Skip to main content

Advertisement

Log in

Molecular and biological characterization of the immunological potency of Newcastle disease virus oil emulsion–inactivated vaccines prepared from field isolate obtained from vaccinated chickens outbreak

  • Veterinary Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

This study was conducted to characterize the immunological parameters of chickens vaccinated with two formulated inactivated vaccines, water in oil (WO) and water in oil in water (WOW), prepared from velogenic Newcastle disease virus (vNDV) genotype VIIj isolated from outbreak among vaccinated chickens. Six groups (G1–G6) of commercial broiler chickens were established (n = 20). The G1–G3 were received homologous (WO and WOW) and heterologous (LaSota) inactivated vaccines, respectively. The G4 was vaccinated with live heterologous (LaSota) vaccine, while G5 and G6 were kept as control positive and control negative non-vaccinated groups. The antibody titers were measured against vNDV and LaSota antigens using hemagglutination inhibition (HI) test, the cytokine gene expressions of IFNγ, IL1β, IL4, IL6, IL8, and IL18 were quantified using real-time RT-PCR, and the virus shedding was titrated on chicken embryo fibroblast cells after challenging by vNDV. The classical clinical signs and 100% mortality were observed only in G5 after vNDV challenging. The highest HI titers were detected in G1, G2, and G3 using NDV/168 antigen with no significant differences among them. These groups showed higher HI titer than G4 (2-4log2). Cytokine gene expression of IFNγ, IL1, IL6, IL8, and IL18 were significantly downregulated in vaccinated chickens with upregulation of IL4 than non-vaccinated challenge group. Viral shedding titers were significantly (0.0001, p ≤ 0.001) reduced in all samples form vaccinated chickens. In conclusion, the prepared vaccines produced highly efficient immunological responses and could be used for controlling the NDV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amarasinghe A, Abdul-Cader MS, Almatrouk Z et al (2018) Induction of innate host responses characterized by production of interleukin (IL)-1β and recruitment of macrophages to the respiratory tract of chickens following infection with infectious bronchitis virus (IBV). Vet Microbiol 215:1–10. https://doi.org/10.1016/j.vetmic.2018.01.001

    Article  CAS  PubMed  Google Scholar 

  2. Ganar K, Das M, Sinha S, Kumar S (2014) Newcastle disease virus: current status and our understanding. Virus Res 184:71–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu M, Qu Y, Wang F, Liu S, Sun H (2015) Genotypic and pathotypic characterization of Newcastle disease virus isolated from racing pigeons in China. Poult Sci 94:1476–1482. https://doi.org/10.3382/ps/pev106

    Article  CAS  PubMed  Google Scholar 

  4. Connolly SA, Leser GP, Jardetzky TS, Lamb RA (2009) Bimolecular complementation of paramyxovirus fusion and hemagglutinin-neuraminidase proteins enhances fusion: implications for the mechanism of fusion triggering. J Virol 83:10857–10868. https://doi.org/10.1128/JVI.01191-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yi J, Liu C, Chen B, Wu S (2011) Molecular characterization of a virulent genotype VIId strain of Newcastle disease virus from farmed chickens in Shanghai. Avian Dis 55:279–284. https://doi.org/10.1637/9383-042710-Reg.1

    Article  PubMed  Google Scholar 

  6. Abolnik C, Gerdes GH, Kitching J, Swanepoel S, Romito M, Bisschop SP (2008) Characterization of pigeon paramyxoviruses (Newcastle disease virus) isolated in South Africa from 2001 to 2006. Onderstepoort J Vet Res 75:147–152

    CAS  PubMed  Google Scholar 

  7. Irvine RM, Aldous EW, Manvell RJ, Cox WJ, Ceeraz V, Fuller CM, Wood AM, Milne JC, Wilson M, Hepple RG, Hurst A, Sharpe CE, Alexander DJ, Brown IH (2009) Outbreak of Newcastle disease due to pigeon paramyxovirus type 1 in grey partridges (Perdix perdix) in Scotland in October 2006. Vet Rec 165:531–535. https://doi.org/10.1136/vr.165.18.531

