Skip to main content

Post-Infarction Inflammatory Alterations

  • Chapter
  • First Online:
Imaging of Inflammation and Infection in Cardiovascular Diseases

Abstract

Acute myocardial infarction is one of the leading causes of death in the western world. Timely implementation of reperfusion therapy has resulted in increased survival and is currently the optimal treatment for acute MI. Death of cardiomyocytes following ischemia results in “danger signals” that elicit an inflammatory reaction that is crucial for removal of cell debris, wound healing, and generation of scar tissue. However, when the inflammatory response is excessive in duration and/or magnitude, it can result in exacerbated tissue damage and adverse remodeling contributing to the pathogenesis of heart failure. In order to successfully develop and implement inflammation modulating treatments that result in an optimal balance between healing, scar formation, and remodeling, visualization and characterization of the inflammatory response are crucial. Based on the imaging date, patient selection and precise targeting and timing of anti-inflammatory treatment can be realized. Various imaging techniques are under development and are being evaluated for this purpose. In this chapter we discuss the biology of post-MI inflammation and remodeling and relevant animal models and provide an overview of potentially promising imaging strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thackeray JT. PET assessment of immune cell activity and therapeutic monitoring following myocardial infarction. Curr Cardiol Rep. 2018;20(3):13.

    Article  PubMed  Google Scholar 

  2. Rischpler C, Dirschinger RJ, Nekolla SG, Kossmann H, Nicolosi S, Hanus F, et al. Prospective evaluation of 18F-Fluorodeoxyglucose uptake in Postischemic myocardium by simultaneous positron emission tomography/magnetic resonance imaging as a prognostic marker of functional outcome. Circ Cardiovasc Imaging. 2016;9(4):e004316.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bujak M, Dobaczewski M, Chatila K, Mendoza LH, Li N, Reddy A, et al. Interleukin-1 receptor type I signaling critically regulates infarct healing and cardiac remodeling. Am J Pathol. 2008;173(1):57–67.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Westman PC, Lipinski MJ, Luger D, Waksman R, Bonow RO, Wu E, et al. Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol. 2016;67(17):2050–60.

    Article  PubMed  Google Scholar 

  5. Niccoli G, Montone RA, Ibanez B, Thiele H, Crea F, Heusch G, et al. Optimized treatment of ST-elevation myocardial infarction. Circ Res. 2019;125(2):245–58.

    Article  CAS  PubMed  Google Scholar 

  6. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357(11):1121–35.

    Article  CAS  PubMed  Google Scholar 

  7. Frangogiannis NG. Regulation of the inflammatory response in cardiac repair. Circ Res. 2012;110(1):159–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nahrendorf M, Pittet MJ, Swirski FK. Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation. 2010;121(22):2437–45.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dewald O, Zymek P, Winkelmann K, Koerting A, Ren G, Abou-Khamis T, et al. CCL2/monocyte chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ Res. 2005;96(8):881–9.

    Article  CAS  PubMed  Google Scholar 

  10. Ong SB, Hernandez-Resendiz S, Crespo-Avilan GE, Mukhametshina RT, Kwek XY, Cabrera-Fuentes HA, et al. Inflammation following acute myocardial infarction: multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol Ther. 2018;186:73–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res. 2016;119(1):91–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mouton AJ, Rivera OJ, Lindsey ML. Myocardial infarction remodeling that progresses to heart failure: a signaling misunderstanding. Am J Physiol Heart Circ Physiol. 2018;315(1):H71–H9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van Kranenburg M, Magro M, Thiele H, de Waha S, Eitel I, Cochet A, et al. Prognostic value of microvascular obstruction and infarct size, as measured by CMR in STEMI patients. JACC Cardiovasc Imaging. 2014;7(9):930–9.

    Article  PubMed  Google Scholar 

  14. Hausenloy DJ, Chilian W, Crea F, Davidson SM, Ferdinandy P, Garcia-Dorado D, et al. The coronary circulation in acute myocardial ischaemia/reperfusion injury: a target for cardioprotection. Cardiovasc Res. 2019;115(7):1143–55.

    Article  CAS  PubMed  Google Scholar 

  15. Spinale FG. Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev. 2007;87(4):1285–342.

    Article  CAS  PubMed  Google Scholar 

  16. Rusu M, Hilse K, Schuh A, Martin L, Slabu I, Stoppe C, et al. Biomechanical assessment of remote and postinfarction scar remodeling following myocardial infarction. Sci Rep. 2019;9(1):16744.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Frangogiannis NG, Lindsey ML, Michael LH, Youker KA, Bressler RB, Mendoza LH, et al. Resident cardiac mast cells degranulate and release preformed TNF-alpha, initiating the cytokine cascade in experimental canine myocardial ischemia/reperfusion. Circulation. 1998;98(7):699–710.

    Article  CAS  PubMed  Google Scholar 

  18. Somasundaram P, Ren G, Nagar H, Kraemer D, Mendoza L, Michael LH, et al. Mast cell tryptase may modulate endothelial cell phenotype in healing myocardial infarcts. J Pathol. 2005;205(1):102–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B, et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity. 2014;40(1):91–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bajpai G, Bredemeyer A, Li W, Zaitsev K, Koenig AL, Lokshina I, et al. Tissue resident CCR2- and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circ Res. 2019;124(2):263–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bajpai G, Schneider C, Wong N, Bredemeyer A, Hulsmans M, Nahrendorf M, et al. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat Med. 2018;24(8):1234–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ma Y, Yabluchanskiy A, Iyer RP, Cannon PL, Flynn ER, Jung M, et al. Temporal neutrophil polarization following myocardial infarction. Cardiovasc Res. 2016;110(1):51–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hansen PR. Role of neutrophils in myocardial ischemia and reperfusion. Circulation. 1995;91(6):1872–85.

    Article  CAS  PubMed  Google Scholar 

  24. Boufenzer A, Lemarie J, Simon T, Derive M, Bouazza Y, Tran N, et al. TREM-1 mediates inflammatory injury and cardiac remodeling following myocardial infarction. Circ Res. 2015;116(11):1772–82.

    Article  CAS  PubMed  Google Scholar 

  25. Horckmans M, Ring L, Duchene J, Santovito D, Schloss MJ, Drechsler M, et al. Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. Eur Heart J. 2017;38(3):187–97.

    CAS  PubMed  Google Scholar 

  26. Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med. 2007;204(12):3037–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hanna RN, Carlin LM, Hubbeling HG, Nackiewicz D, Green AM, Punt JA, et al. The transcription factor NR4A1 (Nur 77) controls bone marrow differentiation and the survival of Ly6C- monocytes. Nat Immunol. 2011;12(8):778–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Anzai A, Anzai T, Nagai S, Maekawa Y, Naito K, Kaneko H, et al. Regulatory role of dendritic cells in postinfarction healing and left ventricular remodeling. Circulation. 2012;125(10):1234–45.

    Article  PubMed  Google Scholar 

  29. Yan X, Anzai A, Katsumata Y, Matsuhashi T, Ito K, Endo J, et al. Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. J Mol Cell Cardiol. 2013;62:24–35.

    Article  CAS  PubMed  Google Scholar 

  30. Liu H, Gao W, Yuan J, Wu C, Yao K, Zhang L, et al. Exosomes derived from dendritic cells improve cardiac function via activation of CD4(+) T lymphocytes after myocardial infarction. J Mol Cell Cardiol. 2016;91:123–33.

    Article  CAS  PubMed  Google Scholar 

  31. Varda-Bloom N, Leor J, Ohad DG, Hasin Y, Amar M, Fixler R, et al. Cytotoxic T lymphocytes are activated following myocardial infarction and can recognize and kill healthy myocytes in vitro. J Mol Cell Cardiol. 2000;32(12):2141–9.

    Article  CAS  PubMed  Google Scholar 

  32. Boag SE, Das R, Shmeleva EV, Bagnall A, Egred M, Howard N, et al. T lymphocytes and fractalkine contribute to myocardial ischemia/reperfusion injury in patients. J Clin Invest. 2015;125(8):3063–76.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zouggari Y, Ait-Oufella H, Bonnin P, Simon T, Sage AP, Guerin C, et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat Med. 2013;19(10):1273–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Meng X, Yang J, Dong M, Zhang K, Tu E, Gao Q, et al. Regulatory T cells in cardiovascular diseases. Nat Rev Cardiol. 2016;13(3):167–79.

    Article  CAS  PubMed  Google Scholar 

  35. Wang YP, Xie Y, Ma H, Su SA, Wang YD, Wang JA, et al. Regulatory T lymphocytes in myocardial infarction: a promising new therapeutic target. Int J Cardiol. 2016;203:923–8.

    Article  PubMed  Google Scholar 

  36. Wang YM, Alexander SI. IL-2/anti-IL-2 complex: a novel strategy of in vivo regulatory T cell expansion in renal injury. J Am Soc Nephrol. 2013;24(10):1503–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sardella G, De Luca L, Francavilla V, Accapezzato D, Mancone M, Sirinian MI, et al. Frequency of naturally-occurring regulatory T cells is reduced in patients with ST-segment elevation myocardial infarction. Thromb Res. 2007;120(4):631–4.

    Article  CAS  PubMed  Google Scholar 

  38. Mor A, Luboshits G, Planer D, Keren G, George J. Altered status of CD4(+)CD25(+) regulatory T cells in patients with acute coronary syndromes. Eur Heart J. 2006;27(21):2530–7.

    Article  CAS  PubMed  Google Scholar 

  39. Wigren M, Bjorkbacka H, Andersson L, Ljungcrantz I, Fredrikson GN, Persson M, et al. Low levels of circulating CD4+fox P3+ T cells are associated with an increased risk for development of myocardial infarction but not for stroke. Arterioscler Thromb Vasc Biol. 2012;32(8):2000–4.

