Skip to main content

Advertisement

Log in

Downscaling daily wind speed with Bayesian deep learning for climate monitoring

  • Regular Paper
  • Published:
International Journal of Data Science and Analytics Aims and scope Submit manuscript

Abstract

Wind dynamics are extremely complex and have critical impacts on the level of damage from natural hazards, such as storms and wildfires. In the wake of climate change, wind dynamics are becoming more complex, making the prediction of future wind characteristics a more challenging task. Nevertheless, having long-term projections of some wind characteristics, such as daily wind speed, is crucial for effective monitoring of climate change, and for efficient disaster risk management. Furthermore, accurate projections of wind speed result in optimized generation of wind-based electric power. General circulation models (GCMs) provide long-term simulations (often till year 2100 or more) of multiple climate variables. However, simulations from a GCM are at a grid with coarse spatial resolution, rendering them ineffective to resolve and analyze climate change at the local regional level. Spatial downscaling techniques are often used to map such global large-scale simulations to a local small-scale region. In this paper, we present a novel deep learning framework for spatial downscaling, specifically for forecasting the daily average wind speed at a local station level using GCM simulations. Our framework, named wind convolutional neural networks with transformers, or WCT for short, consists of multi-head convolutional neural networks, followed by stacked transformers, and an uncertainty quantification component based on Bayesian inference. Experimental results show the suitability of WCT when applied on four wind stations in New Jersey and Pennsylvania, USA. Moreover, we use the trained WCT on future GCM simulations to produce local-scale daily wind speed projections up to the year 2100.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Parry, M., Parry, M.L., Canziani, O., Palutikof, J., Van der Linden, P., Hanson, C.: Climate Change 2007-Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Fourth Assessment Report of the the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  2. Stocker, T., Qin, D., Plattner, G., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.: IPCC, 2013: Summary for Policymakers in Climate Change 2013: the Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  3. USGCRP.: Climate Science Special Report: Fourth National Climate Assessment, Volume I. U.S. Global Change Research Program (2017). https://doi.org/10.7930/J0J964J6

  4. Murawski, A., Bürger, G., Vorogushyn, S., Merz, B.: Can local climate variability be explained by weather patterns? A multi-station evaluation for the Rhine basin. Hydrol. Earth Syst. Sci. 20(10), 4283–4306 (2016)

    Article  Google Scholar 

  5. El-Samra, R., Bou-Zeid, E., Bangalath, H.K., Stenchikov, G., El-Fadel, M.: Seasonal and regional patterns of future temperature extremes: high-resolution dynamic downscaling over a complex terrain. J. Geophys. Res. Atmos. 123(13), 6669–6689 (2018)

    Article  Google Scholar 

  6. Druyan, L.M., Fulakeza, M., Lonergan, P.: Dynamic downscaling of seasonal climate predictions over Brazil. J. Clim. 15(23), 3411–3426 (2002)

    Article  Google Scholar 

  7. Xu, Z., Yang, Z.-L.: An improved dynamical downscaling method with GCM bias corrections and its validation with 30 years of climate simulations. J. Clim. 25(18), 6271–6286 (2012)

    Article  Google Scholar 

  8. Stoner, A.M., Hayhoe, K., Yang, X., Wuebbles, D.J.: An asynchronous regional regression model for statistical downscaling of daily climate variables. Int. J. Climatol. 33(11), 2473–2494 (2013)

    Article  Google Scholar 

  9. Li, M., Zhang, F., Barnes, S., Wang, X.: Assessing storm surge impacts on coastal inundation due to climate change: case studies of Baltimore and Dorchester County in Maryland. Nat. Hazards 103, 2561–2588 (2020)

    Article  Google Scholar 

  10. Ghosh, S., Mujumdar, P.P.: Statistical downscaling of GCM simulations to streamflow using relevance vector machine. Adv. Water Resour. 31(1), 132–146 (2008)

    Article  Google Scholar 

  11. Wilby, R.L., Wigley, T., Conway, D., Jones, P., Hewitson, B., Main, J., Wilks, D.: Statistical downscaling of general circulation model output: a comparison of methods. Water Resour. Res. 34(11), 2995–3008 (1998)

