Skip to main content

Advertisement

Log in

Aryl–Cl vs heteroatom–Si bond cleavage on the route to the photochemical generation of σ,π-heterodiradicals

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photochemistry of aryl chlorides having a X-SiMe3 group (X = O, NR, S, SiMe2) tethered to the aromatic ring has been investigated in detail, with the aim to generate valuable ϭ,π-heterodiradicals. Two competitive pathways arising from the excited triplet state of the aromatics have been observed, namely heterolysis of the aryl–chlorine bond and homolysis of the X–silicon bond. The former path is found in chlorinated phenols and anilines, whereas the latter is exclusive in the case of silylated thiophenols and aryl silanes. A combined experimental/computational approach was pursued to explain such a photochemical behavior.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3
Fig. 7

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Fensterbank, L., & Ollivier, C. (Eds.). (2021). Free radicals: Fundamentals and applications in organic synthesis. Georg Thieme Verlag KG.

    Google Scholar 

  2. Chatgilialoglu, C., & Studer, A. (Eds.). (2014). Encyclopedia of radicals in chemistry. Biology and Materials Wiley. For seminal books in the field.

    Google Scholar 

  3. Abe, M. (2013). Diradicals. Chemical Review, 113, 7011–7088. https://doi.org/10.1021/cr400056a

    Article  CAS  Google Scholar 

  4. (2012). IUPAC Compendium of Chemical Terminology, release 2.3.2 (p. 168). International Union of Pure and Applied Chemistry (IUPAC).

  5. Stuyver, T., Chen, B., Zeng, T., Geerlings, P., De Proft, F., & Hoffmann, R. (2019). Do diradicals behave like radicals? Chemical Reviews, 119, 11291–11351. https://doi.org/10.1021/acs.chemrev.9b00260

    Article  CAS  PubMed  Google Scholar 

  6. Albini, A., & Fagnoni, M. (2013). Photochemically-generated intermediates in synthesis (pp. 131–167). Wiley.

    Book  Google Scholar 

  7. Ravelli, D., Protti, S., & Fagnoni, M. (2016). Carbon-carbon bond forming reactions via photogenerated intermediates. Chemical Reviews, 116, 9850–9913. https://doi.org/10.1021/acs.chemrev.5b00662

    Article  CAS  PubMed  Google Scholar 

  8. Kärkäs, M. D., Porco, J. A., Jr., & Stephenson, C. R. J. (2016). Photochemical approaches to complex chemotypes: Applications in natural product synthesis. Chemical Reviews, 116, 9683–9747. https://doi.org/10.1021/acs.chemrev.5b00760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Itagaki, N., & Iwabuchi, Y. (2007). Enantio- and diastereocontrolled synthesis of (+)-juvabione employing organocatalytic desymmetrization and photoinduced fragmentation. Chemical Communications, 11, 1175–1176. https://doi.org/10.1039/B616641E

    Article  Google Scholar 

  10. Wessig, P. (2004). Regioselective photochemical synthesis of carbo- and heterocyclic compounds: The Norrish/Yang reaction. In F. Lenci & W. Horspool (Eds.), CRC handbook of organic photochemistry and photobiology (2nd ed., pp. 571–5720). CRC Press.

    Google Scholar 

  11. Wagner, P. J. (2004). Yang photocyclization: Coupling of biradicals formed by intramolecular hydrogen abstraction of ketones. In F. Lenci & W. Horspool (Eds.), CRC handbook of organic photochemistry and photobiology (2nd ed., pp. 58-1-58–70). CRC Press.

    Google Scholar 

  12. Wagner, P. J. (2005). Abstraction of γ-hydrogens by excited carbonyls. In A. G. Griesbeck & J. Mattay (Eds.), Molecular and supramolecular photochemistry. Synthetic organic photochemistry (Vol. 12, pp. 11–40). Marcel Dekker.

    Google Scholar 

  13. Wessig, P., & Mühling, O. (2005). Abstraction of (γ±n)-hydrogens by excited carbonyls. In A. G. Griesbeck & J. Mattay (Eds.), Molecular and supramolecular photochemistry. Synthetic organic photochemistry (Vol. 12, pp. 41–88). Marcel Dekker.

    Google Scholar 

  14. Garcia-Garibay, M. A., & Campos, L. M. (2004). Photochemical decarbonylation of ketones: Recent advances and reactions in crystalline solids. In F. Lenci & W. Horspool (Eds.), CRC handbook of organic photochemistry and photobiology (2nd ed., pp. 48-1-48–41). CRC Press.