    Article  CAS  PubMed  Google Scholar 

  8. Sultan S, Osman N, Ahmed A, et al (2014) Phylogenetic characterization of velogenic newcastle virus isolates from field outbreaks among vaccinated chickens in the southern part of Egypt. 33rd Annual Meeting of the American Society for Virology at Colorado State University, June 20 -25, in Fort Collins

  9. Dimitrov KM, Abolnik C, Afonso CL et al (2019) Updated unified phylogenetic classification system and revised nomenclature for Newcastle disease virus. Infect Genet Evol:74. https://doi.org/10.1016/j.meegid.2019.103917

  10. Hanson RP, Brandly CA (1955) Identification of vaccine strains of Newcastle disease virus. Science 122:156–157

    CAS  PubMed  Google Scholar 

  11. OIE (2009) Biotechnology in the diagnosis of infectious diseases and vaccine development. Africa (Lond):1–25

  12. Kapczynski DR, King DJ (2005) Protection of chickens against overt clinical disease and determination of viral shedding following vaccination with commercially available Newcastle disease virus vaccines upon challenge with highly virulent virus from the California 2002 exotic Newcastle disease outbreak. Vaccine. https://doi.org/10.1016/j.vaccine.2005.01.140

  13. Degefa T, Dadi L, Yami A et al (2004) Technical and economic evaluation of different methods of newcastle disease vaccine administration. J Vet Med Ser A Physiol Pathol Clin Med 51:365–369. https://doi.org/10.1111/j.1439-0442.2004.00658.x

    Article  CAS  Google Scholar 

  14. Borland LJ, Allan WH (1980) Laboratory tests for comparing live lentogenic newcastle disease vaccines. Avian Pathol 9:45–59. https://doi.org/10.1080/03079458008418385

    Article  CAS  PubMed  Google Scholar 

  15. Senne DA, King DJ, Kapczynski DR (2004) Control of Newcastle disease by vaccination. Dev Biol (Basel) 119:165–170

    CAS  Google Scholar 

  16. Dimitrov KM, Afonso CL, Yu Q, Miller PJ (2017) Newcastle disease vaccines—a solved problem or a continuous challenge? Vet Microbiol 206:126–136. https://doi.org/10.1016/j.vetmic.2016.12.019

    Article  CAS  PubMed  Google Scholar 

  17. Box PG, Furminger IG (1975) Newcastle disease antibody levels in chickens after vaccination with oil emulsion adjuvant killed vaccine. Vet Rec 96:108–111

    Article  CAS  PubMed  Google Scholar 

  18. Stone HD, Brugh M, Erickson GA, Beard CW (1980) Evaluation of inactivated Newcastle disease oil-emulsion vaccines. Avian Dis 2499-111(24):99–111

    Article  Google Scholar 

  19. Stone HD, Brugh M, Beard CW (1983) Influence of formulation on the efficacy of experimental oil-emulsion Newcastle disease vaccines. Avian Dis 27:688–697

    Article  CAS  PubMed  Google Scholar 

  20. Cajavec S, Bidin Z, Sladic D et al (1996) Tween 80-solubilized Newcastle disease virus prepared as a water-in-oil-in-water vaccine. Avian Dis 40:193–201. https://doi.org/10.2307/1592389

    Article  CAS  PubMed  Google Scholar 

  21. Wanasawaeng W, Tawatsin A, Sasipreeyajan J et al (2009) Development of inactivated newcastle disease vaccine using palm oil as an adjuvant. Thai J Vet Med 39:9–16

    Google Scholar 

  22. Fukanoki SI, Iwakura T, Iwaki S et al (2001) Safety and efficacy of water-in-oil-in-water emulsion vaccines containing Newcastle disease virus haemagglutinin-neuraminidase glycoprotein. Avian Pathol 30:509–516. https://doi.org/10.1007/s12263-011-0257-3

