Skip to main content
Log in

Oscillatoria sancta Cultivation Using Fruit and Vegetable Waste Formulated Media and Its Potential as a Functional Food: Assessment of Cultivation Optimization

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The most cost-effective technique to cultivate microalgae is with low-cost resources, like fruit and vegetable peels. This study examined the viability of culturing microalgae (Oscillatoria sancta PCC 7515) isolated from a waterlogged region of Punjab, India, in a low-cost medium (fruit and vegetable waste peels) for pharmaceutical use. 16S rRNA sequencing discovered O. sancta PCC 7515. Fruit and vegetable peels were mineralized and chemically analyzed. At a 5% Bacillus flexus concentration, fruit and vegetable peels were liquefied at room temperature for 24 h. Response Surface Methodology (RSM) was used to assess and improve important cultural variables. The RSM predicted the best results at 10 pH, 30 days of incubation, 5% inoculum concentration, and 5% fruit and vegetable waste liquid leachate. The optimum conditions yielded more biomass than the basal conditions (0.8001 g/L). O. sancta PCC 7515 produced more lipids, proteins, Chl a, and Chl b in a formulated alternate medium than standard media. This study shows that O. sancta PCC 7515 may thrive on fruit and vegetable peel media. Fruit and vegetable waste (FVW) media assure low-cost microalgae-based functional foods.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Garg, D., Dar, R. A., & Phutela, U. G. (2022). Characterization of novel euryhaline microalgal cultures from Punjab, India for bioactive compounds. Archives of Microbiology, 204(7), 370.

    Article  CAS  PubMed  Google Scholar 

  2. Adeniyi, O. M., Azimov, U., & Burluka, A. (2018). Algae biofuel: Current status and future applications. Renewable and Sustainable Energy Reviews, 90, 316–335.

    Article  Google Scholar 

  3. Martins, R., Sales, H., Pontes, R., Nunes, J., & Gouveia, I. (2023). Food wastes and microalgae as sources of bioactive compounds and pigments in a modern biorefinery: A review. Antioxidants, 12(2), 328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. de Medeiros, V. P. B., Pimentel, T. C., Varandas, R. C. R., Dos Santos, S. A., de Souza Pedrosa, G. T., da Costa Sassi, C. F., da Conceição, M. M., & Magnani, M. (2020). Exploiting the use of agro-industrial residues from fruit and vegetables as alternative microalgae culture medium. Food Research International, 137, 109722.

    Article  PubMed  Google Scholar 

  5. Lau, K. Y., Pleissner, D., & Lin, C. S. K. (2014). Recycling of food waste as nutrients in Chlorella vulgaris cultivation. Bioresource Technology, 170, 144–151.

    Article  CAS  PubMed  Google Scholar 

  6. Rifna, E. J., Misra, N. N., & Dwivedi, M. (2023). Recent advances in extraction technologies for recovery of bioactive compounds derived from fruit and vegetable waste peels: A review. Critical Reviews in Food Science and Nutrition, 63(6), 719–752.

    Article  CAS  PubMed  Google Scholar 

  7. Passos, L. S., de Freitas, P. N. N., Menezes, R. B., de Souza, A. O., Silva, M. F. D., Converti, A., & Pinto, E. (2023). Content of lipids, fatty acids, carbohydrates, and proteins in continental cyanobacteria: A systematic analysis and database application. Applied Sciences, 13(5), 3162.

    Article  CAS  Google Scholar 

  8. Sharma, R., Nath, P. C., Pabbi, S., Bandyopadhyay, T. K., Vanitha, K., Mahata, N., Bhunia, B., & Tiwari, O. N. (2022). Production of Oscillatoria sp. BTA-170 biomass in photobioreactor: Analysis of composition, drying behavior, sorption isotherm, and powder flow characteristics. Journal of Food Process Engineering, 45(10), e14044.

    Article  CAS  Google Scholar 

  9. Siddiki, S. Y. A., Mofijur, M., Kumar, P. S., Ahmed, S. F., Inayat, A., Kusumo, F., Badruddin, I. A., Khan, T. Y., Nghiem, L. D., Ong, H. C., & Mahlia, T. M. I. (2022). Microalgae biomass as a sustainable source for biofuel, biochemical and biobased value-added products: An integrated biorefinery concept. Fuel, 307, 121782.