    Article  CAS  PubMed  Google Scholar 

  40. Saxena A, Dobaczewski M, Rai V, Haque Z, Chen W, Li N, et al. Regulatory T cells are recruited in the infarcted mouse myocardium and may modulate fibroblast phenotype and function. Am J Physiol Heart Circ Physiol. 2014;307(8):H1233–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang WC, Wang J, Shu YW, Tang TT, Zhu ZF, Xia N, et al. Impaired thymic export and increased apoptosis account for regulatory T cell defects in patients with non-ST segment elevation acute coronary syndrome. J Biol Chem. 2012;287(41):34157–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hofmann U, Beyersdorf N, Weirather J, Podolskaya A, Bauersachs J, Ertl G, et al. Activation of CD4+ T lymphocytes improves wound healing and survival after experimental myocardial infarction in mice. Circulation. 2012;125(13):1652–63.

    Article  CAS  PubMed  Google Scholar 

  43. Homma T, Kinugawa S, Takahashi M, Sobirin MA, Saito A, Fukushima A, et al. Activation of invariant natural killer T cells by alpha-galactosylceramide ameliorates myocardial ischemia/reperfusion injury in mice. J Mol Cell Cardiol. 2013;62:179–88.

    Article  CAS  PubMed  Google Scholar 

  44. Sobirin MA, Kinugawa S, Takahashi M, Fukushima A, Homma T, Ono T, et al. Activation of natural killer T cells ameliorates postinfarct cardiac remodeling and failure in mice. Circ Res. 2012;111(8):1037–47.

    Article  CAS  PubMed  Google Scholar 

  45. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11(10):889–96.

    Article  CAS  PubMed  Google Scholar 

  46. Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity. 2014;40(2):274–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Frodermann V, Nahrendorf M. Macrophages and cardiovascular health. Physiol Rev. 2018;98(4):2523–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Francis Stuart SD, De Jesus NM, Lindsey ML, Ripplinger CM. The crossroads of inflammation, fibrosis, and arrhythmia following myocardial infarction. J Mol Cell Cardiol. 2016;91:114–22.

    Article  CAS  PubMed  Google Scholar 

  49. Kung GL, Vaseghi M, Gahm JK, Shevtsov J, Garfinkel A, Shivkumar K, et al. Microstructural infarct border zone remodeling in the Post-infarct swine heart measured by diffusion tensor MRI. Front Physiol. 2018;9:826.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hulsmans M, Clauss S, Xiao L, Aguirre AD, King KR, Hanley A, et al. Macrophages facilitate electrical conduction in the heart. Cell. 2017;169(3):510–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fei YD, Wang Q, Hou JW, Li W, Cai XX, Yang YL, et al. Macrophages facilitate post myocardial infarction arrhythmias: roles of gap junction and KCa3.1. Theranostics. 2019;9(22):6396–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. van der Velden J, Merkus D, de Beer V, Hamdani N, Linke WA, Boontje NM, et al. Transmural heterogeneity of myofilament function and sarcomeric protein phosphorylation in remodeled myocardium of pigs with a recent myocardial infarction. Front Physiol. 2011;2:83.

    PubMed  PubMed Central  Google Scholar 

  53. Carberry J, Carrick D, Haig C, Rauhalammi SM, Ahmed N, Mordi I, et al. Remote zone extracellular volume and left ventricular remodeling in survivors of ST-elevation myocardial infarction. Hypertension. 2016;68(2):385–91.

    Article  CAS  PubMed  Google Scholar 

  54. Duncker DJ, de Beer VJ, Merkus D. Alterations in vasomotor control of coronary resistance vessels in remodelled myocardium of swine with a recent myocardial infarction. Med Biol Eng Comput. 2008;46(5):485–97.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kuster DW, Merkus D, Kremer A, van Ijcken WF, de Beer VJ, Verhoeven AJ, et al. Left ventricular remodeling in swine after myocardial infarction: a transcriptional genomics approach. Basic Res Cardiol. 2011;106(6):1269–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lindsey ML, Bolli R, Canty JM Jr, Du XJ, Frangogiannis NG, Frantz S, et al. Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol. 2018;314(4):H812–h38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Heusch G, Gersh BJ. The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. Eur Heart J. 2017;38(11):774–84.

    CAS  PubMed  Google Scholar 

  58. Heusch G, Libby P, Gersh B, Yellon D, Bohm M, Lopaschuk G, et al. Cardiovascular remodelling in coronary artery disease and heart failure. Lancet. 2014;383(9932):1933–43.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Cohen M, Boiangiu C, Abidi M. Therapy for ST-segment elevation myocardial infarction patients who present late or are ineligible for reperfusion therapy. J Am Coll Cardiol. 2010;55(18):1895–906.

    Article  PubMed  Google Scholar 

  60. Gharacholou SM, Alexander KP, Chen AY, Wang TY, Melloni C, Gibler WB, et al. Implications and reasons for the lack of use of reperfusion therapy in patients with ST-segment elevation myocardial infarction: findings from the CRUSADE initiative. Am Heart J. 2010;159(5):757–63.

    Article  PubMed  Google Scholar 

  61. Hausenloy DJ, Botker HE, Engstrom T, Erlinge D, Heusch G, Ibanez B, et al. Targeting reperfusion injury in patients with ST-segment elevation myocardial infarction: trials and tribulations. Eur Heart J. 2017;38(13):935–41.

    CAS  PubMed  Google Scholar 

  62. Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest. 2013;123(1):92–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ibanez B, Heusch G, Ovize M, Van de Werf F. Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol. 2015;65(14):1454–71.

    Article  PubMed  Google Scholar 

  64. Dewald O, Ren G, Duerr GD, Zoerlein M, Klemm C, Gersch C, et al. Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction. Am J Pathol. 2004;164(2):665–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Frantz S, Bauersachs J, Ertl G. Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovasc Res. 2009;81(3):474–81.

    Article  CAS  PubMed  Google Scholar 

  66. Michael LH, Ballantyne CM, Zachariah JP, Gould KE, Pocius JS, Taffet GE, et al. Myocardial infarction and remodeling in mice: effect of reperfusion. Am J Phys. 1999;277(2 Pt 2):H660–8.

    CAS  Google Scholar 

  67. Michael LH, Entman ML, Hartley CJ, Youker KA, Zhu J, Hall SR, et al. Myocardial ischemia and reperfusion: a murine model. Am J Phys. 1995;269(6 Pt 2):H2147–54.

    CAS  Google Scholar 

  68. Jennings RB, Murry CE, Steenbergen C Jr, Reimer KA. Development of cell injury in sustained acute ischemia. Circulation. 1990;82(3 Suppl):II2.

    CAS  PubMed  Google Scholar 

  69. Jennings RB, Reimer KA. Lethal myocardial ischemic injury. Am J Pathol. 1981;102(2):241–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Jennings RB, Sommers HM, Smyth GA, Flack HA, Linn H. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol. 1960;70:68–78.

    CAS  PubMed  Google Scholar 

  71. Reimer KA, Jennings RB, Tatum AH. Pathobiology of acute myocardial ischemia: metabolic, functional and ultrastructural studies. Am J Cardiol. 1983;52(2):72a–81a.

    Article  CAS  PubMed  Google Scholar 

  72. Reimer KA, Lowe JE, Rasmussen MM, Jennings RB. The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation. 1977;56(5):786–94.

    Article  CAS  PubMed  Google Scholar 

  73. Algranati D, Kassab GS, Lanir Y. Why is the subendocardium more vulnerable to ischemia? A new paradigm. Am J Physiol Heart Circ Physiol. 2011;300(3):H1090–100.

    Article  CAS  PubMed  Google Scholar 

  74. Yoshihara HA, Bastiaansen JA, Berthonneche C, Comment A, Schwitter J. An intact small animal model of myocardial ischemia-reperfusion: characterization of metabolic changes by hyperpolarized 13C MR spectroscopy. Am J Physiol Heart Circ Physiol. 2015;309(12):H2058–66.

    Article  CAS  PubMed  Google Scholar 

  75. Heusch G, Skyschally A, Schulz R. The in-situ pig heart with regional ischemia/reperfusion - ready for translation. J Mol Cell Cardiol. 2011;50(6):951–63.

    Article  CAS  PubMed  Google Scholar 

  76. Vatner SF. Effects of anesthesia on cardiovascular control mechanisms. Environ Health Perspect. 1978;26:193–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Maxwell MP, Hearse DJ, Yellon DM. Species variation in the coronary collateral circulation during regional myocardial ischaemia: a critical determinant of the rate of evolution and extent of myocardial infarction. Cardiovasc Res. 1987;21(10):737–46.

    Article  CAS  PubMed  Google Scholar 

  78. Swindle MM, Horneffer PJ, Gardner TJ, Gott VL, Hall TS, Stuart RS, et al. Anatomic and anesthetic considerations in experimental cardiopulmonary surgery in swine. Lab Anim Sci. 1986;36(4):357–61.

    CAS  PubMed  Google Scholar 

  79. Johns TN, Olson BJ. Experimental myocardial infarction. I. a method of coronary occlusion in small animals. Ann Surg. 1954;140(5):675–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gao E, Lei YH, Shang X, Huang ZM, Zuo L, Boucher M, et al. A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse. Circ Res. 2010;107(12):1445–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kurz KD, Main BW, Sandusky GE. Rat model of arterial thrombosis induced by ferric chloride. Thromb Res. 1990;60(4):269–80.

    Article  CAS  PubMed  Google Scholar 

  82. Garg M, Khanna D. Exploration of pharmacological interventions to prevent isoproterenol-induced myocardial infarction in experimental models. Ther Adv Cardiovasc Dis. 2014;8(4):155–69.