    Article  CAS  PubMed  Google Scholar 

  23. Reynolds DL, Maraqa AD (2000) Protective immunity against Newcastle disease: the role of cell-mediated immunity. Avian Dis 44:145–154

    Article  CAS  PubMed  Google Scholar 

  24. Sultan S, Osman N, Mohamed MA et al (2016) Infectious bursal disease vaccine ameliorates velogenic Newcastle disease virus infection in immunopotentiated chickens. Comp Clin Pathol 25:91–100

    Article  CAS  Google Scholar 

  25. Balkwill FR, Burke F (1989) The cytokine network. Immunol Today 10:299–304. https://doi.org/10.1016/0167-5699(89)90085-6

    Article  CAS  PubMed  Google Scholar 

  26. Kaiser P, Rothwell L, Galyov EE et al (2000) Differential cytokine expression in avian cells in response to invasion by Salmonella typhimurium, Salmonella enteritidis and Salmonella gallinarum. Microbiology 146(Pt 12):3217–3226. https://doi.org/10.1099/00221287-146-12-3217

    Article  CAS  PubMed  Google Scholar 

  27. OIE (2004) Manual of diagnostic tests and vaccines for terrestrial animals: (mammals, birds and bees). Office International des Epizooties, Paris

    Google Scholar 

  28. Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J Epidemiol 27:493–497. https://doi.org/10.1093/oxfordjournals.aje.a118408

    Article  Google Scholar 

  29. Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hofstad MS, Picken JCJ, Collins KE, Yoder HWJ (1963) Immunogenicity of inactivated Newcastle disease virus preparations. Avian Dis 7:435–445

    Article  CAS  PubMed  Google Scholar 

  31. Stone HD (1997) Newcastle disease oil emulsion vaccines prepared with animal, vegetable, and synthetic oils. Avian Dis 41:591–597. https://doi.org/10.2307/1592149

    Article  CAS  PubMed  Google Scholar 

  32. Schick MJ (1966) Nonionic surfactants. Marcel Dek- Ker, Inc, New York, pp 609–611

    Google Scholar 

  33. Stone HD, Brugh M, Hopkins SR et al (1978) Preparation of inactivated oil-emulsion vaccines with avian viral or Mycoplasma antigens. Avian Dis 22:666–674

    Article  CAS  PubMed  Google Scholar 

  34. Stone HD, Xie ZX (1990) Efficacy of experimental Newcastle disease water-in-oil oil-emulsion vaccines formulated from squalane and squalene. Avian Dis 34:979–983

    Article  CAS  PubMed  Google Scholar 

  35. Xie ZX, Stone HD (1990) Immune response to oil-emulsion vaccines with single or mixed antigens of Newcastle disease, avian influenza, and infectious bronchitis. Avian Dis 34:154–162. https://doi.org/10.1016/j.intermet.2014.10.018

    Article  CAS  PubMed  Google Scholar 

  36. OIE (2012) Manual of diagnostic tests and vaccines for terrestrial animals, 7th edn

    Google Scholar 

  37. Markowski-Grimsrud CJ, Schat KA (2003) Infection with chicken anaemia virus impairs the generation of pathogen-specific cytotoxic T lymphocytes. Immunology 109:283–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Samy AA, El-Enbaawy MI, El-Sanousi AA et al (2016) Different counteracting host immune responses to clade 2.2.1.1 and 2.2.1.2 Egyptian H5N1 highly pathogenic avian influenza viruses in naïve and vaccinated chickens. Vet Microbiol 183:103–109. https://doi.org/10.1016/j.vetmic.2015.12.005

