Skip to main content

Advertisement

Log in

The role of tumor-associated macrophages in osteosarcoma progression – therapeutic implications

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Osteosarcoma (OS) is the most common primary malignant bone tumor. Compared with previous treatment modalities, such as amputation, more recent comprehensive treatment modalities based on neoadjuvant chemotherapy combined with limb salvage surgery have improved the survival rates of patients. Osteosarcoma treatment has, however, not further improved in recent years. Therefore, attention has shifted to the tumor microenvironment (TME) in which osteosarcoma cells are embedded. Therapeutic targets in the TME may be key to improving osteosarcoma treatment. Tumor-associated macrophages (TAMs) are the most common immune cells within the TME. TAMs in osteosarcoma may account for over 50% of the immune cells, and may play important roles in tumorigenesis, angiogenesis, immunosuppression, drug resistance and metastasis. Knowledge on the role of TAMs in the development, progression and treatment of osteosarcoma is gradually improving, although different or even opposing opinions still remain.

Conclusions

TAMs may participate in the malignant progression of osteosarcoma through self-polarization, the promotion of blood vessel and lymphatic vessel formation, immunosuppression, and drug resistance. Besides, various immune checkpoint proteins expressed on the surface of TAMs, such as PD-1 and CD47, provide the possibility of the application of immune checkpoint inhibitors. Several clinical trials have been carried out and/or are in progress. Mifamotide and the immune checkpoint inhibitor Camrelizumab were both found to be effective in prolonging progression-free survival. Thus, TAMs may serve as attractive therapeutic targets. Targeting TAMs as a complementary therapy is expected to improve the prognosis of osteosarcoma. Further efforts may be made to identify potential beneficiaries of TAM-targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. O. Zaikova, K. Sundby Hall, E. Styring, M. Eriksson, C.S. Trovik, P. Bergh, B. Bjerkehagen, M. Skorpil, H. Weedon-Fekjaer, H.C. Bauer, Referral patterns, treatment and outcome of high-grade malignant bone sarcoma in Scandinavia--SSG Central Register 25 years' experience. J. Surg. Oncol. 112, 853–860 (2015)

  2. J. Li, Z. Wang, C. Ji, G. Chen, D. Liu, H. Zhu, What are the Oncologic and Functional Outcomes After Joint Salvage Resections for Juxtaarticular Osteosarcoma About the Knee? Clin. Orthop. Relat. Res. 475, 2095–2104 (2017)

  3. A. Takeuchi, N. Yamamoto, K. Hayashi, H. Matsubara, S. Miwa, K. Igarashi, H. Tsuchiya, Joint-preservation surgery for pediatric osteosarcoma of the knee joint. Cancer Metastasis Rev. 38, 709–722 (2019)

  4. Y. Weitao, C. Qiqing, G. Songtao, W. Jiaqiang, Epiphysis preserving operations for the treatment of lower limb malignant bone tumors. Eur. J. Surg. Oncol. 38, 1165–1170 (2012)

  5. J. Whelan, A. McTiernan, N. Cooper, Y.K. Wong, M. Francis, S. Vernon, S.J. Strauss, Incidence and survival of malignant bone sarcomas in England 1979-2007. Int. J. Cancer 131, E508–517 (2012)

  6. S. Smeland, S.S. Bielack, J. Whelan, M. Bernstein, P. Hogendoorn, M.D. Krailo, R. Gorlick, K.A. Janeway, F.C. Ingleby, J. Anninga, I. Antal, C. Arndt, K.L.B. Brown, T. Butterfass-Bahloul, G. Calaminus, M. Capra, C. Dhooge, M. Eriksson, A.M. Flanagan, G. Friedel, M.C. Gebhardt, H. Gelderblom, R. Goldsby, H.E. Grier, R. Grimer, D.S. Hawkins, S. Hecker-Nolting, K. Sundby Hall, M.S. Isakoff, G. Jovic, T. Kuhne, L. Kager, T. von Kalle, E. Kabickova, S. Lang, C.C. Lau, P.J. Leavey, S.L. Lessnick, L. Mascarenhas, R. Mayer-Steinacker, P.A. Meyers, R. Nagarajan, R.L. Randall, P. Reichardt, M. Renard, C. Rechnitzer, C.L. Schwartz, S. Strauss, L. Teot, B. Timmermann, M.R. Sydes, N. Marina, Survival and prognosis with osteosarcoma: outcomes in more than 2000 patients in the EURAMOS-1 (European and American Osteosarcoma Study) cohort. Eur. J. Cancer 109, 36–50 (2019)

  7. N. Jaffe, Osteosarcoma: review of the past, impact on the future. The American experience. Cancer Treat Res. 152, 239–262 (2009)

  8. H. Wang, W. Sun, M. Sun, Z. Fu, C. Zhou, C. Wang, D. Zuo, Z. Zhou, G. Wang, T. Zhang, J. Xu, J. Chen, Z. Wang, F. Yin, Z. Duan, F.J. Hornicek, Z. Cai, Y. Hua, HER4 promotes cell survival and chemoresistance in osteosarcoma via interaction with NDRG1. Biochim Biophys Acta Mol. Basis Dis. 1864, 1839–1849 (2018)

  9. R. Koster, O.A. Panagiotou, W.A. Wheeler, E. Karlins, J.M. Gastier-Foster, S.R. Caminada de Toledo, A.S. Petrilli, A.M. Flanagan, R. Tirabosco, I.L. Andrulis, J.S. Wunder, N. Gokgoz, A. Patino-Garcia, F. Lecanda, M. Serra, C. Hattinger, P. Picci, K. Scotlandi, D.M. Thomas, M.L. Ballinger, R. Gorlick, D.A. Barkauskas, L.G. Spector, M. Tucker, D.H. Belynda, M. Yeager, R.N. Hoover, S. Wacholder, S.J. Chanock, S.A. Savage, L. Mirabello, Genome-wide association study identifies the GLDC/IL33 locus associated with survival of osteosarcoma patients. Int. J. Cancer 142, 1594–1601 (2018)

  10. A.H. Aljubran, A. Griffin, M. Pintilie, M. Blackstein, Osteosarcoma in adolescents and adults: survival analysis with and without lung metastases. Ann. Oncol. 20, 1136–1141 (2009)

