Skip to main content
Log in

Novel Technological Paradigm of the Application of Carbon Dioxide as a C1 Synthon in Organic Chemistry: I. Synthesis of Hydroxybenzoic Acids, Methanol, and Formic Acid

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The uncontrollable growth of CO2 concentration in the Earth atmosphere is a cause of ever-accelerating global warming. The warming up of the atmosphere and the increase in the partial pressure of CO2 induce multiple negative catastrophic phenomena on a global scale. On the other hand, carbon dioxide provides a unique and practically inexhaustible source of synthetic carbon (C1 synthon). Well-funded comprehensive studies of the processes of CO2 transformation into chemically important products, such as carboxylic acids, linear organic carbonates, urea and its derivatives, methanol, dimethyl ether, industrial gases (CO, methane), higher hydrocarbons, and products of fine organic synthesis, have been carried out in various countries for more than recent 20 years to mitigate CO2 emissions into the atmosphere. In Russia, this problem has remained virtually unnoticed. Therefore, in this review the authors set the task to draw the attention of chemists to the possibilities of using CO2 in synthesis and to the achievements that have been made in this area, particularly in the synthesis of hydroxybenzoic acids, methanol, and formic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme
Scheme
Fig. 2.
Fig. 3.
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

Similar content being viewed by others

Notes

  1. The Global Warming Potential (GWP) is an index based on the radiative properties of well-mixed greenhouse gases, measured as the radiative effect per unit mass of a given well-mixed green­house gas for in today’s atmosphere summed over a selected time interval and referenced to CO2. GWP reflects the joint effect of the different lengths of time that greenhouse gases remain in the atmosphere and their relative effectiveness in absorbing outgoing IR radiation. The Kyoto Protocol is based on a 100-year GWP.

REFERENCES

  1. Mélières, M. and Maréchal, C., Climate Change: Past, Present, and Future, Chichester: Wiley, 2015, p. 285.

  2. https://www.climate.gov/news-features/understanding-climate/april-2022-ties-fifth-warmest-april-record

  3. Oppenheimer, M., Glavovic, B.C., Hinkel, J., van de Wal, R., Magnan, A.K., Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R.M., Ghosh, T., Hay, J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z., IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, Pörtner, H.-O., Roberts, D.C., Mas­son-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N.M., Eds., Cambridge: Cambridge University Press, 2019, p. 321. https://doi.org/10.1017/9781009157964.006

  4. Brown, S., Nicholls, R.J., Woodroffe, C.D., Hanson, S., Hinkel, J., Kebede, A.S., Neumann, B., and Vafeidis, A.T., Coastal Hazards, Finkl, C.W., Ed., Dordrecht: Springer, 2013.

  5. Hjort, J., Streletskiy, D., Doré, G., Wu, Q., Bjella, K., and Luoto, M., Nat. Rev. Earth Environ., 2022, vol. 3, p. 24. https://doi.org/10.1038/s43017-021-00247-8

    Article  Google Scholar 

  6. Smith, S.L., O’Neill, H.B., Isaksen, K., Noetzli, J., and Romanovsky, V.E., Nat. Rev. Earth Environ., 2022, vol. 3, p. 10. https://doi.org/10.1038/s43017-021-00240-1

    Article  Google Scholar 

  7. Irrgang, A.M., Bendixen, M., Farquharson, L.M., Baran­skaya, A.V., Erikson, L.H., Gibbs, A.E., Ogorodov, S.A., Overduin, P.P., Lantuit, H., Grigoriev, M.N., and Jones, B.M., Nat. Rev. Earth Environ., 2022, vol. 3, p. 39. https://doi.org/10.1038/s43017-021-00232-1

    Article  Google Scholar 

  8. Ramaswamy, V., Climate Change 2001: The Scientific Basis, Houghton, J.T., Joos, F., and Srinivasan, J., Eds., Cambridge: Cambridge University Press, 2001, p. 349.

  9. https://unfccc.int/sites/default/files/russian_paris_agreement.pdf

  10. European Commission’s European Green Deal Communica­tion, 2019. https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1576150542719&uri=COM%3A2019%3A640%3AFIN

  11. Crippa, M., Guizzardi, D., Solazzo, E., Muntean, M., Schaaf, E., Monforti-Ferrario, F., Banja, M., Olivier, J.G.J., Grassi, G., Rossi, S., and Vignati, E., GHG Emissions of all World Countries. 2021 Report, 2021. https://edgar.jrc.ec.europa.eu/booklet/GHG_emissions_of_all_world_countries_booklet_2021report.pdf

  12. Carbon Dioxide as Chemical Feedstock, Aresta, M., Ed., Weinheim: Wiley-VCH, 2010.

  13. Aresta, M., Dibenedetto, A., and Angelini, A., Chem. Rev., 2014, vol. 114, p. 1709. https://doi.org/10.1021/cr4002758

    Article  CAS  Google Scholar 

  14. Borjesson, M., Moragas, T., Gallego, D., and Martin, R., ACS Catal., 2016, vol. 6, p. 6739. https://doi.org/10.1021/acscatal.6b02124

    Article  CAS  Google Scholar 

  15. Luo, J. and Larrosa, I., ChemSusChem, 2017, vol. 10, p. 3317. https://doi.org/10.1002/cssc.201701058

    Article  CAS  Google Scholar 

  16. Artz, J., Muller, T.E., Thenert, K., Kleinekorte, J., Meys, R., Sternberg, A., Bardow, A., and Leitner, W., Chem. Rev., 2018, vol. 118, p. 434. https://doi.org/10.1021/acs.chemrev.7b00435

    Article  CAS  Google Scholar 

  17. Tortajada, A., Julia-Hernandez, F., Borjesson, M., Moragas, T., and Martin, R., Angew. Chem., Int. Ed., 2018, vol. 57, p. 15948. https://doi.org/10.1002/anie.201803186