    Article  CAS  PubMed  Google Scholar 

  39. Suzuki K, Okada H, Itoh T, Tada T, Mase M, Nakamura K, Kubo M, Tsukamoto K (2009) Association of increased pathogenicity of Asian H5N1 highly pathogenic avian influenza viruses in chickens with highly efficient viral replication accompanied by early destruction of innate immune responses. J Virol 83:7475–7486. https://doi.org/10.1128/JVI.01434-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Livak KJ, Schmittgen TD (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  41. Cho S-H, Kim S-J, Kwon H-J (2007) Genomic sequence of an antigenic variant Newcastle disease virus isolated in Korea. Virus Genes 35:293–302. https://doi.org/10.1007/s11262-007-0078-z

    Article  CAS  PubMed  Google Scholar 

  42. Li ZJ, Li Y, Chang S et al (2010) Antigenic variation between Newcastle disease viruses of goose and chicken origin. Arch Virol 155:499–505. https://doi.org/10.1007/s00705-010-0610-7

    Article  CAS  PubMed  Google Scholar 

  43. Archetti I (2004) Persistent antigenic variation of influenza A viruses after incomplete neutralization in ovo with heterologous immune serum. J Exp Med 92:441–462. https://doi.org/10.1084/jem.92.5.441

    Article  Google Scholar 

  44. Umali DV, Ito H, Suzuki T, Shirota K, Katoh H, Ito T (2013) Molecular epidemiology of Newcastle disease virus isolates from vaccinated commercial poultry farms in non-epidemic areas of Japan. Virol J 10:330. https://doi.org/10.1186/1743-422X-10-330

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang B, Chen Y, Mu C, Su Y, Liu R, Huang Z, Li Y, Yu Q, Chang G, Xu Q, Chen G (2015) Identification and expression analysis of the interferon-induced protein with tetratricopeptide repeats 5 (IFIT5) gene in duck (Anas platyrhynchos domesticus). PLoS One 10:e0121065. https://doi.org/10.1371/journal.pone.0121065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Miller PJ, Kim LM, Ip HS, Afonso CL (2009) Evolutionary dynamics of Newcastle disease virus. Virology. https://doi.org/10.1016/j.virol.2009.05.033

  47. Miller PJ, Afonso CL, El Attrache J et al (2013) Effects of Newcastle disease virus vaccine antibodies on the shedding and transmission of challenge viruses. Dev Comp Immunol 41:505–513. https://doi.org/10.1016/j.dci.2013.06.007

    Article  CAS  PubMed  Google Scholar 

  48. McGinnes LW, Sergel T, Chen H, Hamo L, Schwertz S, Li D, Morrison TG (2001) Mutational analysis of the membrane proximal heptad repeat of the Newcastle disease virus fusion protein. Virology 289:343–352

    Article  CAS  PubMed  Google Scholar 

  49. Gravel KA, McGinnes LW, Reitter J, Morrison TG (2011) The transmembrane domain sequence affects the structure and function of the Newcastle disease virus fusion protein. J Virol 85:3486–3497. https://doi.org/10.1128/jvi.02308-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McGinnes L, Sergel T, Morrison T (1993) Mutations in the transmembrane domain of the hn protein of newcastle disease virus affect the structure and activity of the protein. Virology 196:101–110. https://doi.org/10.1006/viro.1993.1458

    Article  CAS  PubMed  Google Scholar 

  51. McGinnes LW, Morrison TG (1995) The role of individual oligosaccharide chains in the activities of the HN glycoprotein of Newcastle disease virus. Virology 212:398–410. https://doi.org/10.1006/viro.1995.1497

    Article  CAS  PubMed  Google Scholar 

  52. Umali DV, Ito H, Shirota K, Katoh H, Ito T (2014) Characterization of complete genome sequence of genotype VI and VII velogenic Newcastle disease virus from Japan. Virus Genes 49:89–99. https://doi.org/10.1007/s11262-014-1075-7