  11. N.M. Marina, S. Smeland, S.S. Bielack, M. Bernstein, G. Jovic, M.D. Krailo, J.M. Hook, C. Arndt, H. van den Berg, B. Brennan, B. Brichard, K.L.B. Brown, T. Butterfass-Bahloul, G. Calaminus, H.E. Daldrup-Link, M. Eriksson, M.C. Gebhardt, H. Gelderblom, J. Gerss, R. Goldsby, A. Goorin, R. Gorlick, H.E. Grier, J.P. Hale, K.S. Hall, J. Hardes, D.S. Hawkins, K. Helmke, P.C.W. Hogendoorn, M.S. Isakoff, K.A. Janeway, H. Jurgens, L. Kager, T. Kuhne, C.C. Lau, P.J. Leavey, S.L. Lessnick, L. Mascarenhas, P.A. Meyers, H. Mottl, M. Nathrath, Z. Papai, R.L. Randall, P. Reichardt, M. Renard, A.A. Safwat, C.L. Schwartz, M.C.G. Stevens, S.J. Strauss, L. Teot, M. Werner, M.R. Sydes, J.S. Whelan, Comparison of MAPIE versus MAP in patients with a poor response to preoperative chemotherapy for newly diagnosed high-grade osteosarcoma (EURAMOS-1): an open-label, international, randomised controlled trial. Lancet Oncol. 17, 1396–1408 (2016)

  12. J. Gill, M.K. Ahluwalia, D. Geller, R. Gorlick, New targets and approaches in osteosarcoma. Pharmacol. Ther. 137, 89–99 (2013)

  13. D. Wang, X. Niu, Z. Wang, C.L. Song, Z. Huang, K.N. Chen, J. Duan, H. Bai, J. Xu, J. Zhao, Y. Wang, M. Zhuo, X.S. Xie, X. Kang, Y. Tian, L. Cai, J.F. Han, T. An, Y. Sun, S. Gao, J. Zhao, J. Ying, L. Wang, J. He, J. Wang, Multiregion Sequencing Reveals the Genetic Heterogeneity and Evolutionary History of Osteosarcoma and Matched Pulmonary Metastases. Cancer Res. 79, 7–20 (2019)

  14. G. Wang, M. Sun, Y. Jiang, T. Zhang, W. Sun, H. Wang, F. Yin, Z. Wang, W. Sang, J. Xu, M. Mao, D. Zuo, Z. Zhou, C. Wang, Z. Fu, Z. Wang, Z. Duan, Y. Hua, Z. Cai, Anlotinib, a novel small molecular tyrosine kinase inhibitor, suppresses growth and metastasis via dual blockade of VEGFR2 and MET in osteosarcoma. Int. J. Cancer. 145, 979–993 (2019)

  15. M.F. Heymann, F. Lezot, D. Heymann, The contribution of immune infiltrates and the local microenvironment in the pathogenesis of osteosarcoma. Cell Immunol. 343, 103711 (2019)

  16. M. Cortini, S. Avnet, N. Baldini, Mesenchymal stroma: Role in osteosarcoma progression. Cancer Lett. 405, 90–99 (2017)

  17. N. McGranahan, C. Swanton, Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future. Cell 168, 613–628 (2017)

  18. R.T. Netea-Maier, J.W.A. Smit, M.G. Netea, Metabolic changes in tumor cells and tumor-associated macrophages: A mutual relationship. Cancer Lett. 413, 102–109 (2018)

  19. C. Zhang, J.H. Zheng, Z.H. Lin, H.Y. Lv, Z.M. Ye, Y.P. Chen, X.Y. Zhang, Profiles of immune cell infiltration and immune-related genes in the tumor microenvironment of osteosarcoma. Aging (Albany N. Y.). 12, 3486–3501 (2020)

  20. N. Cortese, C. Soldani, B. Franceschini, M. Barbagallo, F. Marchesi, G. Torzilli, M. Donadon, Macrophages in Colorectal Cancer Liver Metastases. Cancers (Basel) 11, 633 (2019)

  21. D.C. Hinshaw, L.A. Shevde, The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer Res. 79, 4557–4566 (2019)

  22. Y. Liu, X. Li, Y. Zhang, H. Wang, X. Rong, J. Peng, L. He, Y. Peng, An miR-340-5p-macrophage feedback loop modulates the progression and tumor microenvironment of glioblastoma multiforme. Oncogene 38, 7399–7415 (2019)

  23. S. Kimura, U. Nanbu, H. Noguchi, Y. Harada, K. Kumamoto, Y. Sasaguri, T. Nakayama, Macrophage CCL22 expression in the tumor microenvironment and implications for survival in patients with squamous cell carcinoma of the tongue. J. Oral. Pathol. Med. 48, 677–685 (2019)

  24. H. Yang, Q. Zhang, M. Xu, L. Wang, X. Chen, Y. Feng, Y. Li, X. Zhang, W. Cui, X. Jia, CCL2-CCR2 axis recruits tumor associated macrophages to induce immune evasion through PD-1 signaling in esophageal carcinogenesis. Mol. Cancer 19, 41 (2020)

  25. R. Noy, J.W. Pollard, Tumor-associated macrophages: from mechanisms to therapy. Immunity 41, 49–61 (2014)

  26. E. Fessler, F.E. Dijkgraaf, E.M.F. De Sousa, J.P. Medema, Cancer stem cell dynamics in tumor progression and metastasis: is the microenvironment to blame? Cancer Lett. 341, 97–104 (2013)

  27. R.M. Susen, R. Bauer, C. Olesch, D.C. Fuhrmann, A.F. Fink, N. Dehne, A. Jain, I. Ebersberger, T. Schmid, B. Brune, Macrophage HIF-2alpha regulates tumor-suppressive Spint1 in the tumor microenvironment. Mol Carcinog. 58, 2127–2138 (2019)

  28. S. Wei, J. Lu, J. Lou, C. Shi, S. Mo, Y. Shao, J. Ni, W. Zhang, X. Cheng, Gastric Cancer Tumor Microenvironment Characterization Reveals Stromal-Related Gene Signatures Associated With Macrophage Infiltration. Front. Genet. 11, 663 (2020)

  29. Y. Lin, J. Xu, H. Lan, Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J. Hematol. Oncol. 12, 76 (2019)

  30. R. Ostuni, F. Kratochvill, P.J. Murray, G. Natoli, Macrophages and cancer: from mechanisms to therapeutic implications. Trends Immunol. 36, 229–239 (2015)

  31. K. Molawi, Y. Wolf, P.K. Kandalla, J. Favret, N. Hagemeyer, K. Frenzel, A.R. Pinto, K. Klapproth, S. Henri, B. Malissen, H.R. Rodewald, N.A. Rosenthal, M. Bajenoff, M. Prinz, S. Jung, M.H. Sieweke, Progressive replacement of embryo-derived cardiac macrophages with age. J. Exp. Med. 211, 2151–2158 (2014)

  32. C.C. Bain, A. Bravo-Blas, C.L. Scott, E.G. Perdiguero, F. Geissmann, S. Henri, B. Malissen, L.C. Osborne, D. Artis, A.M. Mowat, Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat. Immunol. 15, 929–937 (2014)

