Skip to main content
Log in

Constructing highly safe and long-life calcium ion batteries based on hydratedvanadium oxide cathodes featuring a pillar structure

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Calcium-ion batteries (CIBs) have generated intense interest due to the growing demand for safer, cheaper, and large-scale energy storage systems. However, their development is still in its infancy, owing to the lack of suitable cathodes for sustaining reversible Ca2+ intercalation/deintercalation. Herein, layered H2V3O8 (HVO) with Zn2+ pre-insertion (ZHVO) is reported as a high-rate and highly durable cathode material for CIBs. The existence of Zn2+ and H2O pillars could expand the interlayer spacing up to 1.8 nm, which is favorable for the diffusion of bulky Ca2+. The formation of Zn–O bonds facilitates electron transfer and enhances electrical conduction. Consequently, the ZHVO cathode achieves superior capacity performance (213.9 mAh·g−1 at 0.2 A·g−1) and long lifespan (78.3% for 1,000 cycles at 5 A·g−1) compared to pristine HVO. Density functional theory (DFT) calculations revealed that Zn2+ moved during Ca2+ intercalation, thereby reducing the diffusion energy barrier and facilitating Ca2+ diffusion. Finally, a safe aqueous calcium ion cell was successfully assembled.

Graphical abstract

摘要 (Chinese abstract)

由于对更安全、更廉价的大规模储能系统的需求日益增长, 钙离子电池 (CIBs) 引起了人们的浓厚兴趣。然而, 由于缺乏合适的阴极来维持 Ca2+ 的可逆嵌入/脱出, 钙离子电池的发展仍处于起步阶段。在此, 研究人员报告了预嵌 Zn2+ 的层状 H2V3O8 (ZHVO), 它是一种用于 CIB 的高速率、高耐久性阴极材料。Zn2+ 和 H2O 支柱的存在可将层间距扩大到 1.8 nm, 有利于大半径 Ca2+ 的扩散。另外, Zn–O 键的形成促进了电子转移并增强了导电性。因此, 与原始 HVO 相比, ZHVO 阴极实现了更高的比容量 (213.9 mAh·g−1 @ 0.2 A·g−1) 和更长的寿命 (78.3% for 1000 cycles @ 5 A·g−1) 。DFT 计算显示, Zn2+ 在 Ca2+ 嵌入过程中移动, 降低了扩散能垒, 促进了 Ca2+ 扩散。最后, 使用ZHVO作为阴极材料成功组装了一个高度安全的全水钙离子电池。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arroyo-de Dompablo ME, Ponrouch A, Johansson P, Palacín M R. Achievements, challenges, and prospects of calcium batteries. Chem Rev. 2019;120(14):6331. https://doi.org/10.1021/acs.chemrev.9b00339.

  2. Liu C, Qiu XY, Liu Y, He XJ, Chen ZQ, Liu MD. Research status and prospects of physical separation technology of spent lithium-ion batteries. Chin J Rare Met. 2021;45(4):493. https://doi.org/10.13373/j.cnki.cjrm.xy19080040.

  3. Stievano L, de Meatza I, Bitenc J, Cavallo C, Brutti S, Navarra MA. Emerging calcium batteries. J Power Sources. 2021;482:228875. https://doi.org/10.1016/j.jpowsour.2020.228875.

  4. Ji BF, He HY., Yao WJ, Tang YB. Recent advances and perspectives on calcium‐ion storage: key materials and devices. Adv Mater. 2020;33(2):2005501. https://doi.org/10.1002/adma.202005501.

  5. Adil M, Dutta PK, Mitra S. An aqueous Ca-ion full cell comprising BaHCF cathode and MCMB anode. Chem Select. 2018;3(13):3687. https://doi.org/10.1002/slct.201800419.

  6. Lipson AL, Pan B, Lapidus SH, Liao C, Vaughey JT, Ingram BJ. Rechargeable Ca-ion batteries: a new energy storage system. Chem Mater. 2015;27(24):8442. https://doi.org/10.1021/acs.chemmater.5b04027.

  7. Du CY, Zhang ZH, Li XL, Luo RJ, Ma C, Bao J, Zeng J, Xu X, Wang F, Zhou YN. Enhancing structural and cycle stability of Prussian blue cathode materials for calcium-ion batteries by introducing divalent Fe. Chem Eng J. 2023;451:138650. https://doi.org/10.1016/j.cej.2022.138650.