    Article  Google Scholar 

  12. von Storch, H.: Inconsistencies at the interface of climate impact studies and global climate research. Meteorol. Z. 4, 72–80 (1995)

    Google Scholar 

  13. von Storch, H.: The global and regional climate system. In: von Storch, H., Flosser, G. (eds.) Anthropogenic Climate Change. Springer, pp. 3–36 (1999)

  14. He, X., Chaney, N.W., Schleiss, M., Sheffield, J.: Spatial downscaling of precipitation using adaptable random forests. Water Resour. Res. 52(10), 8217–8237 (2016)

    Article  Google Scholar 

  15. Sachindra, D., Ahmed, K., Rashid, M.M., Shahid, S., Perera, B.: Statistical downscaling of precipitation using machine learning techniques. Atmos. Res. 212, 240–258 (2018)

    Article  Google Scholar 

  16. Li, X., Li, Z., Huang, W., Zhou, P.: Performance of statistical and machine learning ensembles for daily temperature downscaling. Theor. Appl. Climatol. 140(1), 571–588 (2020)

    Article  Google Scholar 

  17. Hüllermeier, E., Waegeman, W.: Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. Mach. Learn. 110(3), 457–506 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nguyen, V.-L., Destercke, S., Masson, M.-H., Hüllermeier, E.: Reliable multi-class classification based on pairwise epistemic and aleatoric uncertainty. In: 27th International Joint Conference on Artificial Intelligence (IJCAI 2018), pp. 5089–5095 (2018)

  19. Jiang, H., Jing, J., Wang, J., Liu, C., Li, Q., Xu, Y., Wang, J.T.L., Wang, H.: Tracing Hα fibrils through Bayesian deep learning. Astrophys. J. Suppl. Ser. 256(1), 20 (2021)

    Article  Google Scholar 

  20. Myojin, T., Hashimoto, S., Ishihama, N.: Detecting uncertain BNN outputs on FPGA using Monte Carlo dropout sampling. In: International Conference on Artificial Neural Networks. Springer, pp. 27-38 (2020)

  21. Myojin, T., Hashimoto, S., Mori, K., Sugawara, K., Ishihama, N.: Improving reliability of object detection for lunar craters using Monte Carlo dropout. In: International Conference on Artificial Neural Networks. Springer, pp. 68-80 (2019)

  22. Gerges, F., Boufadel, M.C., Bou-Zeid, E., Nassif, H., Wang, J.T.L.: A novel Bayesian deep learning approach to the downscaling of wind speed with uncertainty quantification. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 55–66 (2022)

  23. IPCC: Climate Change 2013: the Physical Science Basis (Fifth Assessment Report). United Nations, New York (2013)

    Google Scholar 

  24. Chen, S.-T., Yu, P.-S., Tang, Y.-H.: Statistical downscaling of daily precipitation using support vector machines and multivariate analysis. J. Hydrol. 385(1–4), 13–22 (2010)

    Article  Google Scholar 

  25. Pang, B., Yue, J., Zhao, G., Xu, Z.: Statistical downscaling of temperature with the random forest model. Adv. Meteorol. 2017 (2017). https://doi.org/10.1155/2017/7265178

  26. Hutengs, C., Vohland, M.: Downscaling land surface temperatures at regional scales with random forest regression. Remote Sens. Environ. 178, 127–141 (2016)

    Article  Google Scholar 

  27. Wu, H., Li, W.: Downscaling land surface temperatures using a random forest regression model with multitype predictor variables. IEEE Access 7, 21904–21916 (2019)

    Article  Google Scholar 

  28. Pour, S.H., Shahid, S., Chung, E.-S., Wang, X.-J.: Model output statistics downscaling using support vector machine for the projection of spatial and temporal changes in rainfall of Bangladesh. Atmos. Res. 213, 149–162 (2018)

    Article  Google Scholar 

  29. Tripathi, S., Srinivas, V., Nanjundiah, R.S.: Downscaling of precipitation for climate change scenarios: a support vector machine approach. J. Hydrol. 330(3–4), 621–640 (2006)