  33. Z. Bian, Y. Gong, T. Huang, C.Z.W. Lee, L. Bian, Z. Bai, H. Shi, Y. Zeng, C. Liu, J. He, J. Zhou, X. Li, Z. Li, Y. Ni, C. Ma, L. Cui, R. Zhang, J.K.Y. Chan, L.G. Ng, Y. Lan, F. Ginhoux, B. Liu, Deciphering human macrophage development at single-cell resolution. Nature 582, 571–576 (2020)

  34. F. Ginhoux, M. Greter, M. Leboeuf, S. Nandi, P. See, S. Gokhan, M.F. Mehler, S.J. Conway, L.G. Ng, E.R. Stanley, I.M. Samokhvalov, M. Merad, Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010)

  35. G. Ferrero, C.B. Mahony, E. Dupuis, L. Yvernogeau, E. Di Ruggiero, M. Miserocchi, M. Caron, C. Robin, D. Traver, J.Y. Bertrand, V. Wittamer, Embryonic Microglia Derive from Primitive Macrophages and Are Replaced by cmyb-Dependent Definitive Microglia in Zebrafish. Cell Rep. 24, 130–141 (2018)

  36. M. Guilliams, I. De Kleer, S. Henri, S. Post, L. Vanhoutte, S. De Prijck, K. Deswarte, B. Malissen, H. Hammad, B.N. Lambrecht, Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J. Exp. Med. 210, 1977–1992 (2013)

  37. L. van de Laar, W. Saelens, S. De Prijck, L. Martens, C.L. Scott, G. Van Isterdael, E. Hoffmann, R. Beyaert, Y. Saeys, B.N. Lambrecht, M. Guilliams, Yolk Sac Macrophages, Fetal Liver, and Adult Monocytes Can Colonize an Empty Niche and Develop into Functional Tissue-Resident Macrophages. Immunity 44, 755–768 (2016)

  38. C. Lee, H. Jeong, Y. Bae, K. Shin, S. Kang, H. Kim, J. Oh, H. Bae, Targeting of M2-like tumor-associated macrophages with a melittin-based pro-apoptotic peptide. J. Immunother. Cancer 7, 147 (2019)

  39. A. Shapouri-Moghaddam, S. Mohammadian, H. Vazini, M. Taghadosi, S.A. Esmaeili, F. Mardani, B. Seifi, A. Mohammadi, J.T. Afshari, A. Sahebkar, Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 233, 6425–6440 (2018)

  40. Y. Cheng, Y. Zhu, J. Xu, M. Yang, P. Chen, W. Xu, J. Zhao, L. Geng, S. Gong, PKN2 in colon cancer cells inhibits M2 phenotype polarization of tumor-associated macrophages via regulating DUSP6-Erk1/2 pathway. Mol. Cancer 17, 13 (2018)

  41. C.W. Wanderley, D.F. Colon, J.P.M. Luiz, F.F. Oliveira, P.R. Viacava, C.A. Leite, J.A. Pereira, C.M. Silva, C.R. Silva, R.L. Silva, C.A. Speck-Hernandez, J.M. Mota, J.C. Alves-Filho, R.C. Lima-Junior, T.M. Cunha, F.Q. Cunha, Paclitaxel Reduces Tumor Growth by Reprogramming Tumor-Associated Macrophages to an M1 Profile in a TLR4-Dependent Manner. Cancer Res. 78, 5891–5900 (2018)

  42. T. Chanmee, P. Ontong, K. Konno, N. Itano, Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel) 6, 1670–1690 (2014)

  43. N.B. Hao, M.H. Lu, Y.H. Fan, Y.L. Cao, Z.R. Zhang, S.M. Yang, Macrophages in tumor microenvironments and the progression of tumors. Clin. Dev. Immunol. 2012, 948098 (2012)

  44. Q. Wang, H. Ni, L. Lan, X. Wei, R. Xiang, Y. Wang, Fra-1 protooncogene regulates IL-6 expression in macrophages and promotes the generation of M2d macrophages. Cell Res. 20, 701–712 (2010)

  45. A. Mantovani, S. Sozzani, M. Locati, P. Allavena, A. Sica, Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002)

  46. D. Duluc, Y. Delneste, F. Tan, M.P. Moles, L. Grimaud, J. Lenoir, L. Preisser, I. Anegon, L. Catala, N. Ifrah, P. Descamps, E. Gamelin, H. Gascan, M. Hebbar, P. Jeannin, Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells. Blood 110, 4319–4330 (2007)

  47. P.J. Murray, J.E. Allen, S.K. Biswas, E.A. Fisher, D.W. Gilroy, S. Goerdt, S. Gordon, J.A. Hamilton, L.B. Ivashkiv, T. Lawrence, M. Locati, A. Mantovani, F.O. Martinez, J.L. Mege, D.M. Mosser, G. Natoli, J.P. Saeij, J.L. Schultze, K.A. Shirey, A. Sica, J. Suttles, I. Udalova, J.A. van Ginderachter, S.N. Vogel, T.A. Wynn, Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014)

  48. F. Punzo, G. Bellini, C. Tortora, D.D. Pinto, M. Argenziano, E. Pota, A.D. Paola, M.D. Martino, F. Rossi, Mifamurtide and TAM-like macrophages: effect on proliferation, migration and differentiation of osteosarcoma cells. Oncotarget 11, 687–698 (2020)

  49. Y. Yu, H. Zhang, T. Ren, Y. Huang, X. Liang, W. Wang, J. Niu, Y. Han, W. Guo, Development of a prognostic gene signature based on an immunogenomic infiltration analysis of osteosarcoma. J. Cell. Mol. Med. 24, 11230–11242 (2020)

  50. H.M. Aldawsari, B. Gorain, N.A. Alhakamy, S. Md, Role of therapeutic agents on repolarisation of tumour-associated macrophage to halt lung cancer progression. J. Drug Target 28, 166–175 (2020)

  51. M.S. Ball, E.P. Shipman, H. Kim, K.T. Liby, P.A. Pioli, CDDO-Me Redirects Activation of Breast Tumor Associated Macrophages. PLoS One 11, e0149600 (2016)

  52. R.A. Franklin, W. Liao, A. Sarkar, M.V. Kim, M.R. Bivona, K. Liu, E.G. Pamer, M.O. Li, The cellular and molecular origin of tumor-associated macrophages. Science 344, 921–925 (2014)

  53. F. Cersosimo, S. Lonardi, G. Bernardini, B. Telfer, G.E. Mandelli, A. Santucci, W. Vermi, E. Giurisato, Tumor-Associated Macrophages in Osteosarcoma: From Mechanisms to Therapy. Int. J. Mol. Sci. 21, 5027 (2020)