    Article  CAS  Google Scholar 

  10. Usmani, Z., Sharma, M., Diwan, D., Tripathi, M., Whale, E., Jayakody, L. N., Moreau, B., Thakur, V. K., Tuohy, M., & Gupta, V. K. (2022). Valorization of sugar beet pulp to value-added products: A review. Bioresource Technology, 346, 126580.

    Article  CAS  PubMed  Google Scholar 

  11. Al-Hamamre, Z., Saidan, M., Hararah, M., Rawajfeh, K., Alkhasawneh, H. E., & Al-Shannag, M. (2017). Wastes and biomass materials as sustainable-renewable energy resources for Jordan. Renewable and Sustainable Energy Reviews, 67, 295–314.

    Article  CAS  Google Scholar 

  12. Singh, D. N., Tripathi, M., Singh, V. S., Singh, R., Gaur, R., & Pathak, N. (2022). Management of agriculture waste: Bioconversion of agro-waste into valued products. Bioremediation: Challenges and advancements (pp. 224–253). Singapore: Bentham Science Publisher.

    Chapter  Google Scholar 

  13. Ali, S., Peter, A. P., Chew, K. W., Munawaroh, H. S. H., & Show, P. L. (2021). Resource recovery from industrial effluents through the cultivation of microalgae: A review. Bioresource Technology, 337, 125461.

    Article  CAS  PubMed  Google Scholar 

  14. Stiles, W. A., Styles, D., Chapman, S. P., Esteves, S., Bywater, A., Melville, L., Silkina, A., Lupatsch, I., Grünewald, C. F., Lovitt, R., & Chaloner, T. (2018). Using microalgae in the circular economy to valorise anaerobic digestate: Challenges and opportunities. Bioresource Technology, 267, 732–742.

    Article  CAS  PubMed  Google Scholar 

  15. Rani, G. M., Pathania, D., Umapathi, R., Rustagi, S., Huh, Y. S., Gupta, V. K., Kaushik, A., & Chaudhary, V. (2023). Agro-waste to sustainable energy: A green strategy of converting agricultural waste to nano-enabled energy applications. Science of the Total Environment, 875, 162667.

    Article  PubMed  Google Scholar 

  16. Chong, J. W. R., Khoo, K. S., Yew, G. Y., Leong, W. H., Lim, J. W., Lam, M. K., Ho, Y. C., Ng, H. S., Munawaroh, H. S. H., & Show, P. L. (2021). Advances in production of bioplastics by microalgae using food waste hydrolysate and wastewater: A review. Bioresource Technology, 342, 125947.

    Article  CAS  PubMed  Google Scholar 

  17. Peter, A. P., Chew, K. W., Koyande, A. K., Munawaroh, H. S. H., Bhatnagar, A., Tao, Y., Sun, C., Sun, F., Ma, Z., & Show, P. L. (2023). Integrated microalgae culture with food processing waste for wastewater remediation and enhanced biomass productivity. Chinese Chemical Letters, 34(2), 107721.

    Article  CAS  Google Scholar 

  18. Dragone, G., Fernandes, B. D., Vicente, A. A., & Teixeira, J. A. (2010). Third generation biofuels from microalgae. In A. Mendez-Vilas (Ed.), Current research, technology and education topics in applied microbiology and microbial biotechnology (pp. 1315–1366). Formatex.

    Google Scholar 

  19. Acién, F. G., Molina, E., Fernández-Sevilla, J. M., Barbosa, M., Gouveia, L., Sepúlveda, C., Bazaes, J., & Arbib, Z. (2017). Economics of microalgae production. Microalgae-based biofuels and bioproducts (pp. 485–503). Woodhead Publishing.

    Chapter  Google Scholar 

  20. Sindhu, R., Gnansounou, E., Rebello, S., Binod, P., Varjani, S., Thakur, I. S., Nair, R. B., & Pandey, A. (2019). Conversion of food and kitchen waste to value-added products. Journal of Environmental Management, 241, 619–630.

    Article  PubMed  Google Scholar 

  21. Panda, S. K., Ray, R. C., Mishra, S. S., & Kayitesi, E. (2018). Microbial processing of fruit and vegetable wastes into potential biocommodities: A review. Critical Reviews in Biotechnology, 38(1), 1–16.

    Article  CAS  PubMed  Google Scholar 

  22. Dar, R. A. (2017). Bioprospects of microalgal isolates from waterlogged area of Punjab for biogas production. Punjab Agricultural University.