    Google Scholar 

  15. Natarajan, A., Ng, D., Yang, Z., & Garcia-Garibay, M. A. (2007). Parallel syntheses of (+)-and (-)-α-cuparenone by radical combination in crystalline solids. Angewandte Chemie International Edition, 46, 6485–6487. https://doi.org/10.1002/anie.200700679

    Article  CAS  PubMed  Google Scholar 

  16. Dotson, J. J., Perez-Estrada, S., & Garcia-Garibay, M. A. (2018). Taming radical pairs in nanocrystalline ketones: Photochemical synthesis of compounds with vicinal stereogenic all-carbon quaternary centers. Journal of the American Chemical Society, 140, 8359–8371. https://doi.org/10.1021/jacs.8b03988

    Article  CAS  PubMed  Google Scholar 

  17. Adam, W., Oppenlander, T., & Zang, G. (1985). Photochemistry of the azoalkanes 2,3-diazabicyclo[2.2.l]hept-2-ene and spiro[cyclopropane-1,70-[2,3]diazabicyclo[2.2.1] hept-2-ene]: On the questions of one-bond vs. two-bond cleavage during the denitrogenation, cyclization vs. rearrangement of the 1,3-diradicals, and double inversion. The Journal of Organic Chemistry, 50, 3303–3312. https://doi.org/10.1021/jo00218a012

    Article  CAS  Google Scholar 

  18. Adam, W., Nau, W. M., & Sendelbach, J. (1994). Temperature dependence of the α versus β bond cleavage in the direct and triplet-sensitized photolysis of azoalkanes of the 2,3-diazabicyclo[2.2.1]hept-2-ene type. Journal of the American Chemical Society, 116, 7049–7054. https://doi.org/10.1021/ja00095a006

    Article  CAS  Google Scholar 

  19. Adam, W., Garcıa, H., Martì, V., Moorthy, J. N., Peters, K., & Peters, E.-M. (2000). Photochemical denitrogenation of norbornene-annelated 2,3-diazabicyclo[2.1.1]hept-2-ene-type azoalkanes: Crystal-lattice versus zeolite-interior effects. Journal of the American Chemical Society, 122, 3536–3537. https://doi.org/10.1021/ja994114q

    Article  CAS  Google Scholar 

  20. Wender, P. A., Kee, J.-M., & Warrington, J. M. (2008). Practical synthesis of prostratin, DPP, and their analogs, adjuvant leads against latent HIV. Science, 320, 649–652. https://www.science.org/doi/10.1126/science.1154690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ao, M. S., & Burgess, E. M. (1971). Benzothiazete 1, l-dioxides. Journal of the American Chemical Society, 93, 5298–5299. https://doi.org/10.1021/ja00749a078

    Article  CAS  Google Scholar 

  22. Magauer, T., Martin, H. J., & Mulzer, J. (2009). Total synthesis of the antibiotic kendomycin by macrocyclization using photo-Fries rearrangement and ring-closing metathesis. Angewandte Chemie International Edition, 48, 6032–6036. https://doi.org/10.1002/anie.200900522

    Article  CAS  PubMed  Google Scholar 

  23. Bhunia, A., Yetra, S. R., & Biju, A. T. (2012). Recent advances in transition-metal-free carbon–carbon and carbon–heteroatom bond-forming reactions using arynes. Chemical Society Reviews, 41, 3140–3152. https://www.pubs.rsc.org/en/content/articlehtml/2012/cs/c2cs15310f

    Article  CAS  PubMed  Google Scholar 

  24. Wentrup, C. (2010). The benzyne story. Australian Journal of Chemistry, 63, 979–986. https://doi.org/10.1071/CH10179

    Article  CAS  Google Scholar 

  25. Bracken, C., Batsanov, A. S., & Baumann, M. (2021). Development of a continuous photochemical benzyne-forming process. SynOpen, 5, 29–35. https://doi.org/10.1055/s-0040-1706016

    Article  CAS  Google Scholar 

  26. Raviola, C., Protti, S., Ravelli, D., & Fagnoni, M. (2016). (Hetero)aromatics from dienynes, enediynes and enyne-allenes. Chemical Society Reviews, 45, 4364–4390. https://doi.org/10.1039/C6CS00128A

    Article  CAS  PubMed  Google Scholar 

  27. Alabugin, I. V., Yang, W.-Y. & Pal, R. (2012) In A. Griesbeck, M. Oelgemoeller, & F. Ghetti. (Eds.), CRC handbook of organic photochemistry and photobiology (3rd ed., pp. 549592). CRC Press.