    Article  Google Scholar 

  30. Ghosh, S., Mujumdar, P.: Future rainfall scenario over Orissa with GCM projections by statistical downscaling. Curr. Sci. 90(3), 396–404 (2006)

  31. Sachindra, D., Huang, F., Barton, A., Perera, B.: Least square support vector and multi-linear regression for statistically downscaling general circulation model outputs to catchment streamflows. Int. J. Climatol. 33(5), 1087–1106 (2013)

    Article  Google Scholar 

  32. Xu, R., Chen, N., Chen, Y., Chen, Z.: Downscaling and projection of multi-CMIP5 precipitation using machine learning methods in the upper Han River Basin. Adv. Meteorol. 2020 (2020). https://doi.org/10.1155/2020/8680436

  33. Kannan, S., Ghosh, S.: Prediction of daily rainfall state in a river basin using statistical downscaling from GCM output. Stoch. Env. Res. Risk Assess. 25(4), 457–474 (2011)

    Article  Google Scholar 

  34. Sun, L., Lan, Y.: Statistical downscaling of daily temperature and precipitation over China using deep learning neural models: localization and comparison with other methods. Int. J. Climatol. 41(2), 1128–1147 (2021)

    Article  Google Scholar 

  35. Yang, Z., Wang, Y., Liu, C., Chen, H., Xu, C., Shi, B., Xu, C., Xu, C.: Legonet: efficient convolutional neural networks with lego filters. In: International Conference on Machine Learning. PMLR, pp. 7005–7014 (2019)

  36. Pan, X., Shi, J., Luo, P., Wang, X., Tang, X.: Spatial as deep: spatial CNN for traffic scene understanding. In: Proceedings of the 32nd Association for the Advancement of Artificial Intelligence Conference on Artificial Intelligence (2018)

  37. Jin, C., Liang, H., Chen, D., Lin, Z., Wu, M.: Identifying mobility of drug addicts with multilevel spatial-temporal convolutional neural network. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, pp. 477-488 (2019)

  38. Liu, Z., Wan, M., Guo, S., Achan, K., Yu, P.S.: Basconv: aggregating heterogeneous interactions for basket recommendation with graph convolutional neural network. In: Proceedings of the 2020 Society for Industrial and Applied Mathematics (SIAM) International Conference on Data Mining, pp. 64–72 (2020)

  39. Baño-Medina, J., Manzanas, R., Gutiérrez, J.M.: Configuration and intercomparison of deep learning neural models for statistical downscaling. Geosci. Model Dev. 13(4), 2109–2124 (2020)

    Article  Google Scholar 

  40. Maraun, D., Widmann, M., Gutiérrez, J.M., Kotlarski, S., Chandler, R.E., Hertig, E., Wibig, J., Huth, R., Wilcke, R.A.: VALUE: a framework to validate downscaling approaches for climate change studies. Earth’s Future 3(1), 1–14 (2015)

    Article  Google Scholar 

  41. Misra, S., Sarkar, S., Mitra, P.: Statistical downscaling of precipitation using long short-term memory recurrent neural networks. Theor. Appl. Climatol. 134(3), 1179–1196 (2018)

    Article  Google Scholar 

  42. Guo, T., Lin, T., Antulov-Fantulin, N.: Exploring interpretable LSTM neural networks over multi-variable data. In: International Conference on Machine Learning. PMLR, pp. 2494–2504 (2019)

  43. Hu, Z., Turki, T., Phan, N., Wang, J.T.L.: A 3D atrous convolutional long short-term memory network for background subtraction. IEEE Access 6, 43450–43459 (2018)

    Article  Google Scholar 

  44. Liu, H., Liu, C., Wang, J.T.L., Wang, H.: Predicting solar flares using a long short-term memory network. Astrophys. J. 877(2), 121 (2019)

    Article  Google Scholar 

  45. Segovia-Dominguez, I., Zhen, Z., Wagh, R., Lee, H., Gel, Y.R.: TLife-LSTM: forecasting future COVID-19 progression with topological signatures of atmospheric conditions. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 201–212. Springer (2021)

