Skip to main content

Trends in Satellite Sensors and Image Time Series Processing Methods for Crop Phenology Monitoring

  • Chapter
  • First Online:
Information and Communication Technologies for Agriculture—Theme I: Sensors

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 182))

Abstract

National and International space agencies are determined to keep their fingers on the pulse of crop monitoring through Earth Observation (EO) satellites, which is typically tackled with optical imagery. In this regard, there has long been a trade-off between repetition time and spatial resolution. Another limitation of optical remotely sensed data is their typical discontinuity in time, caused by cloud cover or adverse atmospheric effects. Enduring clouds over agricultural fields can mask key stages of crop growth, leading to uncertainties in crop monitoring practices such as yield predictions. Gap-filling methods can provide a key solution for accurate crop phenology characterization. This chapter first provides a historical overview of EO missions dedicated to crop monitoring. Then, it addresses the rapidly evolving fields of gap-filling and land surface phenology (LSP) metrics calculation using a new in-house developed toolbox, DATimeS. These techniques have been put into practice for homogeneous and heterogeneous demonstration landscapes over the United States. Time series of Difference Vegetation Index (DVI) were processed from two EO data sources: high spatial resolution Sentinel-2 and, low spatial resolution MODIS data. LSP metrics such as start and end of season were calculated after gap filling processing at 1km resolution. Over the homogeneous area both S2 and MODIS are well able to capture the phenology trends of the dominant crop and LSP metrics were successfully mapped. Conversely, the MODIS dataset presented more difficulties than S2 to capture the phenology trend of winter wheat over heterogeneous landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.worldstopexports.com/wheat-exports-country/

  2. 2.

    http://www.nass.usda.gov/Quick_Stats/

  3. 3.

    https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table

  4. 4.

    https://www.planet.com/

  5. 5.

    The toolbox can be freely downloaded at https://artmotoolbox.com/

References

  1. Thomas F Stocker, Dahe Qin, Gian-Kasper Plattner, M Tignor, Simon K Allen, Judith Boschung, Alexander Nauels, Yu Xia, Vincent Bex, and Pauline M Midgley. Climate change 2013: The physical science basis, 2014.

    Google Scholar 

  2. ESA. ESA’s living planet programme: Scientific achievements and future challenges. Scientific Context of the Earth Observation Science Strategy for ESA, 2015.

    Google Scholar 

  3. Michele Chevrel, MICHEL Courtois, and G Weill. The SPOT satellite remote sensing mission. Photogrammetric Engineering and Remote Sensing, 47:1163–1171, 1981.

    Google Scholar 

  4. Alfredo Huete, Kamel Didan, Tomoaki Miura, E Patricia Rodriguez, Xiang Gao, and Laerte G Ferreira. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote sensing of environment, 83(1–2):195–213, 2002.

    Article  Google Scholar 

  5. Xiaoyang Zhang, Mark A Friedl, Crystal B Schaaf, Alan H Strahler, John CF Hodges, Feng Gao, Bradley C Reed, and Alfredo Huete. Monitoring vegetation phenology using modis. Remote sensing of environment, 84(3):471–475, 2003.

    Article  Google Scholar 

  6. Stephen H Boles, Xiangming Xiao, Jiyuan Liu, Qingyuan Zhang, Sharav Munkhtuya, Siqing Chen, and Dennis Ojima. Land cover characterization of Temperate East Asia using multi-temporal VEGETATION sensor data. Remote Sensing of Environment, 90(4):477–489, 2004.

    Article  Google Scholar 

  7. Wouter Dierckx, Sindy Sterckx, Iskander Benhadj, Stefan Livens, Geert Duhoux, Tanja Van Achteren, Michael Francois, Karim Mellab, and Gilbert Saint. PROBA-V mission for global vegetation monitoring: standard products and image quality. International Journal of Remote Sensing, 35(7):2589–2614, 2014.

    Article  Google Scholar 

  8. Linglin Zeng, Brian D Wardlow, Daxiang Xiang, Shun Hu, and Deren Li. A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sensing of Environment, 237:111511, 2020.

