Skip to main content
Log in

Neutrino interactions with matter and the MiniBooNE anomaly

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The excess of electron-like events measured by MiniBooNE challenges our understanding of neutrinos and their interactions. We review the status of this open problem and ongoing efforts to resolve it. After introducing the experiment and its results, we consider the main experimental backgrounds and the related physics of neutrino interactions with matter, such as quasielastic-like scattering and weak pion production on nucleons and nuclei. Special attention is paid to single photon emission in neutral current interactions and, in particular, its coherent channel. The difficulties to reconcile the MiniBooNE anomaly with global oscillation analysis is then highlighted. We finally outline some of the proposed solutions of the puzzle involving unconventional neutrino-interaction mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. The \(W^+ \, p \rightarrow \varDelta ^{++} \rightarrow p \, \pi ^+\) matrix element is proportional to Clebsch–Gordan coefficient \((1/2 \,1/2 \, 1 \,1 | 3/2 \, 3/2)^2 = 1\), while for \(Z^0 \, p \rightarrow \varDelta ^{+} \rightarrow p \, \pi ^0\) one has \((1/2 \,1/2 \, 1 \,0 | 3/2 \, 1/2)^2 = 2/3\).

  2. This band would be narrower and closer to the lower end if the reanalyzed ANL and BNL data of Ref. [27] had been used.

  3. In the \(3+1+1\) scheme, the fifth neutrino is much heavier than 1 eV so that oscillations due to \(\varDelta m^2_{51}\) are averaged [53].

References

  1. A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam. Phys. Rev. D 64, 112007 (2001). https://doi.org/10.1103/PhysRevD.64.112007. arXiv:hep-ex/0104049 [hep-ex]

  2. P.A. Zyla et al. Review of particle physics. PTEP 2020(8), 083C01 (2020). https://doi.org/10.1093/ptep/ptaa104

  3. A.A. Aguilar-Arevalo et al., The MiniBooNE detector. Nucl. Instrum. Methods A 599, 28–46 (2009). https://doi.org/10.1016/j.nima.2008.10.028. arXiv:0806.4201 [hep-ex]

    Article  ADS  Google Scholar 

  4. A.A. Aguilar-Arevalo et al. The Neutrino Flux prediction at MiniBooNE. Phys. Rev. D 79, 072002 (2009). https://doi.org/10.1103/PhysRevD.79.072002

  5. A.A. Aguilar-Arevalo et al. Improved Search for \(v_{\mu }\rightarrow v_{\rm e}\) Oscillations in the MiniBooNE Experiment. Phys. Rev. Lett. 110, 161801 (2013). https://doi.org/10.1103/PhysRevLett.110.161801

  6. A.A. Aguilar-Arevalo et al. Updated MiniBooNE neutrino oscillation results with increased data and new background studies. Phys. Rev. D 103(5), 052002 (2021). https://doi.org/10.1103/PhysRevD.103.052002. arXiv:2006.16883 [hep-ex]

  7. U. Mosel. Neutrino event generators: foundation, status and future. J. Phys. G 46(11), 113001 (2019). https://doi.org/10.1088/1361-6471/ab3830. arXiv:1904.11506 [hep-ex]

  8. N. Jachowicz, N. Van Dessel, A. Nikolakopoulos, Low-energy neutrino scattering in experiment and astrophysics. J. Phys. G 4.68, 084003 (2019). https://doi.org/10.1088/1361-6471/ab25d4. arXiv:1906.08191 [nucl-th]

    Article  Google Scholar 

  9. M. Martini, M. Ericson, G. Chanfray, Neutrino quasielastic interaction and nuclear dynamics. Phys. Rev. C 84, 055502 (2011). https://doi.org/10.1103/PhysRevC.84.055502. arXiv:1110.0221 [nucl-th]

    Article  ADS  Google Scholar 

  10. J. Nieves, I. Ruiz Simo, M.J. Vicente Vacas, The nucleon axial mass and the MiniBooNE Quasielastic neutrino–nucleus scattering problem. Phys. Lett. B 707, 72–75 (2011). https://doi.org/10.1016/j.physletb.2011.11.061. arXiv:1106.5374 [hep-ph]