  46. Shalaby, M., Stutzki, J., Schubert, M., Günnemann, S.: An LSTM approach to patent classification based on fixed hierarchy vectors. In: Proceedings of the 2018 Society for Industrial and Applied Mathematics (SIAM) International Conference on Data Mining, pp. 495–503 (2018)

  47. Gerges, F., Boufadel, M.C., Bou-Zeid, E., Nassif, H., Wang, J.T.L.: A novel deep learning approach to the statistical downscaling of temperatures for monitoring climate change. In: The 6th International Conference on Machine Learning and Soft Computing, Haikou, China, pp. 1–7 (2022)

  48. Liu, G., Zhang, R., Hang, R., Ge, L., Shi, C., Liu, Q.: Statistical downscaling of temperature distributions in southwest China by using terrain-guided attention network. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 16, 1678–1690 (2023)

    Article  Google Scholar 

  49. Yang, D., Liu, S., Hu, Y., Liu, X., Xie, J., Zhao, L.: Predictor selection for CNN-based statistical downscaling of monthly precipitation. Adv. Atmos. Sci. 40, 1117–1131 (2023)

    Article  Google Scholar 

  50. Nourani, V., Sadikoglu, F., Khodkar, K., Shahli, A.: Downscaling precipitation from GCM parameters using recurrent neural networks. In: 11th International Conference on Theory and Application of Soft Computing, Computing with Words and Perceptions and Artificial Intelligence-ICSCCW-2021 11 , pp. 294–301. Springer (2022)

  51. Gerges, F., Boufadel, M.C., Bou-Zeid, E., Nassif, H., Wang, J.T.L.: Deep learning-based downscaling of temperatures for monitoring local climate change using global climate simulation data. World Sci. Annu. Rev. Artif. Intell. (2023). https://doi.org/10.1142/s2811032322500011

  52. Gerges, F., Boufadel, M.C., Bou-Zeid, E., Darekar, A., Nassif, H., Wang, J.T.L.: Bayesian multi-head convolutional neural networks with Bahdanau attention for forecasting daily precipitation in climate change monitoring. In:European Confrence of Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2022, Part V, pp. 565–580. Springer, (2023)

  53. Quistgaard, T., Langen, P.L., Denager, T., Schneider, R., Stisen, S.: Deep Learning guided statistical downscaling of climate projections for use in hydrological impact modeling in Danish peatlands. Copernicus Meetings (2023)

  54. Nguyen, D.T., Ashraf, S., Le, M., Ali, M.: Projection of climate variables by general circulation and deep learning model for Lahore, Pakistan. Ecol. Inform. 75, 102077 (2023)

    Article  Google Scholar 

  55. Menne, M.J., Durre, I., Vose, R.S., Gleason, B.E., Houston, T.G.: An overview of the global historical climatology network-daily database. J. Atmos. Ocean. Tech. 29(7), 897–910 (2012)

    Article  Google Scholar 

  56. Griffies, S.M., Winton, M., Donner, L.J., Horowitz, L.W., Downes, S.M., Farneti, R., Gnanadesikan, A., Hurlin, W.J., Lee, H.-C., Liang, Z.: The GFDL CM3 coupled climate model: characteristics of the ocean and sea ice simulations. J. Clim. 24(13), 3520–3544 (2011)

    Article  Google Scholar 

  57. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  58. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

  59. Arık, S.Ö., Jun, H., Diamos, G.: Fast spectrogram inversion using multi-head convolutional neural networks. IEEE Signal Process. Lett. 26(1), 94–98 (2018)

    Article  Google Scholar 

  60. Khan, Z.N., Ahmad, J.: Attention induced multi-head convolutional neural network for human activity recognition. Appl. Soft Comput. 110, 107671 (2021)

    Article  Google Scholar 

  61. Linmans, J., Laak, J.V.D., Litjens, G.: Efficient out-of-distribution detection in digital pathology using multi-head convolutional neural networks. In: Proceedings of the Third Conference on Medical Imaging with Deep Learning, vol. 121, pp. 465–478. PMLR (2020)

  62. Devika, R., Vairavasundaram, S., Mahenthar, C.S.J., Varadarajan, V., Kotecha, K.: A deep learning model based on BERT and sentence transformer for semantic keyphrase extraction on big social data. IEEE Access 9, 165252–165261 (2021)