    Article  Google Scholar 

  9. Sophie Moulin, Laurent Kergoat, Nicolas Viovy, and Gerard Dedieu. Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements. Journal of Climate, 10(6):1154– 1170, 1997.

    Google Scholar 

  10. Aaron Moody and David M Johnson. Land-surface phenologies from AVHRR using the discrete fourier transform. Remote Sensing of Environment, 75(3):305–323, 2001.

    Google Scholar 

  11. Benjamin W Heumann, JW Seaquist, Lars Eklundh, and Per Jönsson. AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982–2005. Remote sensing of environment, 108(4):385–392, 2007.

    Google Scholar 

  12. Douglas E Ahl, Stith T Gower, Sean N Burrows, Nikolay V Shabanov, Ranga B Myneni, and Yuri Knyazikhin. Monitoring spring canopy phenology of a deciduous broadleaf forest using MODIS. Remote Sensing of Environment, 104(1):88–95, 2006.

    Article  Google Scholar 

  13. Brian D Wardlow and Stephen L Egbert. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the us central great plains. Remote sensing of environment, 112(3):1096–1116, 2008.

    Article  Google Scholar 

  14. M. Drusch, U. Del Bello, S. Carlier, O. Colin, V. Fernandez, F. Gascon, B. Hoersch, C. Isola, P. Laberinti, P. Martimort, A. Meygret, F. Spoto, O. Sy, F. Marchese, and P. Bargellini. Sentinel2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment, 120:25–36, 2012.

    Article  Google Scholar 

  15. C. Donlon, B. Berruti, A. Buongiorno, M.-H. Ferreira, P. Féménias, J. Frerick, P. Goryl, U. Klein, H. Laur, C. Mavrocordatos, J. Nieke, H. Rebhan, B. Seitz, J. Stroede, and R. Sciarra. The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission. Remote Sensing of Environment, 120:37–57, 2012.

    Article  Google Scholar 

  16. D. Labate, M. Ceccherini, A. Cisbani, V. De Cosmo, C. Galeazzi, L. Giunti, M. Melozzi, S. Pieraccini, and M. Stagi. The PRISMA payload optomechanical design, a high performance instrument for a new hyperspectral mission. Acta Astronautica, 65(9–10):1429–1436, 2009.

    Article  Google Scholar 

  17. T. Stuffler, C. Kaufmann, S. Hofer, K.P. Farster, G. Schreier, A. Mueller, A. Eckardt, H. Bach, B. Penn´e, U. Benz, and R. Haydn. The EnMAP hyperspectral imager-An advanced optical payload for future applications in Earth observation programmes. Acta Astronautica, 61(1–6):115–120, 2007.

    Google Scholar 

  18. D.A. Roberts, D.A. Quattrochi, G.C. Hulley, S.J. Hook, and R.O. Green. Synergies between VSWIR and TIR data for the urban environment: An evaluation of the potential for the Hyperspectral Infrared Imager (HyspIRI) Decadal Survey mission. Remote Sensing of Environment, 117:83–101, 2012.

    Article  Google Scholar 

  19. S. Kraft, U. Del Bello, M. Bouvet, M. Drusch, and J. Moreno. Flex: Esa’s earth explorer 8 candidate mission. pages 7125–7128, 2012.

    Google Scholar 

  20. D.K. Bolton and M.F. Friedl. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agricultural and Forest Meteorology, 173:74–84, 2013.

    Article  Google Scholar 

  21. Y. Dong and C.Y. Peng. Principled missing data methods for researchers. Springerplus, 2(1):222:1– 17, 2013.

    Google Scholar 

  22. M. Schwartz. Phenology: An Integrative Environmental Science, volume 2. Springer Netherlands, 2013.

    Book  Google Scholar 

  23. Michael A White, Forrest Hoffman, William W Hargrove, and Ramakrishna R Nemani. A global framework for monitoring phenological responses to climate change. Geophysical Research Letters, 32(4), 2005.