  8. Zuo CL, Xiong FY, Wang JJ, An YK, Zhang L, An QY. MnO2 polymorphs as cathode materials for rechargeable Ca-ion batteries. Adv Funct Mater. 2022;32(33):2202975. https://doi.org/10.1002/adfm.202202975.

  9. Kim S, Yin L, Bak SM, Fister TT, Park H, Parajuli P, Gim J, Yang Z, Klie RF, Zapol P, Du Y, Lapidus SH, Vaughey JT. Investigation of Ca insertion into α-MoO3 nanoparticles for high capacity Ca-ion cathodes, Nano Lett. 2022;22(6):2228. https://doi.org/10.1021/acs.nanolett.1c04157.

  10. Xu ZL, Park J, Wang J, Moon H, Yoon G, Lim J, Ko Y, Cho S, Lee SY, Kang K. A new high-voltage calcium intercalation host for ultra-stable and high-power calcium rechargeable batteries. Nat Commun. 2021;12(1):3369. https://doi.org/10.1038/s41467-021-23703-x.

  11. Lipson AL, Kim S, Pan BF, Liao C, Fister TT, Ingram BJ, Brian J. Calcium intercalation into layered fluorinated sodium iron phosphate. J Power Sources. 2017;369:133. https://doi.org/10.1016/j.jpowsour.2017.09.081.

    Article  CAS  Google Scholar 

  12. Chen CH, Shi FY, Zhang SS, Su YQ, Xu ZL. Ultrastable and high energy calcium rechargeable batteries enabled by calcium intercalation in a nasicon cathode, Small. 2022;18(14):2107853. https://doi.org/10.1002/smll.202107853.

  13. Murata Y, Minami R, Takada S, Aoyanagi K, Tojo T, Inada R, Sakurai Y. A fundamental study on carbon composites of FeF3·0.33H2O as open-framework cathode materials for calcium-ion batteries. AIP Conference Proceedings. 2017;1807. https://doi.org/10.1063/1.4974787.

  14. Hayashi M, Arai H, Ohtsuka H, Sakurai Y. Electrochemical characteristics of calcium in organic electrolyte solutions and vanadium oxides as calcium hosts. J Power Sources. 2003;119:617. https://doi.org/10.1016/s0378-7753(03)00307-0.

  15. Wang JJ, Wang JX, Jiang YL, Xiong FY, Tan SS, Qiao F, Chen JH, An QY, Mai LQ. CaV6O16·2.8H2O with Ca2+ pillar and water lubrication as a high‐rate and long-life cathode material for Ca‐ion batteries. Adv Funct Mater. 2022;32:2113030. https://doi.org/10.1002/adfm.202113030.

  16. Chae MS, Setiawan D, Kim HJ, Hong ST. Layered iron vanadate as a high-capacity cathode material for nonaqueous calcium-ion batteries. Batteries. 2021;7(3):54. https://doi.org/10.3390/batteries7030054.

  17. Xu XM, Duan MY, Yue YF, Li Q, Zhang X, Wu L, Wu PJ, Song B, Mai LQ. Bilayered Mg0.25V2O5·H2O as a stable cathode for rechargeable Ca-ion batteries. ACS Energy Lett. 2019;4(6):1328. https://doi.org/10.1021/acsenergylett.9b00830.

  18. Jeon B, Kwak HH, Hong ST. Bilayered Ca0.28V2O5·H2O: high-capacity cathode material for rechargeable Ca-ion batteries and its charge storage mechanism. Chem Mater. 2022;34(4):1491. https://doi.org/10.1021/acs.chemmater.1c02774.

  19. Li ZY, Vinayan BP, Jankowski P, Njel C, Roy A, Vegge T, Maibach J, Lastra JMG, Fichtner M, Zhao‐Karger ZR. Multi-electron reactions enabled by anion‐based redox chemistry for high-energy multivalent rechargeable batteries. Angewandte Chemie International Edition. 2020;59(28):11483. https://doi.org/10.1002/anie.202002560.

  20. Chae MS, Heo JW, Hyoung J, Hong ST. Double-sheet vanadium oxide as a cathode material for calcium-ion batteries. ChemNanoMat. 2020;6(7):1049. https://doi.org/10.1002/cnma.202000011.