  54. Y. Li, M. Li, R. Wei, J. Wu, Identification and Functional Analysis of EPOR (+) Tumor-Associated Macrophages in Human Osteosarcoma Lung Metastasis. J. Immunol. Res. 2020, 9374240 (2020)

  55. S.R. Gordon, R.L. Maute, B.W. Dulken, G. Hutter, B.M. George, M.N. McCracken, R. Gupta, J.M. Tsai, R. Sinha, D. Corey, A.M. Ring, A.J. Connolly, I.L. Weissman, PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545, 495–499 (2017)

  56. C. Wei, C. Yang, S. Wang, D. Shi, C. Zhang, X. Lin, Q. Liu, R. Dou, B. Xiong, Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol. Cancer 18, 64 (2019)

  57. R. Wang, Y. Liu, L. Liu, M. Chen, X. Wang, J. Yang, Y. Gong, B.S. Ding, Y. Wei, X. Wei, Tumor cells induce LAMP2a expression in tumor-associated macrophage for cancer progression. EBioMedicine 40, 118–134 (2019)

  58. M. Cortes, L. Sanchez-Moral, O. de Barrios, M.J. Fernandez-Acenero, M.C. Martinez-Campanario, A. Esteve-Codina, D.S. Darling, B. Gyorffy, T. Lawrence, D.C. Dean, A. Postigo, Tumor-associated macrophages (TAMs) depend on ZEB1 for their cancer-promoting roles. EMBO J. 36, 3336–3355 (2017)

  59. B. Ruffell, N.I. Affara, L.M. Coussens, Differential macrophage programming in the tumor microenvironment. Trends Immunol. 33, 119–126 (2012)

  60. A. Vidyarthi, N. Khan, T. Agnihotri, S. Negi, D.K. Das, M. Aqdas, D. Chatterjee, O.R. Colegio, M.K. Tewari, J.N. Agrewala, TLR-3 Stimulation Skews M2 Macrophages to M1 Through IFN-alphabeta Signaling and Restricts Tumor Progression. Front. Immunol. 9, 1650 (2018)

  61. D. Bose, S. Banerjee, N. Chatterjee, S. Das, M. Saha, K.D. Saha, Inhibition of TGF-beta induced lipid droplets switches M2 macrophages to M1 phenotype. Toxicol. In. Vitro. 58, 207–214 (2019)

  62. H. Xiao, Y. Guo, B. Li, X. Li, Y. Wang, S. Han, D. Cheng, X. Shuai, M2-Like Tumor-Associated Macrophage-Targeted Codelivery of STAT6 Inhibitor and IKKbeta siRNA Induces M2-to-M1 Repolarization for Cancer Immunotherapy with Low Immune Side Effects. ACS Cent. Sci. 6, 1208–1222 (2020)

  63. D. Chen, J. Xie, R. Fiskesund, W. Dong, X. Liang, J. Lv, X. Jin, J. Liu, S. Mo, T. Zhang, F. Cheng, Y. Zhou, H. Zhang, K. Tang, J. Ma, Y. Liu, B. Huang, Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype. Nat. Commun. 9, 873 (2018)

  64. C. Dumars, J.M. Ngyuen, A. Gaultier, R. Lanel, N. Corradini, F. Gouin, D. Heymann, M.F. Heymann, Dysregulation of macrophage polarization is associated with the metastatic process in osteosarcoma. Oncotarget 7, 78343–78354 (2016)

  65. X.J. Shao, S.F. Xiang, Y.Q. Chen, N. Zhang, J. Cao, H. Zhu, B. Yang, Q. Zhou, M.D. Ying, Q.J. He, Inhibition of M2-like macrophages by all-trans retinoic acid prevents cancer initiation and stemness in osteosarcoma cells. Acta Pharmacol. Sin. 40, 1343–1350 (2019)

  66. D. Yang, K. Liu, L. Fan, W. Liang, T. Xu, W. Jiang, H. Lu, J. Jiang, C. Wang, G. Li, X. Zhang, LncRNA RP11-361F15.2 promotes osteosarcoma tumorigenesis by inhibiting M2-Like polarization of tumor-associated macrophages of CPEB4. Cancer Lett. 473, 33–49 (2020)

  67. Q. Xiao, X. Zhang, Y. Wu, Y. Yang, Inhibition of macrophage polarization prohibits growth of human osteosarcoma. Tumour Biol. 35, 7611–7616 (2014)

  68. X. Deng, H. Liang, W. Yang, Z. Shao, Polarization and function of tumor-associated macrophages mediate graphene oxide-induced photothermal cancer therapy. J. Photochem Photobiol B. 208, 111913 (2020)

  69. J.H. Pahl, K.M. Kwappenberg, E.M. Varypataki, S.J. Santos, M.L. Kuijjer, S. Mohamed, J.T. Wijnen, M.J. van Tol, A.M. Cleton-Jansen, R.M. Egeler, W. Jiskoot, A.C. Lankester, M.W. Schilham, Macrophages inhibit human osteosarcoma cell growth after activation with the bacterial cell wall derivative liposomal muramyl tripeptide in combination with interferon-gamma. J. Exp. Clin. Cancer Res. 33, 27 (2014)

  70. N. Tacyildiz, S. Incesoy Ozdemir, E. Unal, M. Berber, H. Dincaslan, G. Yavuz, The Efficiency and Toxicity of Mifamurtide in Childhood Osteosarcoma. J. Pediatr. Hematol. Oncol. 40, e373–e376 (2018)

  71. E.P. Buddingh, M.L. Kuijjer, R.A. Duim, H. Burger, K. Agelopoulos, O. Myklebost, M. Serra, F. Mertens, P.C. Hogendoorn, A.C. Lankester, A.M. Cleton-Jansen, Tumor-infiltrating macrophages are associated with metastasis suppression in high-grade osteosarcoma: a rationale for treatment with macrophage activating agents. Clin. Cancer Res. 17, 2110–2119 (2011)

  72. R.N. Kaplan, R.D. Riba, S. Zacharoulis, A.H. Bramley, L. Vincent, C. Costa, D.D. MacDonald, D.K. Jin, K. Shido, S.A. Kerns, Z. Zhu, D. Hicklin, Y. Wu, J.L. Port, N. Altorki, E.R. Port, D. Ruggero, S.V. Shmelkov, K.K. Jensen, S. Rafii, D. Lyden, VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005)

  73. Y. Liu, X. Cao, Characteristics and Significance of the Pre-metastatic Niche. Cancer Cell 30, 668–681 (2016)

  74. S. Paget, The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 8, 98–101 (1989)

  75. M. Akhtar, A. Haider, S. Rashid, A. Al-Nabet, Paget's "Seed and Soil" Theory of Cancer Metastasis: An Idea Whose Time has Come. Adv. Anat. Pathol. 26, 69–74 (2019)