    Article  CAS  Google Scholar 

  18. Yan, S.-S., Fu, Q., Liao, L.-L., Sun, G.-Q., Ye, J.-H., Gong, L., Bo-Xue, Y.-Z., and Yu, D.-G., Coord. Chem. Rev., 2018, vol. 374, p. 439. https://doi.org/10.1016/j.ccr.2018.07.011

    Article  CAS  Google Scholar 

  19. Song, J., Liu, Q., Liu, H., and Jiang, X., Eur. J. Org. Chem., 2018, vol. 2018, p. 696. https://doi.org/10.1002/ejoc.201701436

    Article  CAS  Google Scholar 

  20. Yang, Y. and Lee, J.-W., Chem. Sci., 2019, vol. 10, p. 3905. https://doi.org/10.1039/C8SC05539D

    Article  CAS  Google Scholar 

  21. Yeung, C.S., Angew. Chem., Int. Ed., 2019, vol. 58, p. 5492. https://doi.org/10.1002/anie.201806285

    Article  CAS  Google Scholar 

  22. He, X., Qiu, L.-Q., Wang, W.-J., Chen, K.-H., and He, L.-N., Green Chem., 2020, vol. 22, p. 7301. https://doi.org/10.1039/D0GC02743J

    Article  CAS  Google Scholar 

  23. https://www.eccsel.org/about-eccsel/eccsel-highlights

  24. https://www.storeandgo.info

  25. Senderens, J.-B. and Sabatier, P., C. R. Acad. Sci., 1902, vol. 82, p. 514.

    Google Scholar 

  26. Vogt, C., Monai, M., Kramer, G.J., and Weckhuy­sen, B.M., Nat. Catal., 2019, vol. 2, p. 188. https://doi.org/10.1038/s41929-019-0244-4

    Article  CAS  Google Scholar 

  27. https://www.storeandgo.info/fileadmin/dateien/STORE_GO_power_to_gas_roadmap_update.pdf

  28. https://netl.doe.gov/node/2476?list=Carbon%20Utilization

  29. https://sgp.fas.org/crs/misc/R44902.pdf

  30. https://www.nationalcarboncapturecenter.com/wp-content/uploads/2022/08/NCCC-BP6-Report-DE-FE0022596.pdf

  31. Larson, E., Greig, C., Jenkins, J., Mayfield, E., Pascale, A., Zhang, C., Drossman, J., Williams, R., Pacala, S., Socolow, R., Baik, E.J., Birdsey, R., Duke, R., Jones, R., Haley, B., Leslie, E., Paustian, K., and Swan, A., Net-Zero America: Potential Pathways, Infrastructure, and Impacts. Interim Report, Princeton University, Princeton, NJ, December 15, 2020. https://netzeroamerica.princeton.edu/img/Princeton_NZA_Interim_Report_15_Dec_2020_FINAL.pdf

  32. https://ec.europa.eu/commission/presscorner/detail/en/qanda_21_3661

  33. Bazhenov, S., Chuboksarov, V., Maximov, A., and Zhdaneev, O., Sustainable Mater. Technol., 2022, vol. 33, article ID e00452. https://doi.org/10.1016/j.susmat.2022.e00452

  34. Bondarenko, G.N., Ganina, O.G., Lysova, A.A., Fedin, V.P., and Beletskaya, I.P., J. CO2 Util., 2021, vol. 53, article ID 101718. https://doi.org/10.1016/j.jcou.2021.101718

  35. Bondarenko, G.N., Dvurechenskaya, E.G., Gani­na, O.G., Alonso, F., and Beletskaya, I.P., Appl. Catal., B, 2019, vol. 254, p. 380. https://doi.org/10.1016/j.apcatb.2019.04.024

    Article  CAS  Google Scholar 

  36. Kuznetsova, S.A., Gorodishch, I.V., Gak, A.S., Zherebtsova, V.V., Gerasimov, I.S., Medvedev, M.G., Kitaeva, D.Kh., Khakina, E.A., North, M., and Belo­kon, Yu.N., Tetrahedron, 2021, vol. 82, article ID 131929. https://doi.org/10.1016/j.tet.2021.131929

  37. Rulev, Yu.A., Gugkaeva, Z.T., Lokutova, A.V., Maleev, V.I., Peregudov, A.S., Wu, X., North, M., and Belokon, Yu.N., ChemSusChem, 2017, vol. 10, p. 1152. https://doi.org/10.1002/cssc.201601246

    Article  CAS  Google Scholar 

  38. Rulev, Yu.A., Larionov, V.A., Lokutova, A.V., Moskalenko, M.A., Lependina, O.L., Maleev, V.I., North, M., and Belokon, Yu.N., ChemSusChem, 2016, vol. 9, p. 216. https://doi.org/10.1002/cssc.201501365

    Article  CAS  Google Scholar 

  39. Rulev, Yu.A., Gugkaeva, Z., Maleev, V.I., North, M., and Belokon, Yu.N., Beilstein J. Org. Chem., 2015, vol. 11, p. 1614. https://doi.org/10.3762/bjoc.11.176

    Article  CAS  Google Scholar 

  40. Lyubimov, S.E., Zvinchuk, A.A., and Chowdhury, B., Russ. Chem. Bull., Int. Ed., 2021, vol. 70, p. 1324. https://doi.org/10.1007/s11172-021-3218-z

    Article  CAS  Google Scholar 

  41. Ghosh, A., Reddy, G.N., Siddhique, M.P.K., Chat­terjee, S., Bhattacharjee, S., Maitra, R., Lyubimov, S.E., Arzumanyan, A.V., Naumkin, A., Bhaumik, A., and Chowdhury, B., Green Chem., 2022, vol. 24, p. 1673. https://doi.org/10.1039/D1GC04153C