    Article  CAS  Google Scholar 

  21. Vo TN, Kim H, Hur J, Choi W, Kim IT. Surfactant-assisted ammonium vanadium oxide as a superior cathode for calcium-ion batteries. J Mater Chem A. 2018;6(45):22645. https://doi.org/10.1039/c8ta07831a.

  22. Aniruddha SL, Kevin B., Varad M., Reena AP, Shyam S, Koratkar N. Reversible and rapid calcium intercalation into molybdenum vanadium oxides. Proceedings of the National Academy of Sciences. 2022;119(30):1. https://doi.org/10.1073/pnas.

  23. Zhang T, Wu XW, Jiang JB, Xiang YH, Zhu L, Wu XM. Energy storage mechanism, issue and modification strategies of vanadium-based cathode materials for aqueous zinc ion batteries. Chin J Rare Met. 2023;47(3):399. https://doi.org/10.13373/j.cnki.cjrm.XY21040028.

  24. Ren HZ, Zhang J, Wang B, Luo H, Jin F, Zhang TR, Ding A, Cong BW, Wang DL. A V2O3@N-C cathode material for aqueous zinc-ion batteries with boosted zinc-ion storage performance. Rare Met. 2022;41(5):1605. https://doi.org/10.1007/s12598-021-01892-0.

  25. Larson AC, Von Dreele RB. GSAS, Generalized structural analysis system. Document LAUR 86–748, Los Alamos National Laboratory, Los Alamos, New Mexico, 1993.

  26. Kundu D, Adams BD, Duffort V, Vajargah SH, Nazar LF. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nature Energy. 2016;1(10):16119. https://doi.org/10.1038/nenergy.2016.119.

  27. Su ZH, Wang RH, Huang JH, Sun R, Qin ZX, Zhang YF, Fan HS. Silver vanadate (Ag0.33V2O5) nanorods from Ag intercalated vanadium pentoxide for superior cathode of aqueous zinc-ion batteries. Rare Met. 2022;41(8):2844. https://doi.org/10.1007/s12598-022-02026-w.

  28. Tang H, Xu N, Pei CY, Xiong FY, Tan SS, Luo W, An QY, Mai LQ. H2V3O8 nanowires as high-capacity cathode materials for magnesium-based battery. ACS Appl Mater Interfaces. 2017;9(34):28667. https://doi.org/10.1021/acsami.7b09924.

  29. Zhou XW, Wu GM, Gao GH, Cui CJ, Yang HY, Shen J, Zhou B, Zhang ZH. The synthesis, characterization and electrochemical properties of multi-wall carbon nanotube-induced vanadium oxide nanosheet composite as a novel cathode material for lithium ion batteries. Electrochimica Acta. 2012;74:32. https://doi.org/10.1016/j.electacta.2012.03.178.

  30. Li R, Liu CY, VO2(B) nanospheres: hydrothermal synthesis and electrochemical properties. Mater Res Bull. 2010;45(6):688. https://doi.org/10.1016/j.materresbull.2010.02.021.

  31. Rama N, Ramachandra Rao MS. Synthesis and study of electrical and magnetic properties of vanadium oxide micro and nanosized rods grown using pulsed laser deposition technique. Solid State Commun. 2010;150(23–24):1041. https://doi.org/10.1016/j.ssc.2010.01.049.

  32. He P, Quan YL, Xu X, Yan MY, Yang W, An QY, He L, Mai LQ. High-performance aqueous zinc-ion battery based on layered H2V3O8 nanowire cathode. Small. 2017;13(47):1702551. https://doi.org/10.1002/smll.201702551.

  33. Leea SH, Cheongb HM, Seonga MJ, Liua P, Tracya CE, Mascarenhasa A, Pittsa JR, Deb SK. Raman spectroscopic studies of amorphous vanadium oxide thin films. Solid State Ionics. 2003;165(1–4):111. https://doi.org/10.1016/j.ssi.2003.08.022.

  34. Wang D, Wei QL, Sheng JZ, Hu P, Yan MY, Sun RM, Xu XM, An QY, Mai LQ. Flexible additive free H2V3O8 nanowire membrane as cathode for sodium ion batteries. Phys Chem Chem Phys. 2016;18(17):12074. https://doi.org/10.1039/c6cp00745g.