    Article  PubMed  CAS  Google Scholar 

  83. Munz MR, Faria MA, Monteiro JR, Aguas AP, Amorim MJ. Surgical porcine myocardial infarction model through permanent coronary occlusion. Comp Med. 2011;61(5):445–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Litvak J, Siderides LE, Vineberg AM. The experimental production of coronary artery insufficiency and occlusion. Am Heart J. 1957;53(4):505–18.

    Article  CAS  PubMed  Google Scholar 

  85. Elzinga WE. Ameroid constrictor: uniform closure rates and a calibration procedure. J Appl Physiol. 1969;27(3):419–21.

    Article  CAS  PubMed  Google Scholar 

  86. Vineberg A, Mahanti B, Litvak J. Experimental gradual coronary artery constriction by ameroid constrictors. Surgery. 1960;47:765–71.

    CAS  PubMed  Google Scholar 

  87. White FC, Bloor CM. Coronary collateral circulation in the pig: correlation of collateral flow with coronary bed size. Basic Res Cardiol. 1981;76(2):189–96.

    Article  CAS  PubMed  Google Scholar 

  88. Hughes GC, Post MJ, Simons M, Annex BH. Translational physiology: porcine models of human coronary artery disease: implications for preclinical trials of therapeutic angiogenesis. J Appl Physiol. 2003;94(5):1689–701.

    Article  PubMed  Google Scholar 

  89. Inou T, Tomoike H, Watanabe K, Kikuchi Y, Mizukami M, Kurozumi T, et al. A newly developed X-ray transparent ameroid constrictor for study on progression of gradual coronary stenosis. Basic Res Cardiol. 1980;75(4):537–43.

    Article  CAS  PubMed  Google Scholar 

  90. Bolukoglu H, Liedtke AJ, Nellis SH, Eggleston AM, Subramanian R, Renstrom B. An animal model of chronic coronary stenosis resulting in hibernating myocardium. Am J Phys. 1992;263(1 Pt 2):H20–9.

    CAS  Google Scholar 

  91. Dogne JM, Rolin S, Petein M, Tchana-Sato V, Ghuysen A, Lambermont B, et al. Characterization of an original model of myocardial infarction provoked by coronary artery thrombosis induced by ferric chloride in pig. Thromb Res. 2005;116(5):431–42.

    Article  CAS  PubMed  Google Scholar 

  92. Krombach GA, Kinzel S, Mahnken AH, Gunther RW, Buecker A. Minimally invasive close-chest method for creating reperfused or occlusive myocardial infarction in swine. Investig Radiol. 2005;40(1):14–8.

    Google Scholar 

  93. Liu JX, Yu Z, Li XZ, Fu JH, Shang XH, Yan AG, et al. Cardioprotective effects of diltiazem reevaluated by a novel myocardial ischemic model in Chinese miniature swine. Acta Pharmacol Sin. 2007;28(1):52–7.

    Article  CAS  PubMed  Google Scholar 

  94. Dib N, Diethrich EB, Campbell A, Gahremanpour A, McGarry M, Opie SR. A percutaneous swine model of myocardial infarction. J Pharmacol Toxicol Methods. 2006;53(3):256–63.

    Article  CAS  PubMed  Google Scholar 

  95. Agress CM, Rosenberg MJ, Jacobs HI, Binder MJ, Schneiderman A, Clark WG. Protracted shock in the closed-chest dog following coronary embolization with graded microspheres. Am J Phys. 1952;170(3):536–49.

    Article  CAS  Google Scholar 

  96. Naslund U, Haggmark S, Johansson G, Pennert K, Reiz S, Marklund SL. Effects of reperfusion and superoxide dismutase on myocardial infarct size in a closed chest pig model. Cardiovasc Res. 1992;26(2):170–8.

    Article  CAS  PubMed  Google Scholar 

  97. Reffelmann T, Sensebat O, Birnbaum Y, Stroemer E, Hanrath P, Uretsky BF, et al. A novel minimal-invasive model of chronic myocardial infarction in swine. Coron Artery Dis. 2004;15(1):7–12.

    Article  PubMed  Google Scholar 

  98. Eldar M, Ohad D, Bor A, Varda-Bloom N, Swanson DK, Battler A. A closed-chest pig model of sustained ventricular tachycardia. Pacing Clin Electrophysiol. 1994;17(10):1603–9.

    Article  CAS  PubMed  Google Scholar 

  99. Hennan JK, Huang J, Barrett TD, Driscoll EM, Willens DE, Park AM, et al. Effects of selective cyclooxygenase-2 inhibition on vascular responses and thrombosis in canine coronary arteries. Circulation. 2001;104(7):820–5.

    Article  CAS  PubMed  Google Scholar 

  100. Epstein FH. MRI of left ventricular function. J Nucl Cardiol. 2007;14(5):729–44.

    Article  PubMed  Google Scholar 

  101. Demirkiran A, Everaars H, Amier RP, Beijnink C, Bom MJ, Gotte MJW, et al. Cardiovascular magnetic resonance techniques for tissue characterization after acute myocardial injury. Eur Heart J Cardiovasc Imaging. 2019;20(7):723–34.

    Article  PubMed  Google Scholar 

  102. Ibanez B, Aletras AH, Arai AE, Arheden H, Bax J, Berry C, et al. Cardiac MRI endpoints in myocardial infarction experimental and clinical trials: JACC scientific expert panel. J Am Coll Cardiol. 2019;74(2):238–56.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Garcia-Dorado D, Oliveras J, Gili J, Sanz E, Perez-Villa F, Barrabes J, et al. Analysis of myocardial oedema by magnetic resonance imaging early after coronary artery occlusion with or without reperfusion. Cardiovasc Res. 1993;27(8):1462–9.

    Article  CAS  PubMed  Google Scholar 

  104. Dastidar AG, Harries I, Pontecorboli G, Bruno VD, De Garate E, Moret C, et al. Native T1 mapping to detect extent of acute and chronic myocardial infarction: comparison with late gadolinium enhancement technique. Int J Cardiovasc Imaging. 2019;35(3):517–27.

    Article  PubMed  Google Scholar 

  105. Reinstadler SJ, Stiermaier T, Liebetrau J, Fuernau G, Eitel C, de Waha S, et al. Prognostic significance of remote myocardium alterations assessed by quantitative noncontrast T1 mapping in ST-segment elevation myocardial infarction. JACC Cardiovasc Imaging. 2018;11(3):411–9.

    Article  PubMed  Google Scholar 

  106. Uppal R, Caravan P. Targeted probes for cardiovascular MRI. Future Med Chem. 2010;2(3):451–70.

    Article  CAS  PubMed  Google Scholar 

  107. Hendrikx G, De Saint-Hubert M, Dijkgraaf I, Bauwens M, Douma K, Wierts R, et al. Molecular imaging of angiogenesis after myocardial infarction by (111) in-DTPA-cNGR and (99m)Tc-sestamibi dual-isotope myocardial SPECT. EJNMMI Res. 2015;5:2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Abbott BG, Case JA, Dorbala S, Einstein AJ, Galt JR, Pagnanelli R, et al. Contemporary cardiac SPECT imaging-innovations and best practices: an information statement from the American Society of Nuclear Cardiology. J Nucl Cardiol. 2018;25(5):1847–60.

    Article  PubMed  Google Scholar 

  109. Meester EJ, Krenning BJ, de Blois E, de Jong M, van der Steen AFW, Bernsen MR, van der Heiden K. Imaging inflammation in atherosclerotic plaques, targeting SST2 with [111In]In-DOTA-JR11. J Nucl Cardiol. 2020. https://doi.org/10.1007/s12350-020-02046-y. Epub ahead of print.

  110. Meester EJ, Krenning BJ, de Blois RH, Norenberg JP, de Jong M, Bernsen MR, et al. Imaging of atherosclerosis, targeting LFA-1 on inflammatory cells with (111)in-DANBIRT. J Nucl Cardiol. 2019;26(5):1697–704.

    Article  CAS  PubMed  Google Scholar 

  111. Ageyama N, Kurosawa H, Fujimoto O, Uehara T, Hiroe M, Arano Y, et al. Successful inflammation imaging of non-human primate hearts using an antibody specific for tenascin-C. Int Heart J. 2019;60(1):151–8.

    Article  CAS  PubMed  Google Scholar 

  112. Su H, Spinale FG, Dobrucki LW, Song J, Hua J, Sweterlitsch S, et al. Noninvasive targeted imaging of matrix metalloproteinase activation in a murine model of postinfarction remodeling. Circulation. 2005;112(20):3157–67.

    Article  CAS  PubMed  Google Scholar 

  113. Swart LE, Scholtens AM, Tanis W, Nieman K, Bogers A, Verzijlbergen FJ, et al. 18F-fluorodeoxyglucose positron emission/computed tomography and computed tomography angiography in prosthetic heart valve endocarditis: from guidelines to clinical practice. Eur Heart J. 2018;39(41):3739–49.

    Article  CAS  PubMed  Google Scholar 

  114. Schwaiger M, Brunken R, Grover-McKay M, Krivokapich J, Child J, Tillisch JH, et al. Regional myocardial metabolism in patients with acute myocardial infarction assessed by positron emission tomography. J Am Coll Cardiol. 1986;8(4):800–8.

    Article  CAS  PubMed  Google Scholar 

  115. Anzola LK, Glaudemans A, Dierckx R, Martinez FA, Moreno S, Signore A. Somatostatin receptor imaging by SPECT and PET in patients with chronic inflammatory disorders: a systematic review. Eur J Nucl Med Mol Imaging. 2019;46(12):2496–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tarkin JM, Calcagno C, Dweck MR, Evans NR, Chowdhury MM, Gopalan D, et al. (68) Ga-DOTATATE PET identifies residual myocardial inflammation and bone marrow activation after myocardial infarction. J Am Coll Cardiol. 2019;73(19):2489–91.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Bravo PE, Bajaj N, Padera RF, Morgan V, Hainer J, Bibbo CF, Harrington M, Park MA, Hyun H, Robertson M, Lakdawala NK, Groarke J, Stewart GC, Dorbala S, Blankstein R, Di Carli MF. Feasibility of somatostatin receptortargeted imaging for detection of myocardial inflammation: A pilot study. J Nucl Cardiol. 2021;28(3):1089–99.