    Article  CAS  Google Scholar 

  42. Chowdhury, B., Zvinchuk, A.A., Aysin, R.R., Khaki­na, E.A., Cherkasova, P.V., and Lyubimov, S.E., Catal. Surv. Asia, 2021, vol. 25, p. 419. https://doi.org/10.1007/s10563-021-09341-9

    Article  CAS  Google Scholar 

  43. Lyubimov, S.E., Zvinchuk, A.A., Sokolovskaya, M.V., Davankov, V.A., Chowdhury, B., Zhemchugov, P.V., and Arzumanyan, A.V., Appl. Catal., A, 2020, vol. 592, article ID 117433. https://doi.org/10.1016/j.apcata.2020.117433

  44. Lyubimov, S.E., Zvinchuk, A.A., Chowdhury, B., and Davankov, V.A., Russ. Chem. Bull., Int. Ed., 2020, vol. 69, p. 1598. https://doi.org/10.1007/s11172-020-2941-1

    Article  CAS  Google Scholar 

  45. Tsygankov, A.A. and Chusov, D., ACS Catal., 2021, vol. 11, p. 13077. https://doi.org/10.1021/acscatal.1c03785

    Article  CAS  Google Scholar 

  46. Greish, A.A., Finashina, E.D., Tkachenko, O.P., Shuvalova, E.V., and Kustov, L.M., Mendeleev Commun., 2016, vol. 26, p. 497. https://doi.org/10.1016/j.mencom.2016.11.012

    Article  CAS  Google Scholar 

  47. Dubey, A., Nencini, L., Fayzullin, R.R., Nervi, C., and Khusnutdinova, J.R., ACS Catal., 2017, vol. 7, p. 3864. https://doi.org/10.1021/acscatal.7b00943

    Article  CAS  Google Scholar 

  48. Egazar’yants, S.V., Karakhanov, E.A., Kardashev, S.V., Maksimov, A.L., and Minos’yants, S.S., Pet. Chem., 2002, vol. 42, p. 414.

    Google Scholar 

  49. Egazar’yants, S.V., Karakhanov, E.A., Kardashev, S.V., Maksimov, A.L., and Minos’yants, S.S., Pet. Chem., 2004, vol. 44, p. 13.

    Google Scholar 

  50. Kolesnichenko, N.V., Kremleva, E.V., Teleshov, A.T., Ezhova, N.N., Ganin, D.A., Te, V., and Slivinskii, E.V., Pet. Chem., 2006, vol. 46, p. 22. https://doi.org/10.1134/S096554410601004X

    Article  Google Scholar 

  51. Volnina, E.A. and Kipnis, M.A., Kinet. Catal., 2020, vol. 61, p. 119. https://doi.org/10.1134/S0023158420010115

    Article  CAS  Google Scholar 

  52. Kipnis, M.A., Samokhin, P.V., Volnina, E.A., Magomedova, M.V., and Turkova, T.V., Kinet. Catal., 2022, vol. 63, p. 119. https://doi.org/10.31857/S045388112203008X

    Article  Google Scholar 

  53. Magomedova, M.V., Starozhitskaya, A.V., Afokin, M.I., Perov, I.V., Kipnis, M.A., and Lin, G.I., Pet. Chem., 2020, vol. 60, p. 1244. https://doi.org/10.1134/S0965544120110146

    Article  CAS  Google Scholar 

  54. Ganina, O.G., Bondarenko, G.N., Isaeva, V.I., Kustov, L.M., and Beletskaya, I.P., Russ. J. Org. Chem., 2019, vol. 55, p. 1813. https://doi.org/10.1134/S1070428019120017

    Article  CAS  Google Scholar 

  55. Finashina, E.D., Kustov, L.M., Tkachenko, O.P., Krasovskiy, V.G., Formenova, E.I., and Beletskaya, I.P., Russ. Chem. Bull., Int. Ed., 2014, vol. 63, p. 2652. https://doi.org/10.1007/s11172-014-0794-1

    Article  CAS  Google Scholar 

  56. Bondarenko, G.N., Dvurechenskaya, E.G., Magom­medov, Sh.E., and Beletskaya, I.P., Catal. Lett., 2017, vol. 147, p. 2570. https://doi.org/10.1007/s10562-017-2127-0

    Article  CAS  Google Scholar 

  57. von Basaroff, A., Dissertation Thesis, Leipzig, 1868.

  58. Meessen, J.H., Petersen, H.. et al., Ullmann’s Encyclo­pedia of Industrial Chemistry, New York: Reinhold Publishing, 1996, 5th ed., vol. A27.

  59. Wöhler, F., Poggendorff’s Ann. Phys., 1828, vol. 12, p. 253.

    Article  Google Scholar 

  60. Sergeev, Y.A., Anderzhanov, R.V., and Vorob’ev, A.A., Russ. J. Gen. Chem., 2020, vol. 90, p. 1168. https://doi.org/10.1134/S1070363220060328

    Article  CAS  Google Scholar 

  61. Lindsey, A.S. and Jeskey, H., Chem. Rev., 1957, vol. 57, p. 583. https://doi.org/10.1021/cr50016a001

    Article  CAS  Google Scholar 

  62. Kolbe, H., Justus Liebigs Ann. Chem., 1860, vol. 113, p. 125. https://doi.org/10.1002/jlac.18601130120

    Article  Google Scholar 

  63. Kolbe, H., J. Prakt. Chem., 1874, vol. 10, p. 89. https://doi.org/10.1002/prac.18740100106

    Article  Google Scholar 

  64. Schmitt, R., J. Prakt. Chem., 1885, vol. 31, p. 397. https://doi.org/10.1002/prac.18850310130

    Article  Google Scholar 

  65. Marasse, S., German Patent no. 73279, 1893; Frdl., vol. 3, p. 821.

  66. Marasse, S., German Patent no. 78708, 1894; Frdl., vol. 4, p. 152.

  67. Kito, T. and Hirao, I., Bull. Chem. Soc. Jpn., 1973, vol. 46, p. 3470. https://doi.org/10.1246/bcsj.46.3470

    Article  Google Scholar 

  68. Elmas, S., Subhani, M.A., Vogt, H., Leitner, W., and Müller, T.E., Green Chem., 2013, vol. 15, p. 1356. https://doi.org/10.1039/C3GC40147B