  11. G.D. Megias et al., Meson-exchange currents and quasielastic predictions for charged-current neutrino-\(^{\rm 12 }\)C scattering in the superscaling approach. Phys. Rev. D 91.7, 073004 (2015). https://doi.org/10.1103/PhysRevD.91.073004. arXiv:1412.1822 [nucl-th]

    Article  Google Scholar 

  12. A. Lovato et al., Ab initio study of (\(vl, l^{-}\)) and (\(\bar{vl}, vl^{+}\)) inclusive scattering in \(^{\rm 12 }\)C: confronting the MiniBooNE and T2K CCQE data. Phys. Rev. X 10.3, 031068 (2020). https://doi.org/10.1103/PhysRevX.10.031068. arXiv:2003.07710 [nucl-th]

    Article  Google Scholar 

  13. M. Martini, M. Ericson, G. Chanfray, Energy reconstruction effects in neutrino oscillation experiments and implications for the analysis. Phys. Rev. D 87.1, 013009 (2013). https://doi.org/10.1103/PhysRevD.87.013009. arXiv:1211.1523 [hep-ph]

    Article  Google Scholar 

  14. J. Nieves et al., Neutrino energy reconstruction and the shape of the CCQE-like total cross section. Phys. Rev. D 85, 113008 (2012). https://doi.org/10.1103/PhysRevD.85.113008. arXiv:1204.5404 [hep-ph]

    Article  ADS  Google Scholar 

  15. O. Lalakulich, U. Mosel, K. Gallmeister, Energy reconstruction in quasielas-tic scattering in the MiniBooNE and T2K experiments. Phys. Rev. C 86, 054606 (2012). https://doi.org/10.1103/PhysRevC.86.054606. arXiv:1208.3678 [nucl-th]

    Article  ADS  Google Scholar 

  16. T. Katori. MiniBooNE neutrino oscillation search results and predicted background events. In 3rd World Summit on Exploring the Dark Side of the Universe. (2020). arXiv:2010.06015 [hep-ex]

  17. G. Cheng et al., Measurement of K \(+\) production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector. Phys. Rev. D 84, 012009 (2011). https://doi.org/10.1103/PhysRevD.84.012009. arXiv:1105.2871 [hep-ex]

    Article  ADS  Google Scholar 

  18. M. Ericson et al., Assessing the role of nuclear effects in the interpretation of the MiniBooNE low-energy anomaly. Phys. Rev. D 93.7, 073008 (2016). https://doi.org/10.1103/PhysRevD.93.073008. arXiv:1602.01390 [hep-ph]

    Article  Google Scholar 

  19. D.-L. Yao, L. Alvarez-Ruso, M.J. Vicente Vacas. Neutral-current weak pion production off the nucleon in covariant chiral perturbation theory. Phys. Lett. B 794, 109–113 (2019). https://doi.org/10.1016/j.physletb.2019.05.036. arXiv:1901.00773 [hep-ph]

  20. T. Leitner et al., Electron- and neutrino-nucleus scattering from the quasielastic to the resonance region. Phys. Rev. C 79, 034601 (2009). https://doi.org/10.1103/PhysRevC.79.034601. arXiv:0812.0587 [nucl-th]

    Article  ADS  Google Scholar 

  21. S.X. Nakamura, H. Kamano, T. Sato, Dynamical coupled-channels model for neutrino-induced meson productions in resonance region. Phys. Rev. D 92.7, 074024 (2015). https://doi.org/10.1103/PhysRevD.92.074024. arXiv:1506.03403 [hep-ph]

    Article  Google Scholar 

  22. E. Hernandez et al., N-Delta(1232) axial form factors from weak pion production. Phys. Rev. D 81, 085046 (2010). https://doi.org/10.1103/PhysRevD.81. arXiv:1001.4416 [hep-ph]

    Article  ADS  Google Scholar 

  23. T. Leitner, L. Alvarez-Ruso, U. Mosel. Neutral current neutrino-nucleus interactions at intermediate energies. Phys. Rev. C 74, 065502 (2006). https://doi.org/10.1103/PhysRevC.74.065502