    Google Scholar 

  118. Lapa C, Reiter T, Li X, Werner RA, Samnick S, Jahns R, et al. Imaging of myocardial inflammation with somatostatin receptor based PET/CT-A comparison to cardiac MRI. Int J Cardiol. 2015;194:44–9.

    Article  PubMed  Google Scholar 

  119. Satomi T, Ogawa M, Mori I, Ishino S, Kubo K, Magata Y, et al. Comparison of contrast agents for atherosclerosis imaging using cultured macrophages: FDG versus ultrasmall superparamagnetic iron oxide. J Nucl Med. 2013;54(6):999–1004.

    Article  CAS  PubMed  Google Scholar 

  120. Lee WW, Marinelli B, van der Laan AM, Sena BF, Gorbatov R, Leuschner F, et al. PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol. 2012;59(2):153–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Buonincontri G, Methner C, Carpenter TA, Hawkes RC, Sawiak SJ, Krieg T. MRI and PET in mouse models of myocardial infarction. J Vis Exp. 2013;82:e50806.

    Google Scholar 

  122. Xi XY, Zhang F, Wang J, Gao W, Tian Y, Xu H, et al. Functional significance of post-myocardial infarction inflammation evaluated by (18)F-fluorodeoxyglucose imaging in swine model. J Nucl Cardiol. 2019;27(2):519–31.

    Article  PubMed  Google Scholar 

  123. Giorgetti A, Marras G, Genovesi D, Filidei E, Bottoni A, Mangione M, et al. Effect of prolonged fasting and low molecular weight heparin or warfarin therapies on 2-deoxy-2-[18F]-fluoro-D-glucose PET cardiac uptake. J Nucl Cardiol. 2018;25(4):1364–71.

    Article  PubMed  Google Scholar 

  124. Perel-Winkler A, Bokhari S, Perez-Recio T, Zartoshti A, Askanase A, Geraldino-Pardilla L. Myocarditis in systemic lupus erythematosus diagnosed by (18)F-fluorodeoxyglucose positron emission tomography. Lupus Sci Med. 2018;5(1):e000265.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Thackeray JT, Bankstahl JP, Wang Y, Wollert KC, Bengel FM. Clinically relevant strategies for lowering cardiomyocyte glucose uptake for 18F-FDG imaging of myocardial inflammation in mice. Eur J Nucl Med Mol Imaging. 2015;42(5):771–80.

    Article  CAS  PubMed  Google Scholar 

  126. Wollenweber T, Roentgen P, Schafer A, Schatka I, Zwadlo C, Brunkhorst T, et al. Characterizing the inflammatory tissue response to acute myocardial infarction by clinical multimodality noninvasive imaging. Circ Cardiovasc Imaging. 2014;7(5):811–8.

    Article  PubMed  Google Scholar 

  127. Li B, Lento PA, Pan S. Inflammatory cardiomyopathy: case-based review on clinical presentation, diagnosis, and management. Cardiol Rev. 2021;29(5):230–7.

    Google Scholar 

  128. Kossmann H, Rischpler C, Hanus F, Nekolla SG, Kunze KP, Götze K, et al. Monocyte-platelet aggregates affect local inflammation in patients with acute myocardial infarction. Int J Cardiol. 2019;287:7–12.

    Article  PubMed  Google Scholar 

  129. Vasudevan P, Gaebel R, Doering P, Mueller P, Lemcke H, Stenzel J, et al. 18F-FDG PET-based imaging of myocardial inflammation predicts a functional outcome following transplantation of mESC-derived cardiac induced cells in a mouse model of myocardial infarction. Cells. 2019;8(12):1613.

    Article  CAS  PubMed Central  Google Scholar 

  130. Morooka M, Kubota K, Kadowaki H, Ito K, Okazaki O, Kashida M, et al. 11C-methionine PET of acute myocardial infarction. J Nucl Med. 2009;50(8):1283–7.

    Article  PubMed  Google Scholar 

  131. Taki J, Wakabayashi H, Inaki A, Imanaka-Yoshida K, Hiroe M, Ogawa K, et al. 14C-methionine uptake as a potential marker of inflammatory processes after myocardial ischemia and reperfusion. J Nucl Med. 2013;54(3):431–6.

    Article  CAS  PubMed  Google Scholar 

  132. Thackeray JT, Bankstahl JP, Wang Y, Wollert KC, Bengel FM. Targeting amino acid metabolism for molecular imaging of inflammation early after myocardial infarction. Theranostics. 2016;6(11):1768–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Taki J, Inaki A, Wakabayashi H, Matsunari I, Imanaka-Yoshida K, Ogawa K, et al. Postconditioning accelerates myocardial inflammatory resolution demonstrated by (14) C-methionine imaging and attenuates ventricular remodeling after ischemia and reperfusion. Circ J. 2019;83(12):2520–6.

    Article  CAS  PubMed  Google Scholar 

  134. Voo S, Kwee RM, Sluimer JC, Schreuder FH, Wierts R, Bauwens M, et al. Imaging intraplaque inflammation in carotid atherosclerosis with 18F-fluorocholine positron emission tomography-computed tomography: prospective study on vulnerable atheroma with immunohistochemical validation. Circ Cardiovasc Imaging. 2016;9(5):e004467.

    Article  PubMed  Google Scholar 

  135. DeGrado TR, Baldwin SW, Wang S, Orr MD, Liao RP, Friedman HS, et al. Synthesis and evaluation of (18)F-labeled choline analogs as oncologic PET tracers. J Nucl Med. 2001;42(12):1805–14.

    CAS  PubMed  Google Scholar 

  136. Lewis AJM, Miller JJ, Lau AZ, Curtis MK, Rider OJ, Choudhury RP, et al. Noninvasive Immunometabolic cardiac inflammation imaging using hyperpolarized magnetic resonance. Circ Res. 2018;122(8):1084–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Schroeder MA, Atherton HJ, Ball DR, Cole MA, Heather LC, Griffin JL, et al. Real-time assessment of Krebs cycle metabolism using hyperpolarized 13C magnetic resonance spectroscopy. FASEB J. 2009;23(8):2529–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Serrao EM, Brindle KM. Potential clinical roles for metabolic imaging with hyperpolarized [1-(13)C]pyruvate. Front Oncol. 2016;6:59.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Lewis AJM, Tyler DJ, Rider O. Clinical cardiovascular applications of hyperpolarized magnetic resonance. Cardiovasc Drugs Ther. 2020;34(2):231–40.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Kircher M, Lapa C. Novel noninvasive nuclear medicine imaging techniques for cardiac inflammation. Curr Cardiovasc Imaging Rep. 2017;10(2):6.

    Article  PubMed  PubMed Central  Google Scholar 

  141. de Vries EF, Roca M, Jamar F, Israel O, Signore A. Guidelines for the labelling of leucocytes with (99m)Tc-HMPAO. Inflammation/infection Taskgroup of the European Association of Nuclear Medicine. Eur J Nucl Med Mol Imaging. 2010;37(4):842–8.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Roca M, de Vries EF, Jamar F, Israel O, Signore A. Guidelines for the labelling of leucocytes with (111)in-oxine. Inflammation/infection Taskgroup of the European Association of Nuclear Medicine. Eur J Nucl Med Mol Imaging. 2010;37(4):835–41.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Tsopelas C. Radiotracers used for the scintigraphic detection of infection and inflammation. Sci World J. 2015;2015:676719.

    Article  Google Scholar 

  144. Vaidyanathan S, Patel CN, Scarsbrook AF, Chowdhury FU. FDG PET/CT in infection and inflammation--current and emerging clinical applications. Clin Radiol. 2015;70(7):787–800.

    Article  CAS  PubMed  Google Scholar 

  145. Charoenphun P, Meszaros LK, Chuamsaamarkkee K, Sharif-Paghaleh E, Ballinger JR, Ferris TJ, et al. [(89) Zr]oxinate4 for long-term in vivo cell tracking by positron emission tomography. Eur J Nucl Med Mol Imaging. 2015;42(2):278–87.

    Article  CAS  PubMed  Google Scholar 

  146. Bansal A, Pandey MK, Demirhan YE, Nesbitt JJ, Crespo-Diaz RJ, Terzic A, et al. Novel (89)Zr cell labeling approach for PET-based cell trafficking studies. EJNMMI Res. 2015;5:19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Lagan J, Naish JH, Simpson K, Zi M, Cartwright EJ, Foden P, et al. Substrate for the myocardial inflammation-heart failure hypothesis identified using novel USPIO methodology. JACC Cardiovasc Imaging. 2020;14(2):365–76.

    Article  PubMed  Google Scholar 

  148. Belderbos S, Gonzalez-Gomez MA, Cleeren F, Wouters J, Pineiro Y, Deroose CM, et al. Simultaneous in vivo PET/MRI using fluorine-18 labeled Fe3O4@Al(OH)3 nanoparticles: comparison of nanoparticle and nanoparticle-labeled stem cell distribution. EJNMMI Res. 2020;10(1):73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Alam SR, Shah AS, Richards J, Lang NN, Barnes G, Joshi N, et al. Ultrasmall superparamagnetic particles of iron oxide in patients with acute myocardial infarction: early clinical experience. Circ Cardiovasc Imaging. 2012;5(5):559–65.