    Article  CAS  Google Scholar 

  69. Kosugi, Y., Imaoka, Y., Gotoh, F., Rahim, M.A., Matsui, Y., and Sakanishi, K., Org. Biomol. Chem., 2003, vol. 1, p. 817. https://doi.org/10.1039/B210793G

    Article  CAS  Google Scholar 

  70. Rahim, M.A., Matsui, Y., Matsuyama, T., and Kosugi, Y., Bull. Chem. Soc. Jpn., 2003, vol. 76, p. 2191. https://doi.org/10.1246/bcsj.76.2191

    Article  CAS  Google Scholar 

  71. Rahim, M.A., Matsui, Y., and Kosugi, Y., Bull. Chem. Soc. Jpn., 2002, vol. 75, p. 619. https://doi.org/10.1246/bcsj.75.619

    Article  CAS  Google Scholar 

  72. Luo, J., Preciado, S., Xie, P., and Larrosa, I., Chem. Eur. J., 2016, vol. 22, p. 6798. https://doi.org/10.1002/chem.201601114

    Article  CAS  Google Scholar 

  73. Kirimura, K. and Ishii, Y., Future Directions in Biocatalysis, Matsuda, T., Ed., London: Elsevier, 2017, 2nd ed., p. 135.

  74. Tommasi, I.C., Catalysts, 2019, vol. 9, article no. 37. https://doi.org/10.3390/catal9010037

  75. Payer, S.E., Faber, K., and Glueck, S.M., Adv. Synth. Catal., 2019, vol. 361, p. 2402. https://doi.org/10.1002/adsc.201900275

    Article  CAS  Google Scholar 

  76. Kirimura, K., Gunji, H., Wakayama, R., Hattori, T., and Ishii, Y., Biochem. Biophys. Res. Commun., 2010, vol. 394, p. 279. https://doi.org/10.1016/j.bbrc.2010.02.154

    Article  CAS  Google Scholar 

  77. Kirimura, K., Yanaso, S., Kosaka, S., Koyama, K., Hat­tori, T., and Ishii, Y., Chem. Lett., 2011, vol. 40, p. 206. https://doi.org/10.1246/cl.2011.206

    Article  CAS  Google Scholar 

  78. Pesci, L., Glueck, S.M., Gurikov, P., Smirnova, I., Faber, K., and Liese, A., FEBS J., 2015, vol. 282, p. 1334. https://doi.org/10.1111/febs.13225

    Article  CAS  Google Scholar 

  79. Ren, J., Yao, P., Yu, S., Dong, W., Chen, Q., Feng, J., Wu, Q., and Zhu, D., ACS Catal., 2016, vol. 6, p. 564. https://doi.org/10.1021/acscatal.5b02529

    Article  CAS  Google Scholar 

  80. Sadamitsu, Y., Okumura, A., Saito, K., and Yamada, T., Chem. Commun., 2019, vol. 55, p. 9837. https://doi.org/10.1039/C9CC04550C

    Article  CAS  Google Scholar 

  81. Feldman, R.I., Mintzer, B., Zhu, D., Wu, J.M., Biroc, S.L., Yuan, S., Emayan, K., Chang, Z., Chen, D., Arnaiz, D.O., Bryant, J., Ge, X.S., Whitlow, M., Adler, M., Polokoff, M.A., Li, W.-W., Ferrer, M., Sato, T., Gu, J.-M., Shen, J., Tseng, J.-L., Dinter, H., and Buckman, B., Chem. Biol. Drug Des., 2009, vol. 74, p. 43. https://doi.org/10.1111/j.1747-0285.2009.00833.x

    Article  CAS  Google Scholar 

  82. Mueller, R., Li, Y.-X., Hampson, A., Zhong, S., Harris, C., Marrs, C., Rachwal, S., Ulas, J., Nielsson, L., and Rogers, G., Bioorg. Med. Chem. Lett., 2011, vol. 21, p. 3923. https://doi.org/10.1016/j.bmcl.2011.05.026

    Article  CAS  Google Scholar 

  83. Tiefenbacher, K., Gollner, A., and Mulzer, J., Chem. Eur. J., 2010, vol. 16, p. 9616. https://doi.org/10.1002/chem.201000706

    Article  CAS  Google Scholar 

  84. Friend, C., Encyclopedia of Lubricants and Lubrication, Mang, T., Ed., Berlin: Springer, 2014.

  85. https://methanol.org/methanol-price-supply-demand

  86. Olah, G.A., Goeppert, A., and Prakash, G.K.S., Beyond Oil and Gas: The Methanol Economy, Weinheim: Wiley–VCH, 2018, 3rd ed.

