Skip to main content
Log in

Optimization of the Extraction of Phenolic Compounds from Eucalyptus camaldulensis Dehnh Leaves Using Response Surface Methodology

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

In this work, the optimization of phenolic compounds extraction from Eucalyptus camaldulensis leaves was carried out by applying a response surface methodology (RSM) approach. The influence of different parameters i.e., the liquid-to-solid ratio, the temperature and the extraction time have been jointly tested by maceration in an ethanol–water (70/30; v/v) mixture. A central composite design composed of 20 experimental trials with 6 replicates in the center was applied. A second-order polynomial model was used to describe the experimental data related to the extraction yield, the Total Phenolic Content (TPC), the total content of the major flavonoid compounds identified and quantified by high performance liquid chromatography–electrospray ionization mass spectrometry (HPLC–ESI–MS), and antioxidant activity by DPPH (2,2-diphenyl-l-picrylhydrazyl) and FRAP (ferric reducing antioxidant power) assays. The optimum extraction conditions obtained were 12.4 mL/g, 50.4 °C, and 124.8 min, for liquid/solid ratio, temperature and contact time, respectively. Under these conditions, the predicted phenolic compound content was 342.8 ± 11.1 mg GAE/g dry extract. Analysis of variance (ANOVA) showed a good fit (p < 0.05) between the predicted and observed responses for each response variable studied. The extracts showed a significative correlation (80%) between the TPC and their antioxidant activities using DPPH assays. HPLC–ESI–MS and tandem mass spectrometry (MSn) analysis of the extracts allowed to identify eight major glycosylate flavonoids. E. camaldulensis leaf extracts present a wide range of phenolic compounds with interest in market garden crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References:

  1. Stanaway JD, Afshin A, Ashbaugh C, Bisignano C, Brauer M, Ferrara G, Garcia V, Haile D, Hay SI, He J (2022) Health effects associated with vegetable consumption: a Burden of Proof study. Nat Med. https://doi.org/10.1038/s41591-022-01970-5-

    Article  PubMed  PubMed Central  Google Scholar 

  2. Son D, Somda I, Legreve A, Schiffers B (2017) Pratiques phytosanitaires des producteurs de tomates du Burkina Faso et risques pour la santé et l’environnement. Cah Agric. https://doi.org/10.1051/cagri/2017010

    Article  Google Scholar 

  3. Tarnagda B, Tankoano A, Tapsoba F, Pane BS, Hissein OA, Djbrine AO, Drabo KM, Traoré Y, Savadogo A (2017) Évaluation des pratiques agricoles des légumes feuilles: le cas des utilisations des pesticides et des intrants chimiques sur les sites maraîchers de Ouagadougou, Burkina Faso. J Appl Biosci. https://doi.org/10.4314/jab.v117i1.3

    Article  Google Scholar 

  4. Lehmann E, Oltramare C, Dibié JJN, Konaté Y, De Alencastro LF (2018) Assessment of human exposure to pesticides by hair analysis: the case of vegetable-producing areas in Burkina Faso. Environ Int. https://doi.org/10.1016/j.envint.2017.10.025

    Article  PubMed  Google Scholar 

  5. Ouédraogo RA, Kambiré FC, Kestemont MP, Bielders CL (2019) Caractériser la diversité des exploitations maraîchères de la région de Bobo-Dioulasso au Burkina Faso pour faciliter leur transition agroécologique. Cah Agric. https://doi.org/10.1051/cagri/2019021

    Article  Google Scholar 

  6. Lehmann E, Turrero N, Kolia M, Konaté Y, De Alencastro LF (2017) Dietary risk assessment of pesticides from vegetables and drinking water in gardening areas in Burkina Faso. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2017.05.285

    Article  PubMed  Google Scholar 

  7. Son D, Zerbo FKB, Bonzi S, Schiffers B, Somda I, Schiffers B, Legreve A (2018) Assessment of tomato (Solanum lycopersicum L.) producers’ exposure level to pesticides, in Kouka and Toussiana (Burkina Faso). Int J Environ Res Public Health. https://doi.org/10.3390/ijerph15020204