  28. Grissom, J. W., Gunawardena, G. U., Klingberg, D., & Huang, D. (1996). The chemistry of enediynes, enyne allenes and related compounds. Tetrahedron, 52, 6453–6518. https://doi.org/10.1016/0040-4020(96)00016-6

    Article  CAS  Google Scholar 

  29. Galm, U., Hager, M. H., Van Lanen, S. G., Ju, J., Thorson, J. S., & Shen, B. (2005). Antitumor antibiotics: Bleomycin, enediynes, and mitomycin. Chemical Reviews, 105, 739–758. https://doi.org/10.1021/cr030117g

    Article  CAS  PubMed  Google Scholar 

  30. Smith, A. L., & Nicolaou, K. C. (1996). The enediyne antibiotics. Journal of Medicinal Chemistry, 39, 2103–2117. https://doi.org/10.1021/jm9600398

    Article  CAS  PubMed  Google Scholar 

  31. Nicolau, K. C., & Smith, A. L. (1992). Molecular design, chemical synthesis, and biological action of enediynes. Accout of Chemical Research, 25, 497–503. https://doi.org/10.1021/ar00023a003

    Article  Google Scholar 

  32. Nagata, R., Yamanaka, H., Okazaki, E., & Saito, I. (1989). Biradical formation from acyclic conjugated eneyne-allene system related to neocarzinostatin and esperamicin-calichemicin. Tetrahedron Letters, 30, 4995–4998. https://doi.org/10.1016/S0040-4039(01)80564-5

    Article  CAS  Google Scholar 

  33. Myers, A. G., Kuo, E. Y., & Finney, N. S. (1989). Thermal generation of α,3-dehydrotoluene from (Z)-1,2,4-heptatrien-6-yne. Journal of the American Chemical Society, 111, 8057–8059. https://doi.org/10.1021/ja00202a079

    Article  CAS  Google Scholar 

  34. Dichiarante, V., Protti, S., & Fagnoni, M. (2017). Phenyl cation: A versatile intermediate. Journal of Photochemistry & Photobiology A: Chemistry, 339, 103–113. https://doi.org/10.1016/j.jphotochem.2017.02.007

    Article  CAS  Google Scholar 

  35. Lazzaroni, S., Ravelli, D., Protti, S., Fagnoni, M., & Albini, A. (2017). Photochemical synthesis: Using light to build C-C bonds under mild conditions. Synthèse photochimique: Utiliser la lumière pour construire des liaisons Carbon-Carbon dans des conditions douces. Comptes Rendue Chimie, 20, 261–271. https://doi.org/10.1016/j.crci.2015.11.024

    Article  CAS  Google Scholar 

  36. Protti, S., Ravelli, D., Mannucci, B., Albini, A., & Fagnoni, M. (2012). α, n-didehydrotoluenes by photoactivation of (chlorobenzyl)trimethylsilanes. An alternative to enyne-allenes cyclization. Angewandte Chemie International Edition, 51, 8577–8580. https://doi.org/10.1002/anie.201202794

    Article  CAS  PubMed  Google Scholar 

  37. Ravelli, D., Protti, S., Fagnoni, M., & Albini, A. (2013). From phenyl chlorides to α, n-didehydrotoluenes (α, n-DHTs) via phenyl cations. A CPCM-CASMP2 investigation. The Journal of Organic Chemistry, 78, 3814–3820. https://doi.org/10.1021/jo400269s

    Article  CAS  PubMed  Google Scholar 

  38. Protti, S., Ravelli, D., Fagnoni, M., & Albini, A. (2013). Smooth photogeneration of α, n-didehydrotoluenes (DHTs). Pure & Applied Chemistry, 85, 1479–1486. https://doi.org/10.1351/PAC-CON-12-10-03/html

    Article  CAS  Google Scholar 

  39. Pedroli, C., Ravelli, D., Protti, S., Albini, A., & Fagnoni, M. (2017). Singlet vs triplet reactivity of photogenerated α, n-didehydrotoluenes. The Journal of Organic Chemistry, 82, 6592–6603. https://doi.org/10.1021/acs.joc.7b00610

    Article  CAS  PubMed  Google Scholar 

  40. Raviola, C., Ravelli, D., Protti, S., & Fagnoni, M. (2014). Methoxy-substituted α, n-didehydrotoluenes. Photochemical generation and polar vs diradical reactivity. Journal of the American Chemical Society, 136, 13874–13881. https://doi.org/10.1021/ja507735u

    Article  CAS  PubMed  Google Scholar 

  41. Ravelli, D., Protti, S., & Fagnoni, M. (2015). Photogenerated α, n-didehydrotoluenes from chlorophenylacetic acids at physiological pH. The Journal of Organic Chemistry, 80, 852–858. https://doi.org/10.1021/jo502318v