    Article  PubMed  Google Scholar 

  150. Alam SR, Stirrat C, Spath N, Zamvar V, Pessotto R, Dweck MR, et al. Myocardial inflammation, injury and infarction during on-pump coronary artery bypass graft surgery. J Cardiothorac Surg. 2017;12(1):115.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Stirrat CG, Alam SR, Mac Gillivray TJ, Gray CD, Dweck MR, Raftis J, et al. Ferumoxytol-enhanced magnetic resonance imaging assessing inflammation after myocardial infarction. Heart. 2017;103(19):1528–35.

    Article  CAS  PubMed  Google Scholar 

  152. Flogel U, Ding Z, Hardung H, Jander S, Reichmann G, Jacoby C, et al. In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation. 2008;118(2):140–8.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Wu L, Liu F, Liu S, Xu X, Liu Z, Sun X. Perfluorocarbons-based (19)F magnetic resonance imaging in biomedicine. Int J Nanomedicine. 2020;15:7377–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Nahrendorf M, Hoyer FF, Meerwaldt AE, van Leent MMT, Senders ML, Calcagno C, et al. Imaging cardiovascular and lung macrophages with the positron emission tomography sensor (64)cu-Macrin in mice, rabbits, and pigs. Circ Cardiovasc Imaging. 2020;13(10):e010586.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Keliher EJ, Ye YX, Wojtkiewicz GR, Aguirre AD, Tricot B, Senders ML, et al. Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease. Nat Commun. 2017;8:14064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Khaled W, Piraquive J, Leporq B, Wan JH, Lambert SA, Mignet N, et al. In vitro distinction between proinflammatory and antiinflammatory macrophages with gadolinium-liposomes and ultrasmall superparamagnetic iron oxide particles at 3.0T. J Magn Reson Imaging. 2019;49(4):1166–73.

    Article  PubMed  Google Scholar 

  157. Reichel D, Tripathi M, Perez JM. Biological effects of nanoparticles on macrophage polarization in the tumor microenvironment. Nano. 2019;3(1):66–88.

    Google Scholar 

  158. Chen J, Yang J, Liu R, Qiao C, Lu Z, Shi Y, et al. Dual-targeting Theranostic system with mimicking apoptosis to promote myocardial infarction repair via modulation of macrophages. Theranostics. 2017;7(17):4149–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Protti A, Dong X, Andia ME, Yu B, Dokukina K, Chaubey S, et al. Assessment of inflammation with a very small iron-oxide particle in a murine model of reperfused myocardial infarction. J Magn Reson Imaging. 2014;39(3):598–608.

    Article  PubMed  Google Scholar 

  160. Montet-Abou K, Daire JL, Hyacinthe JN, Jorge-Costa M, Grosdemange K, Mach F, et al. In vivo labelling of resting monocytes in the reticuloendothelial system with fluorescent iron oxide nanoparticles prior to injury reveals that they are mobilized to infarcted myocardium. Eur Heart J. 2010;31(11):1410–20.

    Article  CAS  PubMed  Google Scholar 

  161. Yang Y, Liu J, Yang Y, Cho SH, Hu TC. Assessment of cell infiltration in myocardial infarction: a dose-dependent study using micrometer-sized iron oxide particles. Magn Reson Med. 2011;66(5):1353–61.

    Article  PubMed  Google Scholar 

  162. Staal AHJ, Becker K, Tagit O, Koen van Riessen N, Koshkina O, Veltien A, et al. In vivo clearance of (19)F MRI imaging nanocarriers is strongly influenced by nanoparticle ultrastructure. Biomaterials. 2020;261:120307.

    Article  CAS  PubMed  Google Scholar 

  163. Ramos IT, Henningsson M, Nezafat M, Lavin B, Lorrio S, Gebhardt P, et al. Simultaneous assessment of cardiac inflammation and extracellular matrix remodeling after myocardial infarction. Circ Cardiovasc Imaging. 2018;11(11):e007453.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Nienhaus F, Colley D, Jahn A, Pfeiler S, Flocke V, Temme S, et al. Phagocytosis of a PFOB-nanoemulsion for (19)F magnetic resonance imaging: first results in monocytes of patients with stable coronary artery disease and ST-elevation myocardial infarction. Molecules. 2019;24(11):2058.

    Article  CAS  PubMed Central  Google Scholar 

  165. Tarkin JM, Joshi FR, Evans NR, Chowdhury MM, Figg NL, Shah AV, et al. Detection of atherosclerotic inflammation by (68)Ga-DOTATATE PET compared to [(18)F]FDG PET imaging. J Am Coll Cardiol. 2017;69(14):1774–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Bison SM, Konijnenberg MW, Melis M, Pool SE, Bernsen MR, Teunissen JJ, et al. Peptide receptor radionuclide therapy using radiolabeled somatostatin analogs: focus on future developments. Clin Transl Imaging. 2014;2:55–66.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Kwekkeboom DJ, Kam BL, van Essen M, Teunissen JJ, van Eijck CH, Valkema R, et al. Somatostatin-receptor-based imaging and therapy of gastroenteropancreatic neuroendocrine tumors. Endocr Relat Cancer. 2010;17(1):R53–73.

    Article  CAS  PubMed  Google Scholar 

  168. Thackeray JT, Bankstahl JP, Wang Y, Korf-Klingebiel M, Walte A, Wittneben A, et al. Targeting post-infarct inflammation by PET imaging: comparison of (68)Ga-citrate and (68)Ga-DOTATATE with (18)F-FDG in a mouse model. Eur J Nucl Med Mol Imaging. 2015;42(2):317–27.

    Article  CAS  PubMed  Google Scholar 

  169. Bakerman I, Wardak M, Nguyen PK. Molecular imaging of inflammation in ischemic heart disease. Curr Cardiovasc Imaging Rep. 2018;11(6):13.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Lavin Plaza B, Theodoulou I, Rashid I, Hajhosseiny R, Phinikaridou A, Botnar RM. Molecular imaging in ischemic heart disease. Curr Cardiovasc Imaging Rep. 2019;12(7):31.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Thackeray JT, Hupe HC, Wang Y, Bankstahl JP, Berding G, Ross TL, et al. Myocardial inflammation predicts remodeling and Neuroinflammation after myocardial infarction. J Am Coll Cardiol. 2018;71(3):263–75.

    Article  CAS  PubMed  Google Scholar 

  172. Kimbrough D, Wang SH, Wright LH, Mani SK, Kasiganesan H, LaRue AC, et al. HDAC inhibition helps post-MI healing by modulating macrophage polarization. J Mol Cell Cardiol. 2018;119:51–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Nahrendorf M, Swirski FK. Monocyte and macrophage heterogeneity in the heart. Circ Res. 2013;112(12):1624–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Gombozhapova A, Rogovskaya Y, Shurupov V, Rebenkova M, Kzhyshkowska J, Popov SV, et al. Macrophage activation and polarization in post-infarction cardiac remodeling. J Biomed Sci. 2017;24(1):13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Weirather J, Hofmann UD, Beyersdorf N, Ramos GC, Vogel B, Frey A, et al. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ Res. 2014;115(1):55–67.

    Article  CAS  PubMed  Google Scholar 

  176. Zhou LS, Zhao GL, Liu Q, Jiang SC, Wang Y, Zhang DM. Silencing collapsin response mediator protein-2 reprograms macrophage phenotype and improves infarct healing in experimental myocardial infarction model. J Inflamm. 2015;12:11.

    Article  CAS  Google Scholar 

  177. Muller C. Folate based radiopharmaceuticals for imaging and therapy of cancer and inflammation. Curr Pharm Des. 2012;18(8):1058–83.

    Article  CAS  PubMed  Google Scholar 

  178. Winkel LC, Groen HC, van Thiel BS, Müller C, van der Steen AF, Wentzel JJ, de Jong M, Van der Heiden K. Folate receptor–targeted single-photon emission computed tomography/computed tomography to detect activated macrophages in atherosclerosis: can it distinguish vulnerable from stable atherosclerotic plaques? Mol Imaging. 2014;13. https://doi.org/10.2310/7290.2013.00061.

  179. Jahandideh A, Uotila S, Stahle M, Virta J, Li XG, Kyto V, et al. Folate receptor beta-targeted PET imaging of macrophages in autoimmune myocarditis. J Nucl Med. 2020;61(11):1643–9.

    Article  CAS  PubMed  Google Scholar 

  180. Verweij NJF, Yaqub M, Bruijnen STG, Pieplenbosch S, Ter Wee MM, Jansen G, et al. First in man study of [(18)F]fluoro-PEG-folate PET: a novel macrophage imaging technique to visualize rheumatoid arthritis. Sci Rep. 2020;10(1):1047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Bot I, Daissormont IT, Zernecke A, van Puijvelde GH, Kramp B, de Jager SC, et al. CXCR4 blockade induces atherosclerosis by affecting neutrophil function. J Mol Cell Cardiol. 2014;74:44–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Radford LL, Fernandez S, Beacham R, El Sayed R, Farkas R, Benesova M, et al. New (55)co-labeled albumin-binding folate derivatives as potential pet agents for folate receptor imaging. Pharmaceuticals. 2019;12(4):166.

    Article  CAS  PubMed Central  Google Scholar 

  183. Chandrupatla D, Molthoff CFM, Lammertsma AA, van der Laken CJ, Jansen G. The folate receptor beta as a macrophage-mediated imaging and therapeutic target in rheumatoid arthritis. Drug Deliv Transl Res. 2019;9(1):366–78.

    Article  CAS  PubMed  Google Scholar 

  184. Borchert T, Hess A, Lukačević M, Ross TL, Bengel FM, Thackeray JT. Angiotensin-converting enzyme inhibitor treatment early after myocardial infarction attenuates acute cardiac and neuroinflammation without effect on chronic neuroinflammation. Eur J Nucl Med Mol Imaging. 2020;47(7):1757–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. MacAskill MG, Stadulyte A, Williams L, Morgan TEF, Sloan NL, Alcaide-Corral CJ, et al. Quantification of macrophage-driven inflammation during myocardial infarction with (18)F-LW223, a novel TSPO radiotracer with binding independent of the rs6971 human polymorphism. J Nucl Med. 2020;62(4):536–44.