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tir M, Mufti A, Feriani A, Saadaoui E, El Cafsi M, Tlili N (2023) Eucalyptus camaldulensis seeds as a potential source of beneficial compounds: high-performance liquid chromatography-photodiode array–mass spectrometry (HPLC-PDA-MS/MS) profiling of secondary metabolites and the assessment of the biological effects. Anal Lett. https://doi.org/10.1080/00032719.2022.2139383

    Article  Google Scholar 

  9. Aleksic SV, Knezevic P (2019) Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: a review. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2019.02.051

    Article  Google Scholar 

  10. Gomes F, Martins N, Barros L, Rodrigues ME, Oliveira MBPP, Henriques M, Ferreira ICFR (2018) Plant phenolic extracts as an effective strategy to control Staphylococcus aureus, the dairy industry pathogen. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2017.12.027

    Article  Google Scholar 

  11. Sah SY, Sia CM, Chang SK, Ang YK, Yim HS (2012) Antioxidant capacity and total phenolic content of lemon grass (Cymbopogon citratus) leave. Ann Food Sci Technol 13:150–155

    CAS  Google Scholar 

  12. Park JY, Son YG, Kang SD, Lee SW, Kim KD, Kim JY (2023) Characterization of chemical composition and antioxidant activity of Eucalyptus globulus leaves under different extraction conditions. Appl Sci. https://doi.org/10.3390/app13179984

    Article  PubMed  Google Scholar 

  13. Batish DR, Singh HP, Kohli RK, Kaur S (2008) Eucalyptus essential oil as a natural pesticide. For Ecol Manag. https://doi.org/10.1016/j.foreco.2008.08.008

    Article  Google Scholar 

  14. Baeshen RS, Baz MM (2023) Efficacy of Acacia nilotica, Eucalyptus camaldulensis, and Salix safsafs on the mortality and development of two vector-borne mosquito species, Culex pipiens and Aedes aegypti, in the laboratory and field. Heliyon. http://creativecommons.org/licenses/by/4.0/

  15. Ghareeb MA, Habib MR, Mossalem HS, Abdel-Aziz MS (2018) Phytochemical analysis of Eucalyptus camaldulensis leaves extracts and testing its antimicrobial and schistosomicidal activities. Bull Natl Res Cent. https://doi.org/10.1186/s42269-018-0017-2

    Article  Google Scholar 

  16. Chidrawar VR, Singh S, Jayeoye TJ, Dodiya R, Samee W, Chittasupho C (2023) Porous swellable hypromellose composite fortified with Eucalyptus camaldulensis leaf hydrophobic/hydrophilic phenolic-rich extract to mitigate dermal wound infections. J Polym Environ. https://doi.org/10.1007/s10924-023-02860-8

    Article  Google Scholar 

  17. Ashraf A, Sarfraz RA, Mahmood A, Din M (2015) Chemical composition and in vitro antioxidant and antitumor activities of Eucalyptus camaldulensis Dehn. leaves. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2015.04.059

    Article  Google Scholar 

  18. Dkhil MA, Aljawdah HMA, Abdel-gaber R, Thagfan FA, Delic D, Al-quraishy S (2023) The effect of Eucalyptus camaldulensis leaf extracts from different environmental harvesting locations on Plasmodium chabaudi-induced malaria outcome. Food Sci Technol. https://doi.org/10.1590/fst.006723

    Article  Google Scholar 

  19. Nasr A, Saleem KT, Zhu GP (2019) Phenolic compounds and antioxidants from Eucalyptus camaldulensis as affected by some extraction conditions, a preparative optimization for GC-MS analysis. Prep Biochem Biotechnol. https://doi.org/10.1080/10826068.2019.1575860

    Article  PubMed  Google Scholar 

  20. Alghoraibi I, Soukkarieh CH, Zein R, Alahmad A, Walter JG, Daghestani M (2020) Aqueous extract of Eucalyptus camaldulensis leaves as reducing and capping agent in biosynthesis of silver nanoparticles. Inorg Nano-Met Chem. https://doi.org/10.1080/24701556.2020.1728315

    Article  Google Scholar 

  21. Rosendal E, Ouédraogo JCW, Dicko C, Dey ES, Bonzi-Coulibaly YL (2020) Geographical variation in total phenolics, flavonoids and antioxidant activities of Eucalyptus camaldulensis leaves in Burkina Faso. Afr J Pure Appl Chem. https://doi.org/10.5897/AJPAC2020.0837

    Article  Google Scholar 

  22. Wong-Paz JE, Contreras-Esquivel JC, Rodríguez-Herrera R, Carrillo-Inungaray ML, López LI, Nevárez-Moorillón GV, Aguilar CN (2015) Total phenolic content, in vitro antioxidant activity and chemical composition of plant extracts from semiarid Mexican region. Asian Pac J Trop Med. https://doi.org/10.1016/S1995-7645(14)60299-6

    Article  PubMed  Google Scholar 

  23. Majeed M, Hussain AI, Chatha SAS, Khosa MKK, Kamal GM, Kamal MA, Zhang X, Liu M (2016) Optimization protocol for the extraction of antioxidant components from Origanum vulgare leaves using response surface methodology. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2015.04.010

    Article  PubMed  Google Scholar 

  24. Mahmoudian F, Moghaddam AH, Davachi SM (2022) Genetic-based multi-objective optimization of alkylation process by a hybrid model of statistical and artificial intelligence approaches. Can J Chem Eng. https://doi.org/10.1002/cjce.24072

    Article  Google Scholar 

  25. Moghaddam AH (2022) Simulation and optimization of separation section in methanol to olefin (MTO) process based on statistical approach. Chem Pap. https://doi.org/10.1007/s11696-022-02190-4

    Article  Google Scholar 

  26. Moghaddam AH (2023) Investigation and optimization of olefin purification in methanol-to-olefin process based on machine learning approach coupled with genetic algorithm. Korean J Chem Eng. https://doi.org/10.1007/s11814-023-1384-4

    Article  Google Scholar 

  27. Thiex N, Novotny L, Crawford A (2012) Determination of ash in animal feed: AOAC official method 942.05 revisited. J AOAC Int. https://doi.org/10.5740/jaoacint.12-129

    Article  PubMed  Google Scholar 

  28. Vaziri H, Moghaddam AH, Mirmohammadi SA (2020) Optimization of distillation column in phenol production process for increasing the isopropyl benzene concentration using response surface methodology and radial basis function (RBF) coupled with leave-one-out validation method. Chem Pap. https://doi.org/10.1007/s11696-020-01162-w

    Article  Google Scholar 

  29. Gulcin I (2020) Antioxidants and antioxidant methods: an updated overview. Arch Toxicol. https://doi.org/10.1007/s00204-020-02689-3

    Article  PubMed  Google Scholar 

  30. Woisky RG, Salatino A (1998) Analysis of propolis: some parameters and procedures for chemical quality control. J Apic Res. https://doi.org/10.1080/00218839.1998.11100961

    Article  Google Scholar 

  31. Cheng Z, Moore J, Yu L (2006) High-throughput relative DPPH radical scavenging capacity assay. J Agric Food Chem. https://doi.org/10.1021/jf0611668

    Article  PubMed  Google Scholar 

  32. Parejo I, Viladomat F, Bastida J, Rosas-Romero A, Saavedra G, Murcia MA, Jiménez AM, Codina C (2003) Investigation of Bolivian plant extracts for their radical scavenging activity and antioxidant activity. Life Sci. https://doi.org/10.1016/S0024-3205(03)00488-0

    Article  PubMed  Google Scholar 

  33. Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power: the FRAP assay. Anal Biochem. https://doi.org/10.1006/abio.1996.0292

    Article  PubMed  Google Scholar 

  34. Maran JP, Manikandan S, Priya B, Gurumoorthi P (2015) Box-Behnken design based multi-response analysis and optimization of supercritical carbon dioxide extraction of bioactive flavonoid compounds from tea (Camellia sinensis L.) leaves. J Food Sci Technol. https://doi.org/10.1007/s13197-013-0985-z

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zieliński H, Kozłowska H (2000) Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. J Agric Food Chem. https://doi.org/10.1021/jf990619o

    Article  PubMed  Google Scholar 

  36. Drosou C, Kyriakopoulou K, Bimpilas A, Tsimogiannis D, Krokida M (2015) A comparative study on different extraction techniques to recover red grape pomace polyphenols from vinification byproducts. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2015.05.063

    Article  Google Scholar 

  37. Ozay Y, Ozdemir S, Gonca S, Canli O, Dizge N (2021) Phenolic compounds recovery from pistachio hull using pressure-driven membrane process and a cleaner production of biopesticide. Environ Technol Innov. https://doi.org/10.1016/j.eti.2021.101993

    Article  Google Scholar 

  38. Wong-Paz JE, Muñiz MDB, Martínez ÁGCG, Belmares CRE, Aguilar CN (2015) Ultrasound-assisted extraction of polyphenols from native plants in the Mexican desert. Ultrason Sonochem. https://doi.org/10.1016/j.ultsonch.2014.06.001

    Article  PubMed  Google Scholar 

  39. Costa P, Gonçalves S, Valentão P, Andrade PB, Coelho N, Romano A (2012) Thymus lotocephalus wild plants and in vitro cultures produce different profiles of phenolic compounds with antioxidant activity. Food Chem. https://doi.org/10.1016/j.foodchem.2012.05.072

    Article  PubMed  Google Scholar 

  40. Mylonaki S, Kiassos E, Makris DP, Kefalas P (2008) Optimisation of the extraction of olive (Olea europaea) leaf phenolics using water/ethanol-based solvent systems and response surface methodology. Anal Bioanal Chem. https://doi.org/10.1007/s00216-008-2353-9

    Article  PubMed  Google Scholar 

  41. Sultana B, Anwar F, Ashraf M (2009) Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules. https://doi.org/10.3390/molecules14062167

    Article  PubMed  PubMed Central  Google Scholar 

  42. Trabelsi N, Megdiche W, Ksouri R, Falleh H, Oueslati S, Soumaya B, Hajlaoui H, Abdelly C (2010) Solvent effects on phenolic contents and biological activities of the halophyte Limoniastrum monopetalum leaves. LWT-Food Sci Technol. https://doi.org/10.1016/j.lwt.2009.11.003

    Article  Google Scholar 

  43. Gullón B, Muñiz-Mouro A, Lú-Chau TA, Moreira MT, Lema JM, Eibes G (2019) Green approaches for the extraction of antioxidants from eucalyptus leaves. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2019.111473

    Article  Google Scholar 

  44. Liu Y, Wei S, Liao M (2013) Optimization of ultrasonic extraction of phenolic compounds from Euryale ferox seed shells using response surface methodology. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2013.07.023

    Article  Google Scholar 

  45. Skrypnik L, Novikova A (2020) Response surface modeling and optimization of polyphenols extraction from apple Pomace based on nonionic emulsifiers. Agronomy. https://doi.org/10.3390/agronomy10010092

    Article  Google Scholar 

  46. Palma A, Díaz MJ, Ruiz-Montoya M, Morales E, Giráldez I (2021) Ultrasound extraction optimization for bioactive molecules from Eucalyptus globulus leaves through antioxidant activity. Ultrason Sonochem. https://doi.org/10.1016/j.ultsonch.2021.105654

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bhuyan DJ, Vuong QV, Chalmers AC, Altena IAV, Bowyer MC, Scarlett C (2015) Investigation of phytochemicals and antioxidant capacity of selected Eucalyptus species using conventional extraction. Chem Pap. https://doi.org/10.1515/chempap-2015-0237

    Article  Google Scholar 

  48. Clarke G, Ting K, Wiart C, Fry J (2013) High correlation of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing activity potential and total phenolics content indicates redundancy in use of all three assays to screen for antioxidant activity of extracts of plants from the Malaysian rainforest. Antioxidants. https://doi.org/10.3390/antiox2010001

    Article  PubMed  PubMed Central  Google Scholar 

  49. Marslin G, Siram K, Maqbool Q, Selvakesavan R, Kruszka D, Kachlicki P, Franklin G (2018) Secondary metabolites in the green synthesis of metallic nanoparticles. Materials. https://doi.org/10.3390/ma11060940

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wang Y, Gao Y, Ding H, Liu S, Han X, Gui J, Liu D (2017) Subcritical ethanol extraction of flavonoids from Moringa oleifera leaf and evaluation of antioxidant activity. Food Chem. https://doi.org/10.1016/j.foodchem.2016.09.058

    Article  PubMed  Google Scholar 

  51. Gullón B, Gullón P, Lú-Chau TA, Moreira MT, Lema JM, Eibes G (2017) Optimization of solvent extraction of antioxidants from Eucalyptus globulus leaves by response surface methodology: Characterization and assessment of their bioactive properties. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2017.07.014

    Article  Google Scholar 

  52. Cordeiro AMTM, Medeiros ML, Santos NA, Soledade LEB, Pontes LFBL, Souza AL, Queiroz N, Souza A (2013) Rosemary (Rosmarinus officinalis L.) extract. J Therm Anal Calorim. https://doi.org/10.1007/s10973-012-2778-4

    Article  Google Scholar 

  53. Liyanapathirana C, Shahidi F (2005) Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem. https://doi.org/10.1016/j.foodchem.2004.08.050

    Article  Google Scholar 

  54. Chaaban H, Ioannou I, Chebil L, Slimane M, Gérardin C, Paris C, Charbonnel C, Chekir L, Ghoul M (2017) Effect of heat processing on thermal stability and antioxidant activity of six flavonoids. J Food Process Preserv. https://doi.org/10.1111/jfpp.13203

    Article  Google Scholar 

  55. Francisco JC, Sivik B (2002) Solubility of three monoterpenes, their mixtures and eucalyptus leaf oils in dense carbon dioxide. J Supercrit Fluids. https://doi.org/10.1016/S0896-8446(01)00131-0

    Article  Google Scholar 

  56. Lu Q, Peng Y, Zhu C, Pan S (2018) Effect of thermal treatment on carotenoids, flavonoids and ascorbic acid in juice of orange. Food Chem. https://doi.org/10.1016/j.foodchem.2018.05.072

    Article  PubMed  Google Scholar 

  57. Cao H, Saroglu O, Karadag A, Diaconeasa Z, Zoccatelli G, Conte-Junior CA, Gonzalez-Aguilar GA, Ou J, Bai W, Zamarioli CM, de Freitas LAP, Shpigelman A, Campelo PH, Capanoglu E, Hii CL, Jafari SM, Qi Y, Liao P, Wang M, Zou L, Bourke P, Simal-Gandara J, Xiao J (2021) Available technologies on improving the stability of polyphenols in food processing. Food Front. https://doi.org/10.1002/fft2.65

    Article  Google Scholar 

  58. Amakura Y, Umino Y, Tsuji S, Ito H, Hatano T, Yoshida T, Tonogai Y (2002) Constituents and their antioxidative effects in eucalyptus leaf extract used as a natural food additive. Food Chem. https://doi.org/10.1016/S0308-8146(01)00321-1

    Article  Google Scholar 

  59. Nwabor OF, Singh S, Syukri DM, Voravuthikunchai SP (2021) Bioactive fractions of Eucalyptus camaldulensis inhibit important foodborne pathogens, reduce listeriolysin O-induced haemolysis, and ameliorate hydrogen peroxide-induced oxidative stress on human embryonic colon cells. Food Chem. https://doi.org/10.1016/j.foodchem.2020.128571

    Article  PubMed  Google Scholar 

  60. Meksem N, Bordjiba O, Nedjoud G, Farfar M, Amara LM, Djebar MR (2016) Study of the antimicrobial activity of the extracts of the Eucalyptus camaldulensis and Eucalyptus globulus stemming from the Algerian Northeast. Int J Pharm Sci Rev Res 39:1–5

    Google Scholar 

  61. Santos MCP, Gonçalves ÉCBA (2016) Effect of different extracting solvents on antioxidant activity and phenolic compounds of a fruit and vegetable residue flour. Sci Agropecu. https://doi.org/10.17268/sci.agropecu.2016.01.01

    Article  Google Scholar 

  62. Santos SAO, Villaverde JJ, Freire CSR, Domingues MRM, Neto CP, Silvestre AJD (2012) Phenolic composition and antioxidant activity of Eucalyptus grandis, E. urograndis (E. grandis × E. urophylla) and E. maidenii bark extracts. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2012.02.003

    Article  Google Scholar 

  63. Kachlicki P, Piasecka A, Stobiecki M, Marczak L (2016) Structural characterization of flavonoid glycoconjugates and their derivatives with mass spectrometric techniques. Molecules. https://doi.org/10.3390/molecules21111494

    Article  PubMed  PubMed Central  Google Scholar 

  64. Chen Y, Yu H, Wu H, Pan Y, Wang K, Jin Y, Zhang C (2015) Characterization and quantification by LC-MS/MS of the chemical components of the heating products of the flavonoids extract in pollen Typhae for transformation rule exploration. Molecules. https://doi.org/10.3390/molecules201018352

    Article  PubMed  PubMed Central  Google Scholar 

  65. Cuyckens F, Claeys M (2004) Mass spectrometry in the structural analysis of flavonoids. J Mass Spectrom. https://doi.org/10.1002/jms.585-

    Article  PubMed  Google Scholar 

  66. Figueirinha A, Paranhos A, Pérez-Alonso JJ, Santos-Buelga C, Batista MT (2008) Cymbopogon citratus leaves: characterization of flavonoids by HPLC–PDA–ESI/MS/MS and an approach to their potential as a source of bioactive polyphenols. Food Chem. https://doi.org/10.1016/j.foodchem.2008.02.045

    Article  Google Scholar 

  67. Hassan WHB, Abdelaziz S, Al Yousef HM (2019) Chemical composition and biological activities of the aqueous fraction of Parkinsonea aculeata L. growing in Saudi Arabia. Arab J Chem. https://doi.org/10.1016/j.arabjc.2018.08.003

    Article  Google Scholar 

  68. Barros L, Dueñas M, Alves CT, Silva S, Henriques M, Santos-Buelga C, Ferreira ICFR (2013) Antifungal activity and detailed chemical characterization of Cistus ladanifer phenolic extracts. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2012.03.038

    Article  Google Scholar 

  69. Giusti MM, Rodríguez-Saona LE, Griffin D, Wrolstad RE (1999) Electrospray and tandem mass spectroscopy as tools for anthocyanin characterization. J Agric Food Chem. https://doi.org/10.1021/jf981242+

    Article  PubMed  Google Scholar 

  70. Fernández-Agulló A, Freire MS, González-Álvarez J (2015) Effect of the extraction technique on the recovery of bioactive compounds from eucalyptus (Eucalyptus globulus) wood industrial wastes. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2014.11.031

    Article  Google Scholar 

  71. Tahara K, Nishiguchi M, Frolov A, Mittasch J, Milkowski C (2018) Identification of UDP glucosyltransferases from the aluminum-resistant tree Eucalyptus camaldulensis forming β-glucogallin, the precursor of hydrolyzable tannins. Phytochemistry. https://doi.org/10.1016/j.phytochem.2018.05.005

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Académie de Recherche et de l’Enseignement Supérieur- Commission de la Coopération au Développement (ARES-CCD) de la Fédération Wallonie Bruxelles (Belgium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor W. K. Ouédraogo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 595 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouattara, B., Semay, I., Ouédraogo, J.C.W. et al. Optimization of the Extraction of Phenolic Compounds from Eucalyptus camaldulensis Dehnh Leaves Using Response Surface Methodology. Chemistry Africa 7, 1251–1267 (2024). https://doi.org/10.1007/s42250-023-00821-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00821-1

Keywords

Navigation