Skip to main content

Methods of Sampling Trace Substances in Air

  • Chapter
Springer Handbook of Atmospheric Measurements

Abstract

Trace gases are commonly collected via accumulative sampling, employing sorbents and cryotraps that utilize passive (diffusive) or active sampling principles. For semivolatile substances such as ammonium salts as well as oxygenated and halogenated organics, the particulate and gas phases must be collected separately—either side by side or in a sample train. Aerosol particles are collected using a broad spectrum of samplers that rely on physical principles such as inertia-based particle sampling, diffusive particle transport and adsorption to surfaces, particle migration and deposition in external fields, and filter sampling. Dedicated inlet systems with minimized particle losses must be used to ensure that sampling gives representative results, particularly for the particle size distribution. Note that artifact-free sampling is not yet available for a number of target compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • J. Lelieveld, U. Pöschl: Chemists can help to solve the air-pollution health crisis, Nature 551, 291–293 (2017)

    Article  Google Scholar 

  • M.H. Forouzanfar, A. Afshin, L.T. Alexander, et al.: Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015, Lancet 388, 1659–1724 (2016)

    Article  Google Scholar 

  • J.H. Seinfeld, S.N. Pandis: Atmospheric Chemistry and Physics (John Wiley & Sons, Inc., New York 1998)

    Google Scholar 

  • J.G. Watson, R.J. Tropp, S.D. Kohl, X. Wang, J.C. Chow: Filter processing and gravimetric analysis for suspended particulate matter samples, Aerosol Sci. Eng. 1, 93–105 (2017)

    Article  Google Scholar 

  • J. Ofner, T. Deckert-Gaudig, K.A. Kamilli, A. Held, H. Lohninger, V. Deckert, B. Lendl: Tip-enhanced Raman spectroscopy of atmospherically relevant aerosol nanoparticles, Anal. Chem. 88, 9766–9772 (2016)

    Article  Google Scholar 

  • R.M.B.O. Duarte, C.A. Pio, A.C. Duarte: Spectroscopic study of the water-soluble organic matter isolated from atmospheric aerosols collected under different atmospheric conditions, Anal. Chim. Acta 530, 7–14 (2005)

    Article  Google Scholar 

  • J.A. Huffman, A.J. Prenni, P.J. DeMott, C. Pöhlker, R.H. Mason, N.H. Robinson, J. Fröhlich-Nowoisky, Y. Tobo, V.R. Despres, E. Garcia, D.J. Gochis, E. Harris, I. Müller-Germann, C. Ruzene, B. Schmer, B. Sinha, D.A. Day, M.O. Andreae, J.L. Jimenez, M. Gallagher, S.M. Kreidenweis, A.K. Bertram, U. Pöschl: High concentrations of biological aerosol particles and ice nuclei during and after rain, Atmos. Chem. Phys. 13, 6151–6164 (2013)

    Article  Google Scholar 

  • A. Laskin, M.J. Iedema, A. Ichkovich, E.R. Graber, I. Taraniuk, Y. Rudich: Direct observation of completely processed calcium carbonate dust particles, Faraday Discuss. 130, 453–468 (2005)

    Article  Google Scholar 

  • W. Maenhaut, N. Raes, W. Wang: Analysis of atmospheric aerosols by particle-induced X-ray emission, instrumental neutron activation analysis, and ion chromatography, Nucl. Instrum. Methods Phys. Res. B 269, 2693–2698 (2011)

    Article  Google Scholar 

  • A.H. Goldstein, D.R. Worton, B.J. Williams, S.V. Hering, N.M. Kreisberg, O. Panić, T. Górecki: Thermal desorption comprehensive two-dimensional gas chromatography for in-situ measurements of organic aerosols, J. Chromatogr. A 1186, 340–347 (2008)

    Article  Google Scholar 

  • A. Kumar, W. Abouchami, S.J.G. Galer, V.H. Garrison, E. Williams, M.O. Andreae: A radiogenic isotope tracer study of transatlantic dust transport from Africa to the Caribbean, Atmos. Environ. 82, 130–143 (2014)

    Article  Google Scholar 

  • I. Kourtchev, R.H.M. Godoi, S. Connors, J.G. Levine, A.T. Archibald, A.F.L. Godoi, S.L. Paralovo, C.G.G. Barbosa, R.A.F. Souza, A.O. Manzi, R. Seco, S. Sjostedt, J.H. Park, A. Guenther, S. Kim, J. Smith, S.T. Martin, M. Kalberer: Molecular composition of organic aerosols in Central Amazonia: An ultra-high-resolution mass spectrometry study, Atmos. Chem. Phys. 16, 11899–11913 (2016)

    Article  Google Scholar 

  • S.V. Krupa, A.H. Legge: Passive sampling of ambient, gaseous air pollutants: An assessment from an ecological perspective, Environ. Pollut. 107, 31–45 (2000)

    Article  Google Scholar 

  • J.F. Pankow: An absorption model of gas/particle partitioning of organic compounds in the atmosphere, Atmos. Environ. 28, 185–188 (1994)

    Article  Google Scholar 

  • M. Shiraiwa, K. Ueda, A. Pozzer, G. Lammel, C.J. Kampf, A. Fushimi, S. Enami, A.M. Arangio, J. Fröhlich-Nowoisky, Y. Fujitani, A. Furuyama, P.S.J. Lakey, J. Lelieveld, K. Lucas, Y. Morino, U. Pöschl, S. Takaharna, A. Takami, H.J. Tong, B. Weber, A. Yoshino, K. Sato: Aerosol health effects from molecular to global scales, Environ. Sci. Technol. 51, 13545–13567 (2017)

    Article  Google Scholar 

  • T.C. Bond, S.J. Doherty, D.W. Fahey, P.M. Forster, T. Berntsen, B.J. DeAngelo, M.G. Flanner, S. Ghan, B. Kärcher, D. Koch, S. Kinne, Y. Kondo, P.K. Quinn, M.C. Sarofim, M.G. Schultz, M. Schulz, C. Venkataraman, H. Zhang, S. Zhang, N. Bellouin, S.K. Guttikunda, P.K. Hopke, M.Z. Jacobson, J.W. Kaiser, Z. Klimont, U. Lohmann, J.P. Schwarz, D. Shindell, T. Storelvmo, S.G. Warren, C.S. Zender: Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res. Atmos. 118, 2169–8996 (2013)

    Google Scholar 

  • V. Ramanathan, P.J. Crutzen, J.T. Kiehl, D. Rosenfeld: Aerosols, climate, and the hydrological cycle, Science 294, 2119–2124 (2001)

    Article  Google Scholar 

  • P.H. McMurry: A review of atmospheric aerosol measurements, Atmos. Environ. 34, 1959–1999 (2000)

    Article  Google Scholar 

  • A. Wiedensohler, W. Birmili, J.-P. Putaud, J. Ogren: Recommendations for aerosol sampling. In: Aerosol Science: Technology and Applications, ed. by I. Colbeck, M. Lazaridis (John Wiley & Sons, Chichester 2014)

    Google Scholar 

  • M. Kulmala, T. Petäjä, T. Nieminen, M. Sipilä, H.E. Manninen, K. Lehtipalo, M. Dal Maso, P.P. Aalto, H. Junninen, P. Paasonen, I. Riipinen, K.E.J. Lehtinen, A. Laaksonen, V.-M. Kerminen: Measurement of the nucleation of atmospheric aerosol particles, Nat. Protoc. 7, 1651–1667 (2012)

    Article  Google Scholar 

  • M. Lazaridis, I. Colbeck: Introduction. In: Aerosol Science: Technology and Applications, ed. by I. Colbeck, M. Lazaridis (John Wiley & Sons, Chichester 2014)

    Google Scholar 

  • I. Colbeck, M. Lazaridis: Aerosol Science: Technology and Applications (John Wiley & Sons, Chichester 2014)

    Google Scholar 

  • C. Pöhlker, J.A. Huffman, J.D. Förster, U. Pöschl: Autofluorescence of atmospheric bioaerosols: Spectral fingerprints and taxonomic trends of pollen, Atmos. Meas. Tech. 6, 3369–3392 (2013)

    Article  Google Scholar 

  • V.R. Després, J.A. Huffman, S.M. Burrows, C. Hoose, A.S. Safatov, G. Buryak, J. Fröhlich-Nowoisky, W. Elbert, M.O. Andreae, U. Pöschl, R. Jaenicke: Primary biological aerosol particles in the atmosphere: A review, Tellus B 64, 1–58 (2012)

    Google Scholar 

  • B. Weinzierl, A. Ansmann, J.M. Prospero, D. Althausen, N. Benker, F. Chouza, M. Dollner, D. Farrell, W.K. Fomba, V. Freudenthaler, J. Gasteiger, S. Groß, M. Haarig, B. Heinold, K. Kandler, T.B. Kristensen, O.L. Mayol-Bracero, T. Müller, O. Reitebuch, D. Sauer, A. Schäfler, K. Schepanski, A. Spanu, I. Tegen, C. Toledano, A. Walser: The Saharan aerosol long-range transport and aerosol–cloud-interaction experiment: Overview and selected highlights, Bull. Am. Meteorol. Soc. 98, 1427–1451 (2017)

    Article  Google Scholar 

  • J. Ditas, N. Ma, Y. Zhang, D. Assmann, M. Neumaier, H. Riede, E. Karu, J. Williams, D. Scharffe, Q. Wang, J. Saturno, J.P. Schwarz, J.M. Katich, G.R. McMeeking, A. Zahn, M. Hermann, C.A.M. Brenninkmeijer, M.O. Andreae, U. Pöschl, H. Su, Y. Cheng: Strong impact of wildfires on the abundance and aging of black carbon in the lowermost stratosphere, Proc. Natl. Acad. Sci. U. S. A. 115, E11595 (2018)

    Article  Google Scholar 

  • P. Kulkarni, P.A. Baron, K. Willeke (Eds.): Aerosol Measurement: Principles, Techniques, and Applications, 3rd edn. (John Wiley & Sons, Hoboken 2011)

    Google Scholar 

  • W.C. Hinds: Aerosol Technology (John Wiley & Sons, New York 1999)

    Google Scholar 

  • J.H. Vincent: Aerosol Sampling: Science, Standards, Instrumentation and Applications (John Wiley & Sons, Chichester 2007)

    Book  Google Scholar 

  • J. Namiesnik, B. Zabiegala, A. Kot-Wasik, M. Partyka, A. Wasik: Passive sampling and/or extraction techniques in environmental analysis: A review, Anal. Bioanal. Chem. 381, 279–301 (2005)

    Article  Google Scholar 

  • M.B. Rubin: The history of ozone. The Schönbein period, 1839–1868, Bull. Hist. Chem. 26, 40–56 (2001)

    Google Scholar 

  • C.S. Gordon, J.T. Lowe: Carbon-Monoxide Detector, Patent US1644014A (1927)