    Google Scholar 

  24. B.C. Reed, M.D. Schwartz, and X. Xiao. Remote sensing phenology: Status and the way forward. Phenology of Ecosystems Processes, pages 231–246, 2009.

    Google Scholar 

  25. Kirsten M De Beurs and Geoffrey M Henebry. Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land cover change in kazakhstan. Remote Sensing of Environment, 89(4):497–509, 2004.

    Google Scholar 

  26. Robert B Macdonald. A summary of the history of the development of automated remote sensing for agricultural applications. IEEE Transactions on Geoscience and Remote Sensing, (6):473–482, 1984.

    Google Scholar 

  27. Belen Franch, Eric F Vermote, Jean-Claude Roger, Emilie Murphy, Inbal Becker-Reshef, Chris Justice, Martin Claverie, Jyoteshwar Nagol, Ivan Csiszar, Dave Meyer, et al. A 30+ year AVHRR land surface reflectance climate data record and its application to wheat yield monitoring. Remote Sensing, 9(3):296, 2017.

    Google Scholar 

  28. Siyuan Wang, Hang Yin, Qichun Yang, Hui Yin, Xiaoyue Wang, Yaoyao Peng, and Ming Shen. Spatiotemporal patterns of snow cover retrieved from NOAA-AVHRR LTDR: a case study in the tibetan plateau, china. International Journal of Digital Earth, 10(5):504–521, 2017.

    Article  Google Scholar 

  29. Martin Claverie, Jessica L Matthews, Eric F Vermote, and Christopher O Justice. A 30+ year AVHRR LAI and fAPAR climate data record: Algorithm description and validation. Remote Sensing, 8(3):263, 2016.

    Google Scholar 

  30. Aleixandre Verger, Frédéric Baret, Marie Weiss, Iolanda Filella, and Josep Peñuelas. Geoclim: A global climatology of LAI, fAPAR, and fcover from vegetation observations for 1999–2010. Remote Sensing of Environment, 166:126–137, 2015.

    Article  Google Scholar 

  31. Yves Julien and José A Sobrino. The yearly land cover dynamics (YLCD) method: An analysis of global vegetation from NDVI and LST parameters. Remote sensing of environment, 113(2):329–334, 2009.

    Google Scholar 

  32. Xiao-Peng Song, Matthew C Hansen, Stephen V Stehman, Peter V Potapov, Alexandra Tyukavina, Eric F Vermote, and John R Townshend. Global land change from 1982 to 2016. Nature, 560(7720):639–643, 2018.

    Article  Google Scholar 

  33. Jose A Moreno Ruiz, David Riaño, Manuel Arbelo, Nancy HF French, Susan L Ustin, and Michael L Whiting. Burned area mapping time series in Canada (1984–1999) from NOAA-AVHRR LTDR: A comparison with other remote sensing products and fire perimeters. Remote Sensing of Environment, 117:407–414, 2012.

    Google Scholar 

  34. Zhen Song, Shunlin Liang, Dongdong Wang, Yuan Zhou, and Aolin Jia. Long-term record of top-of-atmosphere albedo over land generated from AVHRR data. Remote Sensing of Environment, 211:71–88, 2018.

    Article  Google Scholar 

  35. Christopher O Justice, Eric Vermote, Jeff Privette, and Alain Sei. The evolution of US moderate resolution optical land remote sensing from AVHRR to VIIRS. pages 781–806, 2010.

    Google Scholar 

  36. Sergii Skakun, Christopher O Justice, Eric Vermote, and Jean-Claude Roger. Transitioning from MODIS to VIIRS: an analysis of inter-consistency of NDVI data sets for agricultural monitoring. International journal of remote sensing, 39(4):971–992, 2018.

    Google Scholar 

  37. Jude H Kastens, Terry L Kastens, Dietrich LA Kastens, Kevin P Price, Edward A Martinko, and Re-Yang Lee. Image masking for crop yield forecasting using AVHRR NDVI time series imagery. Remote Sensing of Environment, 99(3):341–356, 2005.