    Article  CAS  PubMed  Google Scholar 

  42. Crespi, S., Protti, S., Ravelli, D., Merli, D., & Fagnoni, M. (2017). Sugar assisted photogeneration of didehydrotoluenes from chlorobenzylphosphonic acids. The Journal of Organic Chemistry, 82, 12162–12172. https://doi.org/10.1021/acs.joc.7b01963

    Article  CAS  PubMed  Google Scholar 

  43. Crespi, S., Ravelli, D., Protti, S., Albini, A., & Fagnoni, M. (2014). Competing pathways in the photogeneration of didehydrotoluenes from (trimethylsilylmethyl)aryl sulfonates and phosphates. Chemistry A European Journal, 20, 17572–17578. https://doi.org/10.1002/chem.201404787

    Article  CAS  PubMed  Google Scholar 

  44. Nakatani, K., Isoe, S., Maekawa, S., & Saito, I. (1994). Photoinduced DNA cleavage by designed molecules with conjugated Ene-Yne-ketene functionalities. Tetrahedron Letters, 35, 605–608. https://doi.org/10.1016/S0040-4039(00)75850-3

    Article  CAS  Google Scholar 

  45. Sullivan, R. W., Coghlan, V. M., Munk, S. A., Reed, M. W., & Moore, H. W. (1994). DNA cleavage by 4-alkynyl-3-methoxy-4-hydroxycyclobutenones. The Journal of Organic Chemistry, 59, 2276–2278. https://doi.org/10.1021/jo00088a002

    Article  CAS  Google Scholar 

  46. Xia, H., & Moore, H. W. (1992). Rearrangements of 4-alkynylcyclobutenones. Annelated spiroepoxycyclohexadienones and quinones from 4-(1,5-alkadiynyl)-4-methoxy- or -hydroxycyclobutenones. The Journal of Organic Chemistry, 57, 3765–3766. https://doi.org/10.1021/jo00040a008

    Article  CAS  Google Scholar 

  47. Wang, K. K. (1996). Cascade radical cyclizations via biradicals generated from enediynes, enyne-allenes, and enyne-ketenes. Chemical Reviews, 96, 207–222. https://doi.org/10.1021/cr950030y

    Article  CAS  PubMed  Google Scholar 

  48. Musch, P. W., Remenyi, C., Helten, H., & Engels, B. (2002). On the regioselectivity of the cyclization of enyne-ketenes: A computational investigation and comparison with the Myers-Saito and Schmittel reaction. Journal of the American Chemical Society, 124, 1823–1828. https://doi.org/10.1021/ja017532f

    Article  CAS  PubMed  Google Scholar 

  49. Li, H., Yang, H., Petersen, J. L., & Wang, K. K. (2004). Biradicals/zwitterions from thermolysis of enyne-isocyanates. application to the synthesis of 2(1H)-pyridones, benzofuro[3,2-c]pyridin-1(2H)-ones, 2,5-dihydro-1H-pyrido[4,3-b]indol-1-ones, and related compounds. The Journal of Organic Chemistry, 69, 4500–4508. https://doi.org/10.1021/jo049716t

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, Y., Irshaidat, T., Wang, H., Waynant, K. V., Wang, H., & Herndon, J. W. (2008). Coupling of Fischer carbene complexes with conjugated enediynes featuring radical traps: Novel structure and reactivity features of chromium complexed arene diradical species. Journal of Organometallic Chemistry, 693, 3337–3345. https://doi.org/10.1016/j.jorganchem.2008.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gonçalves, T. P., Mohamed, M., Whitby, R. J., Sneddon, H. F., & Harrowven, D. C. (2015). Exploring diradical chemistry: A carbon-centered radical may act as either an anion or electrophile through an orbital isomer. Angewandte Chemie International Edition, 54, 4531–4534. https://doi.org/10.1002/anie.201411334

    Article  CAS  PubMed  Google Scholar 

  52. Baba, G., Tea, C. G., Touré, S. A., Lesvier, M., & Denis, J.-M. (2002). Tandem eneyne-phosphaallene/Myers type cyclization via base-induced isomerisation of enediynephosphine. Journal of Organometallic Chemistry, 643–644, 342–349. https://doi.org/10.1016/S0022-328X(01)01392-4

    Article  Google Scholar 

  53. Li, H., Petersen, J. L., & Wang, K. K. (2003). Cascade cyclizations via N,4-didehydro-2-(phenylamino)pyridine biradicals/zwitterions generated from enyne-carbodiimides. The Journal of Organic Chemistry, 68, 5512–5518. https://doi.org/10.1021/jo020760n