    Google Scholar 

  • K.D. Reiszner, P.W. West: Collection and determination of sulfur dioxide incorporating permeation and West-Gaeke procedure, Environ. Sci. Technol. 7, 526–532 (1973)

    Article  Google Scholar 

  • E.D. Palmes, A.F. Gunnison, J. Dimattio, C. Tomczyk: Personal sampler for nitrogen dioxide, Am. Ind. Hyg. Assoc. J. 37, 570–577 (1976)

    Article  Google Scholar 

  • B. Zabiegala, T. Gorecki, E. Przyk, J. Namiesnik: Permeation passive sampling as a tool for the evaluation of indoor air quality, Atmos. Environ. 36, 2907–2916 (2002)

    Article  Google Scholar 

  • E.D. Palmes, A.F. Gunnison: Personal monitoring device for gaseous contaminants, Am. Ind. Hyg. Assoc. J. 34, 78–81 (1973)

    Article  Google Scholar 

  • P.W. West, G.C. Gaeke: Fixation of sulphur dioxide as disulfitomercurate(II) and subsequent colorimetric estimation, Anal. Chem. 28, 1816–1819 (1956)

    Article  Google Scholar 

  • M. Ferm: A Sensitive Diffusional Sampler. IVL Rapport, Vol. 1020 (Swedish Environmental Research Institute, Göteborg 1991)

    Google Scholar 

  • J.F. Mazur, R.L. Bamberger, G.E. Podolak: Development and evaluation of an ammonia dosimeter, Am. Ind. Hyg. Assoc. J. 39, 749–753 (1978)

    Article  Google Scholar 

  • C. Monn, M. Hangartner: Passive sampling for ozone, J. Air Waste Manag. Assoc. 40, 357–358 (1990)

    Article  Google Scholar 

  • R.M. Cox: The use of passive sampling to monitor forest exposure to O3, NO2 and SO2: A review and some case studies, Environ. Pollut. 126, 301–311 (2003)

    Article  Google Scholar 

  • G. Bertoni, C. Ciuchini, R. Tappa: Measurement of long-term average carbon dioxide concentrations using passive diffusion sampling, Atmos. Environ. 38, 1625–1630 (2004)

    Article  Google Scholar 

  • C.J. Horwell, A.G. Allen, T.A. Mather, J.E. Patterson: Evaluation of a novel passive sampling technique for monitoring volcanogenic hydrogen sulfide, J. Environ. Monit. 6, 630–635 (2004)

    Article  Google Scholar 

  • M.E. Bartkow, J.N. Huckins, J.F. Muller: Field-based evaluation of semipermeable membrane devices (SPMDs) as passive air samplers of polyaromatic hydrocarbons (PAHs), Atmos. Environ. 38, 5983–5990 (2004)

    Article  Google Scholar 

  • C.W. Chung, M.T. Morandi, T.H. Stock, M. Afshar: Evaluation of a passive sampler for volatile organic compounds at ppb concentrations, varying temperatures, and humidities with 24-h exposures. 2. Sampler performance, Environ. Sci. Technol. 33, 3666–3671 (1999)

    Article  Google Scholar 

  • H. Paschke, P. Popp: New passive samplers for chlorinated semivolatile organic pollutants in ambient air, Chemosphere 58, 855–863 (2005)

    Article  Google Scholar 

  • A. Bytnerowicz, P.E. Padgett, M.J. Arbaugh, D.R. Parker, D.P. Jones: Passive sampler for measurements of atmospheric nitric acid (HNO3) vapor, Sci. World J. 1, 815–822 (2001)

    Article  Google Scholar 

  • A. Bytnerowicz, M.J. Sanz, M.J. Arbaugh, P.E. Padgett, D.P. Jones, A. Davila: Passive sampler for monitoring ambient nitric acid (HNO3) and nitrous acid (HNO2) concentrations, Atmos. Environ. 39, 2655–2660 (2005)

    Article  Google Scholar 

  • G.R. Harvey, W.G. Steinhauer, J.M. Teal: Polychlorobiphenyls in North Atlantic ocean water, Science 180, 643–644 (1973)

    Article  Google Scholar 

  • T.F. Bidleman, C.E. Olney: Chlorinated hydrocarbons in the Sargasso Sea atmosphere and surface water, Science 183, 516–518 (1974)

    Article  Google Scholar 

  • T.F. Bidleman, L. Melymuk: Forty-five years of foam: A retrospective on air sampling with polyurethane foam, Bull. Environ. Contam. Toxicol. 102, 447–449 (2019)

    Article  Google Scholar 

  • L. Melymuk, P. Bohlin, O. Sanka, K. Pozo, J. Klanova: Current challenges in air sampling of semivolatile organic contaminants: Sampling artifacts and their influence on data comparability, Environ. Sci. Technol. 48, 14077–14091 (2014)

    Article  Google Scholar 

  • J.H. Vincent: The principles of aerosol samplers and sampling, Grana 30, 409–413 (1991)

    Article  Google Scholar 

  • P.H. Gregory: The Microbiology of the Atmosphere (Leonard Hill Books, Aylesbury 1973)

    Google Scholar 

  • L. Pasteur: Expériences relatives aux générations dites spontanées, C. R. Acad. Sci. 50, 303–307 (1860)

    Google Scholar 

  • L. Pasteur: Suite à une précédente communication relative aux générations dites spontanées, C. R. Acad. Sci. 51, 675–678 (1860)

    Google Scholar 

  • C.G. Ehrenberg: Passat-Staub Und Blut-Regen: Ein großes organisches unsichtbares Wirken und Leben in der Atmosphäre, Abh. Kgl. Preuss. Akad. Wiss. Berl. 1847, 269 (1849)

    Google Scholar 

  • C.G. Ehrenberg: Neue Beobachtungen über blutartige Erscheinungen in Aegypten, Arabien und Sibirien, nebst einer Uebersicht und Kritik der früher bekannnten, Ann. Phys. 94, 477–514 (1830), in German

    Article  Google Scholar 

  • J.B. Cohen, A.G. Rushton: Smoke (Edward Arnold, London 1912)

    Google Scholar 

  • T.L. Ogden, J.L. Birkett: The human head as a dust sampler. In: Inhaled Particles IV, ed. by W.H. Walton (Pergamon, Oxford 1977)

    Google Scholar 

  • V.A. Marple: History of impactors—The first 110 years, Aerosol Sci. Technol. 38, 247–292 (2004)

    Article  Google Scholar 

  • R.A. Thomas, W.P.O. McQueen: The Dust in the Air and the Gases from Explosives in a Cornish Mine (Dolcoath), and the Efficacy of Methods of Dealing with Them (Royal Commission on the Ventilation and Sanitation of Mines, Perth 1904), Tech. Rep. of the Institution of Mining and Metallurgy (15.12.1904)

    Google Scholar 

  • J. Boyd: Methods for determining the dust in mine air, as practised on the witwatersrand. In: Silicosis: Records of the International Conference Held at Johannesburg, 13–27 August 1930, Studies and Reports: Series F, Vol. 13 (International Labour Office, Geneva 1930)

    Google Scholar 

  • R. Kotzé: Final Report of the Miners’ Phthisis Prevention Committee (Union of South Africa, Johannesburg 1916)

    Google Scholar 

  • H.L. Green, H.H. Watson: Physical Methods for the Estimation of the Dust Hazard in Industry, with Special Reference to the Occupation of the Stone Mason (HMSO, London 1935), Medical Research Council, Special Report Series No. 199

    Google Scholar 

  • L. Greenberg, G.W. Smith: A New Instrument for Sampling Aerial Dust (Bureau of Mines, Washingotn 1922), United States Bureau of Mines Report of Investigations No. 2392

    Google Scholar 

  • P.H. Kitto, D.G. Beadle: A modified form of thermal precipitator, J. S. Afr. Inst. Min. Metall. 52, 284–306 (1952)

    Google Scholar 

  • R.J. Hamilton: A portable instrument for respirable dust sampling, J. Sci. Instrum. 33, 395–399 (1956)

    Article  Google Scholar 

  • R.C. Tolman, L.H. Reyerson, A.P. Brook, H.D. Smyth: An electrical precipitator for analyzing smokes, J. Am. Chem. Soc. 41, 587–589 (1919)

    Article  Google Scholar 

  • K.L. Rubow, V.A. Marple, J. Olin, M.A. McCawley: A personal cascade impactor – Design, evaluation and calibration, Am. Ind. Hyg. Assoc. J. 48, 532–538 (1987)

    Article  Google Scholar 

  • K.R. May: The cascade impactor – An instrument for sampling coarse aerosols, J. Sci. Instrum. 22, 187–195 (1945)

    Article  Google Scholar 

  • R.J. Sherwood, D.M. Greenhalgh: A personal air sampler, Ann. Occup. Hyg. 2, 127–132 (1960)

    Google Scholar 

  • A. Bailey, P.A. Hollingdale-Smith: Passive sampling and dosimetry from trace organic sample handling. In: Trace-Organic Sample Handling, Vol. 10, ed. by E. Reid (E. Horwood, Chichester 1981) pp. 43–50

    Google Scholar 

  • J. Namiesnik, T. Gorecki, E. Kozlowski, L. Torres, J. Mathieu: Passive dosimeters – An approach to atmospheric pollutants analysis, Sci. Total Environ. 38, 225–258 (1984)

    Article  Google Scholar 

  • T. Górecki, J. Namieśnik: Passive sampling, Trends Anal. Chem. 21, 276–291 (2002)

    Article  Google Scholar 

  • A. Kot-Wasik, B. Zabiegala, M. Urbanowicz, E. Dominiak, A. Wasik, J. Namiesnik: Advances in passive sampling in environmental studies, Anal. Chim. Acta 602, 141–163 (2007)

    Article  Google Scholar 

  • J.N.B. Bell, M. Treshow: Air Pollution and Plant Life, 2nd edn. (John Wiley & Sons, Chichester 2002)

    Google Scholar 

  • Radiello: Product Information and Company Brochure, Edition 01/2006. Fondazione Salvatore Maugeri-IRCCS, Centro di Ricerche Ambientali, Padova 2006

    Google Scholar 

  • Ogawa: NH3 Sampling Protocol Using the Ogawa Sampler. Yokohama City Research Institute for Environmental Science, User’s Guide 2.0, October 2010

    Google Scholar 

  • J.L. Durham, L. Stockburger: Nitric acid – Air diffusion coefficient: Experimental determination, Atmos. Environ. 20, 559–563 (1986)

    Article  Google Scholar 

  • P.B.C. Forbes, E.R. Rohwer: Chapter 5 – Denuders. In: Monitoring of Air Pollutants – Sampling, Sample Preparation and Analytical Techniques, Comprehensive Analytical Chemistry, Vol. 70, ed. by P.B.C. Forbes (Elsevier, Oxford 2015) pp. 155–181

    Chapter  Google Scholar 

  • A.W. Stelson, S.K. Friedlander, J.H. Seinfeld: A note on the equilibrium relationship between ammonia and nitric acid and particulate ammonium nitrate, Atmos. Environ. 13, 369–371 (1979)