  87. Goeppert, A., Czaun, M., Jones, J.-P., Prakash, G.K.S., and Olah, G.A., Chem. Soc. Rev., 2014, vol. 43, p. 7995. https://doi.org/10.1039/C4CS00122B

    Article  CAS  Google Scholar 

  88. Behrens, M., Studt, F., Kasatkin, I., Kühl, S., Hävecker, M., Abild-Pedersen, F., Zander, S., Girgsdies, F., Kurr, P., Kniep, B., Tovar, M., Fischer, R.W., Nørskov, J.K., and Schlögl, R., Science, 2012, vol. 336, p. 893. https://doi.org/10.1126/science.1219831

    Article  CAS  Google Scholar 

  89. Syngas: Production Methods, Post Treatment and Economics, Kurucz, I.B.A., Ed., New York: Nova Science, 2009.

  90. Lee, J.S., Lee, K.H., Lee, S.Y., and Kim, Y.G., J. Catal., 1993, vol. 144, p. 414. https://doi.org/10.1006/jcat.1993.1342

    Article  CAS  Google Scholar 

  91. Rasmussen, P.B., Holmblad, P.M., Askgaard, T., Ovesen, C.V., Stoltze, P., Norskov, J.K., and Chorkendorff, I., Catal. Lett., 1994, vol. 26, p. 373. https://doi.org/10.1007/BF00810611

    Article  CAS  Google Scholar 

  92. Abdel-Mageed, A.M., Klyushin, A., Rezvani, A., Knop-Gericke, A., Schlögl, R., and Behm, R.J., Angew. Chem., Int. Ed., 2019, vol. 58, p. 10325. https://doi.org/10.1002/anie.201900150

    Article  CAS  Google Scholar 

  93. Wu, J., Saito, M., Takeuchi, M., and Watanabe, T., Appl. Catal., A, 2001, vol. 218, p. 235. https://doi.org/10.1016/S0926-860X(01)00650-0

    Article  CAS  Google Scholar 

  94. Liang, B., Ma, J., Su, X., Yang, C., Duan, H., Zhou, H., Deng, S., Li, L., and Huang, Y., Ind. Eng. Chem. Res., 2019, vol. 58, p. 9030. https://doi.org/10.1021/acs.iecr.9b01546

    Article  CAS  Google Scholar 

  95. Pontzen, F., Liebner, W., Gronemann, V., Rothaemel, M., and Ahlers, B., Catal. Today, 2011, vol. 171, p. 242. https://doi.org/10.1016/j.cattod.2011.04.049

    Article  CAS  Google Scholar 

  96. Álvarez, A., Bansode, A., Urakawa, A., Bavykina, A.V., Wezendonk, T.A., Makkee, M., Gascon, J., and Kapteijn, F., Chem. Rev., 2017, vol. 117, p. 9804. https://doi.org/10.1021/acs.chemrev.6b00816

    Article  CAS  Google Scholar 

  97. Bowker, M., Lawes, N., Gow, I., Hayward, J., Esquius, J.R., Richards, N., Smith, L.R., Slater, T.J.A., Davies, T.E., Dummer, N.F., Kabalan, L., Logsdail, A., Catlow, R.C., Taylor, S., and Hutchingset, G.J., ACS Catal., 2022, vol. 12, p. 5371. https://doi.org/10.1021/acscatal.2c00552

    Article  CAS  Google Scholar 

  98. Saito, M., Takeuchi, M., Fujitani, T., Toyir, J., Luo, S., Wu, J., Mabuse, H., Ushikoshi, K., Mori, K., and Watanabe, T., Appl. Organomet. Chem., 2000, vol. 14, p. 763. https://doi.org/10.1002/1099-0739(200012)14:12<763::AID-AOC98>3.0.CO;2-4

    Article  CAS  Google Scholar 

  99. Tada, S., Kayamori, S., Honma, T., Kamei, H., Nariyuki, A., Kon, K., Toyao, T., Shimizu, K., and Satokawa, S., ACS Catal., 2018, vol. 8, p. 7809. https://doi.org/10.1021/acscatal.8b01396

    Article  CAS  Google Scholar 

  100. Yang, M., Yu, J., Tong, X., Sun, X., Xua, H., and Sun, J., Chem. Commun., 2021, vol. 57, p. 7509. https://doi.org/10.1039/D1CC02784K

    Article  CAS  Google Scholar 

  101. Zhang, X., Kirilin, A.V., Rozeveld, S., Kang, J.H., Pollefeyt, G., Yancey, D.F., Chojecki, A., Vanchura, B., and Blum, M., ACS Catal., 2022, vol. 12, p. 3868. https://doi.org/10.1021/acscatal.2c00207

    Article  CAS  Google Scholar 

  102. Nandiyanto, A.B.D., Kim, S.G., Iskandar, F., and Okuyama, K., Microporous Mesoporous Mater., 2009, vol. 120, p. 447. https://doi.org/10.1016/j.micromeso.2008.12.019

    Article  CAS  Google Scholar 

  103. Santos, S.M.L., Nogueira, K.A.B., Gama, M.S., Lima, J.D.F., Silva, I.J., Jr., and Azeveda, D.C.S., Microporous Mesoporous Mater., 2013, vol. 180, p. 284. https://doi.org/10.1016/j.micromeso.2013.06.043

    Article  CAS  Google Scholar 

  104. Koizumi, N., Jiang, X., Kugai, J., and Song, C., Catal. Today, 2012, vol. 194, p. 16. https://doi.org/10.1016/j.cattod.2012.08.007

    Article  CAS  Google Scholar 

  105. Hermida, L., Agustian, J., Abdullah, A.Z., and Mohamed, A.R., Open Chem., 2019, vol. 17, p. 1000. https://doi.org/10.1515/chem-2019-0107

    Article  CAS  Google Scholar 

  106. Kleitz, F., Choia, S.H., and Ryoo, R., Chem. Commun., 2003, p. 2136. https://doi.org/10.1039/B306504A

  107. Koh, M.K., Khavarian, M., Chai, S.P., and Mohamed, A.R., Int. J. Hydrogen Energy, 2018, vol. 43, p. 9334. https://doi.org/10.1016/j.ijhydene.2018.03.202

    Article  CAS  Google Scholar 

  108. Shao, Y., Kosari, M., Xi, S., and Zeng, H.C., ACS Catal., 2022, vol. 12, p. 5750. https://doi.org/10.1021/acscatal.2c00726

    Article  CAS  Google Scholar 

  109. Dong, X., Liang, X.L., Li, H.Y., Lin, G.D., Zhang, P., and Zhang, H.B., Catal. Today, 2009, vol. 147, p. 158. https://doi.org/10.1016/j.cattod.2008.11.025

