Skip to main content
Log in

A Laser Based Universal Oscillator for Next Generation Optical Frequency Standards

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

Time is one of the base SI unit and the most accurately measured physical quantity. Atomic optical frequency standards have been realized with 10−18 level of accuracy and stability (Ohmae et al., Advanced Quantum Technologies 4: 2100015, 2021), which are two orders of magnitude better compared to the present SI second, based on Cesium microwave standard. Such optical clocks are potential candidates for the re-definition of the SI second in the near future (https://www.bipm.org/en/publications/mises-en-pratique/standard-frequencies-second). However, smooth and effective transition of “Time” requires that more and more laboratories in various countries across the world are able to realize such optical clocks in their standards laboratory. Realization of such clocks requires an ultra-stable narrow linewidth laser, used as the oscillator for interrogating the clock transition in the atomic species. This necessity makes the development of a narrow linewidth ultra-stable laser oscillator, usually realized using a laser and a stable high-finesse cavity, an essential requirement. The present work describes various design requirements to realize such an oscillator that can be customized over a wide range of frequencies for interrogating different atomic species in optical domain. A practically realizable theoretical calculation has been presented, which should pave the way for in-house construction of the oscillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. https://www.bipm.org/en/publications/mises-en-pratique/standard-frequencies-second.

  2. https://www.bipm.org/en/committees/cc/cctf/23-2022.

  3. M. Takamoto, F.L. Hong, R. Higashi and H. Katori, An optical lattice clock. Nature, 435 (2005) 321–324.

    Article  ADS  Google Scholar 

  4. J. C. Bergquist, U. Tanaka, R. E. Drullinger, W. M. Itano, D. J. Wineland, S. A. Diddams, L. W. Hollberg, E A. Curtis and C. W. Oates, A mercury-ion optical clock, Proc. 6th Symposium on frequency standards and metrology, St. Andrews, South Carolina, USA(2001) 100–105

  5. F. Riehle, Frequency standards basics and applications, Wiley-VCH verlag GmbH Co. KgaA, (2004), pp 1, 4

  6. J.D. Sterk, L. Luo, T.A. Manning, P. Maunz and C. Monroe, Photon collection from a trapped ion-cavity system. Phys. Rev. A, 85 (2012) 062308-1–062308-8.

    Article  ADS  Google Scholar 

  7. N. Yu and L. Maleki, Lifetime measurements of the 4f14 5d metastable states in single ytterbium ions. Phys. Rev. A, 61 (2000) 022507.

    Article  ADS  Google Scholar 

  8. K.C. Harvey and C.J. Myatt, External-cavity diode laser using a grazing-incidence diffraction grating. Opt. Lett., 16 (1991) 910–912.

    Article  ADS  Google Scholar 

  9. H. Abitan and T. Skettrup, Laser resonators with several mirrors and lenses with the bow-tie laser resonator with compensation for astigmatism and thermal lens effects as an example. J. Opt. A Pure Appl. Opt., 7 (2005) 7–20.

    Article  ADS  Google Scholar 

  10. M. Suter and P. Dietiker, Calculation of the finesse of an ideal Fabry-Perot resonator. Appl. Opt., 53 (2014) 7004–7010.

    Article  ADS  Google Scholar 

  11. A. Yariv, Quantum electronics, 3rd edn. Wiley (1991), pp. 106–145.

    Google Scholar 

  12. https://www.corning.com/in/en/products/advanced-optics/product-materials/semiconductor-laser-optic-components/ultra-low-expansion-glass.html

  13. https://www.oharacorp.com/ccz.html

  14. T. Legero, T. Kessler and U. Sterr, Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors. J. Opt. Soc. Am. B, 27 (2010) 914–919.

    Article  ADS  Google Scholar 

  15. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M.J. Martin, L. Chen and J. Ye, A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nature Photon., 6 (2012) 687–692.

    Article  ADS  Google Scholar 

  16. D. Świerad, S. Häfner, S. Vogt, B. Venon, D. Holleville, S. Bize, A. Kulosa, S. Bode, Y. Singh, K. Bongs and E.M. Rasel, Ultra-stable clock laser system development towards space applications. Sci. Rep., 6 (2016) 33973.

    Article  ADS  Google Scholar 

  17. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley and H. Ward, Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B, 31 (1983) 97–105.

    Article  ADS  Google Scholar 

  18. A. O’Keefe and D.A.G. Deacon, Cavity ring-down spectrometer for absorption measurements using pulsed laser sources. Rev. Sci. Instrum., 59 (1988) 2544–2551.

    Article  ADS  Google Scholar 

  19. W.M. Itano, J.C. Bergquist, J.J. Bollinger, J.M. Gilligan, D.J. Heinzen, F.L. Moore, M.G. Raizen and D.J. Wineland, Quantum projection noise: Population fluctuation in two-level systems. Phys. Rev. A, 47 (1993) 3554–3570.

    Article  ADS  Google Scholar 

  20. N. Ohmae, M. Takamoto, Y. Takahashi, M. Kokubun, K. Araki, A. Hinton, I. Ushijima, T. Muramatsu, T. Furumiya, Y. Sakai, N. Moriya, N. Kamiya, K. Fujii, R. Muramatsu, T. Shiimado and H. Katori, Transportable strontium optical lattice clocks operated outside laboratory at the level of 10–18 uncertainty. Adv. Quantum Technol., 4 (2021) 2100015.

    Article  Google Scholar 

  21. L.S. Ma, P. Jungner, J. Ye and J.L. Hall, Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path. Opt. Lett., 19 (1994) 1777–1779.

    Article  ADS  Google Scholar 

  22. S.M. Foreman, K.W. Holman, D.D. Hudson, D.J. Jones and J. Ye, Remote transfer of ultrastable frequency references via fiber networks. Rev. Sci. Instrum., 78 (2007) 021101.

    Article  ADS  Google Scholar 

  23. N.R. Newbury, P.A. Williams and W.C. Swan, Coherent transfer of an optical carrier over 251 km. Opt. Lett., 32 (2007) 3056–3058.

    Article  ADS  Google Scholar 

  24. S.T. Dawkins, J.J. McFerran and A.N. Luiten, Considerations on the measurement of the stability of oscillators with frequency counters. IEEE Trans. Ultrason. Ferroelectr. Frequency Control, 54 (2007) 918–925.

    Article  Google Scholar 

Download references

Acknowledgements

Sandip Kumar Ghosh is grateful to university grants commission (UGC) for providing fellowship for this research work. Manoj Das is grateful to CSIR-National Physical Laboratory for providing support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S.K., Panja, S. & Das, M. A Laser Based Universal Oscillator for Next Generation Optical Frequency Standards. MAPAN 38, 641–649 (2023). https://doi.org/10.1007/s12647-023-00651-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-023-00651-z

Keywords

Navigation