    Article  Google Scholar 

  • T.F. Bidleman: Atmospheric processes – Wet and dry deposition of organic-compounds are controlled by their vapor particle partitioning, Environ. Sci. Technol. 22, 361–367 (1988)

    Article  Google Scholar 

  • J. Franklin, R. Atkinson, P.H. Howard, J.J. Orlando, C. Seigneur, T.J. Wallington, C. Zetzsch: Quantitative determination of persistence in air. In: Criteria for Persistence and Long-Range Transport of Chemicals in the Environment, ed. by G. Klecka (SETAC, Pensacola 2000) pp. 7–62

    Google Scholar 

  • K.U. Goss, R.P. Schwarzenbach: Linear free energy relationships used to evaluate equilibrium partitioning of organic compounds, Environ. Sci. Technol. 35, 1–9 (2001)

    Article  Google Scholar 

  • P. Shahpoury, G. Lammel, A. Albinet, A. Sofuoǧlu, Y. Dumanoğlu, S.C. Sofuoǧlu, Z. Wagner, V. Zdimal: Evaluation of a conceptual model for gas-particle partitioning of polycyclic aromatic hydrocarbons using polyparameter linear free energy relationships, Environ. Sci. Technol. 50, 12312–12319 (2016)

    Article  Google Scholar 

  • J.F. Pankow, T.F. Bidleman: Interdependence of the slopes and intercepts from log-log correlations of measured gas-particle paritioning and vapor pressure—I. Theory and analysis of available data, Atmos. Environ. A 26, 1071–1080 (1992)

    Article  Google Scholar 

  • B. Cetin, M. Odabasi: Atmospheric concentrations and phase partitioning of polybrominated diphenyl ethers (PBDEs) in Izmir, Turkey, Chemosphere 71, 1067–1078 (2008)

    Article  Google Scholar 

  • V.A. Marple, B.A. Olson: Sampling and measurement using inertial, gravitational, centrifugal, and thermal techniques. In: Aerosol Measurement: Principles, Techniques, and Applications, 3rd edn., ed. by P. Kulkarni, P.A. Baron, K. Willeke (John Wiley & Sons, Hoboken 2011), Chap. 8

    Google Scholar 

  • V.A. Marple, K. Willeke: Impactor design, Atmos. Environ. 10, 891–896 (1976)

    Article  Google Scholar 

  • N.A. Fuchs: The Mechanics of Aerosols (Pergamon, New York 1964)

    Google Scholar 

  • V.A. Marple, D.L. Roberts, F.J. Romay, N.C. Miller, K.G. Truman, M.V. Oort, B. Olsson, M.J. Holroyd, J.P. Mitchell, D. Hochrainer: Next generation pharmaceutical impactor (a new impactor for pharmaceutical inhaler testing). Part 1: Design, J. Aerosol Med. 16, 283–299 (2003)

    Article  Google Scholar 

  • V.A. Marple, K.L. Rubow, S.M. Behm: A microorifice uniform deposit impactor (MOUDI) – Description, calibration, and use, Aerosol Sci. Technol. 14, 434–446 (1991)

    Article  Google Scholar 

  • R.L.N. Yatavelli, J.A. Thornton: Particulate organic matter detection using a micro-orifice volatilization impactor coupled to a chemical ionization mass spectrometer (MOVI-CIMS), Aerosol Sci. Technol. 44, 61–74 (2010)

    Article  Google Scholar 

  • J. Keskinen, K. Pietarinen, M. Lehtimäki: Electrical low pressure impactor, J. Aerosol Sci. 23, 353–360 (1992)

    Article  Google Scholar 

  • R.E. Hillamo, E.I. Kauppinen: On the performance of the Berner low pressure impactor, Aerosol Sci. Technol. 14, 33–47 (1991)

    Article  Google Scholar 

  • V.A. Marple, B.A. Olson, K. Santhanakrishnan, J.P. Mitchell, S.C. Murray, B.L. Hudson-Curtis: Next generation pharmaceutical impactor (a new impactor for pharmaceutical inhaler testing). Part 2. Archival calibration, J. Aerosol Med. 16, 301–324 (2003)

    Article  Google Scholar 

  • V.A. Marple, B.A. Olson, K. Santhanakrishnan, D.L. Roberts, J.P. Mitchell, B.L. Hudson-Curtis: Next generation pharmaceutical impactor (a new impactor for pharmaceutical inhaler testing). Part 3. Extension of archival calibration to 15 L ∕ min, J. Aerosol Med. 17, 335–343 (2004)

    Article  Google Scholar 

  • S. Mertes, B. Verheggen, S. Walter, P. Connolly, M. Ebert, J. Schneider, K.N. Bower, J. Cozic, S. Weinbruch, U. Baltensperger, E. Weingartner: Counterflow virtual impact or based collection of small ice particles in mixed-phase clouds for the physico-chemical characterization of tropospheric ice nuclei: Sampler description and first case study, Aerosol Sci. Technol. 41, 848–864 (2007)

    Article  Google Scholar 

  • B.T. Chen, H.C. Yeh: An improved virtual impactor – Design and performance, J. Aerosol Sci. 18, 203–214 (1987)

    Article  Google Scholar 

  • V.A. Marple, C.M. Chien: Virtual impactors – A theoretical study, Environ. Sci. Technol. 14, 976–985 (1980)

    Article  Google Scholar 

  • X.L. Wang, P.H. McMurry: A design tool for aerodynamic lens systems, Aerosol Sci. Technol. 40, 320–334 (2006)

    Article  Google Scholar 

  • S. Hu, A.R. McFarland: Numerical performance simulation of a wetted wall bioaerosol sampling cyclone, Aerosol Sci. Technol. 41, 160–168 (2007)

    Article  Google Scholar 

  • S.L. von der Weiden, F. Drewnick, S. Borrmann: Particle loss calculator – A new software tool for the assessment of the performance of aerosol inlet systems, Atmos. Meas. Tech. 2, 479–494 (2009)

    Article  Google Scholar 

  • K.H. Leong: Thermophoresis and diffusiophoresis of large aerosol particles of different shapes, J. Aerosol Sci. 15, 511–517 (1984)

    Article  Google Scholar 

  • B. Sagot: Thermophoresis for spherical particles, J. Aerosol Sci. 65, 10–20 (2013)

    Article  Google Scholar 

  • F. Zheng: Thermophoresis of spherical and non-spherical particles: A review of theories and experiments, Adv. Colloid Interface Sci. 97, 255–278 (2002)

    Article  Google Scholar 

  • J. Wagner, D. Leith: Passive aerosol sampler. Part I: Principle of operation, Aerosol Sci. Technol. 34, 186–192 (2001)

    Article  Google Scholar 

  • D.K. Ott, T.M. Peters: A shelter to protect a passive sampler for coarse particulate matter, PM10–2.5, Aerosol Sci. Technol. 42, 299–309 (2008)

    Article  Google Scholar 

  • D. Moran-Zuloaga, F. Ditas, D. Walter, J. Saturno, J. Brito, S. Carbone, X. Chi, I. Hrabě de Angelis, H. Baars, R.H.M. Godoi, B. Heese, B.A. Holanda, J.V. Lavrič, S.T. Martin, J. Ming, M.L. Pöhlker, N. Ruckteschler, H. Su, Y. Wang, Q. Wang, Z. Wang, B. Weber, S. Wolff, P. Artaxo, U. Pöschl, M.O. Andreae, C. Pöhlker: Long-term study on coarse mode aerosols in the amazon rain forest with the frequent intrusion of Saharan dust plumes, Atmos. Chem. Phys. 18, 10055–10088 (2018)

    Article  Google Scholar 

  • K. Willeke, X. Lin, S.A. Grinshpun: Improved aerosol collection by combined impaction and centrifugal motion, Aerosol Sci. Technol. 28, 439–456 (1998)

    Article  Google Scholar 

  • J. Choi, S.C. Hong, W. Kim, J.H. Jung: Highly enriched, controllable, continuous aerosol sampling using inertial microfluidics and its application to real-time detection of airborne bacteria, ACS Sensors 2, 513–521 (2017)

    Article  Google Scholar 

  • R.C. Flagan: Electrical mobility methods for submicrometer particle characterization. In: Aerosol Measurement: Principles, Techniques, and Applications, 3rd edn., ed. by P. Kulkarni, P.A. Baron, K. Willeke (John Wiley & Sons, Hoboken 2011), Chap. 15

    Google Scholar 

  • K.W. Lee, B.Y.H. Liu: Theoretical study of aerosol filtration by fibrous filters, Aerosol Sci. Technol. 1, 147–161 (1982)

    Article  Google Scholar 

  • K.R. Spurny: On the chemical-detection of bioaerosols, J. Aerosol Sci. 25, 1533–1547 (1994)

    Article  Google Scholar 

  • P.C. Raynor, D. Leith, K.W. Lee, R. Mukund: Sampling and analysis using filters. In: Aerosol Measurement: Principles, Techniques, and Applications, 3rd edn., ed. by P. Kulkarni, P.A. Baron, K. Willeke (John Wiley & Sons, Hoboken 2011), Chap. 7

    Google Scholar 

  • S. Kuwabara: The forces experienced by randomly distributed parellel circular cylinders or spheres in a viscous flow at small Reynolds numbers, J. Phys. Soc. Japan 14, 527–532 (1959)

    Article  Google Scholar 

  • J. Zhou, S. Smith: Measurement of ozone concentrations in ambient air using a badge-type passive monitor, J. Air Waste Manag. Assoc. 47, 697–703 (1997)

    Article  Google Scholar 

  • P. Bruno, M. Caputi, M. Caselli, G. de Gennaro, M. de Rienzo: Reliability of a BTEX radial diffusive sampler for thermal desorption: Field measurements, Atmos. Environ. 39, 1347–1355 (2005)

    Article  Google Scholar 

  • J.D. Mulik, R.G. Lewis, W.A. McClenny, D.D. Williams: Modification of a high-efficiency passive sampler to determine nitrogen dioxide or formaldehyde in air, Anal. Chem. 61, 187–189 (1989)

    Article  Google Scholar 

  • M.J. Roadman, J.R. Scudlark, J.J. Meisinger, W.J. Ullman: Validation of Ogawa passive samplers for the determination of gaseous ammonia concentrations in agricultural settings, Atmos. Environ. 37, 2317–2325 (2003)

    Article  Google Scholar 

  • National Atmospheric Deposition Program: Standard Definitions for AMoN Special Study Intercomparison Calculations (Illinois State Water Survey, Champaign 2009), SOP Number: Da-4065.0

    Google Scholar 

  • T.T.N. Lan, R. Nishimura, Y. Tsujino, K. Imamura, M. Warashina, N.T. Hoang, Y. Maeda: Atmospheric concentrations of sulfur dioxide, nitrogen oxides, ammonia, hydrogen chloride, nitric acid, formic and acetic acids in the south of Vietnam measured by the passive sampling method, Anal. Sci. 20, 213–217 (2004)