  35. Sun DF, Wang ZJ, Tian T, Yu X, Yu DD, Zhou XZ, Ma GF, Lei ZQ. Constructing oxygen deficiency-rich V2O3@PEDOT cathode for high-performance aqueous zinc-ion batteries. Rare Met. 2023. https://doi.org/10.1007/s12598-023-02434-6.

  36. Koketsu T, Ma J, Morgan BJ, Body M, Legein C, Dachraoui W, Giannini M, Demortière A, Salanne M, Dardoize F, Groult H, Borkiewicz OJ, Chapman KW, Strasser P, Dambournet D. Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nat Mater. 2017;16(11):1142. https://doi.org/10.1038/nmat4976.

  37. Wang W, Jiang B, Hu LW, Lin ZS, Hou JG, Jiao SQ. Single crystalline VO2 nanosheets: a cathode material for sodium-ion batteries with high rate cycling performance. J Power Sources. 2014;250:181. https://doi.org/10.1016/j.jpowsour.2013.11.016.

  38. Kuhn A, Pérez Flores JC, Prado Gonjal J, Morán E, Hoelzel M, Díez Gómez V, Sobrados I, Sanz J, García Alvarado F. Lithium intercalation mechanism and critical role of structural water in layered H2V3O8 high-capacity cathode material for lithium-ion batteries. Chem Mater. 2022;34(2):694. https://doi.org/10.1021/acs.chemmater.1c03283.

  39. Wu T, Zhu KY, Qin CY, Huang K. Unraveling the role of structural water in bilayer V2O5 during Zn2+-intercalation: insights from DFT calculations. J Mater Chem A. 2019;7:5612. https://doi.org/10.1039/C8TA12014E.

    Article  CAS  Google Scholar 

  40. Wang XK, Zhang XX, Zhao G, Hong H, Tang ZJ, Xu XJ, Li HF, Zhi CY, Han CP. Ether–water hybrid electrolyte contributing to excellent Mg ion storage in layered sodium vanadate. ACS Nano. 2022;16(4):6093. https://doi.org/10.1021/acsnano.1c11590.

  41. He Q, Yu B, Li ZH, Zhao Y. Density functional theory for battery materials. Energy Environ Mater. 2019;2(4):264. https://doi.org/10.1002/eem2.12056.

  42. Chen M, Zhang SC, Zou ZG, Zhong SL, Ling WQ, Geng J, Liang FA, Peng XX, Gao Y, Yu FG. Review of vanadium-based oxide cathodes as aqueous zinc-ion batteries. Rare Met. 2023;42(9):2868. https://doi.org/10.1007/s12598-023-02303-2.

  43. Zhu ZX, Lin ZW, Sun ZW, Zhang PX, Li CP, Dong R, Mi HW. Deciphering H+/Zn2+ co-intercalation mechanism of MOF-derived 2D MnO/C cathode for long cycle life aqueous zinc-ion batteries. Rare Met. 2022;41(11):3729. https://doi.org/10.1007/s12598-022-02088-w.

    Article  CAS  Google Scholar 

  44. Ba DL, Gui QY, Liu WY, Wang Z, Li YY, Liu JP. Robust cathode-ether electrolyte interphase on interfacial redox assembled fluorophosphate enabling high-rate and ultrastable sodium ion full cells. Nano Energy. 2022;94:106918. https://doi.org/10.1016/j.nanoen.2022.106918.

  45. Yoshiaki M, Shoki T, Tomohiro O, Tomohiro T, Ryoji I, Sakurai Y. Effect of water in electrolyte on the Ca2+ insertion/extraction properties of V2O5. Electrochim Acta. 2019;294:210. https://doi.org/10.1016/j.electacta.2018.10.103.

  46. Dong LW, Xu RG, Wang PP, Sun SC, Li Y, Zhen L, Xu CY. Layered potassium vanadate K2V6O16 nanowires: a stable and high capacity cathode material for calcium-ion batteries. J Power Sources. 2020;479:228793. https://doi.org/10.1016/j.jpowsour.2020.228793.