    Article  CAS  PubMed  Google Scholar 

  54. Shi, C., Zhang, Q., & Wang, K. K. (1999). Biradicals from thermolysis of N-[2-(1-alkynyl)phenyl]-N¢-phenylcarbodiimides and their subsequent transformations to 6H-Indolo[2,3-b]quinolines. The Journal of Organic Chemistry, 64, 925–932. https://doi.org/10.1021/jo981845k

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, Q., Shi, C., Zhang, H.-R., & Wang, K. K. (2000). Synthesis of 6H-indolo[2,3-b][1,6]naphthyridines and related compounds as the 5-aza analogues of ellipticine alkaloids. The Journal of Organic Chemistry, 65, 7977–7983. https://doi.org/10.1021/jo000978e

    Article  CAS  PubMed  Google Scholar 

  56. Lu, X., Petersen, J. L., & Wang, K. K. (2002). Synthesis of novel heteroaromatics structurally related to ellipticine alkaloids via thermolysis of pyridannulated enyne-carbodiimides. The Journal of Organic Chemistry, 67, 5412–5415. https://doi.org/10.1021/jo0202031

    Article  CAS  PubMed  Google Scholar 

  57. Schmittel, M., Steffen, J.-P., Engels, B., Lennartz, C., & Hanrath, M. (1998). Two novel thermal biradical cyclizations in theory and experiment: new synthetic routes to 6h-indolo[2,3-b]quinolines and 2-aminoquinolines from enyne-carbodiimides. Angewandte Chemie International Edition, 37, 2371–2373. https://doi.org/10.1002/(SICI)1521-3773(19980918)37:17%3c2371::AID-ANIE2371%3e3.0.CO;2-N

    Article  CAS  PubMed  Google Scholar 

  58. Grabner, G., Richard, C., & Köhler, G. (1994). Formation and reactivity of 4-oxocyclohexa-2,5-dienylidene in the photolysis of 4-chlorophenol in aqueous solution at ambient temperature. Journal of the American Chemical Society, 116, 11470–11480. https://doi.org/10.1021/ja00104a029

    Article  CAS  Google Scholar 

  59. Durand, A. P., Brown, R. G., Worrall, D., & Wilkinson, F. (1998). Study of the aqueous photochemistry of 4-fluorophenol, 4-bromophenol and 4-iodophenol by steady state and nanosecond laser flash photolysis. Journal of Chemical Society Perkin Transaction, 2, 365–370. https://doi.org/10.1039/A705287A

    Article  Google Scholar 

  60. Bonnichon, F., Grabner, G., Guyot, G., & Richard, C. (1999). Photochemistry of substituted 4-halogenophenols: Effect of a CN substituent. Journal of Chemical Society Perkin Transaction, 2, 1203–1210. https://doi.org/10.1039/A900141G

    Article  Google Scholar 

  61. Protti, S., Fagnoni, M., Mella, M., & Albini, A. (2004). Aryl cations from aromatic halides. photogeneration and reactivity of 4-hydroxy(methoxy)phenyl cation. The Journal of Organic Chemistry, 69, 3465–3473. https://doi.org/10.1021/jo049770%2B

    Article  CAS  PubMed  Google Scholar 

  62. Sander, W., Müller, W., & Sustmann, R. (1988). 4-Oxo-2,5-cyclohexadienylidene—A carbene with a stable triplet and metastable singlet state? Angewandte Chemie International Edition, 27, 572–574. https://doi.org/10.1002/anie.198805721

    Article  Google Scholar 

  63. Sander, W., Kötting, C., & Hübert, R. (2000). Super-electrophilic carbenes and the concept of Philicity. Journal of Physical Organic Chemistry, 13, 561–568. https://doi.org/10.1002/1099-1395(200010)13:10%3c561::AID-POC239%3e3.0.CO;2-U

    Article  CAS  Google Scholar 

  64. Sander, W., Hubert, R., Kraka, E., Grafenstein, J., & Cremer, D. (2000). 4-Oxo-2,3,5,6-tetrafluorocyclohexa-2,5-dienylidene—A highly electrophilic triplet carbene. Chemistry A European Journal, 6, 4567–4579. https://doi.org/10.1002/1521-3765(20001215)6:24%3c4567::AID-CHEM4567%3e3.0.CO;2-A

    Article  CAS  PubMed  Google Scholar 

  65. Brennan, J., Cadogan, J. I. G., & Sharp, J. T. (1976). Novel Reactions of diazonium salts: direct conversion of o- and p-chlorobenzenediazonium acetates into hydroxybenzenediazonium salts, of o-acetoxybenzenediazonium acetate into the carbene, 2-oxocyc1ohexa-3,5-dienylidene, and of o-thioacetoxybenzenediazonium acetate into 1,2,3-benzothiadiazole. Journal of Chemical Society Chemical Communications. https://doi.org/10.1039/C39760000850

