Skip to main content
Log in

Degradation assessment of a single junction InP solar cell under 1 MeV electron irradiation effect

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Energetic particles, such as protons and electrons, play a crucial role in causing significant degradation in the efficiency of solar cells powering satellites and spacecraft. This degradation primarily stems from damages inflicted upon the crystal lattice within the active area of the device. This study investigates the immunity behavior of a single-junction InP solar cell to radiation effects using a 1D numerical simulation. By assuming an air mass zero spectrum along the path and a fluency rate of 1 MeV electrons, the solar cell’s J–V characteristics are computed. Various energy levels of defects within the InP energy gap are considered. The findings reveal that the principal factor contributing to the solar cell's performance degradation is the reduction in the minority carrier lifetime, along with contributions from series and shunt resistances that limit the device’s current capabilities due to displacement damages induced by irradiation. In this context, the advantages of utilizing InP, a direct bandgap semiconductor, as a radiation-resistant material for solar cells are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Figure. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.W. Bett, F. Dimroth, W. Guter, R. Hoheisel, E. Oliva, S.P. Philipps, E. Welser, Highest efficiency multi-junction solar cell for terrestrial and space applications. Space 25(258), 30–36 (2009). https://doi.org/10.4229/24thEUPVSEC2009-1AP.1.1

    Article  Google Scholar 

  2. R. Hoheisel, F. Dimroth, A.W. Bett, S.R. Messenger, P.P. Jenkins, R.J. Walters, Electroluminescence analysis of irradiated GaInP/GaInAs/Ge space solar cells. Sol. Energy Mater. Sol. Cells 108, 235–240 (2013). https://doi.org/10.1016/j.solmat.2012.06.015

    Article  Google Scholar 

  3. M. Yamaguchi, K.H. Lee, K. Araki, N. Kojima, Y. Okuno, M. Imaizumi, Analysis for nonradiative recombination loss and radiation degradation of Si space solar cells. Prog. Photovolt. Res. Appl. 29(1), 98–108 (2021). https://doi.org/10.1002/pip.3346

    Article  Google Scholar 

  4. M. Yamaguchi, Radiation-resistant solar cells for space use. Sol. Energy Mater. Sol. Cells 68(1), 31–53 (2001). https://doi.org/10.1016/S0927-0248(00)00344-5

    Article  Google Scholar 

  5. H. Bencherif, L. Dehimi, F. Pezzimenti, A. Yousfi, M.A. Abdi, L. Saidi, F.G. Della Corte, Improved InxGa1_xP/GaAs/Ge tandem solar cell using light trapping engineering and multi-objective optimization approach. Optik 223, 165346 (2020). https://doi.org/10.1016/j.ijleo.2020.165346

    Article  ADS  Google Scholar 

  6. A. Yousfi, H. Bencherif, L. Dehimi, F. Pezzimenti, L. Saidi, M. A. Abdi, D. Khezzar, Possible efficiency boosting of tandem solar cell by using single antireflection coating and BSF layer. in 2019 1st International Conference on Sustainable Renewable Energy Systems and Applications (ICSRESA) (IEEE), pp. 1–4 (2019). https://doi.org/10.1109/ICSRESA49121.2019.9182619

  7. H.S. Rauschenbach, Solar Cell Array Design Handbook: The Principles and Technology of Photovoltaic Energy Conversion (Springer Science & Business Media, Berlin, 2012)

    Google Scholar 

  8. J. Zhang et al., Recent progress in indium phosphide solar cells: characteristics, materials, and devices. Sol. Energy Mater. Sol. Cells 187, 78–89 (2018)

    Google Scholar 

  9. D.S.P. Tanner et al., Radiation damage in indium phosphide solar cells. IEEE Trans. Nucl. Sci. 61(6), 3294–3299 (2014)

    Google Scholar 

  10. A. Martí, A. Luque, Recent advances in photovoltaics. Mater. Today 8(6), 26–33 (2005)

    Google Scholar 

  11. H.K. Kim et al., Impact of deep-level defects on the performance of InP solar cells under 1 MeV electron irradiation. Sol. Energy Mater. Sol. Cells 128, 14–19 (2014)

    Google Scholar 

  12. M. Burgelman, K. Decock, A. Niemegeers, J. Verschraegen, S. Degrave, SCAPS Manual, Version (2018)

  13. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, Hoboken, 2006)

    Book  Google Scholar 

  14. P.R. Sharps, M.L. Timmons, S.R. Messenger, H.L. Cotal, G.P. Summers, P.A. lles, Development of P/N and N/P Thick Emitter InP Solar Cells, 25th PVSC; May 13–17, Washington, D.C (EEE, 1996). https://doi.org/10.1109/PVSC.1996.563975.

  15. T. Bendib, H. Bencherif, M.A. Abdi, F. Meddour, L. Dehimi, M. Chahdi, Combined optical-electrical modeling of perovskite solar cell with an optimized design. Opt. Mater. 109, 110259 (2020). https://doi.org/10.1016/j.optmat.2020.110259

    Article  Google Scholar 

  16. H. Bencherif, Towards a high efficient Cd-free double CZTS layers kesterite solar cell using an optimized interface band alignment. Sol. Energy 238, 114–125 (2022). https://doi.org/10.1016/j.solener.2022.04.040

    Article  ADS  Google Scholar 

  17. M. Khalid Hossain, A. Arnab, D.P. Samajdar, M.H.K. Rubel, M.M. Hossain, Md. Rasidul Islam, R.C. Das, H. Bencherif, Md. Ferdous Rahman, J. Madan, R. Pandey, S. Bhattarai, M. Amami, D.K. Dwivedi, Design insights into La2NiMnO6-based perovskite solar cells employing different charge transport layers: DFT and SCAPS-1D frameworks. Energy Fuels 37(17), 13377–13396 (2023)

    Article  Google Scholar 

  18. M. Mammeri, L. Dehimi, H. Bencherif, F. Pezzimenti, Paths towards high perovskite solar cells stability using machine learning techniques. Sol. Energy 249, 651–660 (2023). https://doi.org/10.1016/j.solener.2022.12.002

    Article  ADS  Google Scholar 

  19. H.F.A. Amir, F.P. Chee, Characterization of proton irradiation effect in semiconductor material. Int. J. Appl. Phys. Math. 3(5), 341 (2013). https://doi.org/10.7763/IJAPM.2013.V3.233

    Article  Google Scholar 

  20. W.E. Spicer, I. Lindau, P.E. Gregory, C.M. Garner, P. Pianetta, P.W. Chye, Synchrotron radiation studies of electronic structure and surface chemistry of GaAs, GaSb, and InP. J. Vac. Sci. Technol. 13(4), 780–785 (1976). https://doi.org/10.1116/1.568989

    Article  ADS  Google Scholar 

  21. J.K. Luo, H. Thomas, N.M. Pearsall, Electrical characterization of 1MeV electron irradiated ITO/InP structures. in LEOS 1992 Summer Topical Meeting Digest on Broadband Analog and Digital Optoelectronics, Optical Multiple Access Networks, Integrated Optoelectronics, and Smart Pixels (IEEE), pp. 589–592 (2001). https://doi.org/10.1109/ICIPRM.1992.235618.

  22. H. Mazouz, A. Belghachi, P. O. Logerais, Effect of solar cell structure on the radiation resistance of an InPsolar cell. in E3S Web of Conferences, vol 191 (REEE, 2020), p. 01005. https://doi.org/10.1051/e3sconf/202019101005

  23. A. Jasenek, U. Rau, Defect generation in Cu (In, Ga) Se2 heterojunction solar cells by high-energy electron and proton irradiation. J. Appl. Phys. 90(2), 650–658 (2001). https://doi.org/10.1063/1.1379348

    Article  ADS  Google Scholar 

  24. S.J. Taylor, S.I. Kim, M. Yamaguchi et al., Comparison of the effects of electronand proton irridiation on n+–p–p+ silicon diodes. J. Appl. Phys. 83(9), 4620–4627 (1998). https://doi.org/10.1063/1.367246

    Article  ADS  Google Scholar 

  25. K. Medjoubi, J. Lefèvre, L. Vauche, E. Veinberg-Vidal, C. Jany, C. Rostaing, R. Cariou, Electrons irradiation of III–V//Si solar cells for NIRT conditions. Solar Energy Mater. Solar Cells 223, 110975 (2021). https://doi.org/10.1016/j.solmat.2021.110975

    Article  Google Scholar 

  26. X.B. Shen, A. Aierken, M. Heini, J.H. Mo, Q.Q. Lei, X.F. Zhao, Q. Guo, Degradation analysis of 1 MeV electron and 3 MeV proton irradiated InGaAs single junction solar cell. AIP Adv. 9(7), 075205 (2019). https://doi.org/10.1063/1.5094472

    Article  ADS  Google Scholar 

  27. V. Rosaria, V. Romano, G. Brunetti, N. Yaghoobi Nia, A. Di Carlo, G. D’Angelo, C. Ciminelli, Solar energy in space applications: review and technology perspectives. Adv. Energy Mater. 12(29), 2200125 (2022). https://doi.org/10.1002/aenm.202200125

    Article  Google Scholar 

  28. S. Shuxiang, P. Ding, Z. Jin, Y. Zhong, Y. Li, Z. Wei, Effect of electron irradiation fluence on InP-based high electron mobility transistors. Nanomaterials 9(7), 967 (2019). https://doi.org/10.3390/nano9070967

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by DGRSDT of Ministry of Higher education of Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Bencherif.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bencherif, H. Degradation assessment of a single junction InP solar cell under 1 MeV electron irradiation effect. J Opt (2024). https://doi.org/10.1007/s12596-024-01749-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01749-6

Keywords

Navigation