capacity, in Optical Fiber Communication Conference Post Deadline Papers OSA Technical Digest (online), paper Th5C.8 (Optical Society of America, 2015)

    Google Scholar 

  240. H. Zhang, C.R. Davidson, H.G. Batshon, A. Pilipetskii, Coded modulation PDM-QPSK transmission over 6,370 km dispersion managed NZDSF spans with 1.5 to 4 dB margin, in ECOC 2014, Cannes, France, Tu.1.5.2 (2014)

    Google Scholar 

  241. D.S. Millar, T. Koike-Akino, R. Maher, D. Lavery, M. Paskov, K. Kojima, K. Parsons, B.C. Thomsen, S.J. Savory, P. Bayvel, Experimental demonstration of 24-dimensional extended golay coded modulation with LDPC, in Optical Fiber Communication Conference Post Deadline Papers OSA Technical Digest, 2014, paper M3A.5 (2014)

    Google Scholar 

  242. S.Ö. Arik, D.S. Millar, T. Koike-Akino, K. Kojima, High-dimensional modulation for mode-division multiplexing, in Proceedings of OFC, San Francisco, W4J.1 (2014)

    Google Scholar 

  243. A.W. Nordstrom, J.P. Robinson, An optimum nonlinear code. Inf. Control 11, 613–616 (1968)

    Article  MATH  Google Scholar 

  244. G. Rademacher, B.J. Puttnam, R.S. Luís, J.-M. Delgado Mendinueta, T.A. Eriksson, Y. Awaji, N. Wada, E. Agrell, Experimental investigation of a 16-dimensional modulation format for long-haul multi-core fiber transmission, in Proceedings of the European Conference on Optical Communications (ECOC 2015), paper P.5.10 (2015)

    Google Scholar 

  245. G.C. Clark Jr., J.B. Cain, Error-Correction Coding for Digital Communications (Springer, 1981)

    Google Scholar 

  246. E. Awwad, G.R.-B. Othman, Y. Jaouën, Y. Frignac, Space-time codes for mode-multiplexed optical fiber transmission systems, in Photonics for Communications OSA Technical Digest (online), paper SM2D.4 (Optical Society of America, 2014)

    Google Scholar 

  247. E. Awwad, G.R.-B. Othman, Y. Jaouën, Space-time coding and optical scrambling for mode multiplexed optical fiber systems, in International Communications Conference, London, ONS-05 (2015), pp. 6846–6852

    Google Scholar 

  248. C. Okonkwo, R. van Uden, H. Chen, H. de Waardt, T. Koonen, Advanced coding techniques for few mode transmission systems. Opt. Express 23(2), 1411–1420 (2015)

    Google Scholar 

  249. M. Koga, A. Mizutori, T. Iida, Optical diversity transmission and maximum-ratio combined receiver in multi-core fiber to mitigate fiber non-linear phenomenon. IEICE Commun. Express 2(2), 67–73 (2013)

    Google Scholar 

  250. I.B. Djordjevic, M. Arabaci, L. Xu, T. Wang, Spatial-domain-based multidimensional modulation for multi-Tb/s serial optical transmission. Opt. Express 19(7), 6845–6857 (2011)

    Article  ADS  Google Scholar 

  251. I.B. Djordjevic, Energy-efficient spatial-domain-based hybrid multidimensional coded-modulations enabling multi-Tb/s optical transport. Opt. Express 19(17), 16708–16714 (2011)

    Article  ADS  Google Scholar 

  252. S. Franke-Arnold, L. Allen, M. Padgett, Laser Photon. Rev. 2, 299–313 (2008)

    Article  ADS  Google Scholar 

  253. L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Phys. Rev. A 45, 8185–8189 (1992)

    Article  ADS  Google Scholar 

  254. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, S. Franke-Arnold, Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 12, 5448–5456 (2004)

    Article  ADS  Google Scholar 

  255. Y. Awaji, N. Wada, Y. Toda, Demonstration of spatial mode division multiplexing using Laguerre-Gaussian mode beam in telecom-wavelength, in 23rd Annual Meeting of the IEEE Photonics Society (2010), pp. 551–552

    Google Scholar 

  256. J. Wang, J.-Y. Yang, I.M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A.E. Willner, Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 6, 488–496 (2012)

    Article  ADS  Google Scholar 

  257. Y. Awaji, N. Wada, Y. Toda, T. Hayashi, World first mode/spatial division multiplexing in multi-core fiber using Laguerre-Gaussian mode, in ECOC2011, We.10.P1.55 (2011)

    Google Scholar 

  258. S. Berdagué, P. Facq, Mode division multiplexing in optical fibers. Appl. Opt. 21, 1950–1955 (1982)

    Article  ADS  Google Scholar 

  259. Y. Awaji, N. Wada, Y. Toda, Observation of orbital angular momentum spectrum in propagating mode through seven-core fibers, in CLEO2012, JTu2K.3 (2012)

    Google Scholar 

  260. S. Ramachandran, P. Gregg, P. Kristensen, S.E. Golowich, On the scalability of ring fiber designs for OAM multiplexing. Opt. Express 23, 3721–3730 (2015)

    Article  ADS  Google Scholar 

  261. B. Guan, R.P. Scott, C. Qin, N.K. Fontaine, T. Su, C. Ferrari, M. Cappuzzo, F. Klemens, B. Keller, M. Earnshaw, S.J.B. Yoo, Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit. Opt. Express 22, 145–156 (2014)

    Google Scholar 

  262. J. Sun, M. Moresco, G. Leake, D. Coolbaugh, M.R. Watts, Generating and identifying optical orbital angular momentum with silicon photonic circuits, in CLEO2014, JTh5B.4 (2014)

    Google Scholar 

  263. J. Sun, A. Yaacobi, M. Moresco, D.D. Coolbaugh, M.R. Watts, Integrated continuously tunable optical orbital angular momentum generator, in CLEO2015, JTh5A.5 (2015)

    Google Scholar 

  264. Y. Awaji, N. Wada, Y. Toda, Discrete sampling and detection of multiplexed OAM modes propagating through multi-core fiber, in OECC2014, WE9B-4 (2014)

    Google Scholar 

  265. Y. Awaji, N. Wada, Y. Toda, Partial phase detection of optical vortices for discrimination of orbital angular momentum. IEICE OCS Tech. Rep. 115(93), 1–4, OCS2015-10 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itsuro Morita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morita, I. et al. (2022). Optical Transmission Technologies. In: Nakazawa, M., Suzuki, M., Awaji, Y., Morioka, T. (eds) Space-Division Multiplexing in Optical Communication Systems. Springer Series in Optical Sciences, vol 236. Springer, Cham. https://doi.org/10.1007/978-3-030-87619-7_5

Download citation

Publish with us

Policies and ethics