    Article  Google Scholar 

  66. Brennan, J., Cadogan, J. I. G., & Sharp, J. T. (1977). Acylarylnitrosamines. Part 13 promotion of ionic reactions of o- and p-chioro-, o- and p-acetoxy -, and o-acetylthio-N-nitrosoacetanilides. Formation of hydroxybenzenediazonium salts, the carbene 2-oxocyclohexa-3,5-dienylidene, and 1,2,3- benzothiadiazole. Journal of Chemical Society Perkin Transaction, 1, 1844–1848. https://doi.org/10.1039/P19770001844

    Article  Google Scholar 

  67. Burdzinski, G., Kubicki, J., Sliwa, M., Rėhault, J., Zhang, Y., Vyas, S., Luk, H. L., Hadad, C. M., & Platz, M. S. (2013). Mechanistic aspects of ketene formation deduced from femtosecond photolysis of diazocyclohexadienone, o-phenylene thioxocarbonate, and 2-chlorophenol. The Journal of Organic Chemistry, 78, 2026–2032. https://doi.org/10.1021/jo302023a

    Article  CAS  PubMed  Google Scholar 

  68. Canevari, V., Fagnoni, M., Bortolus, P., & Albini, A. (2011). Environmental implications of the surfactants effect on the photochemistry of (substituted) 4-chlorophenols in water. Chemsuschem, 4, 98–103. https://doi.org/10.1002/cssc.201000277

    Article  CAS  PubMed  Google Scholar 

  69. Othmen, K., Boule, P., & Richard, C. (1999). Mechanism of 3-halogenoaniline photolysis in methanol. New Journal of Chemistry, 23, 857–861. https://doi.org/10.1039/A902609F

    Article  CAS  Google Scholar 

  70. Othmen, K., Boule, P., Szczepanik, B., Rotkiewicz, K., & Grabner, G. (2000). Photochemistry of 4-chloroaniline in solution. Formation and kinetic properties of a new carbene, 4-iminocyclohexa-2,5-dienylidene. Journal of Physical Chemistry A, 104, 9525–9534. https://doi.org/10.1021/jp0010381

    Article  CAS  Google Scholar 

  71. Chan, W. S., Leung, K. H., Ong, S. Y., & Phillips, D. L. (2002). Transient resonance raman investigation of 4-iminocyclohexa-2,5-dienylidene and 4-oxocyclohexa-2,5-dienylidene carbenes in aqueous solution. Journal of Physical Chemistry A, 106, 6254–6261. https://doi.org/10.1021/jp014254y

    Article  CAS  Google Scholar 

  72. Fagnoni, M., Mella, M., & Albini, A. (1999). Smooth synthesis of aryl- and alkylanilines by photoheterolysis of haloanilines in the presence of aromatics and alkenes. Organic Letters, 1, 1299–1301. https://doi.org/10.1021/ol990982g

    Article  CAS  Google Scholar 

  73. Guizzardi, B., Mella, M., Fagnoni, M., Freccero, M., & Albini, A. (2001). Generation and reactivity of the 4-aminophenyl cation by photolysis of 4-chloroaniline. The Journal of Organic Chemistry, 66, 6353–6363. https://doi.org/10.1021/jo0104680

    Article  CAS  PubMed  Google Scholar 

  74. Weber, W. P. (1983). Silicon reagents for organic synthesis. Springer-Verlag.

    Book  Google Scholar 

  75. Lazzaroni, S., Dondi, D., Fagnoni, M., & Albini, A. (2007). Photochemical arylation reactions by 4-chlorothioanisole. European Journal of Organic Chemistry. https://doi.org/10.1002/ejoc.200700290

    Article  Google Scholar 

  76. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., … Fox, D. J. (2016). Gaussian 16, Revision B.01. Gaussian Inc.