    Article  Google Scholar 

  63. Martín-Gutiérrez, D., Hernández-Peñaloza, G., Hernández, A.B., Lozano-Diez, A., Álvarez, F.: A deep learning approach for robust detection of bots in twitter using transformers. IEEE Access 9, 54591–54601 (2021)

    Article  Google Scholar 

  64. Aurpa, T.T., Sadik, R., Ahmed, M.S.: Abusive Bangla comments detection on Facebook using transformer-based deep learning models. Soc. Netw. Anal. Min. 12(1), 1–14 (2022)

    Article  Google Scholar 

  65. Saltz, P., Lin, S.Y., Cheng, S.C., Si, D.: Dementia detection using transformer-based deep learning and natural language processing models. In: Proceedings of the 2021 IEEE 9th International Conference on Healthcare Informatics (ICHI), pp. 509–510 (2021)

  66. Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser, L., Shazeer, N., Ku, A., Tran, D.: Image transformer. In: International Conference on Machine Learning, pp. 4055–4064. PMLR (2018)

  67. Cai, T., Shen, M., Peng, H., Jiang, L., Dai, Q.: Improving transformer with sequential context representations for abstractive text summarization. In: International Conference on Natural Language Processing and Chinese Computing, pp. 512–524 (2019)

  68. Guo, D., Terzopoulos, D.: A transformer-based network for anisotropic 3D medical image segmentation. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 8857–8861 (2021)

  69. Liu, W., Li, C., Rahaman, M.M., Jiang, T., Sun, H., Wu, X., Hu, W., Chen, H., Sun, C., Yao, Y.: Is the aspect ratio of cells important in deep learning? A robust comparison of deep learning methods for multi-scale cytopathology cell image classification: from convolutional neural networks to visual transformers. Comput. Biol. Med. 141, 105026 (2022)

    Article  Google Scholar 

  70. Wang, H., Ji, Y., Song, K., Sun, M., Lv, P., Zhang, T.: ViT-P: classification of genitourinary syndrome of menopause from OCT images based on vision transformer models. IEEE Trans. Instrum. Meas. 70, 1–14 (2021)

    Article  Google Scholar 

  71. Park, S., Kim, G., Oh, Y., Seo, J.B., Lee, S.M., Kim, J.H., Moon, S., Lim, J.-K., Ye, J.C.: Multi-task vision transformer using low-level chest X-ray feature corpus for COVID-19 diagnosis and severity quantification. Med. Image Anal. 75, 102299 (2022)

    Article  Google Scholar 

  72. Ikromjanov, K., Bhattacharjee, S., Hwang, Y.-B., Sumon, R. I., Kim, H.-C., Choi, H.-K.: Whole slide image analysis and detection of prostate cancer using vision transformers. In: Proceedings of the 2022 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), pp. 399–402 (2022)

  73. Shen, L., Wang, Y.: TCCT: tightly-coupled convolutional transformer on time series forecasting. Neurocomputing 480, 131–145 (2022)

    Article  Google Scholar 

  74. Abbasi, A.R., Mahmoudi, M.R., Arefi, M.M.: Transformer winding faults detection based on time series analysis. IEEE Trans. Instrum. Meas. 70, 1–10 (2021)

    Article  Google Scholar 

  75. Narayan, A., Mishra, B.S., Hiremath, P.S., Pendari, N.T., Gangisetty, S.: An ensemble of transformer and LSTM approach for multivariate time series data classification. In: Proceedings of the 2021 IEEE International Conference on Big Data (Big Data), pp. 5774–5779 (2021)

  76. Zerveas, G., Jayaraman, S., Patel, D., Bhamidipaty, A., Eickhoff, C.: A transformer-based framework for multivariate time series representation learning. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2114–2124 (2021)

  77. Mohammdi Farsani, R., Pazouki, E.: A transformer self-attention model for time series forecasting. J. Electr. Comput. Eng. Innov. (JECEI) 9(1), 1–10 (2021)