    Article  Google Scholar 

  38. Belen Franch, Eric F Vermote, Sergii Skakun, Jean-Claude Roger, Inbal Becker-Reshef, Emilie Murphy, and C Justice. Remote sensing based yield monitoring: Application to winter wheat in United States and Ukraine. International Journal of Applied Earth Observation and Geoinformation, 76:112–127, 2019.

    Google Scholar 

  39. David M Johnson, Richard Mueller, et al. The 2009 cropland data layer. Photogramm. Eng. Remote Sens, 76(11):1201–1205, 2010.

    Google Scholar 

  40. T Fisette, P Rollin, Z Aly, L Campbell, B Daneshfar, P Filyer, A Smith, A Davidson, J Shang, and I Jarvis. AAFC annual crop inventory. In 2013 Second International Conference on AgroGeoinformatics (Agro-Geoinformatics), pages 270–274. IEEE, 2013.

    Google Scholar 

  41. Feng Gao, Martha C Anderson, Xiaoyang Zhang, Zhengwei Yang, Joseph G Alfieri, William P Kustas, Rick Mueller, David M Johnson, and John H Prueger. Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sensing of Environment, 188:9–25, 2017.

    Article  Google Scholar 

  42. Liang Sun, Feng Gao, Martha C Anderson, William P Kustas, Maria M Alsina, Luis Sanchez, Brent Sams, Lynn McKee, Wayne Dulaney, William A White, et al. Daily mapping of 30 m LAI and NDVI for grape yield prediction in California vineyards. Remote Sensing, 9(4):317, 2017.

    Google Scholar 

  43. Lin Yan and David P Roy. Spatially and temporally complete landsat reflectance time series modelling: The fill-and-fit approach. Remote Sensing of Environment, 241:111718, 2020.

    Google Scholar 

  44. David B. Lobell. The use of satellite data for crop yield gap analysis. Field Crops Research, 143:56–64, 2013. Crop Yield Gap Analysis – Rationale, Methods and Applications.

    Google Scholar 

  45. David B Lobell, Gregory P Asner, J Ivan Ortiz-Monasterio, and Tracy L Benning. Remote sensing of regional crop production in the Yaqui valley, Mexico: estimates and uncertainties. Agriculture, Ecosystems & Environment, 94(2):205–220, 2003.

    Google Scholar 

  46. Marie-Julie Lambert, Pierre C Sibiry Traoré, Xavier Blaes, Philippe Baret, and Pierre Defourny. Estimating smallholder crops production at village level from Sentinel-2 time series in Mali’s cotton belt. Remote Sensing of Environment, 216:647–657, 2018.

    Article  Google Scholar 

  47. YR Lai, MJ Pringle, Peter M Kopittke, Neal W Menzies, Tom G Orton, and Yash P Dang. An empirical model for prediction of wheat yield, using time-integrated Landsat NDVI. International journal of applied earth observation and geoinformation, 72:99–108, 2018.

    Google Scholar 

  48. Sergii Skakun, Eric Vermote, Belen Franch, Jean-Claude Roger, Nataliia Kussul, Junchang Ju, and Jeffrey Masek. Winter wheat yield assessment from Landsat 8 and Sentinel-2 data: Incorporating surface reflectance, through phenological fitting, into regression yield models. Remote Sensing, 11(15):1768, 2019.

    Google Scholar 

  49. Martin Claverie, Junchang Ju, Jeffrey G Masek, Jennifer L Dungan, Eric F Vermote, Jean-Claude Roger, Sergii V Skakun, and Christopher Justice. The harmonized Landsat and Sentinel-2 surface reflectance data set. Remote sensing of environment, 219:145–161, 2018.

    Google Scholar 

  50. Eric Vermote, Chris Justice, Martin Claverie, and Belen Franch. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sensing of Environment, 185:46–56, 2016.