  76. J. Niu, T. Yan, W. Guo, W. Wang, Z. Zhao, Insight Into the Role of Autophagy in Osteosarcoma and Its Therapeutic Implication. Front. Oncol. 9, 1232 (2019)

  77. C.L. Chen, L. Zhang, Y.R. Jiao, Y. Zhou, Q.F. Ge, P.C. Li, X.J. Sun, Z. Lv, miR-134 inhibits osteosarcoma cell invasion and metastasis through targeting MMP1 and MMP3 in vitro and in vivo. FEBS Lett. 593, 1089–1101 (2019)

  78. Y. Tome, T. Kiyuna, F. Uehara, M. Bouvet, H. Tsuchiya, F. Kanaya, R.M. Hoffman, Imaging the interaction of alphav integrin-GFP in osteosarcoma cells with RFP-expressing host stromal cells and tumor-scaffold collagen in the primary and metastatic tumor microenvironment. J. Cell. Biochem. 120, 283–289 (2019)

  79. Q. Zhou, M. Xian, S. Xiang, D. Xiang, X. Shao, J. Wang, J. Cao, X. Yang, B. Yang, M. Ying, Q. He, All-Trans Retinoic Acid Prevents Osteosarcoma Metastasis by Inhibiting M2 Polarization of Tumor-Associated Macrophages. Cancer Immunol. Res. 5, 547–559 (2017)

  80. Y. Han, W. Guo, T. Ren, Y. Huang, S. Wang, K. Liu, B. Zheng, K. Yang, H. Zhang, X. Liang, Tumor-associated macrophages promote lung metastasis and induce epithelial-mesenchymal transition in osteosarcoma by activating the COX-2/STAT3 axis. Cancer Lett. 440-441, 116–125 (2019)

  81. S. Pece, D. Tosoni, S. Confalonieri, G. Mazzarol, M. Vecchi, S. Ronzoni, L. Bernard, G. Viale, P.G. Pelicci, P.P. Di Fiore, Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140, 62–73 (2010)

  82. M. Todaro, M.G. Francipane, J.P. Medema, G. Stassi, Colon cancer stem cells: promise of targeted therapy. Gastroenterology. 138, 2151–2162 (2010)

  83. C. Raggi, H.S. Mousa, M. Correnti, A. Sica, P. Invernizzi, Cancer stem cells and tumor-associated macrophages: a roadmap for multitargeting strategies. Oncogene 35, 671–682 (2016)

  84. K. Baltrunaite, M.P. Craig, S. Palencia Desai, P. Chaturvedi, R.N. Pandey, R.S. Hegde, S. Sumanas, ETS transcription factors Etv2 and Fli1b are required for tumor angiogenesis. Angiogenesis 20, 307–323 (2017)

  85. X.G. Wu, C.F. Zhou, Y.M. Zhang, R.M. Yan, W.F. Wei, X.J. Chen, H.Y. Yi, L.J. Liang, L.S. Fan, L. Liang, S. Wu, W. Wang, Cancer-derived exosomal miR-221-3p promotes angiogenesis by targeting THBS2 in cervical squamous cell carcinoma. Angiogenesis 22, 397–410 (2019)

  86. Y. Yang, Y. Meng, J. Ye, X. Xia, H. Wang, L. Li, W. Dong, D. Jin, Y. Liu, Sequential delivery of VEGF siRNA and paclitaxel for PVN destruction, anti-angiogenesis, and tumor cell apoptosis procedurally via a multi-functional polymer micelle. J. Control. Release. 287, 103–120 (2018)

  87. A.I. Segaliny, A. Mohamadi, B. Dizier, A. Lokajczyk, R. Brion, R. Lanel, J. Amiaud, C. Charrier, C. Boisson-Vidal, D. Heymann, Interleukin-34 promotes tumor progression and metastatic process in osteosarcoma through induction of angiogenesis and macrophage recruitment. Int. J. Cancer. 137, 73–85 (2015)

  88. M.A.S. Broggi, L. Maillat, C.C. Clement, N. Bordry, P. Corthesy, A. Auger, M. Matter, R. Hamelin, L. Potin, D. Demurtas, E. Romano, A. Harari, D.E. Speiser, L. Santambrogio, M.A. Swartz, Tumor-associated factors are enriched in lymphatic exudate compared to plasma in metastatic melanoma patients. J. Exp. Med. 216, 1091–1107 (2019)

  89. C.N. Shen, K.S. Goh, C.R. Huang, T.C. Chiang, C.Y. Lee, Y.M. Jeng, S.J. Peng, H.J. Chien, M.H. Chung, Y.H. Chou, C.C. Hsieh, S. Kulkarni, P.J. Pasricha, Y.W. Tien, S.C. Tang, Lymphatic vessel remodeling and invasion in pancreatic cancer progression. EBioMedicine 47, 98–113 (2019)

  90. L. Volk-Draper, R. Patel, N. Bhattarai, J. Yang, A. Wilber, D. DeNardo, S. Ran, Myeloid-Derived Lymphatic Endothelial Cell Progenitors Significantly Contribute to Lymphatic Metastasis in Clinical Breast Cancer. Am. J. Pathol. 189, 2269–2292 (2019)

  91. J.A. Sirerol, M.L. Rodriguez, S. Mena, M.A. Asensi, J.M. Estrela, A.L. Ortega, Role of Natural Stilbenes in the Prevention of Cancer. Oxid. Med. Cell. Longev. 2016, 3128951 (2016)

  92. C. Maccario, M. Savio, D. Ferraro, L. Bianchi, R. Pizzala, L. Pretali, L. Forti, L.A. Stivala, The resveratrol analog 4,4'-dihydroxy-trans-stilbene suppresses transformation in normal mouse fibroblasts and inhibits proliferation and invasion of human breast cancer cells. Carcinogenesis 33, 2172–2180 (2012)

  93. J.M. Breuss, A.G. Atanasov, P. Uhrin, Resveratrol and Its Effects on the Vascular System. Int. J. Mol. Sci. 20, 1523 (2019)

  94. V. Palomera-Avalos, C. Grinan-Ferre, D. Puigoriol-Ilamola, A. Camins, C. Sanfeliu, A.M. Canudas, M. Pallas, Resveratrol Protects SAMP8 Brain Under Metabolic Stress: Focus on Mitochondrial Function and Wnt Pathway. Mol. Neurobiol. 54, 1661–1676 (2017)

  95. J. Ma, M. Xue, S. Zhang, L. Cheng, W. Qian, W. Duan, X. Shen, Resveratrol inhibits the growth of tumor cells under chronic stress via the ADRB2HIF1alpha axis. Oncol. Rep. 41, 1051–1058 (2019)