    Article  CAS  Google Scholar 

  110. Zhang, H.B., Liang, X.L., Dong, X., Li, H.Y., and Lin, G.D., Catal. Surv. Asia, 2009, vol. 13, p. 41. https://doi.org/10.1007/s10563-009-9066-8

    Article  CAS  Google Scholar 

  111. Liang, X.L., Dong, X., Lin, G.D., and Zhang, H.B., Appl. Catal., B, 2009, vol. 88, p. 315. https://doi.org/10.1016/j.apcatb.2008.11.018

    Article  CAS  Google Scholar 

  112. Yang, Z.Q., Guo, S.J., Pan, X.L., Wang, J.H., and Bao, X.H., Energy Environ. Sci., 2011, vol. 4, p. 4500. https://doi.org/10.1039/C1EE01428E

    Article  CAS  Google Scholar 

  113. Pan, X.L. and Bao, X.H., Acc. Chem. Res., 2011, vol. 44, p. 553. https://doi.org/10.1021/ar100160t

    Article  CAS  Google Scholar 

  114. Wang, G., Chen, L., Sun, Y., Wu, J., Fu, M., and Ye, D., RSC Adv., 2015, vol. 5, p. 45320. https://doi.org/10.1039/C5RA04774A

    Article  CAS  Google Scholar 

  115. Deng, K., Hu, B., Lu, Q., and Hong, X., Catal. Commun., 2017, vol. 100, p. 81. https://doi.org/10.1016/j.catcom.2017.06.041

    Article  CAS  Google Scholar 

  116. Ban, H., Li, C., Asami, K., and Fujimoto, K., Catal. Commun., 2014, vol. 54, p. 50. https://doi.org/10.1016/j.catcom.2014.05.014

    Article  CAS  Google Scholar 

  117. Jiang, X., Nie, X., Guo, X., Song, C., and Chen, J.G., Chem. Rev., 2020, vol. 120, p. 7984. https://doi.org/10.1021/acs.chemrev.9b00723

    Article  CAS  Google Scholar 

  118. Xie, S., Zhang, W., Lan, X., and Lin, H., ChemSusChem, 2020, vol. 13, p. 6141. https://doi.org/10.1002/cssc.202002087

    Article  CAS  Google Scholar 

  119. Sen, R., Koch, C.J., Galvan, V., Entesari, N., Goeppert, A., and Prakash, G.K.S., J. CO2 Util., 2021, vol. 54, article ID 101762. https://doi.org/10.1016/j.jcou.2021.101762

  120. Reller, C., Pöge, M., Lißner, A., and Mertens, F.O.R.L., Environ. Sci. Technol., 2014, vol. 48, p. 14799. https://doi.org/10.1021/es503914d

    Article  CAS  Google Scholar 

  121. Navarro-Jaén, S., Virginie, M., Bonin, J., Robert, M., Wojcieszak, R., and Khodakov, A.Y., Nat. Rev. Chem., 2021, vol. 5, p. 564. https://doi.org/10.1038/s41570-021-00289-y

    Article  CAS  Google Scholar 

  122. Bai, S.-T., Smet, G., Liao, Y., Sun, R., Zhou, C., Beller, M., Maes, B.U.W., and Sels, B.F., Chem. Soc. Rev., 2021, vol. 50, p. 4259. https://doi.org/10.1039/D0CS01331E

    Article  CAS  Google Scholar 

  123. Ren, M., Zhang, Y., Wang, X., and Qiu, H., Catalysts, 2022, vol. 12, article no. 403. https://doi.org/10.3390/catal12040403

  124. Kothandaraman, J., Goeppert, A., Czaun, M., Olah, G.A., and Prakash, G.K.S., J. Am. Chem. Soc., 2016, vol. 138, p. 778. https://doi.org/10.1021/jacs.5b12354

    Article  CAS  Google Scholar 

  125. Bai, S.-T., Zhou, C., Wu, X., Sun, R., and Sels, B., ACS Catal., 2021, vol. 11, p. 12682. https://doi.org/10.1021/acscatal.1c02638

    Article  CAS  Google Scholar 

  126. Niermann, M., Beckendorff, A., Kaltschmitt, M., and Bonhoff, K., Int. J. Hydrogen Energy, 2019, vol. 44, p. 6631. https://doi.org/10.1016/j.ijhydene.2019.01.199

    Article  CAS  Google Scholar 

  127. Kothandaraman, J., Kar, S., Sen, R., Goeppert, A., Olah, G.A., and Prakash, G.K.S., J. Am. Chem. Soc., 2017, vol. 139, p. 2549. https://doi.org/10.1021/jacs.6b11637

    Article  CAS  Google Scholar 

  128. Li, D., Li, X., and Gong, J., Chem. Rev., 2016, vol. 116, p. 11529. https://doi.org/10.1021/acs.chemrev.6b00099

    Article  CAS  Google Scholar 

  129. Olah, G.A., Angew. Chem., Int. Ed., 2005, vol. 44, p. 2636. https://doi.org/10.1002/anie.200462121

    Article  CAS  Google Scholar 

  130. Olah, G.A., Goeppert, A., and Prakash, G.K.S., J. Org. Chem., 2009, vol. 74, p. 487. https://doi.org/10.1021/jo801260f

    Article  CAS  Google Scholar 

  131. Olah, G.A. and Prakash, G.K.S., US Patent no. 7605293 B2, 2009.

  132. https://www.carbonrecycling.is/project-goplant

  133. Drury, D.J., Formic Acid. Kirk-Othmer Encyclopedia of Chemical Technology, New York: Wiley, 2013.

  134. Yin, Z. and Wu, X.-F., The Chemical Transformations of C1 Compounds, Wu, X.-F., Han, B., Ding, K., and Liu, Z., Weinheim: Wiley-VCH, 2022, vol. 1, p. 249.