    Article  Google Scholar 

  51. Śebastien Saunier, Jérôme Louis, Vincent Debaecker, Thomas Beaton, Enrico Giuseppe Cadau, Valentina Boccia, and Ferran Gascon. Sen2like, a tool to generate Sentinel-2 harmonised surface reflectance products-first results with Landsat-8. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, pages 5650–5653. IEEE, 2019.

    Google Scholar 

  52. F. Gao, M. Anderson, C. Daughtry, A. Karnieli, D. Hively, and W. Kustas. A within-season approach for detecting early growth stages in corn and soybean using high temporal and spatial resolution imagery. Remote Sensing of Environment, 242, 2020.

    Google Scholar 

  53. R. Fieuzal, V. Bustillo, D. Collado, and G. Dedieu. Combined use of multi-temporal Landsat-8 and Sentinel-2 images for wheat yield estimates at the intra-plot spatial scale. Agronomy, 10(3), 2020.

    Google Scholar 

  54. Pieter S.A. Beck, Clement Atzberger, Kjell Arild Høgda, Bernt Johansen, and Andrew K. Skidmore. Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI. Remote Sensing of Environment, 100(3):321–334, 2006.

    Google Scholar 

  55. Y. Julien and J. A. Sobrino. Global land surface phenology trends from GIMMS database. International Journal of Remote Sensing, 30(13):3495–3513, 2009.

    Article  Google Scholar 

  56. Peter M. Atkinson, C. Jeganathan, Jadu Dash, and Clement Atzberger. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sensing of Environment, 123:400–417, 2012.

    Google Scholar 

  57. DATimeS: a machine learning time series GUI toolbox for gap-filling and vegetation phenology trends detection], author=Belda, Santi and Pipia, Luca and Rivera-Caicedo, Juan Pablo and Amin, Eatidal, de Grave, Charlotte and Verrels, Jochem, Environmental Modelling and Software Journal, volume=submitted, publisher=Elsevier.

    Google Scholar 

  58. Luca Pipia, Jordi Muñoz-Marí, Eatidal Amin, Santiago Belda, Gustau Camps-Valls, and Jochem Verrelst. Fusing optical and SAR time series for LAI gap filling with multioutput gaussian processes. Remote Sensing of Environment, 235:111452, 2019.

    Article  Google Scholar 

  59. Jin Chen, Per Jönsson, Masayuki Tamura, Zhihui Gu, Bunkei Matsushita, and Lars Eklundh. A simple method for reconstructing a high-quality NDVI time-series data set based on the savitzky– golay filter. Remote sensing of Environment, 91(3–4):332–344, 2004.

    Article  Google Scholar 

  60. R. Stockli and P.L. Vidale. European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter dataset. International Journal of Remote Sensing, 25(17):3303–3330, 2004.

    Article  Google Scholar 

  61. R. Fensholt, K. Rasmussen, T.T. Nielsen, and C. Mbow. Evaluation of earth observation based long term vegetation trends - intercomparing ndvi time series trend analysis consistency of Sahel from AVHRR GIMMS, TERRA MODIS and SPOT VGT data. Remote Sensing of Environment, 113(9):1886–1898, 2009.

    Article  Google Scholar 

  62. Michael A. White, Kirsten M. De Beurs, Kamel Didan, David W. Inouye, Andrew D. Richardson, Olaf P. Jensen, John O’Keefe, Gong Zhang, Ramakrishna R. Nemani, Willem J. D. Van Leeuwen, Jesslyn F. Brown, Allard De Wit, Michael Schaepman, Xioamao Lin, Michael Dettinger, Amey S. Bailey, John Kimball, Mark D. Schwartz, Dennis D. Baldocchi, John T. Lee, and William K. Lauenroth. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982 to 2006. Global Change Biology, 15(10):2335–2359, 2009.

    Google Scholar 

  63. B. Tan, J. T. Morisette, R. E. Wolfe, F. Gao, G. A. Ederer, J. Nightingale, and J. A. Pedelty. An enhanced TIMESAT algorithm for estimating vegetation phenology metrics from MODIS data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(2):361–371, June 2011.