    Article  Google Scholar 

  • C.H.F. Atkins, D.S. Lee: The Distribution of Ammonia in the United Kingdom (Harwell Laboratory, Oxfordshire 1992), Tech. Rep. AEA-EE-0330

    Google Scholar 

  • T.R. Thijsse, G.P. Wyers, J.H. Duyzer, H.L.M. Verhagen, A. Wayers, J.J. Möls: Measurement of ambient ammonia with diffusion tube samplers, Atmos. Environ. 32, 333–337 (1998)

    Article  Google Scholar 

  • M.A. Sutton, B.P. Miners, G.P. Wyers, J.H. Duyzer, C. Milford, J.N. Cape, D. Fowler: National Ammonia Concentration Monitoring in the United Kingdom: Sampling Intercomparison, Network Structure and Initial Network Results (Institute of Terrestrial Ecology, Edinburgh 1997), Report to the Department of the Environment (EPG 1/3/58)

    Google Scholar 

  • A. Blatter, M. Fahrni, A. Neftel: A new generation of NH3 passive samplers. In: Air Pollution Research Report No. 41, ed. by I. Allegrini (CEC, Brussels 1992) pp. 171–176

    Google Scholar 

  • M. Ferm, H. Rodhe: Measurements of air concentrations of SO2, NO2 and NH3 at rural and remote sites in Asia, J. Atmos. Chem. 27, 17–29 (1997)

    Article  Google Scholar 

  • M. Ferm, P.A. Svanberg: Cost-efficient techniques for urban- and background measurements of SO2 and NO2, Atmos. Environ. 32, 1377–1381 (1998)

    Article  Google Scholar 

  • J.J.H. Willems: Low-Cost Methods for Measuring Air Pollutants (Wageningen Agricultural University, Wageningen 1993), Tech. Rep. No. R-635

    Google Scholar 

  • Y.S. Tang, J.N. Cape, M.A. Sutton: Development and types of passive samplers for monitoring atmospheric NO2 and NH3 concentrations, Sci. World J. 1, 513–529 (2001)

    Google Scholar 

  • H. Tang, T. Lau, B. Brassard, W. Cool: A new all-season passive sampling system for monitoring NO2 in air, Field Anal. Chem. Technol. 3, 338–345 (1999)

    Article  Google Scholar 

  • D. Krochmal, A. Kalina: A method of nitrogen dioxide and sulphur dioxide determination in ambient air by use of passive samplers and ion chromatography, Atmos. Environ. 31, 3473–3479 (1997)

    Article  Google Scholar 

  • N.E. Rabaud, T.A. James, L.L. Ashbaugh, R.G. Flocchini: A passive sampler for the determination of airborne ammonia concentrations near large-scale animal facilities, Environ. Sci. Technol. 35, 1190–1196 (2001)

    Article  Google Scholar 

  • A. Kasper, H. Puxbaum: Badge-type passive sampler for monitoring ambient ammonia concentrations, Fresenius J. Anal. Chem. 350, 448–453 (1994)

    Article  Google Scholar 

  • F. De Santis, C. Vazzana, S. Menichelli, I. Allegrini: The measurement of atmospheric pollutants by passive sampling at the Uffizi gallery, Florence, Ann. Chim. 93, 45–53 (2003)

    Google Scholar 

  • B.R. Appel, Y. Tokiwa, M. Haik: Sampling of nitrates in ambient air, Atmos. Environ. 15, 283–289 (1981)

    Article  Google Scholar 

  • B.R. Appel, S.M. Wall, Y. Tokiwa, M. Haik: Simultaneous nitric acid, particulate nitrate and acidity measurements in ambient air, Atmos. Environ. 14, 549–554 (1980)

    Article  Google Scholar 

  • S.H. Cadle, R.J. Countess, N.A. Kelly: Nitric acid and ammonia in urban and rural locations, Atmos. Environ. 16, 2501–2506 (1982)

    Article  Google Scholar 

  • D.D. Parrish, R.B. Norton, M.J. Bollinger, S.C. Liu, P.C. Murphy, D.L. Albritton, F.C. Fehsenfeld, B.J. Huebert: Measurements of HNO3 and NH3 particulates at a rural site in the Colorado Mountains, J. Geophys. Res. Atmos. 91, 5379–5393 (1986)

    Article  Google Scholar 

  • J.F. Galasyn, K.L. Tschudy, B.J. Huebert: Seasonal and diurnal variability of nitric acid vapor and ionic aerosol species in the remote free troposphere at Mauna-Loa, Hawai, J. Geophys. Res. 92, 3105–3113 (1987)

    Article  Google Scholar 

  • P.A. Solomon, S.M. Larson, T. Fall, G.R. Cass: Basinwide nitric acid and related species concentrations observed during the Claremont Nitrogen Species Comparison Study, Atmos. Environ. 22, 1587–1594 (1988)

    Article  Google Scholar 

  • B.R. Appel, Y. Tokiwa, V. Povard, E.L. Kothny: The measurement of atmospheric hydrochloric acid in Southern California, Atmos. Environ. A 25, 525–527 (1991)

    Article  Google Scholar 

  • A.M.N. Kitto, R.M. Harrison: Nitrous and nitric acid measurements at sites in South-East England, Atmos. Environ. A 26, 235–241 (1992)

    Article  Google Scholar 

  • R.M. Harrison, J.D. Peak, G.M. Collins: Tropospheric cycle of nitrous acid, J. Geophys. Res. 101, 14429–14439 (1996)

    Article  Google Scholar 

  • D. Danalatos, S. Glavas: Gas phase nitric acid, ammonia and related particulate matter at a mediterranean coastal site, Patras, Greece, Atmos. Environ. 33, 3417–3425 (1999)

    Article  Google Scholar 

  • M. Possanzini, F. De Santis, V. Di Palo: Measurements of nitric acid and ammonium salts in Lower Bavaria, Atmos. Environ. 33, 3597–3602 (1999)

    Article  Google Scholar 

  • D.J. Eatough, V.F. White, L.D. Hansen, N.L. Eatough, E.C. Ellis: Hydration of nitric acid and its collection in the atmosphere by diffusion denuders, Anal. Chem. 57, 743–748 (1985)

    Article  Google Scholar 

  • J.L. Durham, L.L. Spiller, T.G. Ellestad: Nitric acid nitrate aerosol measurements by a diffusion denuder – A performance evaluation, Atmos. Environ. 21, 589–598 (1987)

    Article  Google Scholar 

  • G.B. Marshall, N.A. Dimmock: Determination of nitric acid in ambient air using diffusion denuder tubes, Talanta 39, 1463–1469 (1992)

    Article  Google Scholar 

  • P.K. Simon, P.K. Dasgupta, Z. Vecera: Wet effluent denuder coupled liquid ion chromatography systems, Anal. Chem. 63, 1237–1242 (1991)

    Article  Google Scholar 

  • Z. Vecera, P.K. Dasgupta: Measurement of atmospheric nitric and nitrous acids with a wet effluent diffusion denuder and low-pressure ion chromatography post-column reaction detection, Anal. Chem. 63, 2210–2216 (1991)

    Article  Google Scholar 

  • M. Taira, Y. Kanda: Wet effluent diffusion denuder for sampling of atmospheric gaseous nitric acid, Anal. Chem. 65, 3171–3173 (1993)

    Article  Google Scholar 

  • S.M. Buhr, M.P. Buhr, F.C. Fehsenfeld, J.S. Holloway, U. Karst, R.B. Norton, D.D. Parrish, R.E. Sievers: Development of a semicontinuous method for the measurement of nitric acid vapor and particulate nitrate and sulfate, Atmos. Environ. 29, 2609–2624 (1995)

    Article  Google Scholar 

  • C. Zellweger, M. Ammann, P. Hofer, U. Baltensperger: NOy speciation with a combined wet effluent diffusion denuder-aerosol collector coupled to ion chromatography, Atmos. Environ. 33, 1131–1140 (1999)

    Article  Google Scholar 

  • P.K. Simon, P.K. Dasgupta: Wet effluent denuder coupled liquid ion chromatography systems – Annular and parallel-plate denuders, Anal. Chem. 65, 1134–1139 (1993)

    Article  Google Scholar 

  • C.B. Boring, S.K. Poruthoor, P.K. Dasgupta: Wet effluent parallel plate diffusion denuder coupled capillary ion chromatograph for the determination of atmospheric trace gases, Talanta 48, 675–684 (1999)

    Article  Google Scholar 

  • G.F. Zhang, S. Slanina, C.B. Boring, P.A.C. Jongejan, P.K. Dasgupta: Continuous wet denuder measurements of atmospheric nitric and nitrous acids during the 1999 Atlanta supersite, Atmos. Environ. 37, 1351–1364 (2003)

    Article  Google Scholar 

  • M.P. Keuken, A. Wayers-Ijpelaan, J.J. Mols, R.P. Otjes, J. Slanina: The determination of ammonia in ambient air by an automated thermodenuder system, Atmos. Environ. 23, 2177–2185 (1989)

    Article  Google Scholar 

  • D. Klockow, R. Niessner, M. Malejczyk, H. Kiendl, B. Vomberg, M.P. Keuken, A. Wayers-Ypelaan, J. Slanina: Determination of nitric acid and ammonium nitrate by means of a computer controlled thermodenuder system, Atmos. Environ. 23, 1131–1138 (1989)

    Article  Google Scholar 

  • M.P. Keuken, C.A.M. Schoonebeek, A. Vanwensveenlouter, J. Slanina: Simultaneous sampling of NH3, HNO3, HCl, SO2 and H2O2 in ambient air by a wet annular denuder system, Atmos. Environ. 22, 2541–2548 (1988)

    Article  Google Scholar 

  • G.P. Wyers, R.P. Oties, J. Slanina: A continuous-flow denuder for the measurement of ambient concentrations and surface-exchange fluxes of ammonia, Atmos. Environ. A 27, 2085–2090 (1993)

    Article  Google Scholar 

  • J. Slanina, G.P. Wyers: Monitoring of atmospheric components by automatic denuder systems, Fresenius J. Anal. Chem. 350, 467–473 (1994)

    Article  Google Scholar 

  • M.T. Oms, P.A.C. Jongejan, A.C. Veltkamp, G.P. Wyers, J. Slanina: Continuous monitoring of atmospheric HCl, HNO2, HNO3, and SO2, by wet-annular denuder air sampling with on-line chromatographic analysis, Int. J. Environ. Anal. Chem. 62, 207–218 (1996)

    Article  Google Scholar 

  • P.A.C. Jongejan, Y. Bai, A.C. Veltkamp, G.P. Wyers, J. Slanina: An automated field instrument for the determination of acidic gases in air, Int. J. Environ. Anal. Chem. 66, 241–251 (1997)