  96. W. Zhang, H. Jiang, Y. Chen, F. Ren, Resveratrol chemosensitizes adriamycin-resistant breast cancer cells by modulating miR-122-5p. J. Cell. Biochem. 120, 16283–16292 (2019)

  97. C. Buhrmann, M. Yazdi, B. Popper, P. Shayan, A. Goel, B.B. Aggarwal, M. Shakibaei, Resveratrol Chemosensitizes TNF-beta-Induced Survival of 5-FU-Treated Colorectal Cancer Cells. Nutrients 10, 888 (2018)

  98. Y. Liu, W. Ren, Y. Bai, L. Wan, X. Sun, Y. Liu, W. Xiong, Y.Y. Zhang, L. Zhou, Oxyresveratrol prevents murine H22 hepatocellular carcinoma growth and lymph node metastasis via inhibiting tumor angiogenesis and lymphangiogenesis. J. Nat. Med. 72, 481–492 (2018)

  99. Y. Kimura, M. Sumiyoshi, Resveratrol Prevents Tumor Growth and Metastasis by Inhibiting Lymphangiogenesis and M2 Macrophage Activation and Differentiation in Tumor-associated Macrophages. Nutr. Cancer. 68, 667–678 (2016)

  100. Y. Kimura, M. Sumiyoshi, K. Baba, Antitumor and Antimetastatic Activity of Synthetic Hydroxystilbenes Through Inhibition of Lymphangiogenesis and M2 Macrophage Differentiation of Tumor-associated Macrophages. Anticancer Res. 36, 137–148 (2016)

  101. Y. Kimura, M. Sumiyoshi, Anti-tumor and anti-metastatic actions of wogonin isolated from Scutellaria baicalensis roots through anti-lymphangiogenesis. Phytomedicine 20, 328–336 (2013)

  102. M.J. Smyth, S.F. Ngiow, A. Ribas, M.W. Teng, Combination cancer immunotherapies tailored to the tumour microenvironment. Nat. Rev. Clin. Oncol. 13, 143–158 (2016)

  103. A.J. Petty, A. Li, X. Wang, R. Dai, B. Heyman, D. Hsu, X. Huang, Y. Yang, Hedgehog signaling promotes tumor-associated macrophage polarization to suppress intratumoral CD8+ T cell recruitment. J. Clin. Invest. 129, 5151–5162 (2019)

  104. X. Li, R. Liu, X. Su, Y. Pan, X. Han, C. Shao, Y. Shi, Harnessing tumor-associated macrophages as aids for cancer immunotherapy. Mol. Cancer 18, 177 (2019)

  105. Q. Han, H. Shi, F. Liu, CD163(+) M2-type tumor-associated macrophage support the suppression of tumor-infiltrating T cells in osteosarcoma. Int. Immunopharmacol. 34, 101–106 (2016)

  106. T. Uehara, S. Eikawa, M. Nishida, Y. Kunisada, A. Yoshida, T. Fujiwara, T. Kunisada, T. Ozaki, H. Udono, Metformin induces CD11b+-cell-mediated growth inhibition of an osteosarcoma: implications for metabolic reprogramming of myeloid cells and anti-tumor effects. Int. Immunol. 31, 187–198 (2019)

  107. E. Schlecker, A. Stojanovic, C. Eisen, C. Quack, C.S. Falk, V. Umansky, A. Cerwenka, Tumor-infiltrating monocytic myeloid-derived suppressor cells mediate CCR5-dependent recruitment of regulatory T cells favoring tumor growth. J. Immunol. 189, 5602–5611 (2012)

  108. D.O. Adeegbe, H. Nishikawa, Natural and induced T regulatory cells in cancer. Front. Immunol. 4, 190 (2013)

  109. H. Zhang, J. Wang, T. Ren, Y. Huang, X. Liang, Y. Yu, W. Wang, J. Niu, W. Guo, Bone marrow mesenchymal stem cell-derived exosomal miR-206 inhibits osteosarcoma progression by targeting TRA2B. Cancer Lett. 490, 54–65 (2020)

  110. K. Wolf-Dennen, N. Gordon, E.S. Kleinerman, Exosomal communication by metastatic osteosarcoma cells modulates alveolar macrophages to an M2 tumor-promoting phenotype and inhibits tumoricidal functions. Oncoimmunology 9, 1747677 (2020)

  111. C.J. Halbrook, C. Pontious, I. Kovalenko, L. Lapienyte, S. Dreyer, H.J. Lee, G. Thurston, Y. Zhang, J. Lazarus, P. Sajjakulnukit, H.S. Hong, D.M. Kremer, B.S. Nelson, S. Kemp, L. Zhang, D. Chang, A. Biankin, J. Shi, T.L. Frankel, H.C. Crawford, J.P. Morton, M. Pasca di Magliano, C.A. Lyssiotis, Macrophage-Released Pyrimidines Inhibit Gemcitabine Therapy in Pancreatic Cancer. Cell Metab. 29, 1390–1399 e1396 (2019)

  112. X. Liang, W. Guo, T. Ren, Y. Huang, K. Sun, H. Zhang, Y. Yu, W. Wang, J. Niu, Macrophages reduce the sensitivity of osteosarcoma to neoadjuvant chemotherapy drugs by secreting Interleukin-1 beta. Cancer Lett. 480, 4–14 (2020)

  113. Y. Su, Y. Zhou, Y.J. Sun, Y.L. Wang, J.Y. Yin, Y.J. Huang, J.J. Zhang, A.N. He, K. Han, H.Z. Zhang, Y. Yao, X.B. Lv, H.Y. Hu, Macrophage-derived CCL18 promotes osteosarcoma proliferation and migration by upregulating the expression of UCA1. J. Mol. Med. (Berl) 97, 49–61 (2019)

  114. Y. Kimura, M. Sumiyoshi, Antitumor and antimetastatic actions of dihydroxycoumarins (esculetin or fraxetin) through the inhibition of M2 macrophage differentiation in tumor-associated macrophages and/or G1 arrest in tumor cells. Eur. J. Pharmacol. 746, 115–125 (2015)

  115. P.L. Loyher, P. Hamon, M. Laviron, A. Meghraoui-Kheddar, E. Goncalves, Z. Deng, S. Torstensson, N. Bercovici, C. Baudesson de Chanville, B. Combadiere, F. Geissmann, A. Savina, C. Combadiere, A. Boissonnas, Macrophages of distinct origins contribute to tumor development in the lung. J. Exp. Med. 215, 2536–2553 (2018)