    Google Scholar 

  64. Mark Broich, Alfredo Huete, Matt Paget, Xuanlong Ma, Mirela Tulbure, Natalia Restrepo Coupe, Bradley Evans, Jason Beringer, Rakhesh Devadas, Kevin Davies, and Alex Held. A spatially explicit land surface phenology data product for science, monitoring and natural resources management applications. Environmental Modelling & Software, 64:191–204, 2015.

    Google Scholar 

  65. Elias Fernando Berra, Rachel Gaulton, and Stuart Barr. Assessing spring phenology of a temperate woodland: A multiscale comparison of ground, unmanned aerial vehicle and Landsat satellite observations. Remote Sensing of Environment, 223:229–242, 2019.

    Google Scholar 

  66. D.J. Mulla. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosystems Engineering, 114(4):358–371, 2013.

    Article  Google Scholar 

  67. T. Sakamoto, M. Yokozawa, H. Toritani, M. Shibayama, N. Ishitsuka, and H. Ohno. A crop phenology detection method using time-series MODIS data. Remote Sensing of Environment, 96(3–4):366–374, 2005.

    Article  Google Scholar 

  68. J. Jönsson and L. Eklundh. TIMESAT - a program for analysing time-series of satellite sensor data. Computers and Geosciences, 30:833–845, 2004.

    Article  Google Scholar 

  69. J.A. Sobrino and Y. Julien. Global trends in NDVI-derived parameters obtained from GIMMS data. International Journal of Remote Sensing, 32(15):4267–4279, 2011.

    Article  Google Scholar 

  70. A.D. Richardson, T.F. Keenan, M. Migliavacca, Y. Ryu, O. Sonnentag, and M. Toomey. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 169:156–173, 2013.

    Article  Google Scholar 

  71. C. Atzberger. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sensing, 5(2):949–981, 2013.

    Article  Google Scholar 

  72. Daniel Lloyd. A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery. International Journal of Remote Sensing, 11(12):2269–2279, 1990.

    Article  Google Scholar 

  73. Nicolas Delbart, Thuy Le Toan, Laurent Kergoat, and Violetta Fedotova. Remote sensing of spring phenology in boreal regions: A free of snow-effect method using NOAA-AVHRR and SPOT-VGT data (1982–2004). Remote Sensing of Environment, 101(1):52–62, 2006.

    Google Scholar 

  74. Michael A. White and Ramakrishna R. Nemani. Real-time monitoring and short-term forecasting of land surface phenology. Remote Sensing of Environment, 104(1):43–49, 2006.

    Google Scholar 

  75. Wen-bin Wu, Peng Yang, Hua-jun Tang, Qing-bo Zhou, Zhong-xin Chen, and Ryosuke Shibasaki. Characterizing spatial patterns of phenology in cropland of China based on remotely sensed data. Agricultural Sciences in China, 9(1):101–112, 2010.

    Google Scholar 

  76. Claire Boryan, Zhengwei Yang, Rick Mueller, and Mike Craig. Monitoring us agriculture: the US department of agriculture, national agricultural statistics service, cropland data layer program. Geocarto International, 26(5):341–358, 2011.

    Article  Google Scholar 

  77. Noel Gorelick, Matt Hancher, Mike Dixon, Simon Ilyushchenko, David Thau, and Rebecca Moore. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote sensing of Environment, 202:18–27, 2017.

    Article  Google Scholar 

  78. USDA NASS. Usda-national agricultural statistics service, cropland data layer. United States Department of Agriculture, National Agricultural Statistics Service, Marketing and Information Services Office, Washington, DC [Available at http//nassgeodata. gmu. edu/Crop-Scape, Last accessed September 2012.], 2003.

    Google Scholar 

  79. Fran¸cois-Marie Bréon, Eric Vermote, Emilie Fedele Murphy, and Belen Franch. Measuring the directional variations of land surface reflectance from modis. IEEE Transactions on Geoscience and Remote Sensing, 53(8):4638–4649, 2015.