  47. Wang JJ, Tan SS, Xiong FY, Yu RH, Wu PP, Cui LM, An QY. VOPO4·2H2O as a new cathode material for rechargeable Ca-ion batteries. Chem Commun. 2020;56(26):3805. https://doi.org/10.1039/d0cc00772b.

  48. Liu LY, Wu YC, Rozier P, Taberna PL, Simon P. Ultrafast synthesis of calcium vanadate for superior aqueous calcium-ion battery. Research. 2019;2019:6585686. https://doi.org/10.34133/2019/6585686.

  49. Li ZY, Vinayan BP, Jankowski P, Njel C, Roy A, Vegge T, Maibach J, Lastra JMG, Fichtner M, Zhao‐Karger ZR, Multi‐electron reactions enabled by anion‐based redox chemistry for high‐energy multivalent rechargeable batteries. Angewandte Chemie International Edition. 2020;59(28):11483. https://doi.org/10.1002/anie.202002560.

  50. Wang M, Jiang CL, Zhang SQ, Song XH, Tang YB, Cheng HM. Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat Chem. 2018;10(6):667. https://doi.org/10.1038/s41557-018-0045-4.

  51. Hyoung J, Heo JW, Hong ST, Investigation of electrochemical calcium-ion energy storage mechanism in potassium birnessite. J Power Sources. 2018;390:127. https://doi.org/10.1016/j.jpowsour.2018.04.050.

  52. Murata Y, Minami R, Takada S, Aoyanagi K, Tojo T, Inada R, Sakurai Y. A fundamental study on carbon composites of FeF3·0.33H2O as open-framework cathode materials for calcium-ion batteries. In: Proceedings of the AIP Conference Proceedings. Tokyo; 2017.1807.

  53. Cabello M, Nacimiento F, González JR, Ortiz G, Alcántara R, Lavela P, Pérez Vicente C, Tirado JL. Advancing towards a veritable calcium-ion battery: CaCo2O4 positive electrode material. Electrochem Commun. 2016;67:59. https://doi.org/10.1016/j.elecom.2016.03.016.

  54. Gheytani S, Liang YL, Wu FL, Jing Y, Dong H, Rao KK, Chi XW, Fang F, Yao Y. An aqueous Ca‐ion battery. Adv Sci. 2017;4(12):1700465. https://doi.org/10.1002/advs.201700465.

  55. Wang PP, Wang H, Chen Z, Wu JW, Luo JT, Huang Y. Flexible aqueous Ca-ion full battery with super-flat discharge voltage plateau. Nano Res. 2021;15(1):701. https://doi.org/10.1007/s12274-021-3550-5.

  56. Wei Ql, Li Qd, Jiang YL, Zhao YL, Tan SS, Dong J, Mai LQ, Peng DL. High-energy and high-power pseudocapacitor-battery hybrid sodium-ion capacitor with Na+ intercalation pseudocapacitance anode. Nano Micro Lett. 2021;13(1):55. https://doi.org/10.1007/s40820-020-00567-2.

  57. Deiss E. Spurious chemical diffusion coefficients of Li+ in electrode materials evaluated with GITT. Electrochim Acta. 2005;50(14):2927. https://doi.org/10.1016/j.electacta.2004.11.042.

  58. Liu CF, Nea.e Z, Zheng JQ, Jia XX, Huang JJ, Yan MY, Tian M, Wang MS, Yang JH, Cao GZ. Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ Sci. 2019;12(7):2273. https://doi.org/10.1039/C9EE00956F.

Download references

Acknowledgements

This study was financially supported by the Open Research Found of Songshan Lake Materials Laboratory (No. 2021SLABFN04), National Natural Science Foundation of China (Nos. 22109134 and 52171025), Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515010920), the Outstanding Youth Basic Research Project of Shenzhen (No. RCYX20221008092934093). The High-Performance Computing Center of Central South University assists with the computation parts. The TEM work used the resources of the Analyses and Testing Center at the Dongguan University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Liu, Jian-Chuan Wang or Cui-Ping Han.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 17197 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, CF., Zhang, SW., Huang, L. et al. Constructing highly safe and long-life calcium ion batteries based on hydratedvanadium oxide cathodes featuring a pillar structure. Rare Met. 43, 2597–2612 (2024). https://doi.org/10.1007/s12598-023-02613-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02613-5

Keywords

Navigation