  24. A.A. Aguilar-Arevalo et al., Measurement of v\(_{\mu }\) and \(v_{\rm M}\) induced neutral current single \(\pi ^{\circ }\) production cross sections on mineral oil at E\(_{\rm v}\sim \cal{ O} \) (1GeV). Phys. Rev. D 81, 013005 (2010). https://doi.org/10.1103/PhysRevD.81.013005. arXiv:0911.2063 [hep-ex]

  25. O. Lalakulich, U. Mosel, Pion production in the MiniBooNE experiment. Phys. Rev. C 87.1, 014602 (2013). https://doi.org/10.1103/PhysRevC87.014602. arXiv:1210.4717 [nucl-th]

    Article  Google Scholar 

  26. U. Mosel, Pion production in high-energy neutrino reactions with nuclei. Phys. Rev. C 91(6), 065501 (2015). https://doi.org/10.1103/PhysRevC.9.065501. arXiv:1502.08032 [nucl-th]

  27. C. Wilkinson et al., Reanalysis of bubble chamber measurements of muon-neutrino induced single pion production. Phys. Rev. D 90.11, 112017 (2014). https://doi.org/10.1103/PhysRevD.90.112017. arXiv:1411.4482 [hep-ex]

    Article  Google Scholar 

  28. A.A. Aguilar-Arevalo et al., Measurement of v\(_{\mu }\)-induced charged-current neutral pion production cross sections on mineral oil at E\(_{\rm v}\in 0.5-2.0\) GeV”. Phys. Rev. D 83, 052009 (2011). https://doi.org/10.1103/PhysRevD.83.052009. arXiv:1010.3264 [hep-ex]

  29. B. Eberly et al., Charged Pion Production in v\(_{\mu }\) Interactions on Hydrocarbon at \(\langle E_{v}\rangle ) = 4.0\) GeV. Phys. Rev. D 92(9), 092008 (2015). https://doi.org/10.1103/PhysRevD.92.092008. arXiv:1406.6415 [hep-ex]

  30. U. Mosel, K. Gallmeister, Muon-neutrino-induced charged current pion production on nuclei. Phys. Rev. C 96(1), 015503 (2017). https://doi.org/10.1103/PhysRevC.96.015503. arXiv:1708.04528 [nucl-th] [Addendum: Phys.Rev.C 99, 035502 (2019)]

  31. J.T. Sobczyk, J. Zmuda, Investigation of recent weak single-pion production data. Phys. Rev. C 91.4, 045501 (2015). https://doi.org/10.1103/PhysRevC.91.045501. arXiv:1410.7788 [nucl-th]

    Article  Google Scholar 

  32. C.T. Kullenberg et al., A search for single photon events in neutrino interactions. Phys. Lett. B 706, 268–275 (2012). https://doi.org/10.1016/j.physletb.2011.11.049. arXiv:1111.3713 [hep-ex]

    Article  ADS  Google Scholar 

  33. K. Abe et al. Search for neutral-current induced single photon production at the ND280 near detector in T2K. J. Phys. G 468, 08LT01 (2019). https://doi.org/10.1088/1361-6471/ab227d. arXiv:1902.03848 [hep-ex]

  34. R.J. Hill, Low energy analysis of \(\nu \, N \rightarrow \nu \, N \, \gamma \) in the Standard Model. Phys. Rev. D 81, 013008 (2010). https://doi.org/10.1103/PhysRevD.81.013008. arXiv:0905.0291 [hep-ph]

  35. B.D. Serot, X. Zhang, Neutrinoproduction of photons and pions from nucleons in a chiral effective field theory for nuclei. Phys. Rev. C 86, 015501 (2012). https://doi.org/10.1103/PhysRevC.86.015501. arXiv:1206.3812 [nucl-th]

  36. E. Wang, L. Alvarez-Ruso, J. Nieves, Photon emission in neutral current interactions at intermediate energies. Phys. Rev. C 89.1, 015503 (2014). https://doi.org/10.1103/PhysRevC.89.015503. arXiv:1311.2151 [nucl-th]

    Article  Google Scholar 

  37. J.A. Harvey, C.T. Hill, R.J. Hill, Anomaly mediated neutrino-photon interactions at finite baryon density. Phys. Rev. Lett. 99, 261601 (2007). https://doi.org/10.1103/PhysRevLett.99.261601. arXiv:0708.1281 [hep-ph]