  116. Z.F. Wen, H. Liu, R. Gao, M. Zhou, J. Ma, Y. Zhang, J. Zhao, Y. Chen, T. Zhang, F. Huang, N. Pan, J. Zhang, B.A. Fox, H.M. Hu, L.X. Wang, Tumor cell-released autophagosomes (TRAPs) promote immunosuppression through induction of M2-like macrophages with increased expression of PD-L1. J. Immunother. Cancer 6, 151 (2018)

  117. J.W. Pollard, Tumour-educated macrophages promote tumour progression and metastasis. Nat. Rev. Cancer 4, 71–78 (2004)

  118. L. Bingle, N.J. Brown, C.E. Lewis, The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J. Pathol. 196, 254–265 (2002)

  119. P.A. Meyers, C.L. Schwartz, M.D. Krailo, J.H. Healey, M.L. Bernstein, D. Betcher, W.S. Ferguson, M.C. Gebhardt, A.M. Goorin, M. Harris, E. Kleinerman, M.P. Link, H. Nadel, M. Nieder, G.P. Siegal, M.A. Weiner, R.J. Wells, R.B. Womer, H.E. Grier, G. Children's Oncology, Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival--a report from the Children's Oncology Group. J. Clin. Oncol. 26, 633–638 (2008)

  120. A.J. Chou, E.S. Kleinerman, M.D. Krailo, Z. Chen, D.L. Betcher, J.H. Healey, E.U. Conrad, 3rd, M.L. Nieder, M.A. Weiner, R.J. Wells, R.B. Womer, P.A. Meyers, G. Children's Oncology, Addition of muramyl tripeptide to chemotherapy for patients with newly diagnosed metastatic osteosarcoma: a report from the Children's Oncology Group. Cancer 115, 5339–5348 (2009)

  121. W.D. Tap, H. Gelderblom, E. Palmerini, J. Desai, S. Bauer, J.Y. Blay, T. Alcindor, K. Ganjoo, J. Martin-Broto, C.W. Ryan, D.M. Thomas, C. Peterfy, J.H. Healey, M. van de Sande, H.L. Gelhorn, D.E. Shuster, Q. Wang, A. Yver, H.H. Hsu, P.S. Lin, S. Tong-Starksen, S. Stacchiotti, A.J. Wagner, E. investigators, Pexidartinib versus placebo for advanced tenosynovial giant cell tumour (ENLIVEN): a randomised phase 3 trial. Lancet 394, 478–487 (2019)

  122. Y.J. Song, Y. Xu, X. Zhu, J. Fu, C. Deng, H. Chen, H. Xu, G. Song, J. Lu, Q. Tang, J. Wang, Immune Landscape of the Tumor Microenvironment Identifies Prognostic Gene Signature CD4/CD68/CSF1R in Osteosarcoma. Front. Oncol. 10, 1198 (2020)

  123. W.A. Denny, J.U. Flanagan, Small-molecule CSF1R kinase inhibitors; review of patents 2015-present. Expert. Opin. Ther. Pat. 31, 107–117 (2021)

  124. J.H. Lee, T.W. Chen, C.H. Hsu, Y.H. Yen, J.C. Yang, A.L. Cheng, S.I. Sasaki, L.L. Chiu, M. Sugihara, T. Ishizuka, T. Oguma, N. Tajima, C.C. Lin, A phase I study of pexidartinib, a colony-stimulating factor 1 receptor inhibitor, in Asian patients with advanced solid tumors. Invest. New Drugs. 38, 99–110 (2020)

  125. J.F. Liu, C.W. Lee, C.Y. Lin, C.C. Chao, T.M. Chang, C.K. Han, Y.L. Huang, Y.C. Fong, C.H. Tang, CXCL13/CXCR5 Interaction Facilitates VCAM-1-Dependent Migration in Human Osteosarcoma. Int. J. Mol. Sci. 21, 6095 (2020)

  126. Q. Chen, X.H. Zhang, J. Massague, Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell 20, 538–549 (2011)

  127. S. Mohanty, K. Yerneni, J.L. Theruvath, C.M. Graef, H. Nejadnik, O. Lenkov, L. Pisani, J. Rosenberg, S. Mitra, A.S. Cordero, S. Cheshier, H.E. Daldrup-Link, Nanoparticle enhanced MRI can monitor macrophage response to CD47 mAb immunotherapy in osteosarcoma. Cell Death Dis. 10, 36 (2019)

  128. D. Mihic-Probst, M. Reinehr, S. Dettwiler, I. Kolm, C. Britschgi, K. Kudura, E.M. Maggio, D. Lenggenhager, E.J. Rushing, The role of macrophages type 2 and T-regs in immune checkpoint inhibitor related adverse events. Immunobiology 225, 152009 (2020)

  129. P. Dhupkar, N. Gordon, J. Stewart, E.S. Kleinerman, Anti-PD-1 therapy redirects macrophages from an M2 to an M1 phenotype inducing regression of OS lung metastases. Cancer Med. 7, 2654–2664 (2018)130. D.S. Chen, I. Mellman, Elements of cancer immunity and the cancer-immune set point. Nature 541, 321–330 (2017)

  130. D.S. Chen, I. Mellman, Elements of cancer immunity and the cancer-immune set point. Nature 541, 321–330 (2017)

  131. M.J. Cascio, E.M. Whitley, B. Sahay, G. Cortes-Hinojosa, L.J. Chang, J. Cowart, M. Salute, E. Sayour, M. Dark, Z. Sandoval, D.A. Mitchell, R.J. Milner, Canine osteosarcoma checkpoint expression correlates with metastasis and T-cell infiltrate. Vet. Immunol. Immunopathol 232, 110169 (2021)

  132. A. Eranki, P. Srinivasan, M. Ries, A. Kim, C.A. Lazarski, C.T. Rossi, T.D. Khokhlova, E. Wilson, S.M. Knoblach, K.V. Sharma, B.J. Wood, C. Moonen, A.D. Sandler, P.C.W. Kim, High-Intensity Focused Ultrasound (HIFU) Triggers Immune Sensitization of Refractory Murine Neuroblastoma to Checkpoint Inhibitor Therapy. Clin. Cancer. Res. 26, 1152–1161 (2020)

  133. R.G. Majzner, S. Heitzeneder, C.L. Mackall, Harnessing the Immunotherapy Revolution for the Treatment of Childhood Cancers. Cancer Cell 31, 476–485 (2017)

  134. H. Fukushima, S. Yoshida, T. Kijima, Y. Nakamura, S. Fukuda, S. Uehara, Y. Yasuda, H. Tanaka, M. Yokoyama, Y. Matsuoka, Y. Fujii, Combination of Cisplatin and Irradiation Induces Immunogenic Cell Death and Potentiates Postirradiation Anti-PD-1 Treatment Efficacy in Urothelial Carcinoma. Int. J. Mol. Sci. 22, 535 (2021)