  135. Reutemann, W. and Heinz, K., Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 2012, p. 13.

  136. Farlow, M.W. and Adkins, H., J. Am. Chem. Soc., 1935, vol. 57, p. 2222. https://doi.org/10.1021/ja01314a054

    Article  CAS  Google Scholar 

  137. Kolomnikov, I.S., Lobeeva, T.S., and Vol’pin, M.E., Bull. Acad. Sci. USSR, Div. Chem. Sci., 1972, vol. 21, p. 2263. https://doi.org/10.1007/BF00855315

    Article  Google Scholar 

  138. Inoue, Y., Sasaki, Y., and Hashimoto, H., J. Chem. Soc., Chem. Commun., 1975, p. 718. https://doi.org/10.1039/C39750000718

  139. Inoue, Y., Izumida, H., Sasaki, Y., and Hashimoto, H., Chem. Lett., 1976, vol. 5, p. 863. https://doi.org/10.1246/cl.1976.863

    Article  Google Scholar 

  140. Jessop, P.G., Ikariya, T., and Noyori, R., Chem. Rev., 1995, vol. 95, p. 259. https://doi.org/10.1021/cr00034a001

    Article  CAS  Google Scholar 

  141. Mellmann, D., Sponholz, P., Junge, H., and Beller, M., Chem. Soc. Rev., 2016, vol. 45, p. 3954. https://doi.org/10.1039/C5CS00618J

    Article  CAS  Google Scholar 

  142. Onishi, N., Iguchi, M., Yang, X., Kanega, R., Kawanami, H., Xu, Q., and Himeda, Y., Adv. Energy Mater., 2018, vol. 9, article ID 1801275. https://doi.org/10.1002/aenm.201801275

  143. Klankermayer, J., Wesselbaum, S., Beydoun, K., and Leitner, W., Angew. Chem., Int. Ed., 2016, vol. 55, p. 7296. https://doi.org/10.1002/anie.201507458

    Article  CAS  Google Scholar 

  144. Wang, W.-H., Himeda, Y., Muckerman, J.T., Manbeck, G.F., and Fujita, E., Chem. Rev., 2015, vol. 115, p. 12936. https://doi.org/10.1021/acs.chemrev.5b00197

    Article  CAS  Google Scholar 

  145. Gunasekar, G.H., Park, K., Jung, K.-D., and Yoon, S., Inorg. Chem. Front., 2016, vol. 3, p. 882. https://doi.org/10.1039/C5QI00231A

    Article  CAS  Google Scholar 

  146. Singh, T., Jalwal, S., and Chakraborty, S., Asian J. Org. Chem., 2022, vol. 11, article ID e202200330. https://doi.org/10.1002/ajoc.202200330

  147. Gorbunov, D.N., Nenasheva, M.V., Terenina, M.V., Kardasheva, Yu.S., Kardashev, S.V., Naranov, E.R., Bugaev, A.L., Soldatov, A.V., Maximov, A.L., and Karakhanov, E.A., Pet. Chem., 2022, vol. 62, p. 1. https://doi.org/10.1134/S0965544122010054

    Article  CAS  Google Scholar 

  148. Tanaka, R., Yamashita, M., and Nozaki, K., J. Am. Chem. Soc., 2009, vol. 131, p. 14168. https://doi.org/10.1021/ja903574e

    Article  CAS  Google Scholar 

  149. Kanega, R., Ertem, M.Z., Onishi, N., Szalda, D.J., Fujita, E., and Himeda, Y., Organometallics, 2020, vol. 39, p. 1519. https://doi.org/10.1021/acs.organomet.9b00809

    Article  CAS  Google Scholar 

  150. Kanega, R., Onishi, N., Szalda, D.J., Ertem, M.Z., Muckerman, J.T., Fujita, E., and Himeda, Y., ACS Catal., 2017, vol. 7, p. 6426. https://doi.org/10.1021/acscatal.7b02280

    Article  CAS  Google Scholar 

  151. Hull, J.F., Himeda, Y., Wang, W.-H., Hashiguchi, B., Periana, R., Szalda, D.J., Muckerman, J.T., and Fujita, E., Nat. Chem., 2012, vol. 4, p. 383. https://doi.org/10.1038/nchem.1295

    Article  CAS  Google Scholar 

  152. Jessop, P.G., Hsiao, Y., Ikariya, T., and Noyori, R., J. Am. Chem. Soc., 1996, vol. 118, p. 344. https://doi.org/10.1021/ja953097b

    Article  CAS  Google Scholar 

  153. Munshi, P., Main, A.D., Linehan, J.C., Tai, C.-C., and Jessop, P.G., J. Am. Chem. Soc., 2002, vol. 124, p. 7963. https://doi.org/10.1021/ja0167856

    Article  CAS  Google Scholar 

  154. Filonenko, G.A., Putten, R., Schulpen, E.N., Hensen, E.J.M., and Pidko, E.A., ChemCatChem, 2014, vol. 6, p. 1526. https://doi.org/10.1002/cctc.201402119

    Article  CAS  Google Scholar 

  155. Scott, M., Molinos, B.B., Westhues, C., Franciò, G., and Leitner, W., ChemSusChem, 2017, vol. 10, p. 1085. https://doi.org/10.1002/cssc.201601814

    Article  CAS  Google Scholar 

  156. Weilhard, A., Qadir, M.I., Sans, V., and Dupont, J., ACS Catal., 2018, vol. 8, p. 1628. https://doi.org/10.1021/acscatal.7b03931

    Article  CAS  Google Scholar 

  157. Schieweck, B.G., Westhues, N.F., and Klanker­mayer, J., Chem. Sci., 2019, vol. 10, p. 6519. https://doi.org/10.1039/C8SC05230A