    Article  ADS  Google Scholar 

  38. J.L. Rosner, Low-energy photon production in neutrino neutral-current interactions. Phys. Rev. D 91.9, 093001 (2015). https://doi.org/10.1103/PhysRevD.91.093001. arXiv:1502.01704 [hep-ph]

    Article  Google Scholar 

  39. X. Zhang, B.D. Serot, Incoherent neutrinoproduction of photons and pions in a chiral effective field theory for nuclei. Phys. Rev. C 86, 035502 (2012). https://doi.org/10.1103/PhysRevC.86.035502. arXiv:1206.6324 [nucl-th]

    Article  ADS  Google Scholar 

  40. X. Zhang, B.D. Serot, Can neutrino-induced photon production explain the low energy excess in MiniBooNE? Phys. Lett. B 719, 409–414 (2013). https://doi.org/10.1016/j.physletb.2013.01.057. arXiv:1210.3610 [nucl-th]

  41. E. Oset, L.L. Salcedo, \(\Delta \) Selfenergy in nuclear matter. Nucl. Phys. A 468, 631–652 (1987). https://doi.org/10.1016/0375-9474(87)90185-0

  42. E. Wang, L. Alvarez-Ruso, J. Nieves, Single photon events from neutral current interactions at MiniBooNE. Phys. Lett. B 740, 16–22 (2015). https://doi.org/10.1016/j.physletb.2014.11.025. arXiv:1407.6060 [hep-ph]

    Article  ADS  Google Scholar 

  43. MiniBooNE Collabration, (2021). https://www-boone.fnal.gov/for_physicists/ data_release/

  44. G. Chanfray, M. Ericson, \(\gamma \) production in neutrino interactions with nuclei. Phys. Rev. C 104.1, 015203 (2021). https://doi.org/10.1103/PhysRevC104.015203

    Article  Google Scholar 

  45. L. Alvarez-Ruso et al. Charged current neutrino induced coherent pion production. Phys. Rev. C 75, 055501 (2007). https://doi.org/10.1103/PhysRevC.75.055501. arXiv:nucl-th/0701098

  46. J.E. Amaro et al., Theoretical study of neutrino-induced coherent pion production off nuclei at T2K and MiniBooNE energies. Phys. Rev. D 79, 013002 (2009). https://doi.org/10.1103/PhysRevD.79.013002. arXiv:0811.1421 [hep-ph]

    Article  ADS  Google Scholar 

  47. X. Zhang, B.D. Serot, Coherent neutrinoproduction of photons and pions in a chiral effective field theory for nuclei. Phys. Rev. C 86, 035504 (2012). https://doi.org/10.1103/PhysRevC.86.035504. arXiv:1208.1553 [nucl-th]

    Article  ADS  Google Scholar 

  48. E. Saul-Sala, Open problems in the physics of neutrino interactions with nucleons and nuclei. Ph.D. thesis, Universidad de Valencia (2021). https://ific.uv.es/nucth/Thesis_Saul_Sala.pdf

  49. D. Drechsel, S.S. Kamalov, L. Tiator, Unitary isobar model—MAID2007. Eur. Phys. J. A 34, 69–97 (2007). https://doi.org/10.1140/epja/i2007-10490-6. arXiv:0710.0306 [nucl-th]

    Article  ADS  Google Scholar 

  50. L. Tiator et al., Electromagnetic excitation of nucleon resonances. In: Eur. Phys. J. ST 198, 141–170 (2011). https://doi.org/10.1140/epjst/e2011-01488-9. arXiv:1109.6745 [nucl-th]

    Article  Google Scholar 

  51. J.M. Conrad, W.C. Louis, M.H. Shaevitz, The LSND and MiniBooNE oscillation searches at high \(\Delta m^{\rm 2}\). Ann. Rev. Nucl. Part. Sci. 63, 45-67 (2013). https://doi.org/10.1146/annurev-nucl-102711-094957. arXiv:1306.6494 [hep-ex]