  135. L. Zhang, W. Mai, W. Jiang, Q. Geng, Sintilimab: A Promising Anti-Tumor PD-1 Antibody. Front. Oncol. 10, 594558 (2020)

  136. Z.N. Willsmore, B.G.T. Coumbe, S. Crescioli, S. Reci, A. Gupta, R.J. Harris, A. Chenoweth, J. Chauhan, H.J. Bax, A. McCraw, A. Cheung, G. Osborn, R.M. Hoffmann, M. Nakamura, R. Laddach, J.L.C. Geh, A.M. Ross, C. Healy, S. Tsoka, J.F. Spicer, D.H. Josephs, S. Papa, K.E. Lacy, S.N. Karagiannis, Combined anti-PD-1 and anti-CTLA-4 checkpoint blockade: treatment of melanoma and immune mechanisms of action. Eur. J. Immunol. (2021). doi: 10.1002/eji.202048747

  137. C. Deng, Y. Xu, J. Fu, X. Zhu, H. Chen, H. Xu, G. Wang, Y. Song, G. Song, J. Lu, R. Liu, Q. Tang, W. Huang, J. Wang, Reprograming the tumor immunologic microenvironment using neoadjuvant chemotherapy in osteosarcoma. Cancer Sci. 111, 1899–1909 (2020)

  138. A.L. Yu, A.L. Gilman, M.F. Ozkaynak, W.B. London, S.G. Kreissman, H.X. Chen, M. Smith, B. Anderson, J.G. Villablanca, K.K. Matthay, H. Shimada, S.A. Grupp, R. Seeger, C.P. Reynolds, A. Buxton, R.A. Reisfeld, S.D. Gillies, S.L. Cohn, J.M. Maris, P.M. Sondel, G. Children's Oncology, Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N. Engl. J. Med. 363, 1324–1334 (2010)

  139. C.F. Contreras, C.S. Higham, A. Behnert, K. Kim, E. Stieglitz, S.K. Tasian, Clinical utilization of blinatumomab and inotuzumab immunotherapy in children with relapsed or refractory B-acute lymphoblastic leukemia. Pediatr. Blood Cancer 68, e28718 (2021)

  140. H. Inaba, C.G. Mullighan, Pediatric acute lymphoblastic leukemia. Haematologica 105, 2524–2539 (2020)

  141. J.A. Park, N.V. Cheung, GD2 or HER2 targeting T cell engaging bispecific antibodies to treat osteosarcoma. J. Hematol. Oncol. 13, 172 (2020)

  142. Y. Li, F. Cao, M. Li, P. Li, Y. Yu, L. Xiang, T. Xu, J. Lei, Y.Y. Tai, J. Zhu, B. Yang, Y. Jiang, X. Zhang, L. Duo, P. Chen, X. Yu, Hydroxychloroquine induced lung cancer suppression by enhancing chemo-sensitization and promoting the transition of M2-TAMs to M1-like macrophages. J. Exp. Clin. Cancer Res. 37, 259 (2018)

  143. M. Xiao, J. Zhang, W. Chen, W. Chen, M1-like tumor-associated macrophages activated by exosome-transferred THBS1 promote malignant migration in oral squamous cell carcinoma. J Exp Clin Cancer Res. 37, 143 (2018)

  144. R. Sumitomo, T. Hirai, M. Fujita, H. Murakami, Y. Otake, C.L. Huang, M2 tumor-associated macrophages promote tumor progression in non-small-cell lung cancer. Exp. Ther. Med. 18, 4490–4498 (2019)

  145. D. Wang, X. Wang, M. Si, J. Yang, S. Sun, H. Wu, S. Cui, X. Qu, X. Yu, Exosome-encapsulated miRNAs contribute to CXCL12/CXCR4-induced liver metastasis of colorectal cancer by enhancing M2 polarization of macrophages. Cancer Lett. 474, 36–52 (2020)

  146. S. Wang, Y. Yao, H. Li, G. Zheng, S. Lu, W. Chen, Tumor-associated macrophages (TAMs) depend on Shp2 for their anti-tumor roles in colorectal cancer. Am. J. Cancer Res. 9, 1957–1969 (2019)

  147. Z.X. Liang, H.S. Liu, F.W. Wang, L. Xiong, C. Zhou, T. Hu, X.W. He, X.J. Wu, D. Xie, X.R. Wu, P. Lan, LncRNA RPPH1 promotes colorectal cancer metastasis by interacting with TUBB3 and by promoting exosomes-mediated macrophage M2 polarization. Cell Death Dis. 10, 829 (2019)

  148. I. Kurelac, A. Abarrategi, M. Ragazzi, L. Iommarini, N. Umesh Ganesh, T. Snoeks, D. Bonnet, A.M. Porcelli, I. Malanchi, G. Gasparre, A Humanized Bone Niche Model Reveals Bone Tissue Preservation Upon Targeting Mitochondrial Complex I in Pseudo-Orthotopic Osteosarcoma. J. Clin. Med. 8, 2184 (2019)

  149. S. Avnet, A. Longhi, M. Salerno, J.M. Halleen, F. Perut, D. Granchi, S. Ferrari, F. Bertoni, A. Giunti, N. Baldini, Increased osteoclast activity is associated with aggressiveness of osteosarcoma. Int. J. Oncol. 33, 1231–1238 (2008)

  150. R. Rubio, A. Abarrategi, J. Garcia-Castro, L. Martinez-Cruzado, C. Suarez, J. Tornin, L. Santos, A. Astudillo, I. Colmenero, F. Mulero, M. Rosu-Myles, P. Menendez, R. Rodriguez, Bone environment is essential for osteosarcoma development from transformed mesenchymal stem cells. Stem Cells 32, 1136–1148 (2014)

Download references

Acknowledgements

This work was supported by the Beijing Science and Technology Project (No. Z161100000116100) and the National Natural Science Foundation of China (No.81572633 and No.82072970).

Author information

Authors and Affiliations

Authors

Contributions

Wei Guo perceived the article, Qingshan Huang, Xin Liang, Tingting Ren, Yi Huang, Hongliang Zhang, Yuyang Yi, Chenlong Chen, Wei Wang, Jianfang Niu and Jingbing Lou performed the literature search and data analysis, and Wei Guo, Qingshan Huang and Xin Liang drafted and critically revised the work.

Corresponding author

Correspondence to Wei Guo.

Ethics declarations

Competing interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Liang, X., Ren, T. et al. The role of tumor-associated macrophages in osteosarcoma progression – therapeutic implications. Cell Oncol. 44, 525–539 (2021). https://doi.org/10.1007/s13402-021-00598-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-021-00598-w

Keywords

Navigation