    Google Scholar 

  78. Wu, N., Green, B., Ben, X., O'Banion, S.: Deep transformer models for time series forecasting: the influenza prevalence case.arXiv:2001.08317 (2020)

  79. Cai, L., Janowicz, K., Mai, G., Yan, B., Zhu, R.: Traffic transformer: Capturing the continuity and periodicity of time series for traffic forecasting. Trans. GIS 24(3), 736–755 (2020)

    Article  Google Scholar 

  80. Zhang, K., Hawkins, C., Zhang, Z.: General-purpose Bayesian tensor learning with automatic rank determination and uncertainty quantification. Front. Artif. Intell. 4, 668353 (2021)

    Article  Google Scholar 

  81. Liu, J.: Variable selection with rigorous uncertainty quantification using deep Bayesian neural networks: posterior concentration and Bernstein-von Mises phenomenon. In: International Conference on Artificial Intelligence and Statistics, 2021: Proceedings of Machine Learning Research (PMLR), pp. 3124–3132

  82. Wang, Y., Rocková, V.: Uncertainty quantification for sparse deep learning. In: International Conference on Artificial Intelligence and Statistics, 2020: Proceedings of Machine Learning Research (PMLR), pp. 298–308

  83. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In: International Conference on Machine Learning, 2016: Proceedings of Machine Learning Research (PMLR), pp. 1050–1059

  84. Roy, S., Menapace, W., Oei, S., Luijten, B., Fini, E., Saltori, C., Huijben, I., Chennakeshava, N., Mento, F., Sentelli, A.: Deep learning for classification and localization of COVID-19 markers in point-of-care lung ultrasound. IEEE Trans. Med. Imaging 39(8), 2676–2687 (2020)

    Article  Google Scholar 

  85. Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112(518), 859–877 (2017)

    Article  MathSciNet  Google Scholar 

  86. Kwon, Y., Won, J.-H., Kim, B.J., Paik, M.C.: Uncertainty quantification using Bayesian neural networks in classification: application to biomedical image segmentation. Comput. Stat. Data Anal. 142, 106816 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  87. Nash, J.E., Sutcliffe, J.V.: River flow forecasting through conceptual models part I—a discussion of principles. J. Hydrol. 10(3), 282–290 (1970)

    Article  Google Scholar 

  88. Ahmed, K., Shahid, S., Haroon, S.B., Xiao-Jun, W.: Multilayer perceptron neural network for downscaling rainfall in arid region: a case study of Baluchistan, Pakistan. J. Earth Syst. Sci. 124(6), 1325–1341 (2015)

    Article  Google Scholar 

  89. Ghosh, S.: SVM‐PGSL coupled approach for statistical downscaling to predict rainfall from GCM output. J. Geophys. Res. Atmos. 115 (2010). https://doi.org/10.1029/2009JD013548

  90. Solé, X., Ramisa, A., Torras, C.: Evaluation of random forests on large-scale classification problems using a bag-of-visual-words representation. In: Artificial Intelligence Research and Development. Amsterdam, the Netherlands: IOS Press, pp. 273–276 (2014)

  91. Tsironi, E., Barros, P., Weber, C., Wermter, S.: An analysis of convolutional long short-term memory recurrent neural networks for gesture recognition. Neurocomputing 268, 76–86 (2017)

    Article  Google Scholar 

Download references

Funding

Funding for this study was provided by the Bridge Resource Program (BRP) from the New Jersey Department of Transportation.

Author information

Authors and Affiliations

Authors

Contributions

FG wrote the paper, gathered the data, wrote the machine learning scripts and conducted the experimentations. BF, HN and EBZ provided GCM and results interpretation and contributed to the development of the predictive model through environmental domain expertise. JW supervised the research, interpreted the data, contributed to the writing and to the development of predictive models.

Corresponding author

Correspondence to Firas Gerges.

Ethics declarations

Conflict of interest

The authors have no relevant financial or nonfinancial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerges, F., Boufadel, M.C., Bou-Zeid, E. et al. Downscaling daily wind speed with Bayesian deep learning for climate monitoring. Int J Data Sci Anal (2023). https://doi.org/10.1007/s41060-023-00397-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41060-023-00397-6

Keywords

Navigation