    Article  Google Scholar 

  • I. Allegrini, A. Febo, C. Perrino, P. Masia: Measurement of atmospheric nitric acid in gas-phase and nitrate in particulate matter by means of annular denuders, Int. J. Environ. Anal. Chem. 54, 183–201 (1994)

    Article  Google Scholar 

  • P. Matusca, B. Schwarz, K. Bachmann: Measurements of diurnal concentration variations of gaseous HCl in air in the subnanogram range, Atmos. Environ. 18, 1667–1675 (1984)

    Article  Google Scholar 

  • W.R. Cofer, V.G. Collins, R.W. Talbot: Improved aqueous scrubber for collection of soluble atmospheric trace gases, Environ. Sci. Technol. 19, 557–560 (1985)

    Article  Google Scholar 

  • D.A. Philips, P.K. Dasgupta: A diffusion scrubber for the collection of gaseous nitric acid, Sep. Sci. Technol. 22, 1255–1267 (1987)

    Article  Google Scholar 

  • P.F. Lindgren: Diffusion scrubber-ion chromatography for the measurement of trace levels of atmospheric HCl, Atmos. Environ. A 26, 43–49 (1992)

    Article  Google Scholar 

  • B.L. Lefer, R.W. Talbot, J.W. Munger: Nitric acid and ammonia at a rural northeastern US site, J. Geophys. Res. 104, 1645–1661 (1999)

    Article  Google Scholar 

  • E. Sanhueza, A. Garaboto: Gaseous HCl at a remote tropical continental site, Tellus B 54, 412–415 (2002)

    Article  Google Scholar 

  • I. Trebs, F.X. Meixner, J. Slanina, R. Otjes, P. Jongejan, M.O. Andreae: Real-time measurements of ammonia, acidic trace gases and water-soluble inorganic aerosol species at a rural site in the Amazon basin, Atmos. Chem. Phys. 4, 967–987 (2004)

    Article  Google Scholar 

  • C. Perrino, F. de Santis, A. Febo: Uptake of nitrous acid and nitrogen oxides by nylon surfaces: Implications for nitric acid measurements, Atmos. Environ. 22, 1925–1930 (1988)

    Article  Google Scholar 

  • C. Perrino, F. de Santis, A. Febo: Criteria of the choice of a denuder sampling technique devoted to the measurement of atmospheric nitrous and nitric acids, Atmos. Environ. A 24, 617–626 (1990)

    Article  Google Scholar 

  • A. Bari, V. Ferraro, L.R. Wilson, D. Luttinger, L. Husain: Measurements of gaseous HONO, HNO3, SO2, HCl, NH3, particulate sulfate and PM2.5 in New York, Atmos. Environ. 37, 2825–2835 (2003)

    Article  Google Scholar 

  • C.W. Spicer, J.E. Howes, T.A. Bishop, L.H. Arnold, R.K. Stevens: Nitric acid measurement methods – An intercomparison, Atmos. Environ. 16, 1487–1500 (1982)

    Article  Google Scholar 

  • S.V. Hering, D.R. Lawson, I. Allegrini, A. Febo, C. Perrino, M. Possanzini, J.E. Sickles, K.G. Anlauf, A. Wiebe, B.R. Appel, W. John, J. Ondo, S. Wall, R.S. Braman, R. Sutton, G.R. Cass, P.A. Solomon, D.J. Eatough, N.L. Eatough, E.C. Ellis, D. Grosjean, B.B. Hicks, J.D. Womack, J. Horrocks, K.T. Knapp, T.G. Ellestad, R.J. Paur, W.J. Mitchell, M. Pleasant, E. Peake, A. Maclean, W.R. Pierson, W. Brachaczek, H.I. Schiff, G.I. Mackay, C.W. Spicer, D.H. Stedman, A.M. Winer, H.W. Biermann, E.C. Tuazon: The nitric acid shootout – Field comparison of measurement methods, Atmos. Environ. 22, 1519–1539 (1988)

    Article  Google Scholar 

  • E.J. Williams, S.T. Sandholm, J.D. Bradshaw, J.S. Schendel, A.O. Langford, P.K. Quinn, P.J. Lebel, S.A. Vay, P.D. Roberts, R.B. Norton, B.A. Watkins, M.P. Buhr, D.D. Parrish, J.G. Calvert, F.C. Fehsenfeld: An intercomparison of 5 ammonia measurement techniques, J. Geophys. Res. 97, 11591–11611 (1992)

    Article  Google Scholar 

  • P.K. Dasgupta: Automated measurement of atmospheric trace gases. In: Measurement Challenges in Atmospheric Chemistry, Advances in Chemistry, Vol. 232, ed. by L. Newman (American Chemical Society, Washington 1993) pp. 41–90

    Chapter  Google Scholar 

  • C.J. Hennigan, M.H. Bergin, J.E. Dibb, R.J. Weber: Enhanced secondary organic aerosol formation due to water uptake by fine particles, Geophys. Res. Lett. 35, L18801 (2008)

    Article  Google Scholar 

  • C. Anderson, J.E. Dibb, R.J. Griffin, M.H. Bergin: Simultaneous measurements of particulate and gas-phase water-soluble organic carbon concentrations at remote and urban-influenced locations, Geophys. Res. Lett. 35, L13706 (2008)

    Article  Google Scholar 

  • R.S. Spaulding, R.W. Talbot, M.J. Charles: Optimization of a mist chamber (cofer scrubber) for sampling water-soluble organics in air, Environ. Sci. Technol. 36, 1798–1808 (2002)

    Article  Google Scholar 

  • A.P. Sullivan, N. Hodas, B.J. Turpin, K. Skog, F.N. Keutsch, S. Gilardoni, M. Paglione, M. Rinaldi, S. Decesari, M.C. Facchini, L. Poulain, H. Herrmann, A. Wiedensohler, E. Nemitz, M.M. Twigg, J.L. Collett Jr: Evidence for ambient dark aqueous SOA formation in the Po valley, Italy, Atmos. Chem. Phys. 16, 8095–8108 (2016)

    Article  Google Scholar 

  • S.M. Duncan, K.G. Sexton, B.J. Turpin: Oxygenated VOCs, aqueous chemistry, and potential impacts on residential indoor air composition, Indoor Air 28, 198–212 (2018)

    Article  Google Scholar 

  • P. Solomon, K. Baumann, E. Edgerton, R. Tanner, D. Eatough, W. Modey, H. Marin, D. Savoie, S. Natarajan, M.B. Meyer, G. Norris: Comparison of integrated samplers for mass and composition during the 1999 Atlanta Supersites Project, J. Geophys. Res. 108, 8423 (2003)

    Article  Google Scholar 

  • A.G. Allen, R.M. Harrison, J.W. Erisman: Field-measurements of the dissociation of ammonium-nitrate and ammonium-chloride aerosols, Atmos. Environ. 23, 1591–1599 (1989)

    Article  Google Scholar 

  • M. Possanzini, P. Masia, V. Dipalo: Speciation of ammonium-containing species in atmospheric aerosols, Atmos. Environ. A 26, 1995–2000 (1992)

    Article  Google Scholar 

  • D.A. Lane, A.J. Peters, L.A. Gundel, K.C. Jones, G.L. Northcott: Gas/particle partition measurements of PAH at Hazelrigg, U.K., Polycycl. Aromat. Compd. 20, 225–234 (2000)

    Article  Google Scholar 

  • A.J. Peters, D.A. Lane, L.A. Gundel, G.L. Northcott, K.C. Jones: A comparison of high volume and diffusion denuder samplers for measuring semivolatile organic compounds in the atmosphere, Environ. Sci. Technol. 34, 5001–5006 (2000)

    Article  Google Scholar 

  • T. Novakov, C.E. Corrigan, J.E. Penner, C.C. Chuang, O. Rosario, O.L.M. Bracero: Organic aerosols in the Caribbean trade winds: A natural source?, J. Geophys. Res. Atmos. 102, 21307–21313 (1997)

    Article  Google Scholar 

  • K. Baumann, F. Ift, J.Z. Zhao, W.L. Chameides: Discrete measurements of reactive gases and fine particle mass and composition during the 1999 Atlanta Supersite Experiment, J. Geophys. Res. Atmos. 108, SOS 4-1–SOS 4-20 (2003)

    Article  Google Scholar 

  • I. Kamprad, K.U. Goss: Systematic investigation of the sorption properties of polyurethane foams for organic vapors, Anal. Chem. 79, 4222–4227 (2007)

    Article  Google Scholar 

  • T.F. Bidleman, M. Tysklind: Breakthrough during air sampling with polyurethane foam: What do PUF 2/PUF 1 ratios mean?, Chemosphere 192, 267–271 (2018)

    Article  Google Scholar 

  • J.W. Martin, D.C.G. Muir, C.A. Moody, D.A. Ellis, W.C. Kwan, K.R. Solomon, S.A. Mabury: Collection of airborne fluorinated organics and analysis by gas chromatography/chemical ionization mass spectrometry, Anal. Chem. 74, 584–590 (2002)

    Article  Google Scholar 

  • C. Mai, N. Theobald, G. Lammel, H. Hühnerfuss: Spatial, seasonal and vertical distributions of currently-used pesticides in the marine boundary layer of the North Sea, Atmos. Environ. 75, 92–102 (2013)

    Article  Google Scholar 

  • H.P.H. Arp, K.-U. Goss: Irreversible sorption of trace concentrations of perfluorocarboxylic acids to fiber filters used for air sampling, Atmos. Environ. 42, 6869–6872 (2008)

    Article  Google Scholar 

  • W. Birmili, K. Stopfkuchen, M. Hermann, A. Wiedensohler, J. Heintzenberg: Particle penetration through a 300 m inlet pipe for sampling atmospheric aerosols from a tall meteorological tower, Aerosol Sci. Technol. 41, 811–817 (2007)

    Article  Google Scholar 

  • C.A.M. Brenninkmeijer, P. Crutzen, F. Boumard, T. Dauer, B. Dix, R. Ebinghaus, D. Filippi, H. Fischer, H. Franke, U. Friess, J. Heintzenberg, F. Helleis, M. Hermann, H.H. Kock, C. Koeppel, J. Lelieveld, M. Leuenberger, B.G. Martinsson, S. Miemczyk, H.P. Moret, H.N. Nguyen, P. Nyfeler, D. Oram, D. O’Sullivan, S. Penkett, U. Platt, M. Pupek, M. Ramonet, B. Randa, M. Reichelt, T.S. Rhee, J. Rohwer, K. Rosenfeld, D. Scharffe, H. Schlager, U. Schumann, F. Slemr, D. Sprung, P. Stock, R. Thaler, F. Valentino, P. van Velthoven, A. Waibel, A. Wandel, K. Waschitschek, A. Wiedensohler, I. Xueref-Remy, A. Zahn, U. Zech, H. Ziereis: Civil aircraft for the regular investigation of the atmosphere based on an instrumented container: The new CARIBIC system, Atmos. Chem. Phys. 7, 4953–4976 (2007)