    Google Scholar 

  80. Eric Vermote, Christopher O Justice, and François-Marie Bréon. Towards a generalized approach for correction of the BRDF effect in MODIS directional reflectances. IEEE Transactions on Geoscience and Remote Sensing, 47(3):898–908, 2008.

    Google Scholar 

  81. Belen Franch, Eric F Vermote, José A Sobrino, and Yves Julien. Retrieval of surface albedo on a daily basis: Application to MODIS data. IEEE Transactions on Geoscience and Remote Sensing, 52(12):7549–7558, 2014.

    Article  Google Scholar 

  82. Crystal B Schaaf, Feng Gao, Alan H Strahler, Wolfgang Lucht, Xiaowen Li, Trevor Tsang, Nicholas C Strugnell, Xiaoyang Zhang, Yufang Jin, Jan-Peter Muller, et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote sensing of Environment, 83(1–2):135–148, 2002.

    Article  Google Scholar 

  83. Fran¸cois-Marie Bréon, Eric Vermote, Emilie Fedele Murphy, and Belen Franch. Measuring the directional variations of land surface reflectance from modis. IEEE Transactions on Geoscience and Remote Sensing, 53(8):4638–4649, 2015.

    Google Scholar 

  84. Aisling J Daly, Jan M Baetens, and Bernard De Baets. Ecological diversity: measuring the unmeasurable. Mathematics, 6(7):119, 2018.

    Article  Google Scholar 

  85. María Piles, Kaighin A McColl, Dara Entekhabi, Narendra Das, and Miriam Pablos. Sensitivity of aquarius active and passive measurements temporal covariability to land surface characteristics. IEEE Transactions on Geoscience and Remote Sensing, 53(8):4700–4711, 2015.

    Article  Google Scholar 

  86. C. Bacour, F. Baret, D. Béal, M. Weiss, and K. Pavageau. Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data: Principles and validation. Remote Sensing of Environment, 105(4):313–325, 2006.

    Article  Google Scholar 

  87. Belen Franch, Eric F Vermote, Sergii Skakun, Jean-Claude Roger, Inbal Becker-Reshef, Emilie Murphy, and C Justice. Remote sensing based yield monitoring: Application to winter wheat in United states and Ukraine. International Journal of Applied Earth Observation and Geoinformation, 76:112–127, 2019.

    Google Scholar 

  88. H. Jiang, H. Hu, R. Zhong, J. Xu, J. Xu, J. Huang, S. Wang, Y. Ying, and T. Lin. A deep learning approach to conflating heterogeneous geospatial data for corn yield estimation: A case study of the US corn belt at the county level. Global Change Biology, 26(3):1754–1766, 2020.

    Article  Google Scholar 

  89. Jeremy Isaac Fisher, John F Mustard, and Matthew A Vadeboncoeur. Green leaf phenology at Landsat resolution: Scaling from the field to the satellite. Remote sensing of environment, 100(2):265– 279, 2006.

    Google Scholar 

  90. Katharine White, Jennifer Pontius, and Paul Schaberg. Remote sensing of spring phenology in northeastern forests: A comparison of methods, field metrics and sources of uncertainty. Remote Sensing of Environment, 148:97–107, 2014.

    Article  Google Scholar 

  91. J.R.G. Townshend and C.O. Justice. Towards operational monitoring of terrestrial systems by moderate-resolution remote sensing. Remote Sensing of Environment, 83(1–2):351–359, 2002.

    Article  Google Scholar 

  92. M. Berger, J. Moreno, J.A. Johannessen, P.F. Levelt, and R.F. Hanssen. ESA’s sentinel missions in support of Earth system science. Remote Sensing of Environment, 120:84–90, 2012.

    Article  Google Scholar 

  93. Hyungsuk Kimm, Kaiyu Guan, Chongya Jiang, Bin Peng, Laura F Gentry, Scott C Wilkin, Sibo Wang, Yaping Cai, Carl J Bernacchi, Jian Peng, et al. Deriving high-spatiotemporal-resolution leaf area index for agroecosystems in the us corn belt using planet labs cubesat and stair fusion data. Remote Sensing of Environment, 239:111615, 2020.