    Article  CAS  Google Scholar 

  158. Zhang, Y., MacIntosh, A.D., Wong, J.L., Bielin­ski, E.A., Williard, P.G., Mercado, B.Q., Hazari, N., and Bernskoetter, W.H., Chem. Sci., 2015, vol. 6, p. 4291. https://doi.org/10.1039/C5SC01467K

    Article  CAS  Google Scholar 

  159. Trivedi, M., Kumar, A., Husain, A., and Rath, N.P., Inorg. Chem., 2021, vol. 60, p. 4385. https://doi.org/10.1021/acs.inorgchem.0c01937

    Article  CAS  Google Scholar 

  160. Chaudhary, K., Trivedi, M., Masram, D.T., Kumar, A., Kumar, G., Husain, A., and Rath, N.P., Dalton Trans., 2020, vol. 49, p. 2994. https://doi.org/10.1039/C9DT04662C

    Article  CAS  Google Scholar 

  161. Bertini, F., Glatz, M., Gorgas, N., Stoger, B., Peruzzini, M., Veiros, L.F., Kirchner, K., and Gonsalvi, L., Chem. Sci., 2017, vol. 8, p. 5024. https://doi.org/10.1039/C7SC00209B

    Article  CAS  Google Scholar 

  162. Kostera, S., Weber, S., Peruzzini, M., Veiros, L.F., Kirchner, K., and Gonsalvi, L., Organometallics, 2021, vol. 40, p. 1213. https://doi.org/10.1021/acs.organomet.0c00710

    Article  CAS  Google Scholar 

  163. Wei, D., Sang, R., Sponholz, P., Junge, H., and Beller, M., Nat. Energy, 2022, vol. 7, p. 438. https://doi.org/10.1038/s41560-022-01019-4

    Article  CAS  Google Scholar 

  164. Wei, D., Junge, H., and Beller, M., Chem. Sci., 2021, vol. 12, p. 6020. https://doi.org/10.1039/D1SC00467K

    Article  CAS  Google Scholar 

  165. Sun, R., Liao, Y., Bai, S.-T., Zheng, M., Zhou, C., Zhang, T., and Sels, B.F., Energy Environ. Sci., 2021, vol. 14, p. 1247. https://doi.org/10.1039/D0EE03575K

    Article  CAS  Google Scholar 

  166. Zhang, L., Zhou, M., Wang, A., and Zhang, T., Chem. Rev., 2020, vol. 120, p. 683. https://doi.org/10.1021/acs.chemrev.9b00230

    Article  CAS  Google Scholar 

  167. Preti, D., Resta, C., Squarcialupi, S., and Fachinetti, G., Angew. Chem., Int. Ed., 2011, vol. 50, p. 12551. https://doi.org/10.1002/anie.201105481

    Article  CAS  Google Scholar 

  168. Puthiaraj, P., Lee, Y.-R., Zhang, S., and Ahn, W.-S., J. Mater. Chem. A, 2016, vol. 4, p. 16288. https://doi.org/10.1039/C6TA06089G

    Article  CAS  Google Scholar 

  169. Gunasekar, G.H., Jung, K.-D., and Yoon, S., Inorg. Chem., 2019, vol. 58, p. 3717. https://doi.org/10.1021/acs.inorgchem.8b03336

    Article  CAS  Google Scholar 

  170. Park, K., Gunasekar, G.H., Kim, S.-H., Park, H., Kim, S., Park, K., Jung, K.-D., and Yoon, S., Green Chem., 2020, vol. 22, p. 1639. https://doi.org/10.1039/C9GC03685G

    Article  Google Scholar 

  171. Li, Z., Rayder, T.M., Luo, L., Byers, J.A., and Tsung, C.-K., J. Am. Chem. Soc., 2018, vol. 140, p. 8082. https://doi.org/10.1021/jacs.8b04047

    Article  CAS  Google Scholar 

  172. Schaub, T., Paciello, R., Mohl, K.-D., Schneider, D., Schaefer, M., and Rittinger, S., Int. Patent Appl. Pub. no. WO2010149507 A2, 2010.

  173. Schaub, T. and Paciello, R.A., Angew. Chem., Int. Ed., 2011, vol. 50, p. 7278. https://doi.org/10.1002/anie.201101292

    Article  CAS  Google Scholar 

  174. Schaub, T., Bey, O., Meier, A., Fries, D.M., and Hugo, R., Int. Patent Appl. Pub. no. WO2013050367 A2, 2013.

  175. Leitner, W., Hintermair, U., and Wesselbaum, S., Int. Patent Appl. Pub. no. WO2012/095345 A1, 2012.

  176. Wesselbaum, S., Hintermair, U., and Leitner, W., Angew. Chem., Int. Ed., 2012, vol. 51, p. 8585. https://doi.org/10.1002/anie.201203185

    Article  CAS  Google Scholar 

Download references

Funding

Sections 1, 2, and 3.2 were written in the framework of state assignment to the Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences (A.L. Maksimov, N.Yu. Kuznetsov); section 3.3 was written in the framework of state assignment no. 075-00697-22-00 to the Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences (N.Yu. Kuznetsov); Section 3.1 was written under financial support by the Russian Foundation for Basic Research (project no. 20-03-00300A; guided by I.P. Beletskaya).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Kuznetsov.

Ethics declarations

The authors declare the absence of conflict of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2022, Vol. 58, No. 12, pp. 1267–1301 https://doi.org/10.31857/S0514749222120011.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, N.Y., Maximov, A.L. & Beletskaya, I.P. Novel Technological Paradigm of the Application of Carbon Dioxide as a C1 Synthon in Organic Chemistry: I. Synthesis of Hydroxybenzoic Acids, Methanol, and Formic Acid. Russ J Org Chem 58, 1681–1711 (2022). https://doi.org/10.1134/S1070428022120016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428022120016

Keywords:

Navigation