  52. M. Dentler et al., Updated global analysis of neutrino oscillations in the presence of eV-scale sterile neutrinos. JHEP 08, 010 (2018). https://doi.org/10.1007/JHEP08(2018)010. arXiv:1803.10661 [hep-ph]

    Article  ADS  Google Scholar 

  53. C. Giunti et al. Pragmatic view of short-baseline neutrino oscillations. Phys. Rev. D 88, 073008 (2013). https://doi.org/10.1103/PhysRevD.88.073008. arXiv:1308.5288 [hep-ph]

  54. C. Giunti, A. Ioannisian, G. Ranucci, A new analysis of the MiniBooNE low-energy excess. JHEP 11, 146 (2020). https://doi.org/10.1007/JHEP11(2020)146. arXiv:1912.01524 [hep-ph] [Erratum: JHEP 02, 078 (2021)]

  55. P. Abratenko, et al., MicroBooNE, Search for neutrino-induced neutral current \(\Delta \) radiative decay in MicroBooNE and a first test of the MiniBooNE low energy excess under a single-photon hypothesis. (2021). arXiv:2110.00409 [hep-ex]

  56. V. Brdar, J. Joachim, An altarelli cocktail for the MiniBooNE anomaly (2021). arXiv:2109.08157 [hep-ph]

  57. T. Katori, V. Alan Kostelecky, R. Tayloe, Global three-parameter model for neutrino oscillations using Lorentz violation. Phys. Rev. D 74, 105009. https://doi.org/10.1103/PhysRevD.74.105009. arXiv:hep-ph/0606154

  58. J.S. Diaz, A. Kostelecky, Lorentz- and CPT-violating models for neutrino oscillations. Phys. Rev. D 85, 016013 (2012). https://doi.org/10.1103/PhysRevD.85.016013. arXiv:1108.1799 [hep-ph]

  59. J. Liao, D. Marfatia, Impact of nonstandard interactions on sterile neutrino searches at IceCube. Phys. Rev. Lett. 117(7), 071802 (2016). https://doi.org/10.1103/PhysRevLett.117.071802. arXiv:1602.08766 [hep-ph]

  60. G.A Barenboim et al., Sterile neutrinos with altered dispersion relations revisited. JHEP 03, 070 (2020). https://doi.org/10.1007/JHEP03(2020)070. arXiv:1911.02329 [hep-ph]

  61. M.H. Moulai et al., Combining sterile neutrino fits to short baseline data with IceCube Data. Phys. Rev. D 101(5), 055020 (2020). https://doi.org/10.1103/PhysRevD.101.055020. arXiv:1910.13456 [hep-ph]

  62. M. Dentler et al., Decaying sterile neutrinos and the short baseline oscillation anomalies. In: Phys. Rev. D 101(11), 115013 (2020). https://doi.org/10.1103/PhysRevD.101.115013. arXiv:1911.01427 [hep-ph]

  63. A. de Gouvea et al., On The decaying-sterile neutrino solution to the electron (anti)neutrino appearance anomalies. JHEP 07, 141 (2020). https://doi.org/10.1007/JHEP07(2020)141. arXiv:1911.01447 [hep-ph]

    Article  ADS  Google Scholar 

  64. S. Vergani et al., Explaining the MiniBooNE excess through a mixed model of oscillation and decay (2021). arXiv:2105.06470 [hep-ph]

  65. Vedran Brdar, Oliver Fischer, Alexei Yu. Smirnov. “Model-independent bounds on the nonoscillatory explanations of the MiniBooNE excess”. In: Phys.Rev. D 103.7 (2021), p. 075008. https://doi.org/10.1103/PhysRevD.103.075008. arXiv:2007.14411 [hep-ph]

  66. S.N. Gninenko, The MiniBooNE anomaly and heavy neutrino decay. Phys. Rev. Lett. 103, 241802 (2009). https://doi.org/10.1103/PhysRevLett.103.241802. arXiv:0902.3802 [hep-ph]

    Article  ADS  Google Scholar 

  67. M. Masip, P. Masjuan, D. Meloni, Heavy neutrino decays at MiniBooNE. JEEP 01, 106 (2013). https://doi.org/10.1007/JHEP01(2013)106. arXiv:1210.1519 [hep-ph]