    Article  PubMed  CAS  Google Scholar 

  186. Mou T, Tian J, Tian Y, Yun M, Li J, Dong W, et al. Automated synthesis and preliminary evaluation of [(18)F]FDPA for cardiac inflammation imaging in rats after myocardial infarction. Sci Rep. 2020;10(1):18685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Hess A, Derlin T, Koenig T, Diekmann J, Wittneben A, Wang Y, et al. Molecular imaging-guided repair after acute myocardial infarction by targeting the chemokine receptor CXCR4. Eur Heart J. 2020;41(37):3564–75.

    Article  CAS  PubMed  Google Scholar 

  188. Thackeray JT, Derlin T, Haghikia A, Napp LC, Wang Y, Ross TL, et al. Molecular imaging of the chemokine receptor CXCR4 after acute myocardial infarction. JACC Cardiovasc Imaging. 2015;8(12):1417–26.

    Article  PubMed  Google Scholar 

  189. Koenig T, Sedding DG, Wester HJ, Derlin T. Seeing the unseen: post-infarction inflammation in an isolated right ventricular myocardial infarction visualized by combined cardiac magnetic resonance imaging and chemokine receptor CXCR4-targeted molecular imaging. Eur Heart J. 2018;39(11):966.

    Article  CAS  PubMed  Google Scholar 

  190. Reiter T, Kircher M, Schirbel A, Werner RA, Kropf S, Ertl G, et al. Imaging of C-X-C motif chemokine receptor CXCR4 expression after myocardial infarction with [(68)Ga]Pentixafor-PET/CT in correlation with cardiac MRI. JACC Cardiovasc Imaging. 2018;11(10):1541–3.

    Article  PubMed  Google Scholar 

  191. Rischpler C, Nekolla SG, Kossmann H, Dirschinger RJ, Schottelius M, Hyafil F, et al. Upregulated myocardial CXCR4-expression after myocardial infarction assessed by simultaneous GA-68 pentixafor PET/MRI. J Nucl Cardiol. 2016;23(1):131–3.

    Article  PubMed  Google Scholar 

  192. Lapa C, Reiter T, Werner RA, Ertl G, Wester HJ, Buck AK, et al. [(68)Ga]Pentixafor-PET/CT for imaging of chemokine receptor 4 expression after myocardial infarction. JACC Cardiovasc Imaging. 2015;8(12):1466–8.

    Article  PubMed  Google Scholar 

  193. Zacherl MJ, Todica A, Wängler C, Schirrmacher R, Hajebrahimi MA, Pircher J, Li X, Lindner S, Brendel M, Bartenstein P, Massberg S, Brunner S, Lehner S, Hacker M, Huber BC. Molecular imaging of cardiac CXCR4 expression in a mouse model of acute myocardial infarction using a novel 68Ga-mCXCL12 PET tracer. J Nucl Cardiol. 2020. https://doi.org/10.1007/s12350-020-02262-6. Epub ahead of print.

  194. Burke BP, Miranda CS, Lee RE, Renard I, Nigam S, Clemente GS, et al. (64)cu PET imaging of the CXCR4 chemokine receptor using a cross-bridged Cyclam Bis-Tetraazamacrocyclic antagonist. J Nucl Med. 2020;61(1):123–8.

    Article  CAS  PubMed  Google Scholar 

  195. Heo GS, Bajpai G, Li W, Luehmann HP, Sultan DH, Dun H, et al. Targeted PET imaging of chemokine receptor 2+ monocytes and macrophages in the injured heart. J Nucl Med. 2020;62(1):111–4.

    Article  PubMed  CAS  Google Scholar 

  196. Gao H, Kiesewetter DO, Zhang X, Huang X, Guo N, Lang L, et al. PET of glucagonlike peptide receptor upregulation after myocardial ischemia or reperfusion injury. J Nucl Med. 2012;53(12):1960–8.

    Article  CAS  PubMed  Google Scholar 

  197. Pan X, Xu Q, Chen J, Wang T, Zhang M, Wang H, et al. Preliminary evaluation of 18FAlFNOTAMALCys40Exendin4 in rodent heart after myocardial ischemia and reperfusion. Mol Med Rep. 2019;20(3):2276–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Stahle M, Kyto V, Kiugel M, Liljenback H, Metsala O, Kakela M, et al. Glucagon-like peptide-1 receptor expression after myocardial infarction: imaging study using (68)Ga-NODAGA-exendin-4 positron emission tomography. J Nucl Cardiol. 2020;27(6):2386–97.

    Article  PubMed  Google Scholar 

  199. Werry EL, Bright FM, Piguet O, Ittner LM, Halliday GM, Hodges JR, et al. Recent developments in TSPO PET imaging as a biomarker of neuroinflammation in neurodegenerative disorders. Int J Mol Sci. 2019;20(13):3161.

    Article  CAS  PubMed Central  Google Scholar 

  200. Tronel C, Largeau B, Santiago Ribeiro MJ, Guilloteau D, Dupont AC, Arlicot N. Molecular targets for PET imaging of activated microglia: the current situation and future expectations. Int J Mol Sci. 2017;18(4):802.

    Article  PubMed Central  CAS  Google Scholar 

  201. Werner RA, Chen X, Rowe SP, Lapa C, Javadi MS, Higuchi T. Recent paradigm shifts in molecular cardiac imaging-establishing precision cardiology through novel (18)F-labeled PET radiotracers. Trends Cardiovasc Med. 2020;30(1):11–9.

    Article  CAS  PubMed  Google Scholar 

  202. Largeau B, Dupont AC, Guilloteau D, Santiago-Ribeiro MJ, Arlicot N. TSPO PET imaging: from microglial activation to peripheral sterile inflammatory diseases? Contrast Media Mol Imaging. 2017;2017:6592139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. MacAskill MG, Newby DE, Tavares AAS. Frontiers in positron emission tomography imaging of the vulnerable atherosclerotic plaque. Cardiovasc Res. 2019;115(14):1952–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Thackeray JT, Bengel FM. Molecular imaging of myocardial inflammation with positron emission tomography Post-ischemia: a determinant of subsequent remodeling or recovery. JACC Cardiovasc Imaging. 2018;11(9):1340–55.

    Article  PubMed  Google Scholar 

  205. Janssen B, Vugts DJ, Windhorst AD, Mach RH. PET imaging of microglial activation-beyond targeting TSPO. Molecules. 2018;23(3):607.

    Article  PubMed Central  CAS  Google Scholar 

  206. Narayan N, Mandhair H, Smyth E, Dakin SG, Kiriakidis S, Wells L, et al. The macrophage marker translocator protein (TSPO) is down-regulated on pro-inflammatory 'M1' human macrophages. PLoS One. 2017;12(10):e0185767.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Muller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, et al. Glucagon-like peptide 1 (GLP-1). Mol Metab. 2019;30:72–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Lee YS, Jun HS. Anti-inflammatory effects of GLP-1-based therapies beyond glucose control. Mediat Inflamm. 2016;2016:3094642.

    Google Scholar 

  209. Drucker DJ. The cardiovascular biology of glucagon-like Peptide-1. Cell Metab. 2016;24(1):15–30.

    Article  CAS  PubMed  Google Scholar 

  210. Askari AT, Unzek S, Popovic ZB, Goldman CK, Forudi F, Kiedrowski M, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet. 2003;362(9385):697–703.

    Article  CAS  PubMed  Google Scholar 

  211. De Filippo K, Rankin SM. CXCR4, the master regulator of neutrophil trafficking in homeostasis and disease. Eur J Clin Invest. 2018;48:e12949.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Doring Y, Noels H, van der Vorst EPC, Neideck C, Egea V, Drechsler M, et al. Vascular CXCR4 limits atherosclerosis by maintaining arterial integrity: evidence from mouse and human studies. Circulation. 2017;136(4):388–403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Kircher M, Herhaus P, Schottelius M, Buck AK, Werner RA, Wester HJ, et al. CXCR4-directed theranostics in oncology and inflammation. Ann Nucl Med. 2018;32(8):503–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Weiss ID, Jacobson O. Molecular imaging of chemokine receptor CXCR4. Theranostics. 2013;3(1):76–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Hess A, Thackeray JT, Wollert KC, Bengel FM. Radionuclide image-guided repair of the heart. JACC Cardiovasc Imaging. 2019;13(11):2415–29.

    Article  PubMed  Google Scholar 

  216. Huang S, Frangogiannis NG. Anti-inflammatory therapies in myocardial infarction: failures, hopes and challenges. Br J Pharmacol. 2018;175(9):1377–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Jujo K, Hamada H, Iwakura A, Thorne T, Sekiguchi H, Clarke T, et al. CXCR4 blockade augments bone marrow progenitor cell recruitment to the neovasculature and reduces mortality after myocardial infarction. Proc Natl Acad Sci U S A. 2010;107(24):11008–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Wang Y, Dembowsky K, Chevalier E, Stüve P, Korf-Klingebiel M, Lochner M, et al. C-X-C motif chemokine receptor 4 blockade promotes tissue repair after myocardial infarction by enhancing regulatory T cell mobilization and immune-regulatory function. Circulation. 2019;139(15):1798–812.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Mayorga M, Kiedrowski M, Shamhart P, Forudi F, Weber K, Chilian WM, et al. Early upregulation of myocardial CXCR4 expression is critical for dimethyloxalylglycine-induced cardiac improvement in acute myocardial infarction. Am J Physiol Heart Circ Physiol. 2016;310(1):H20–8.