    Google Scholar 

  77. Goerigk, L., Hansen, A., Bauer, C., Ehrlich, S., Najibi, A., & Grimme, S. (2017). A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Physical Chemistry Chemical Physics, 19, 32184–32215. https://doi.org/10.1039/C7CP04913G

    Article  CAS  PubMed  Google Scholar 

  78. Steinmetz, M., Hansen, A., Ehrlich, S., Risthaus, T., & Grimme, S. (2014). Accurate thermochemistry for large molecules with modern density functionals. Topics in Current Chemistry, 365, 1–23. https://doi.org/10.1007/128_2014_543

    Article  CAS  Google Scholar 

  79. Song, H., Freixas, V. M., Fernandez-Alberti, S., White, A. J., Zhang, Y., Mukamel, S., Govind, N., & Tretiak, S. (2021). An ab initio multiple cloning method for non-adiabatic excited-state molecular dynamics in NWChem. Journal of Chemical Theory and Computation, 17, 3629–3643. https://doi.org/10.1021/acs.jctc.1c00131

    Article  CAS  PubMed  Google Scholar 

  80. Barone, V., Ceselin, G., Fusè, M., & Tasinato, N. (2020). Accuracy meets interpretability for computational spectroscopy by means of hybrid and double-hybrid functionals. Frontiers in Chemistry, 8, 584203. https://doi.org/10.3389/fchem.2020.584203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zanders, D., Bačic, G., Leckie, D., Odegbesan, O., Rawson, J., Masuda, J. D., Devi, A., & Barry, S. T. (2020). A rare low-spin CoIV Bis(b-silyldiamide) with high thermal stability: steric enforcement of a doublet configuration. Angewandte Chemie International Edition, 59, 14138–14142. https://doi.org/10.1002/anie.202001518

    Article  CAS  PubMed  Google Scholar 

  82. Lazzaroni, S., Dondi, D., Fagnoni, M., & Albini, A. (2010). Selectivity in the reaction of triplet phenyl cations. The Journal of Organic Chemistry, 75, 315–323. https://doi.org/10.1021/jo9017974

    Article  CAS  PubMed  Google Scholar 

  83. Lazzaroni, S., Dondi, D., Fagnoni, M., & Albini, A. (2008). Geometry and energy of substituted phenyl cations. The Journal of Organic Chemistry, 73, 206–211. https://doi.org/10.1021/jo7020218

    Article  CAS  PubMed  Google Scholar 

  84. Baranac-Stojanović, M. (2020). Substituent effect on triplet state aromaticity of benzene. The Journal of Organic Chemistry, 85, 4289–4297. https://doi.org/10.1021/acs.joc.9b03472

    Article  CAS  PubMed  Google Scholar 

  85. Zhang, B., Zhang, J., Yang, D.-D.H., & Yang, N.-C.C. (1996). Photoamidation of N-acetyl-2-chlorotyrosine methyl ester and 3-chlorophenol. The Journal of Organic Chemistry, 61, 3236–3237. https://doi.org/10.1021/jo960037v

    Article  CAS  Google Scholar 

  86. Dichiarante, V., Dondi, D., Protti, S., Fagnoni, M., & Albini, A. (2007). A meta effect in organic photochemistry? The case of SN1 reactions in methoxyphenyl derivatives. Journal of the American Chemical Society, 129, 5605–5611. https://doi.org/10.1021/ja068647s

    Article  CAS  PubMed  Google Scholar 

  87. Qrareya, H., Raviola, C., Protti, S., Fagnoni, M., & Albini, A. (2013). Transition-metal-free arylations via photogenerated triplet 4-alkyl-and 4-trimethylsilyl-phenyl cations. The Journal of Organic Chemistry, 78, 6016–6024. https://doi.org/10.1021/jo4007046

    Article  CAS  PubMed  Google Scholar 

  88. Park, S. K., & Kim, H. A. (2011). Photoreactions of (2-acetoxyphenyl)pentamethyldisilane. Bulletin of the Korean Chemical Society, 32, 3155–3157. https://doi.org/10.5012/bkcs.2011.32.8.3155

    Article  CAS  Google Scholar 

  89. Ishikawa, M., Fuchikami, T., Sugaya, T., & Kumada, M. (1975). Photolysis of organopolysilanes. Novel addition reaction of aryl substituted disilanes to olefins. Journal of the American Chemical Society, 97, 5923–5924. https://doi.org/10.1021/ja00853a052 For selective examples.

    Article  CAS  Google Scholar 

  90. Ishikawa, M., Fuchikami, T., & Kumada, M. (1976). Photochemically generated silicon-carbon double-bonded intermediates: III. The reaction of p-tolylpentamethyldisilane with methanol and methanol-d1. Journal of Organometallic Chemistry, 118, 155–160. https://doi.org/10.1016/S0022-328X(00)92150-8(Forselectiveexamples)

    Article  CAS  Google Scholar 

  91. Kira, M., Miyazawa, T., Sugiyama, H., Yamaguchi, M., & Sakurai, H. (1993). σ, π* orthogonal intramolecular charge-transfer (OICT) excited states and photoreaction mechanism of trifluoromethyl-substituted phenyldisilanes. Journal of the American Chemical Society, 115, 3116–3124. https://doi.org/10.1021/ja00061a010 For selective examples.