    Article  CAS  PubMed  Google Scholar 

  53. Choi K-S, Kye S, Kim J-Y, Lee H-S (2013) Genetic and antigenic variation of shedding viruses from vaccinated chickens after challenge with virulent Newcastle disease virus. Avian Dis 57:303–306. https://doi.org/10.1637/10379-092112-ResNote.1

    Article  PubMed  Google Scholar 

  54. Stone HD (1988) Optimization of hydrophile-lipophile balance for improved efficacy of Newcastle disease and avian influenza oil-emulsion vaccines. Avian Dis 32:68–73. https://doi.org/10.2307/1590950

    Article  CAS  PubMed  Google Scholar 

  55. Scheid A, Caliguiri LA, Compans RW, Choppin PW (1972) Isolation of paramyxovirus glycoproteins. Association of both hemagglutinating and neuraminidase activities with the larger SV5 glycoprotein. Virology 50:640–652. https://doi.org/10.1016/0042-6822(72)90418-7

    Article  CAS  PubMed  Google Scholar 

  56. Pokric B, Juros S, Hlavaty H, Cajavec S (1993) Determination of size of antigenic fragments after treatment of enveloped viruses with non-ionic detergents. Biologicals 21:157–162. https://doi.org/10.1006/biol.1993.1068

    Article  CAS  PubMed  Google Scholar 

  57. Cornelissen LAHM, de Leeuw OS, Tacken MG, Klos HC, de Vries RP, de Boer-Luijtze EA, van Zoelen-Bos D, Rigter A, Rottier PJ, Moormann RJ, de Haan CA (2012) Protective efficacy of Newcastle disease virus expressing soluble trimeric hemagglutinin against highly pathogenic H5N1 influenza in chickens and mice. PLoS One 7:e44447. https://doi.org/10.1371/journal.pone.0044447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Miller PJ, King DJ, Afonso CL, Suarez DL (2007) Antigenic differences among Newcastle disease virus strains of different genotypes used in vaccine formulation affect viral shedding after a virulent challenge. Vaccine 25:7238–7246. https://doi.org/10.1016/j.vaccine.2007.07.017

    Article  CAS  PubMed  Google Scholar 

  59. Hu Z, Hu S, Meng C, Wang X, Zhu J, Liu X (2011) Generation of a genotype VII Newcastle disease virus vaccine candidate with high yield in embryonated chicken eggs. Avian Dis 55:391–397. https://doi.org/10.1637/9633-122410-Reg.1

    Article  PubMed  Google Scholar 

  60. Ecco R, Brown C, Susta L, Cagle C, Cornax I, Pantin-Jackwood M, Miller PJ, Afonso CL (2011) In vivo transcriptional cytokine responses and association with clinical and pathological outcomes in chickens infected with different Newcastle disease virus isolates using formalin-fixed paraffin-embedded samples. Vet Immunol Immunopathol 141:221–229. https://doi.org/10.1016/j.vetimm.2011.03.002

    Article  CAS  PubMed  Google Scholar 

  61. Zhou Y, Lin G, Baarsch MJ, Scamurra RW, Murtaugh MP (1994) Interleukin-4 suppresses inflammatory cytokine gene transcription in porcine macrophages. J Leukoc Biol 56:507–513. https://doi.org/10.1002/jlb.56.4.507

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serageldeen Sultan.

Ethics declarations

Ethical approval

All procedures performed in studies involving chickens were in accordance with the ethical standards of the Ethics committee of Faculty of Veterinary Medicine, South Valley University, Qena, Egypt.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Flavio Guimaraes Fonseca.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, M.I., Abd El-Azeem, M.W., Selim, A. et al. Molecular and biological characterization of the immunological potency of Newcastle disease virus oil emulsion–inactivated vaccines prepared from field isolate obtained from vaccinated chickens outbreak. Braz J Microbiol 51, 815–826 (2020). https://doi.org/10.1007/s42770-019-00203-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-019-00203-1

Keywords

Navigation