    Article  PubMed  Google Scholar 

  220. Dong F, Harvey J, Finan A, Weber K, Agarwal U, Penn MS. Myocardial CXCR4 expression is required for mesenchymal stem cell mediated repair following acute myocardial infarction. Circulation. 2012;126(3):314–24.

    Article  CAS  PubMed  Google Scholar 

  221. Derlin T, Sedding DG, Dutzmann J, Haghikia A, König T, Napp LC, et al. Imaging of chemokine receptor CXCR4 expression in culprit and nonculprit coronary atherosclerotic plaque using motion-corrected [(68)Ga]pentixafor PET/CT. Eur J Nucl Med Mol Imaging. 2018;45(11):1934–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Scofield SLC, Daniels CR, Dalal S, Millard JA, Singh M, Singh K. Extracellular ubiquitin modulates cardiac fibroblast phenotype and function via its interaction with CXCR4. Life Sci. 2018;211:8–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Schottelius M, Ludescher M, Richter F, Kapp TG, Kessler H, Wester HJ. Validation of [(125)I]CPCR4.3 as an investigative tool for the sensitive and specific detection of hCXCR4 and mCXCR4 expression in vitro and in vivo. EJNMMI Res. 2019;9(1):75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Osl T, Schmidt A, Schwaiger M, Schottelius M, Wester HJ. A new class of PentixaFor- and PentixaTher-based theranostic agents with enhanced CXCR4-targeting efficiency. Theranostics. 2020;10(18):8264–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Fantuzzi L, Tagliamonte M, Gauzzi MC, Lopalco L. Dual CCR5/CCR2 targeting: opportunities for the cure of complex disorders. Cell Mol Life Sci. 2019;76(24):4869–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Boring L, Gosling J, Cleary M, Charo IF. Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature. 1998;394(6696):894–7.

    Article  CAS  PubMed  Google Scholar 

  227. Liu Y, Li W, Luehmann HP, Zhao Y, Detering L, Sultan DH, et al. Noninvasive imaging of CCR2(+) cells in ischemia-reperfusion injury after lung transplantation. Am J Transplant. 2016;16(10):3016–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Ilatovskaya DV, Pitts C, Clayton J, Domondon M, Troncoso M, Pippin S, et al. CD8(+) T-cells negatively regulate inflammation post-myocardial infarction. Am J Physiol Heart Circ Physiol. 2019;317(3):H581–H96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Hofmann U, Frantz S. Role of T-cells in myocardial infarction. Eur Heart J. 2016;37(11):873–9.

    Article  CAS  PubMed  Google Scholar 

  230. McCarthy CE, White JM, Viola NT, Gibson HM. In vivo imaging technologies to monitor the immune system. Front Immunol. 2020;11:1067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Wei W, Jiang D, Ehlerding EB, Luo Q, Cai W. Noninvasive PET imaging of T cells. Trends Cancer. 2018;4(5):359–73.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Telenga ED, van der Bij W, de Vries EFJ, Verschuuren EAM, Timens W, Luurtsema G, et al. (99m)Tc-HYNIC-IL-2 scintigraphy to detect acute rejection in lung transplantation patients: a proof-of-concept study. EJNMMI Res. 2019;9(1):41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Klein C, Waldhauer I, Nicolini VG, Freimoser-Grundschober A, Nayak T, Vugts DJ, et al. Cergutuzumab amunaleukin (CEA-IL2v), a CEA-targeted IL-2 variant-based immunocytokine for combination cancer immunotherapy: overcoming limitations of aldesleukin and conventional IL-2-based immunocytokines. Onco Targets Ther. 2017;6(3):e1277306.

    Google Scholar 

  234. Chauvierre C, Aid-Launais R, Aerts J, Chaubet F, Maire M, Chollet L, et al. Pharmaceutical development and safety evaluation of a GMP-grade fucoidan for molecular diagnosis of cardiovascular diseases. Mar Drugs. 2019;17(12):699.

    Article  CAS  PubMed Central  Google Scholar 

  235. Nahrendorf M, Keliher E, Panizzi P, Zhang H, Hembrador S, Figueiredo JL, et al. 18F-4V for PET-CT imaging of VCAM-1 expression in atherosclerosis. JACC Cardiovasc Imaging. 2009;2(10):1213–22.

    Article  PubMed  PubMed Central  Google Scholar 

  236. Sherif HM, Saraste A, Nekolla SG, Weidl E, Reder S, Tapfer A, et al. Molecular imaging of early alphavbeta3 integrin expression predicts long-term left-ventricle remodeling after myocardial infarction in rats. J Nucl Med. 2012;53(2):318–23.

    Article  CAS  PubMed  Google Scholar 

  237. Makowski MR, Rischpler C, Ebersberger U, Keithahn A, Kasel M, Hoffmann E, et al. Multiparametric PET and MRI of myocardial damage after myocardial infarction: correlation of integrin αvβ3 expression and myocardial blood flow. Eur J Nucl Med Mol Imaging. 2020;48(4):1070–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. Lang CI, Doring P, Gabel R, Vasudevan P, Lemcke H, Muller P, et al. [(68)Ga]-NODAGA-RGD positron emission tomography (PET) for assessment of post myocardial infarction angiogenesis as a predictor for left ventricular remodeling in mice after cardiac stem cell therapy. Cells. 2020;9(6):1358.

    Article  CAS  PubMed Central  Google Scholar 

  239. Jenkins WS, Vesey AT, Stirrat C, Connell M, Lucatelli C, Neale A, et al. Cardiac α(V)β(3) integrin expression following acute myocardial infarction in humans. Heart. 2017;103(8):607–15.

    Article  CAS  PubMed  Google Scholar 

  240. Dimastromatteo J, Riou LM, Ahmadi M, Pons G, Pellegrini E, Broisat A, et al. In vivo molecular imaging of myocardial angiogenesis using the alpha(v)beta3 integrin-targeted tracer 99mTc-RAFT-RGD. J Nucl Cardiol. 2010;17(3):435–43.

    Article  PubMed  Google Scholar 

  241. Meoli DF, Sadeghi MM, Krassilnikova S, Bourke BN, Giordano FJ, Dione DP, et al. Noninvasive imaging of myocardial angiogenesis following experimental myocardial infarction. J Clin Invest. 2004;113(12):1684–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Meisel SR, Shapiro H, Radnay J, Neuman Y, Khaskia AR, Gruener N, et al. Increased expression of neutrophil and monocyte adhesion molecules LFA-1 and Mac-1 and their ligand ICAM-1 and VLA-4 throughout the acute phase of myocardial infarction: possible implications for leukocyte aggregation and microvascular plugging. J Am Coll Cardiol. 1998;31(1):120–5.

    Article  CAS  PubMed  Google Scholar 

  243. Ruparelia N, Digby JE, Jefferson A, Medway DJ, Neubauer S, Lygate CA, et al. Myocardial infarction causes inflammation and leukocyte recruitment at remote sites in the myocardium and in the renal glomerulus. Inflamm Res. 2013;62(5):515–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Seropian IM, Toldo S, Van Tassell BW, Abbate A. Anti-inflammatory strategies for ventricular remodeling following ST-segment elevation acute myocardial infarction. J Am Coll Cardiol. 2014;63(16):1593–603.

    Article  CAS  PubMed  Google Scholar 

  245. Ruparelia N, Chai JT, Fisher EA, Choudhury RP. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat Rev Cardiol. 2017;14(3):133–44.

    Article  CAS  PubMed  Google Scholar 

  246. Lin QY, Lang PP, Zhang YL, Yang XL, Xia YL, Bai J, et al. Pharmacological blockage of ICAM-1 improves angiotensin II-induced cardiac remodeling by inhibiting adhesion of LFA-1(+) monocytes. Am J Physiol Heart Circ Physiol. 2019;317(6):H1301–H11.

    Article  CAS  PubMed  Google Scholar 

  247. Kourtzelis I, Mitroulis I, von Renesse J, Hajishengallis G, Chavakis T. From leukocyte recruitment to resolution of inflammation: the cardinal role of integrins. J Leukoc Biol. 2017;102(3):677–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Moccetti F, Brown E, Xie A, Packwood W, Qi Y, Ruggeri Z, et al. Myocardial infarction produces sustained Proinflammatory endothelial activation in remote arteries. J Am Coll Cardiol. 2018;72(9):1015–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Kaufmann BA, Lewis C, Xie A, Mirza-Mohd A, Lindner JR. Detection of recent myocardial ischaemia by molecular imaging of P-selectin with targeted contrast echocardiography. Eur Heart J. 2007;28(16):2011–7.

    Article  PubMed  Google Scholar 

  250. Li X, Bauer W, Israel I, Kreissl MC, Weirather J, Richter D, et al. Targeting P-selectin by gallium-68-labeled fucoidan positron emission tomography for noninvasive characterization of vulnerable plaques: correlation with in vivo 17.6T MRI. Arterioscler Thromb Vasc Biol. 2014;34(8):1661–7.

    Article  CAS  PubMed  Google Scholar 

  251. Mota R, Campen MJ, Cuellar ME, Garver WS, Hesterman J, Qutaish M, et al. (111)In-DANBIRT in vivo molecular imaging of inflammatory cells in atherosclerosis. Contrast Media Mol Imaging. 2018;2018:6508724.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  252. Barrett HE, Meester EJ, van Gaalen K, van der Heiden K, Krenning BJ, Beekman FJ, et al. Imaging of inflammatory cellular protagonists in human atherosclerosis: a dual-isotope SPECT approach. Eur J Nucl Med Mol Imaging. 2020;47(12):2856–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Wang X, Peter K. Molecular imaging of Atherothrombotic diseases: seeing is believing. Arterioscler Thromb Vasc Biol. 2017;37(6):1029–40.