    Article  Google Scholar 

  94. Clement Atzberger and Paul HC Eilers. A time series for monitoring vegetation activity and phenology at 10-daily time steps covering large parts of South America. International Journal of Digital Earth, 4(5):365–386, 2011.

    Google Scholar 

  95. Santiago Belda, Luca Pipia, Pablo Morcillo-Pallarés, and Jochem Verrelst. Optimizing gaussian process regression for image time series gap-filling and crop monitoring. Agronomy, 10(5):618, 2020.

    Google Scholar 

  96. JJ Walker, KM De Beurs, and RH Wynne. Dryland vegetation phenology across an elevation gradient in Arizona, USA, investigated with fused MODIS and Landsat data. Remote Sensing of Environment, 144:85–97, 2014.

    Article  Google Scholar 

  97. Rodney D McKellip, Kenton W Ross, Joseph P Spruce, James C Smoot, Robert E Ryan, Gerald E Gasser, Donald L Prados, and Ronald D Vaughan. Phenological parameters estimation tool. 2010.

    Google Scholar 

  98. Bin Tan, Jeffrey T Morisette, Robert E Wolfe, Feng Gao, Gregory A Ederer, Joanne Nightingale, and Jeffrey A Pedelty. An enhanced timesat algorithm for estimating vegetation phenology metrics from MODIS data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(2):361–371, 2010.

    Google Scholar 

  99. Thomas Udelhoven. Timestats: A software tool for the retrieval of temporal patterns from global satellite archives. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(2):310–317, 2010.

    Article  Google Scholar 

  100. Arlete Rodrigues, Andre RS Marcal, and Mario Cunha. Phenology parameter extraction from timeseries of satellite vegetation index data using phenosat. In 2012 IEEE International Geoscience and Remote Sensing Symposium, pages 4926–4929. IEEE, 2012.

    Google Scholar 

  101. Jie Zhou, Li Jia, Guangcheng Hu, and Massimo Menenti. Reconstruction of global MODIS NDVI time series: Performance of harmonic analysis of time series (HANTS). Remote Sensing of Environment, 163:217–228, 2015.

    Article  Google Scholar 

  102. Sofanit Araya, Bertram Ostendorf, Gregory Lyle, and Megan Lewis. Cropphenology: An R package for extracting crop phenology from time series remotely sensed vegetation index imagery. Ecological Informatics, 46:45–56, 2018.

    Google Scholar 

  103. Lia Duarte, Ana C Teodoro, Ant´onio T Monteiro, Mário Cunha, and Hernâni Gonçalves. Qphenometrics: An open source software application to assess vegetation phenology metrics. Computers and Electronics in Agriculture, 148:82–94, 2018

    Article  Google Scholar 

Download references

Acknowledgments

This chapter was funded by the European Research Council (ERC) under the ERC-2017-STG SENTIFLEX project (grant agreement 755617) and supported by the Action CA17134 SENSECO (Optical synergies for spatiotemporal sensing of scalable ecophysiological traits) funded by COST (European Cooperation in Science and Technology, www.cost.eu).” Belen Franch and Santiago Belda were also supported by the program Generacio Talent of Generalitat Valenciana (CIDEGENT/2018/009 and SEJIGENT/2021/001, respectively), and Jochem Verrelst by Ramón y Cajal Contract (Spanish Ministry of Science, Innovation and Universities).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochem Verrelst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pipia, L., Belda, S., Franch, B., Verrelst, J. (2022). Trends in Satellite Sensors and Image Time Series Processing Methods for Crop Phenology Monitoring. In: Bochtis, D.D., Lampridi, M., Petropoulos, G.P., Ampatzidis, Y., Pardalos, P. (eds) Information and Communication Technologies for Agriculture—Theme I: Sensors. Springer Optimization and Its Applications, vol 182. Springer, Cham. https://doi.org/10.1007/978-3-030-84144-7_8

Download citation

Publish with us

Policies and ethics