    Article  Google Scholar 

  • C.A.M. Brenninkmeijer, P.J. Crutzen, H. Fischer, H. Güsten, W. Hans, G. Heinrich, J. Heintzenberg, M. Hermann, T. Immelmann, D. Kersting, M. Maiss, M. Nolle, A. Pitscheider, H. Pohlkamp, D. Scharffe, K. Specht, A. Wiedensohler: CARIBIC—Civil aircraft for global measurement of trace gases and aerosols in the tropopause region, J. Atmos. Ocean. Technol. 16, 1373–1383 (1999)

    Article  Google Scholar 

  • M. Krämer, A. Afchine: Sampling characteristics of inlets operated at low U/U0 ratios: New insights from computational fluid dynamics (CFX) modeling, J. Aerosol Sci. 35, 683–694 (2004)

    Article  Google Scholar 

  • J.N. Porter, A.D. Clarke, G. Ferry, R.F. Pueschel: Aircraft studies of size-dependent aerosol sampling through inlets, J. Geophys. Res. Atmos. 97, 3815–3824 (1992)

    Article  Google Scholar 

  • J.E. Brockmann: Aerosol transport in sampling lines and inlets. In: Aerosol Measurement: Principles, Techniques, and Applications, 3rd edn., ed. by P. Kulkarni, P.A. Baron, K. Willeke (John Wiley & Sons, Hoboken 2011), Chap. 6

    Google Scholar 

  • K.E. Noll: A rotary inertial impactor for sampling giant particles in the atmosphere, Atmos. Environ. 4, 9–19 (1970)

    Article  Google Scholar 

  • F. Di-Giovanni: A review of the sampling efficiency of rotating-arm impactors used in aerobiological studies, Grana 37, 164–171 (1998)

    Article  Google Scholar 

  • E. Levetin: Methods for aeroallergen sampling, Curr. Allergy Asthma Rep. 4, 376–383 (2004)

    Article  Google Scholar 

  • M.J. Heffer, J.D. Ratz, J.D. Miller, J.H. Day: Comparison of the rotorod to other air samplers for the determination of Ambrosia artemisiifolia pollen concentrations conducted in the environmental exposure unit, Aerobiologia 21, 233–239 (2005)

    Article  Google Scholar 

  • W.R. Solomon, H.A. Burge, J.R. Boise, M. Becker: Comparative particle recoveries by the retracting rotorod, rotoslide and Burkard spore trap sampling in a compact array, Int. J. Biometeorol. 24, 107–116 (1980)

    Article  Google Scholar 

  • B.W. Loo, C.P. Cork: Development of high-efficiency virtual impactors, Aerosol Sci. Technol. 9, 167–176 (1988)

    Article  Google Scholar 

  • V.A. Marple, K.L. Rubow, W. Turner, J.D. Spengler: Low flow rate sharp cut impactors for indoor air sampling: Design and calibration, J. Air Waste Manag. Assoc. 37, 1303–1307 (1987)

    Google Scholar 

  • W.A. Turner, B.A. Olson, G.A. Allen: Calibration of sharp cut impactors for indoor and outdoor particle sampling, J. Air Waste Manag. Assoc. 50, 484–487 (2000)

    Article  Google Scholar 

  • C. Sioutas, S.T. Ferguson, J.M. Wolfson, H. Ozkaynak, P. Koutrakis: Inertial collection of fine particles using a high-volume rectangular geometry conventional impactor, J. Aerosol Sci. 28, 1015–1028 (1997)

    Article  Google Scholar 

  • W. Maenhaut, G. Ducastel, R.E. Hillamo, T.A. Pakkanen: Evaluation of the applicability of the MOUDI impactor for aerosol collections with subsequent multielement analysis by PIXE, Nucl. Instrum. Methods Phys. Res. B 75, 249–256 (1993)

    Article  Google Scholar 

  • L.G. Cena, W.P. Chisholm, M.J. Keane, A. Cumpston, B.T. Chen: Size distribution and estimated respiratory deposition of total chromium, hexavalent chromium, manganese, and nickel in gas metal arc welding fume aerosols, Aerosol Sci. Technol. 48, 1254–1263 (2014)

    Article  Google Scholar 

  • A. Laskin, R.C. Moffet, M.K. Gilles, J.D. Fast, R.A. Zaveri, B. Wang, P. Nigge, J. Shutthanandan: Tropospheric chemistry of internally mixed sea salt and organic particles: Surprising reactivity of NaCl with weak organic acids, J. Geophys. Res. Atmos. 117, D15302 (2012)

    Article  Google Scholar 

  • T.G. Dzubay, L.E. Hines, R.K. Stevens: Particle bounce errors in cascade impactors, Atmos. Environ. 10, 229–234 (1976)

    Article  Google Scholar 

  • T. Reponen, K. Willeke, S. Grinshpun, A. Nevalainen: Biological particle sampling. In: Aerosol Measurement: Principles, Techniques, and Applications, 3rd edn., ed. by P. Kulkarni, P.A. Baron, K. Willeke (John Wiley & Sons, Hoboken 2011), Chap. 24

    Google Scholar 

  • J.E. Boulter, D.J. Cziczo, A.M. Middlebrook, D.S. Thomson, D.M. Murphy: Design and performance of a pumped counterflow virtual impactor, Aerosol Sci. Technol. 40, 969–976 (2006)

    Article  Google Scholar 

  • P.A. Solomon, J.L. Moyers, R.A. Fletcher: High-volume dichotomous virtual impactor for the fractionation and collection of particles according to aerodynamic size, Aerosol Sci. Technol. 2, 455–464 (1983)

    Article  Google Scholar 

  • S.F. Maria, L.M. Russell, B.J. Turpin, R.J. Porcja: FTIR measurements of functional groups and organic mass in aerosol samples over the Caribbean, Atmos. Environ. 36, 5185–5196 (2002)

    Article  Google Scholar 

  • T.G. Dzubay, R.K. Stevens: Ambient air analysis with dichotomous sampler and X-ray-fluorescence spectrometer, Environ. Sci. Technol. 9, 663–668 (1975)

    Article  Google Scholar 

  • A. Hoffer, A. Gelencser, P. Guyon, G. Kiss, O. Schmid, G.P. Frank, P. Artaxo, M.O. Andreae: Optical properties of humic-like substances (HULIS) in biomass-burning aerosols, Atmos. Chem. Phys. 6, 3563–3570 (2006)

    Article  Google Scholar 

  • S. Kim, P.A. Jaques, M. Chang, J.R. Froines, C. Sioutas: Versatile aerosol concentration enrichment system (VACES) for simultaneous in vivo and in vitro evaluation of toxic effects of ultrafine, fine and coarse ambient particles. Part I: Development and laboratory characterization, J. Aerosol Sci. 32, 1281–1297 (2001)

    Article  Google Scholar 

  • L. Ma, D.B. Ingham, X. Wen: Numerical modelling of the fluid and particle penetration through small sampling cyclones, J. Aerosol Sci. 31, 1097–1119 (2000)

    Article  Google Scholar 

  • X. Lin, T. Reponen, K. Willeke, Z. Wang, S.A. Grinshpun, M. Trunov: Survival of airborne microorganisms during swirling aerosol collection, Aerosol Sci. Technol. 32, 184–196 (2000)

    Article  Google Scholar 

  • W.B. Smith, J.R.R. Wilson, D.B. Harris: A five-stage cyclone system for in situ sampling, Environ. Sci. Technol. 13, 1387–1392 (1979)

    Article  Google Scholar 

  • W. John, G. Reischl: A cyclone for size-selective sampling of ambient air, J. Air Pollut. Control Assoc. 30, 872–876 (1980)

    Article  Google Scholar 

  • W.G. Lindsley, D. Schmechel, B.T. Chen: A two-stage cyclone using microcentrifuge tubes for personal bioaerosol sampling, J. Environ. Monit. 8, 1136–1142 (2006)

    Article  Google Scholar 

  • M.E. Moore, A.R. McFarland: Performance modeling of single-inlet aerosol sampling cyclones, Environ. Sci. Technol. 27, 1842–1848 (1993)

    Article  Google Scholar 

  • R.A. Gussman, L.C. Kenny, M. Labickas, P. Norton: Design, calibration, and field test of a cyclone for PM1 ambient air sampling, Aerosol Sci. Technol. 36, 361–365 (2002)

    Article  Google Scholar 

  • E. Carvalho, C. Sindt, A. Verdier, C. Galan, L. O’Donoghue, S. Parks, M. Thibaudon: Performance of the coriolis air sampler, a high-volume aerosol-collection system for quantification of airborne spores and pollen grains, Aerobiologia 24, 191–201 (2008)

    Article  Google Scholar 

  • J. Kesavan, D. Schepers, A.R. McFarland: Sampling and retention efficiencies of batch-type liquid-based bioaerosol samplers, Aerosol Sci. Technol. 44, 817–829 (2010)

    Article  Google Scholar 

  • C.W. Haig, W.G. Mackay, J.T. Walker, C. Williams: Bioaerosol sampling: Sampling mechanisms, bioefficiency and field studies, J. Hosp. Infect. 93, 242–255 (2016)

    Article  Google Scholar 

  • D. Gonzalez, A.G. Nasibulin, A.M. Baklanov, S.D. Shandakov, D.P. Brown, P. Queipo, E.I. Kauppinen: A new thermophoretic precipitator for collection of nanometer-sized aerosol particles, Aerosol Sci. Technol. 39, 1064–1071 (2005)

    Article  Google Scholar 

  • A. Miller, G. Frey, G. King, C. Sunderman: A handheld electrostatic precipitator for sampling airborne particles and nanoparticles, Aerosol Sci. Technol. 44, 417–427 (2010)

    Article  Google Scholar 

  • G. Pardon, L. Ladhani, N. Sandström, M. Ettori, G. Lobov, W. van der Wijngaart: Aerosol sampling using an electrostatic precipitator integrated with a microfluidic interface, Sens. Actuators B 212, 344–352 (2015)

    Article  Google Scholar 

  • D.S. Ensor, A.S. Viner, E.W. Johnson, R.P. Donovan, P.B. Keady, K.J. Weyrauch: Measurement of ultrafine aerosol particle size distributions at low concentrations by parallel arrays of a diffusion battery and a condensation nucleus counter in series, J. Aerosol Sci. 20, 471–475 (1989)

    Article  Google Scholar 

  • E.O. Knutson: History of diffusion batteries in aerosol measurements, Aerosol Sci. Technol. 31, 83–128 (1999)

    Article  Google Scholar 

  • A.A. Onischuk, A.M. Baklanov, S.V. Valiulin, P.P. Moiseenko, V.G. Mitrochenko: Aerosol diffusion battery: The retrieval of particle size distribution with the help of analytical formulas, Aerosol Sci. Technol. 52, 165–181 (2018)

    Article  Google Scholar 

  • Y. Cheng: Instruments and samplers based on diffusional separation. In: Aerosol Measurement: Principles, Techniques, and Applications, 3rd edn., ed. by P. Kulkarni, P.A. Baron, K. Willeke (John Wiley & Sons, Hoboken 2011), Chap. 16

    Google Scholar 

  • P. Feldpausch, M. Fiebig, L. Fritzsche, A. Petzold: Measurement of ultrafine aerosol size distributions by a combination of diffusion screen separators and condensation particle counters, J. Aerosol Sci. 37, 577–597 (2006)

    Article  Google Scholar 

  • D.J.H. Vosburgh, T. Klein, M. Sheehan, T.R. Anthony, T.M. Peters: Design and evaluation of a personal diffusion battery, Aerosol Sci. Technol. 47, 435–443 (2013)

    Article  Google Scholar 

  • M. Fierz, S. Weimer, H. Burtscher: Design and performance of an optimized electrical diffusion battery, J. Aerosol Sci. 40, 152–163 (2009)

    Article  Google Scholar 

  • A.D. Maynard, L.M. Brown: The collection of ultrafine aerosol particles for analysis by transmission electron microscopy, using a new thermophoretic precipitator, J. Aerosol Sci. 22, S379–S382 (1991)

    Article  Google Scholar 

  • S.R. Boddu, V.R. Gutti, T.K. Ghosh, R.V. Tompson, S.K. Loyalka: Gold, silver, and palladium nanoparticle/nano-agglomerate generation, collection, and characterization, J. Nanopart. Res. 13, 6591–6601 (2011)

    Article  Google Scholar 

  • A. Messerer, R. Niessner, U. Pöschl: Thermophoretic deposition of soot aerosol particles under experimental conditions relevant for modern diesel engine exhaust gas systems, J. Aerosol Sci. 34, 1009–1021 (2003)

    Article  Google Scholar 

  • N. Azong-Wara, C. Asbach, B. Stahlmecke, H. Fissan, H. Kaminski, S. Plitzko, D. Bathen, T.A.J. Kuhlbusch: Design and experimental evaluation of a new nanoparticle thermophoretic personal sampler, J. Nanopart. Res. 15, 1530 (2013)

    Article  Google Scholar 

  • P.E. Morrow, T.T. Mercer: A point-to-plane electrostatic precipitator for particle size sampling, Am. Ind. Hyg. Assoc. J. 25, 8–14 (1964)

    Article  Google Scholar 

  • B.Y.H. Liu, K.T. Whitby, H.H.S. Yu: Electrostatic aerosol sampler for light and electron microscopy, Rev. Sci. Instrum. 38, 100–102 (1967)

    Article  Google Scholar 

  • M. Fierz, R. Kaegi, H. Burtscher: Theoretical and experimental evaluation of a portable electrostatic TEM sampler, Aerosol Sci. Technol. 41, 520–528 (2007)

    Article  Google Scholar 

  • J. Zavala, K. Lichtveld, S. Ebersviller, J.L. Carson, G.W. Walters, I. Jaspers, H.E. Jeffries, K.G. Sexton, W. Vizuete: The Gillings sampler – An electrostatic air sampler as an alternative method for aerosol in vitro exposure studies, Chem. Biol. Interact. 220, 158–168 (2014)

    Article  Google Scholar 

  • J. Dixkens, H. Fissan: Development of an electrostatic precipitator for off-line particle analysis, Aerosol Sci. Technol. 30, 438–453 (1999)

    Article  Google Scholar 

  • M. Sillanpää, M.D. Geller, H.C. Phuleria, C. Sioutas: High collection efficiency electrostatic precipitator for in vitro cell exposure to concentrated ambient particulate matter (PM), J. Aerosol Sci. 39, 335–347 (2008)

    Article  Google Scholar 

  • G. Mainelis, K. Willeke, A. Adhikari, T. Reponen, S.A. Grinshpun: Design and collection efficiency of a new electrostatic precipitator for bioaerosol collection, Aerosol Sci. Technol. 36, 1073–1085 (2002)

    Article  Google Scholar 

  • D. Magyar: Aeromycological aspects of mycotechnology. In: Mycotechnology: Present Status and Future Prospects, ed. by M. Rai (International Publishing House Pvt. Ltd., New Delhi 2007) pp. 226–261

    Google Scholar 

  • K. Kandler, K. Schneiders, M. Ebert, M. Hartmann, S. Weinbruch, M. Prass, C. Pöhlker: Composition and mixing state of atmospheric aerosols determined by electron microscopy: Method development and application to aged Saharan dust deposition in the Caribbean boundary layer, Atmos. Chem. Phys. 18, 13429–13455 (2018)

    Article  Google Scholar 

  • P. Artaxo, H. Storms, F. Bruynseels, R. Van Grieken, W. Maenhaut: Composition and sources of aerosols from the Amazon basin, J. Geophys. Res. Atmos. 93, 1605–1615 (1988)

    Article  Google Scholar 

  • A. Kumar, W. Abouchami, S.J.G. Galer, S.P. Singh, K.W. Fomba, J.M. Prospero, M.O. Andreae: Seasonal radiogenic isotopic variability of the african dust outflow to the tropical Atlantic Ocean and across to the Caribbean, Earth Planet. Sci. Lett. 487, 94–105 (2018)

    Article  Google Scholar 

  • M. Kamruzzaman, S. Takahama, A.M. Dillner: Quantification of amine functional groups and their influence on OM/OC in the IMPROVE Network, Atmos. Environ. 172, 124–132 (2018)

    Article  Google Scholar 

  • J. Fröhlich-Nowoisky, D.A. Pickersgill, V.R. Després, U. Pöschl: High diversity of fungi in air particulate matter, Proc. Natl. Acad. Sci. U. S. A. 106, 12814–12819 (2009)

    Article  Google Scholar 

  • J.C. Chow: Measurement methods to determine compliance with ambient air quality standards for suspended particles, J. Air Waste Manag. Assoc. 45, 320–382 (1995)

    Article  Google Scholar 

  • J.F. Pankow: Overview of the gas-phase retention volume behavior of organic-compounds on polyurethane foam, Atmos. Environ. 23, 1107–1111 (1989)

    Article  Google Scholar 

  • M. Mandalakis, E.G. Stephanou: Polychlorinated biphenyls associated with fine particles (PM2.5) in the urban environment of Chile: Concentration levels, and sampling volatilization losses, Environ. Toxicol. Chem. 21, 2270–2275 (2002)

    Article  Google Scholar 

  • J.N. Pitts, K.A. Vancauwenberghe, D. Grosjean, J.P. Schmid, D.R. Fitz, W.L. Belser, G.B. Knudson, P.M. Hynds: Atmospheric reactions of polycyclic aromatic-hydrocarbons – Facile formation of mutagenic nitro-derivatives, Science 202, 515–519 (1978)

    Article  Google Scholar 

  • I.G. Kavouras, J. Lawrence, P. Koutrakis, E.G. Stephanou, P. Oyola: Measurement of particulate aliphatic and polynuclear aromatic hydrocarbons in Santiago De Chile: Source reconciliation and evaluation of sampling artifacts, Atmos. Environ. 33, 4977–4986 (1999)

    Article  Google Scholar 

  • L. Melymuk, P. Bohlin-Nizzetto, R. Prokes, P. Kukucka, P. Pribylova, S. Vojta, J. Kohoutek, G. Lammel, J. Klanova: Uncertainties in monitoring of SVOCs in air caused by within-sampler degradation during active and passive air sampling, Atmos. Environ. 167, 553–565 (2017)

    Article  Google Scholar 

  • WMO/GAW: WMO/GAW Aerosol Measurement Procedures, Guidelines and Recommendations (World Meterological Organization & Global Atmosphere Watch, Geneva 2016)

    Google Scholar 

  • ACTRIS: Actris Data Centre – An Atmospheric Data Portal, http://actris.nilu.no/ (2018), Accessed 07 July 2021

  • U. Wätjen, H. Cavé: Reference materials in the context of calibration and quality control of PIXE analysis: The case of aerosol analysis, Nucl. Instrum. Methods Phys. Res. B 109/110, 395–401 (1996)

    Article  Google Scholar 

  • A. Wiedensohler, W. Birmili, A. Nowak, A. Sonntag, K. Weinhold, M. Merkel, B. Wehner, T. Tuch, S. Pfeifer, M. Fiebig, A.M. Fjäraa, E. Asmi, K. Sellegri, R. Depuy, H. Venzac, P. Villani, P. Laj, P. Aalto, J.A. Ogren, E. Swietlicki, P. Williams, P. Roldin, P. Quincey, C. Hüglin, R. Fierz-Schmidhauser, M. Gysel, E. Weingartner, F. Riccobono, S. Santos, C. Grüning, K. Faloon, D. Beddows, R. Harrison, C. Monahan, S.G. Jennings, C.D. O’Dowd, A. Marinoni, H.G. Horn, L. Keck, J. Jiang, J. Scheckman, P.H. McMurry, Z. Deng, C.S. Zhao, M. Moerman, B. Henzing, G. de Leeuw, G. Löschau, S. Bastian: Mobility particle size spectrometers: Harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions, Atmos. Meas. Tech. 5, 657–685 (2012)

    Article  Google Scholar 

  • J.C. Chow, J.G. Watson, J. Robles, X. Wang, L.W.A. Chen, D.L. Trimble, S.D. Kohl, R.J. Tropp, K.K. Fung: Quality assurance and quality control for thermal/optical analysis of aerosol samples for organic and elemental carbon, Anal. Bioanal. Chem. 401, 3141–3152 (2011)

    Article  Google Scholar 

  • K.J. Koistinen, A. Kousa, V. Tenhola, O. Hänninen, M.J. Jantunen, L. Oglesby, N. Kuenzli, L. Georgoulis: Fine particle (PM25) measurement methodology, quality assurance procedures, and pilot results of the EXPOLIS study, J. Air Waste Manag. Assoc. 49, 1212–1220 (1999)

    Article  Google Scholar 

  • S.M. Almeida, M.A. Reis, M.C. Freitas, C.A. Pio: Quality assurance in elemental analysis of airborne particles, Nucl. Instrum. Methods Phys. Res. B 207, 434–446 (2003)

    Article  Google Scholar 

  • R.H. Mason, C. Chou, C.S. McCluskey, E.J.T. Levin, C.L. Schiller, T.C.J. Hill, J.A. Huffman, P.J. DeMott, A.K. Bertram: The micro-orifice uniform deposit impactor-droplet freezing technique (MOUDI-DFT) for measuring concentrations of ice nucleating particles as a function of size: Improvements and initial validation, Atmos. Meas. Tech. 8, 2449–2462 (2015)

    Article  Google Scholar 

  • A.A. May, A.A. Presto, C.J. Hennigan, N.T. Nguyen, T.D. Gordon, A.L. Robinson: Gas-particle partitioning of primary organic aerosol emissions: (1) Gasoline vehicle exhaust, Atmos. Environ. 77, 128–139 (2013)