    Article  CAS  PubMed  Google Scholar 

  254. Debordeaux F, Chansel-Debordeaux L, Pinaquy JB, Fernandez P, Schulz J. What about alphavbeta3 integrins in molecular imaging in oncology? Nucl Med Biol. 2018;62-63:31–46.

    Article  CAS  PubMed  Google Scholar 

  255. Gronman M, Tarkia M, Kiviniemi T, Halonen P, Kuivanen A, Savunen T, et al. Imaging of alphavbeta3 integrin expression in experimental myocardial ischemia with [(68)Ga]NODAGA-RGD positron emission tomography. J Transl Med. 2017;15(1):144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  256. Thorn SL, Barlow SC, Feher A, Stacy MR, Doviak H, Jacobs J, et al. Application of hybrid matrix metalloproteinase-targeted and dynamic (201)Tl single-photon emission computed tomography/computed tomography imaging for evaluation of early Post-myocardial infarction remodeling. Circ Cardiovasc Imaging. 2019;12(11):e009055.

    Article  PubMed  PubMed Central  Google Scholar 

  257. Kiugel M, Kyto V, Saanijoki T, Liljenback H, Metsala O, Stahle M, et al. Evaluation of (68)Ga-labeled peptide tracer for detection of gelatinase expression after myocardial infarction in rat. J Nucl Cardiol. 2018;25(4):1114–23.

    Article  PubMed  Google Scholar 

  258. Cuadrado I, Piedras MJ, Herruzo I, Turpin Mdel C, Castejon B, Reventun P, et al. EMMPRIN-targeted magnetic nanoparticles for in vivo visualization and regression of acute myocardial infarction. Theranostics. 2016;6(4):545–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Helm PA, Caravan P, French BA, Jacques V, Shen L, Xu Y, et al. Postinfarction myocardial scarring in mice: molecular MR imaging with use of a collagen-targeting contrast agent. Radiology. 2008;247(3):788–96.

    Article  PubMed  Google Scholar 

  260. Muzard J, Sarda-Mantel L, Loyau S, Meulemans A, Louedec L, Bantsimba-Malanda C, et al. Non-invasive molecular imaging of fibrosis using a collagen-targeted peptidomimetic of the platelet collagen receptor glycoprotein VI. PLoS One. 2009;4(5):e5585.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  261. Kim H, Lee SJ, Kim JS, Davies-Venn C, Cho HJ, Won SJ, et al. Pharmacokinetics and microbiodistribution of 64Cu-labeled collagen-binding peptides in chronic myocardial infarction. Nucl Med Commun. 2016;37(12):1306–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Wildgruber M, Bielicki I, Aichler M, Kosanke K, Feuchtinger A, Settles M, et al. Assessment of myocardial infarction and postinfarction scar remodeling with an elastin-specific magnetic resonance agent. Circ Cardiovasc Imaging. 2014;7(2):321–9.

    Article  PubMed  Google Scholar 

  263. Verjans JW, Lovhaug D, Narula N, Petrov AD, Indrevoll B, Bjurgert E, et al. Noninvasive imaging of angiotensin receptors after myocardial infarction. JACC Cardiovasc Imaging. 2008;1(3):354–62.

    Article  PubMed  PubMed Central  Google Scholar 

  264. Higuchi T, Fukushima K, Xia J, Mathews WB, Lautamaki R, Bravo PE, et al. Radionuclide imaging of angiotensin II type 1 receptor upregulation after myocardial ischemia-reperfusion injury. J Nucl Med. 2010;51(12):1956–61.

    Article  PubMed  Google Scholar 

  265. Fukushima K, Bravo PE, Higuchi T, Schuleri KH, Lin X, Abraham MR, et al. Molecular hybrid positron emission tomography/computed tomography imaging of cardiac angiotensin II type 1 receptors. J Am Coll Cardiol. 2012;60(24):2527–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Odaka K, Uehara T, Arano Y, Adachi S, Tadokoro H, Yoshida K, et al. Noninvasive detection of cardiac repair after acute myocardial infarction in rats by 111 in fab fragment of monoclonal antibody specific for tenascin-C. Int Heart J. 2008;49(4):481–92.

    Article  PubMed  Google Scholar 

  267. Song J, Yu J, Li Y, Lu S, Ma Z, Shi H. MR targeted imaging for the expression of tenascin-C in myocardial infarction in vivo. J Magn Reson Imaging. 2017;45(6):1668–74.

    Article  PubMed  Google Scholar 

  268. Nahrendorf M, Sosnovik D, Chen JW, Panizzi P, Figueiredo JL, Aikawa E, et al. Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury. Circulation. 2008;117(9):1153–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Wang C, Keliher E, Zeller MWG, Wojtkiewicz GR, Aguirre AD, Buckbinder L, et al. An activatable PET imaging radioprobe is a dynamic reporter of myeloperoxidase activity in vivo. Proc Natl Acad Sci U S A. 2019;116(24):11966–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Anstensrud AK, Woxholt S, Sharma K, Broch K, Bendz B, Aakhus S, et al. Rationale for the ASSAIL-MI-trial: a randomised controlled trial designed to assess the effect of tocilizumab on myocardial salvage in patients with acute ST-elevation myocardial infarction (STEMI). Open Heart. 2019;6(2):e001108.

    Article  PubMed  PubMed Central  Google Scholar 

  271. Rangasamy L, Geronimo BD, Ortin I, Coderch C, Zapico JM, Ramos A, et al. Molecular imaging probes based on matrix metalloproteinase inhibitors (MMPIs). Molecules. 2019;24(16):2982.

    Article  CAS  PubMed Central  Google Scholar 

  272. Nian M, Lee P, Khaper N, Liu P. Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res. 2004;94(12):1543–53.

    Article  CAS  PubMed  Google Scholar 

  273. Sun Y, Wang Y, Yang H, Lu Y, Zhu G, Yang L, et al. Interleukin 8 targeted contrast echocardiography is effective to evaluate myocardial ischemia-reperfusion injury in the rabbits. Biomed Pharmacother. 2019;109:1346–50.

    Article  CAS  PubMed  Google Scholar 

  274. Liu Z, Barber C, Wan L, Liu S, Hui MM, Furenlid LR, et al. SPECT imaging of inflammatory response in ischemic-reperfused rat hearts using a 99mTc-labeled dual-domain cytokine ligand. J Nucl Med. 2013;54(12):2139–45.

    Article  CAS  PubMed  Google Scholar 

  275. Valenta I, Pacher P, Dilsizian V, Schindler TH. Novel myocardial PET/CT receptor imaging and potential therapeutic targets. Curr Cardiol Rep. 2019;21(7):55.

    Article  PubMed  Google Scholar 

  276. Shirani J, Dilsizian V. Imaging left ventricular remodeling: targeting the neurohumoral axis. Nat Clin Pract Cardiovasc Med. 2008;5(Suppl 2):S57–62.

    Article  CAS  PubMed  Google Scholar 

  277. Diekmann J, Koenig T, Zwadlo C, Derlin T, Neuser J, Thackeray JT, et al. Molecular imaging identifies fibroblast activation beyond the infarct region after acute myocardial infarction. J Am Coll Cardiol. 2021;77(14):1835–7.

    Article  CAS  PubMed  Google Scholar 

  278. Totzeck M, Siebermair J, Rassaf T, Rischpler C. Cardiac fibroblast activation detected by positron emission tomography/computed tomography as a possible sign of cardiotoxicity. Eur Heart J. 2020;41(9):1060.

    PubMed  Google Scholar 

  279. Taki J, Inaki A, Wakabayashi H, Imanaka-Yoshida K, Ogawa K, Hiroe M, et al. Dynamic expression of tenascin-C after myocardial ischemia and reperfusion: assessment by 125I-anti-tenascin-C antibody imaging. J Nucl Med. 2010;51(7):1116–22.

    Article  CAS  PubMed  Google Scholar 

  280. Cal-Gonzalez J, Rausch I, Shiyam Sundar LK, Lassen ML, Muzik O, Moser E, et al. Hybrid imaging: instrumentation and data processing. Front Phys. 2018;6:47.

    Article  Google Scholar 

  281. Nolte T, Gross-Weege N, Schulz V. (hybrid) SPECT and PET technologies. Recent Results Cancer Res. 2020;216:111–33.

    Article  CAS  PubMed  Google Scholar 

  282. Lau JMC, Laforest R, Sotoudeh H, Nie X, Sharma S, McConathy J, et al. Evaluation of attenuation correction in cardiac PET using PET/MR. J Nucl Cardiol. 2017;24(3):839–46.

    Article  PubMed  Google Scholar 

  283. Rischpler C, Siebermair J, Kessler L, Quick HH, Umutlu L, Rassaf T, et al. Cardiac PET/MRI: current clinical status and future perspectives. Semin Nucl Med. 2020;50(3):260–9.

    Article  PubMed  Google Scholar 

  284. Wilk B, Wisenberg G, Dharmakumar R, Thiessen JD, Goldhawk DE, Prato FS. Hybrid PET/MR imaging in myocardial inflammation post-myocardial infarction. J Nucl Cardiol. 2020;27(6):2083–99.

    Article  CAS  PubMed  Google Scholar 

  285. Nensa F, Bamberg F, Rischpler C, Menezes L, Poeppel TD, la Fougere C, et al. Hybrid cardiac imaging using PET/MRI: a joint position statement by the European Society of Cardiovascular Radiology (ESCR) and the European Association of Nuclear Medicine (EANM). Eur Radiol. 2018;28(10):4086–101.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monique R. Bernsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van der Heiden, K., Krenning, B.J., Merkus, D., Bernsen, M.R. (2021). Post-Infarction Inflammatory Alterations. In: Caobelli, F. (eds) Imaging of Inflammation and Infection in Cardiovascular Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-81131-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81131-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81130-3

  • Online ISBN: 978-3-030-81131-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics