Skip to main content

Advertisement

Log in

Gasification kinetics of char formed from waste polyvinyl chloride for efficient utilization in ironmaking process

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

In the prevailing incineration processes of municipal solid waste, the presence of polyvinyl chloride (PVC) may cause environmental problems. The energy-intensive ironmaking sector in the iron and steel industry operates at high temperature and under high reduction potential with the function of energy conversion, which can provide a potential path for the collaborative utilization of waste plastics in large quantities and low cost. The gasification of the char formed from PVC when processed in the ironmaking sector is significant for the development of the related technologies. Thus, the gasification experiment of PVC char and traditional carbonaceous materials was performed by thermogravimetric analysis. The results indicated that the gasification ability decreased in the sequence of PVC char > anthracite coal > coke > graphite. Then, kinetics were also analyzed by Coats-Redfern and Doyle approximations. The PVC char showed the best gasification ability with the smallest activation energy, ranging from 87.18 to 117.52 kJ/mol, and the smaller graphitization degree of PVC char compared with other carbonaceous materials should be the main reason for its excellent gasification reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Gu, T. Ozbakkaloglu, Waste Manag. 51 (2016) 19–42.

    Article  Google Scholar 

  2. G. Wang, J.S. Wang, Q.G. Xue, Process Saf. Environ. Prot. 137 (2020) 49–57.

    Article  Google Scholar 

  3. Z. Wang, K.G. Burra, X. Li, M. Zhang, X. He, T. Lei, A.K. Gupta, Appl. Energy 276 (2020) 115508.

    Article  Google Scholar 

  4. N. Scarlat, F. Fahl, J.F. Dallemand, Waste Biomass Valor. 10 (2019) 2425–2444.

    Article  Google Scholar 

  5. I. Okuda, V.E. Thomson, Environ. Manage. 40 (2007) 12–19.

    Article  Google Scholar 

  6. National Bureau of Statistics of China, China statistical yearbook, China Statistics Press, Beijing, China 2020.

    Google Scholar 

  7. I.A. Ignatyev, W. Thielemans, B. Vander Beke, ChemSusChem 7 (2014) 1579–1593.

    Article  Google Scholar 

  8. S.R. Samadder, R. Prabhakar, D. Khan, D. Kishan, M.S. Chauhan, Sci. Total Environ. 580 (2017) 593–601.

    Article  Google Scholar 

  9. A. Eschenroeder, J. Air Waste Manage. Assoc. 51 (2011) 1423–1427.

    Article  Google Scholar 

  10. A.L. Andrady, Mar. Pollut. Bull. 119 (2017) 12–22.

    Article  Google Scholar 

  11. G. Lopez, M. Artetxe, M. Amutio, J. Alvarez, J. Bilbao, M. Olazar, Renew. Sustain. Energy Rev. 82 (2018) 576–596.

    Article  Google Scholar 

  12. A. Buekens, F. Rivet, Process Saf. Environ. Prot. 78 (2000) 5–14.

    Article  Google Scholar 

  13. L.X. Qian, Y.F. Wang, M.L. Liu, Y.L. Hu, T.J. Chun, Q.M. Meng, H.M. Long, Y. Wang, Process Saf. Environ. Prot. 146 (2021) 577–585.

    Article  Google Scholar 

  14. A. Babich, D. Senk, M. Knepper, S. Benkert, Ironmak. Steelmak. 43 (2016) 11–21.

    Article  Google Scholar 

  15. R. Murai, M. Asanuma, M. Sato, T. Inoguchi, K. Terada, ISIJ Int. 55 (2015) 528–535.

    Article  Google Scholar 

  16. T. Murakami, E. Kasai, ISIJ Int. 51 (2011) 9–13.

    Article  Google Scholar 

  17. S. Kim, Waste Manag. 21 (2001) 609–616.

    Article  Google Scholar 

  18. I.C. McNeill, L. Memetea, Polym. Degrad. Stab. 43 (1994) 9–25.

    Article  Google Scholar 

  19. S. Ma, J. Lu, J. Gao, Energy Fuels 16 (2002) 338–342.

    Article  Google Scholar 

  20. R. Zevenhoven, E.P. Axelsen, M. Hupa, Fuel 81 (2002) 507–510.

    Article  Google Scholar 

  21. Q.L. Sun, X.G. Shi, Y.L. Lin, H. Zhu, X. Wang, C.G. Cheng, J.H. Liu, J. China Univ. Mining Technol. 17 (2007) 242–245.

    Article  Google Scholar 

  22. A. Castro, D. Soares, C. Vilarinho, F. Castro, Waste Manag. 32 (2012) 847–851.

    Article  Google Scholar 

  23. D.W. Zhang, P.M. Guo, P. Zhao, Iron and Steel 42 (2007) No. 6, 13–16.

    Google Scholar 

  24. R. Ebrahimi-Kahrizsangi, M.H. Abbasi, Trans. Nonferrous Met. Soc. China 18 (2008) 217–221.

    Article  Google Scholar 

  25. A.W. Coats, J.P. Redfern, Nature 201 (1964) 68–69.

    Article  Google Scholar 

  26. C.D. Doyle, J. Appl. Polym. Sci. 5 (1961) 285–292.

    Article  Google Scholar 

  27. V.M. Gorbachev, J. Therm. Anal. Calorim. 8 (1975) 349–350.

    Article  Google Scholar 

  28. A. Molina, F. Mondragón, Fuel 77 (1998) 1831–1839.

    Article  Google Scholar 

  29. M.F. Irfan, M.R. Usman, K. Kusakabe, Energy 36 (2011) 12–40.

    Article  Google Scholar 

  30. T. Adschiri, T. Shiraha, T. Kojima, T. Furusawa, Fuel 65 (1986) 1688–1693.

    Article  Google Scholar 

  31. Z.C. Li, H. Jing, P. Biswas, Aerosol Sci. Technol. 50 (2016) 1115–1129.

    Article  Google Scholar 

  32. L.A. El-Azzami, E.A. Grulke, J. Polym. Sci. Pol. Phys. 45 (2007) 2620–2631.

    Article  Google Scholar 

  33. M.J. Liu, Q.L. He, J. Bai, J.L. Yu, L.X. Kong, Z.Q. Bai, H.Z. Li, C. He, X. CaO, Z.F. Ge, W. Li, Fuel Process. Technol. 211 (2021) 106583.

    Article  Google Scholar 

  34. K.J. Li, R. Khanna, J.L. Zhang, M. Barati, Z.J. Liu, T. Xu, T.J. Yang, V. Sahajwalla, Energy Fuels 29 (2015) 7178–7189.

    Article  Google Scholar 

  35. A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Pöschl, Carbon 43 (2005) 1731–1742.

    Article  Google Scholar 

  36. R.A. Durie, The science of Victoria brown coal: structure, properties and consequences for utilization, Butterworth-Heinemann Ltd., Oxford, UK, 1991.

    Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 51804024 and U1960205) and the Fundamental Research Funds for the Central Universities (No. FRF-IC-20-09). The authors also thank for the financial support from the State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, China (No. 41621002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Zhang, Hq., Wang, Js. et al. Gasification kinetics of char formed from waste polyvinyl chloride for efficient utilization in ironmaking process. J. Iron Steel Res. Int. 29, 1535–1544 (2022). https://doi.org/10.1007/s42243-022-00746-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00746-y

Keywords

Navigation