    Article  Google Scholar 

  • J.A. Huffman, P.J. Ziemann, J.T. Jayne, D.R. Worsnop, J.L. Jimenez: Development and characterization of a fast-stepping/scanning thermodenuder for chemically-resolved aerosol volatility measurements, Aerosol Sci. Technol. 42, 395–407 (2008)

    Article  Google Scholar 

  • A.P. Bateman, Z. Gong, T.H. Harder, S.S. de Sá, B. Wang, P. Castillo, S. China, Y. Liu, R.E. O’Brien, B.B. Palm, H.W. Shiu, G.G. Cirino, R. Thalman, K. Adachi, M.L. Alexander, P. Artaxo, A.K. Bertram, P.R. Buseck, M.K. Gilles, J.L. Jimenez, A. Laskin, A.O. Manzi, A. Sedlacek, R.A.F. Souza, J. Wang, R. Zaveri, S.T. Martin: Anthropogenic influences on the physical state of submicron particulate matter over a tropical forest, Atmos. Chem. Phys. 17, 1759–1773 (2017)

    Article  Google Scholar 

  • S.S. Pak, B.Y.H. Liu, K.L. Rubow: Effect of coating thickness on particle bounce in inertial impactors, Aerosol Sci. Technol. 16, 141–150 (1992)

    Article  Google Scholar 

  • M. Adon, C. Galy-Lacaux, V. Yoboue, C. Delon, J.P. Lacaux, P. Castera, E. Gardrat, J. Pienaar, H. Al Ourabi, D. Laouali, B. Diop, L. Sigha-Nkamdjou, A. Akpo, J.P. Tathy, F. Lavenu, E. Mougin: Long term measurements of sulfur dioxide, nitrogen dioxide, ammonia, nitric acid and ozone in Africa using passive samplers, Atmos. Chem. Phys. 10, 7467–7487 (2010)

    Article  Google Scholar 

  • G.R. Carmichael, M. Ferm, N. Thongboonchoo, J.H. Woo, L.Y. Chan, K. Murano, P.H. Viet, C. Mossberg, R. Bala, J. Boonjawat, P. Upatum, M. Mohan, S.P. Adhikary, A.B. Shrestha, J.J. Pienaar, E.B. Brunke, T. Chen, T. Jie, D. Guoan, L.C. Peng, S. Dhiharto, H. Harjanto, A.M. Jose, W. Kimani, A. Kirouane, J.P. Lacaux, S. Richard, O. Barturen, J.C. Cerda, A. Athayde, T. Tavares, J.S. Cotrina, E. Bilici: Measurements of sulfur dioxide, ozone and ammonia concentrations in Asia, Africa, and South America using passive samplers, Atmos. Environ. 37, 1293–1308 (2003)

    Article  Google Scholar 

  • J.J. Martins, R.S. Dhammapala, G. Lachmann, C. Galy-Lacaux, J.J. Pienaar: Long-term measurements of sulphur dioxide, nitrogen dioxide, ammonia, nitric acid and ozone in Southern Africa using passive samplers, S. Afr. J. Sci. 103, 336–342 (2007)

    Google Scholar 

  • National Atmospheric Deposition Program: NADP Installation Manual, Version 1.9, http://nadp.slh.wisc.edu/lib/manuals/NADP_Site_Selection_and_Installation_Manual_2014_11.pdf (2014), Accessed 07 July 2021

  • J.J. Pienaar, J.P. Beukes, P.G. Van Zyl, C.M.B. Lehmann, J. Aherne: Chapter 2 – Passive diffusion sampling devices for monitoring ambient air concentrations. In: Monitoring of Air Pollutants: Sampling, Sample Preparation and Analytical Techniques, Comprehensive Analytical Chemistry, Vol. 70, ed. by P.B.C. Forbes (Elsevier, Oxford 2015) pp. 13–52

    Chapter  Google Scholar 

  • K. Pozo, T. Harner, F. Wania, D.C.G. Muir, K.C. Jones, L.A. Barrie: Toward a global network for persistent organic pollutants in air: Results from the GAPS study, Environ. Sci. Technol. 40, 4867–4873 (2006)

    Article  Google Scholar 

  • UNEP: Guidance on the Global Monitoring Plan for Persistent Organic Pollutants (UNEP, Chatelaine 2015), UNEP/POPS/COP.7/INF/39

    Google Scholar 

  • C. Rauert, T. Harner, J.K. Schuster, A. Eng, G. Fillmann, L.E. Castillo, O. Fentanes, M. Villa Ibarra, K.S.B. Miglioranza, I. Moreno Rivadeneira, K. Pozo, B.H. Aristizábal Zuluaga: Atmospheric concentrations of new persistent organic pollutants and emerging chemicals of concern in the group of Latin America and Caribbean (GRULAC) region, Environ. Sci. Technol. 52, 7240–7249 (2018)

    Article  Google Scholar 

  • J. Klánová, P. Èupr, J. Kohoutek, T. Harner: Assessing the influence of meteorological parameters on the performance of polyurethane foam-based passive air samplers, Environ. Sci. Technol. 42, 550–555 (2008)

    Article  Google Scholar 

  • J. Klanova, P. Cupr, I. Holoubek, J. Boruvkova, P. Pribylova, R. Kares, T. Tomsej, T. Ocelka: Monitoring of persistent organic pollutants in Africa. Part 1: Passive air sampling across the continent in 2008, J. Environ. Monit. 11, 1952–1963 (2009)

    Article  Google Scholar 

  • A.K. Halse, M. Schlabach, S. Eckhardt, A. Sweetman, K.C. Jones, K. Breivik: Spatial variability of POPs in European background air, Atmos. Chem. Phys. 11, 1549–1564 (2011)

    Article  Google Scholar 

  • G. Lammel, O. Audy, A. Besis, C. Efstathiou, K. Eleftheriadis, J. Kohoutek, P. Kukucka, M.D. Mulder, P. Pribylova, R. Prokes, T.P. Rusina, C. Samara, A. Sofuoglu, S.C. Sofuoglu, Y. Tasdemir, V. Vassilatou, D. Voutsa, B. Vrana: Air and seawater pollution and air-sea gas exchange of persistent toxic substances in the Aegean Sea: Spatial trends of PAHs, PCBs, OCPs and PBDEs, Environ. Sci. Pollut. Res. 22, 11301–11313 (2015)

    Article  Google Scholar 

  • L. Tuduri, M. Millet, O. Briand, M. Montury: Passive air sampling of semi-volatile organic compounds, Trends Anal. Chem. 31, 38–49 (2012)

    Article  Google Scholar 

  • C. Chaemfa, E. Wild, B. Davison, J.L. Barber, K.C. Jones: A study of aerosol entrapment and the influence of wind speed, chamber design and foam density on polyurethane foam passive air samplers used for persistent organic pollutants, J. Environ. Monit. 11, 1135–1139 (2009)

    Article  Google Scholar 

  • F. Wania, L. Shen, Y.D. Lei, C. Teixeira, D.C.G. Muir: Development and calibration of a resin-based passive sampling system for monitoring persistent organic pollutants in the atmosphere, Environ. Sci. Technol. 37, 1352–1359 (2003)

    Article  Google Scholar 

  • S.V. Krupa, K. Baumann, E.S. Edgerton: HNO3 Passive Sampler Evaluation Study, Final Report (Wood Buffalo Environmental Association, Fort McMurray 2012)

    Google Scholar 

  • D.A. Hansen, E.S. Edgerton, B.E. Hartsell, J.J. Jansen, N. Kandasamy, G.M. Hidy, C.L. Blanchard: The Southeastern Aerosol Research and Characterization Study: Part 1 – Overview, J. Air Waste Manag. Assoc. 53, 1460–1471 (2003)

    Article  Google Scholar 

  • M. Ferm, F. De Santis, C. Varotsos: Nitric acid measurements in connection with corrosion studies, Atmos. Environ. 39, 6664–6672 (2005)

    Article  Google Scholar 

  • R.D. Saylor, E.S. Edgerton, B.E. Hartsell, K. Baumann, D.A. Hansen: Continuous gaseous and total ammonia measurements from the Southeastern Aerosol Research and Characterization (SEARCH) Study, Atmos. Environ. 44, 4994–5004 (2010)

    Article  Google Scholar 

  • R. Hůlek, J. Borůvková, J. Gregor, J. Kalina, Z. Bednářová, K. Šebková, T. Hruban, V. Novotný, M. Ismael, J. Klánová: Global Monitoring Plan Data Warehouse of the Stockholm Convention on Persistent Organic Pollutants: Visualisation and on-line analysis of global levels of chemicals in air, water, breast milk and blood (Masaryk University, Brno, Czech Republic, 2020), https://www.pops-gmp.org/index.php?pg=gmp-data-warehouse and https://www.pops-gmp.org/index.php?pg=contact, Accessed 07 July 2021

  • M. Venier, H. Hung, W. Tych, R.A. Hites: Temporal trends of persistent organic pollutants: A comparison of different time series models, Environ. Sci. Technol. 46, 3928–3934 (2012)

    Article  Google Scholar 

  • H. Hung, A.A. Katsoyiannis, E. Brorstrom-Lunden, K. Olafsdottir, W. Aas, K. Breivik, P. Bohlin-Nizzetto, A. Sigurdsson, H. Hakola, R. Bossi, H. Skov, E. Sverko, E. Barresi, P. Fellin, S. Wilson: Temporal trends of persistent organic pollutants (POPs) in Arctic air: 20 years of monitoring under the Arctic Monitoring and Assessment Programme (AMAP), Environ. Pollut. 217, 52–61 (2016)

    Article  Google Scholar 

  • A. Gusev, O. Rozovskaya, V. Shatalov, N. Vulykh, W. Aas, K. Breivik, F. Couvidat, M.G. Vivanco: Persistent Organic Pollutants: Assessment of Transboundary Pollution on Global, Regional, and National Scales. Co-Operative Programme for Monitoring and Evaluation of the Long-Range Transmissions of Air Pollutants in Europe (EMEP, Moscow 2018), Status Report 3/2018

    Google Scholar 

  • Arctic Monitoring and Assessment Programme: Arctic Pollution 2009 (AMAP, Oslo 2009)

    Google Scholar 

  • E.W. Henningson, M.S. Ahlberg: Evaluation of microbiological aerosol samplers – A review, J. Aerosol Sci. 25, 1459–1492 (1994)

    Article  Google Scholar 

  • J.H. Vincent, G. Ramachandran, Y. Thomassen, G.J. Keeler: Application of recent advances in aerosol sampling science towards the development of improved sampling devices: The way ahead, J. Environ. Monit. 1, 285–292 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Pöhlker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Pöhlker, C., Baumann, K., Lammel, G. (2021). Methods of Sampling Trace Substances in Air. In: Foken, T. (eds) Springer Handbook of Atmospheric Measurements. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-52171-4_19

Download citation

Publish with us

Policies and ethics