    Article  CAS  Google Scholar 

  92. Park, S. K. (2007). Photoreactions of 4,4’-Bis(pentamethyldisilanyl)biphenyl. Bulletin of the Korean Chemical Society, 28, 1045–1048. https://doi.org/10.5012/bkcs.2007.28.6.1045 For selective examples.

    Article  CAS  Google Scholar 

  93. Park, S. K., & Kwon, S. T. (2012). A novel photoreaction of (2-hydroxypropoxyphenyl)pentamethyldisilane. Bulletin of the Korean Chemical Society, 33, 3823–3826. https://doi.org/10.5012/bkcs.2012.33.11.3823 For selective examples.

    Article  CAS  Google Scholar 

  94. Glendening, E. D., Badenhoop, J. K., Reed, A. E., Carpenter, J. E., Bohmann, J. A., Morales, C. M. P., Karafiloglou, P., Landis, C. R., & Weinhold, F. (2018). NBO 7.0. Theoretical Chemistry Institute, University of Wisconsin.

    Google Scholar 

  95. Hosoya, Y., Kobayashi, I., Mizoguchi, K., & Nakada, M. (2019). Palladium-catalyzed carbothiolation via trapping of the σ-alkyl palladium intermediate with RSTIPS. Organic Letters, 21, 8280–8284. https://doi.org/10.1021/acs.orglett.9b03046

    Article  CAS  PubMed  Google Scholar 

  96. Azipurua, J. M., & Palomo, C. (1985). 1,8-diazabicyclo[5.4.0]undec-7-ene (dbu): An effective base for the introduction of tbutyldimethylsilyl group in organic compounds. Tetrahedron Letters, 26, 475–476. https://doi.org/10.1016/S0040-4039(00)61915-9

    Article  Google Scholar 

  97. Iwao, M. (1990). Directed lithiation of chlorobenzenes. regioselectivity and application to a short synthesis of benzocyclobutenes. The Journal of Organic Chemistry, 55, 3622–3627. https://doi.org/10.1021/jo00298a045

    Article  CAS  Google Scholar 

  98. Gabrielli, L., & Mancin, F. (2016). Minimal self-immolative probe for multimodal fluoride detection. The Journal of Organic Chemistry, 81, 10715–10720. https://doi.org/10.1021/acs.joc.6b01787

    Article  CAS  PubMed  Google Scholar 

  99. Qu, W., Hu, B., Babich, J. W., Waterhouse, N., Dooley, M., Ponnala, S., & Urgiles, J. (2020). A general 11C-labeling approach enabled by fluoride-mediated desilylation of organosilanes. Nature Communications, 11, 1736. https://doi.org/10.1038/s41467-020-15556-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Marzi, E., & Schlosser, M. (2005). The site-selective functionalization of halogen-bearing phenols: An exercise in diversity-oriented organometallic synthesis. Tetrahedron, 61, 3393–3401. https://doi.org/10.1016/j.tet.2004.10.103

    Article  CAS  Google Scholar 

  101. Wu, J., Wang, Z., Chen, X.-Y., Wu, Y., Wang, D., Peng, Q., & Wang, P. (2020). Para-selective borylation of monosubstituted benzenes using a transient mediator. Science China Chemistry, 3, 336–340. https://doi.org/10.1007/s11426-019-9652-x

    Article  CAS  Google Scholar 

  102. Guggenheim, T. L. (1984). Protection of substituted anilines with 1,1,4,4-tetramethyl-1,4-bis(n, n-dimethylamino)disilethylene. Tetrahedron Letters, 25, 1253–1254. https://doi.org/10.1016/S0040-4039(01)80126-X

    Article  CAS  Google Scholar 

  103. Wang, H., Tong, X., Huo, Y., Tang, J., & Xia, C. (2020). Potassium methoxide/disilane-mediated formylation of aryl iodides with DMF at room temperature. Organic Chemistry Frontiers, 7, 4074–4079. https://doi.org/10.1039/D0QO00974A

    Article  CAS  Google Scholar 

Download references

Funding

L. D. T., F. R. S.P. and M.F. thanks the Universitiamo crowfunding project (University of Pavia) for partial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Fagnoni.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Dedicated to Prof. Angelo Albini in the occasion of his 75th birthday.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2810 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Terlizzi, L., Roncari, F., Crespi, S. et al. Aryl–Cl vs heteroatom–Si bond cleavage on the route to the photochemical generation of σ,π-heterodiradicals. Photochem Photobiol Sci 21, 667–685 (2022). https://doi.org/10.1007/s43630-021-00119-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00119-6

Keywords

Navigation