    Article  Google Scholar 

  68. C. Broggini, C. Giunti, A. Studenikin, Electromagnetic properties of neutrinos. Adv. High Energy Phys. 2012, 459526 (2012). https://doi.org/10.1155/2012/459526. arXiv:1207.3980 [hep-ph]

  69. L. Alvarez-Ruso, E. Saul-Sala, Radiative decay of heavy neutrinos at MiniBooNE and MicroBooNE. Prospects Neutrino Phys. (2017). arXiv:1705.00353 [hep-ph]

  70. A. Radionov, Constraints on electromagnetic properties of sterile neutrinos from MiniBooNE results. Phys. Rev. D 88.1, 015016 (2013). https://doi.org/10.1103/PhysRevD.88.015016. arXiv:1303.4587 [hep-ph]

    Article  Google Scholar 

  71. S.N. Gninenko, A resolution of puzzles from the LSND, KARMEN, and MiniBooNE experiments. Phys. Rev. D (2010)

  72. D. McKeen, M. Pospelov, Muon capture constraints on sterile neutrino properties. Phys. Rev. D 82, 113018 (2010). https://doi.org/10.1103/PhysRevD.82.113018. arXiv:1011.3046 [hep-ph]

  73. P. Ballett, S. Pascoli, M. Ross-Lonergan, U(1)’ mediated decays of heavy sterile neutrinos in MiniBooNE. Phys. Rev. D 99, 071701 (2019). https://doi.org/10.1103/PhysRevD.99.071701. arXiv:1808.02915 [hep-ph]

  74. P. Ballett, M. Hostert, S. Pascoli, Dark neutrinos and a three portal connection to the standard model. Phys. Rev. D 101(11), 115025 (2020). https://doi.org/10.1103/PhysRevD.101.115025. arXiv:1903.07589 [hep-ph]

  75. E. Bertuzzo et al. Dark neutrino portal to explain MiniBooNE excess. Phys. Rev. Lett. 121(24), 241801 (2018). https://doi.org/10.1103/PhysRevLett.121.241801. arXiv:1807.09877 [hep-ph]

  76. C.A. Argiielles, M. Hostert, Y.-D. Tsai, Testing new physics explanations of the MiniBooNE anomaly at neutrino scattering experiments. Phys. Rev. Lett. 123(26), 261801 (2019). https://doi.org/10.1103/PhysRevLett.123.261801. arXiv:1812.08768 [hep-ph]

  77. A. Abdullahi, M. Hostert, S. Pascoli, A dark seesaw solution to low energy anomalies: MiniBooNE, the muon (g[U\(+\)202F] - [U\(+\)202F]2), and BaBar. Phys. Lett. B 820, 136531 (2021). https://doi.org/10.1016/j.physletb. arXiv:2007.11813 [hep-ph]

  78. A. Datta, S. Kamali, D. Marfatia, Dark sector origin of the KOTO and MiniBooNE anomalies. Phys. Lett. B 807, 135579 (2020). https://doi.org/10.1016/j.physletb.2020.135579. arXiv:2005.08920 [hep-ph]

    Article  MathSciNet  Google Scholar 

  79. W. Abdallah, R. Gandhi, S. Roy, Understanding the Mini-BooNE and the muon and electron \(g-2\) anomalies with a light \(Z^{\prime } \)and a second Higgs doublet. JHEP 12, 188 (2020). https://doi.org/10.1007/JHEP12(2020)188. arXiv:2006.01948 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are indebted to Matheus Hostert and Teppei Katori for their valuable comments about the manuscript. This research has been partially supported by the Spanish Ministerio de Ciencia e Innovación and European Regional Development Fund (ERDF) under contracts FIS2017-84038-C2-1-P and PID2020-112777GBI00, the EU STRONG-2020 project under the program H2020-INFRAIA-2018-1, grant agreement no. 824093 and by Generalitat Valenciana under contract PROMETEO/2020/023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Alvarez-Ruso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez-Ruso, L., Saul-Sala, E. Neutrino interactions with matter and the MiniBooNE anomaly. Eur. Phys. J. Spec. Top. 230, 4373–4389 (2021). https://doi.org/10.1140/epjs/s11734-021-00293-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00293-9

Navigation