    Google Scholar 

  23. Singh, S. P., & Singh, P. (2015). Effect of temperature and light on the growth of algae species: A review. Renewable and Sustainable Energy Reviews, 50, 431–444.

    Article  CAS  Google Scholar 

  24. AOAC, B.A.M. (1990). Official methods of analysis, 12. Association of Official Analytical Chemists.

    Google Scholar 

  25. Abbott, J. A. (1999). Quality measurement of fruits and vegetables. Postharvest Biology and Technology, 15(3), 207–225.

    Article  Google Scholar 

  26. Di Marzo, L., Pranata, J., & Barbano, D. M. (2021). Measurement of casein in milk by Kjeldahl and sodium dodecyl sulfate–polyacrylamide gel electrophoresis. Journal of Dairy Science, 104(7), 7448–7456.

    Article  PubMed  Google Scholar 

  27. Pangsang, N., Rattanapan, U., Thanapimmetha, A., Srinopphakhun, P., Liu, C. G., Zhao, X. Q., Bai, F. W., & Sakdaronnarong, C. (2019). Chemical-free fractionation of palm empty fruit bunch and palm fiber by hot-compressed water technique for ethanol production. Energy Reports, 5, 337–348.

    Article  Google Scholar 

  28. Lam, S. S., Liew, R. K., Lim, X. Y., Ani, F. N., & Jusoh, A. (2016). Fruit waste as feedstock for recovery by pyrolysis technique. International Biodeterioration and Biodegradation, 113, 325–333.

    Article  CAS  Google Scholar 

  29. Pereira, L. M. S., Milan, T. M., & Tapia-Blácido, D. R. (2021). Using response surface methodology (RSM) to optimize 2G bioethanol production: A review. Biomass & Bioenergy, 151, 106166.

    Article  CAS  Google Scholar 

  30. Rahmat, S., Altowayti, W. A. H., Othman, N., Asharuddin, S. M., Saeed, F., Basurra, S., Eisa, T. A. E., & Shahir, S. (2022). Prediction of wastewater treatment plant performance using multivariate statistical analysis: A case study of a regional sewage treatment plant in Melaka, Malaysia. Water, 14(20), 3297.

    Article  CAS  Google Scholar 

  31. Ratha, S. K., Prasanna, R., Gupta, V., Dhar, D. W., & Saxena, A. K. (2012). Bioprospecting and indexing the microalgal diversity of different ecological habitats of India. World Journal of Microbiology & Biotechnology, 28, 1657–1667.

    Article  Google Scholar 

  32. Lai, W. T., Khong, N. M., Lim, S. S., Hee, Y. Y., Sim, B. I., Lau, K. Y., & Lai, O. M. (2017). A review: Modified agricultural by-products for the development and fortification of food products and nutraceuticals. Trends in Food Science & Technology, 59, 148–160.

    Article  CAS  Google Scholar 

  33. Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382.

    Article  CAS  Google Scholar 

  34. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    Article  CAS  PubMed  Google Scholar 

  35. Mishra, S. K., Suh, W. I., Farooq, W., Moon, M., Shrivastav, A., Park, M. S., & Yang, J.-W. (2014). Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresource Technology, 155, 330–333.

    Article  CAS  PubMed  Google Scholar 

  36. Haoujar, I., Cacciola, F., Abrini, J., Mangraviti, D., Giuffrida, D., Oulad El Majdoub, Y., Kounnoun, A., Miceli, N., Fernanda Taviano, M., Mondello, L., & Rigano, F. (2019). The contribution of carotenoids, phenolic compounds, and flavonoids to the antioxidative properties of marine microalgae isolated from Mediterranean Morocco. Molecules, 24(22), 4037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lever, J., Krzywinski, M., & Altman, N. (2017). Points of significance: Principal component analysis. Nature Methods, 14(7), 641–643.

    Article  CAS  Google Scholar 

  38. Lu, B. W., & Pandolfo, L. (2011). Quasi-objective nonlinear principal component analysis. Neural Networks, 24(2), 159–170.

    Article  CAS  PubMed  Google Scholar 

  39. Yu, H., Kim, J., Rhee, C., Shin, J., Shin, S. G., & Lee, C. (2022). Effects of different pH control strategies on microalgae cultivation and nutrient removal from anaerobic digestion effluent. Microorganisms, 10(2), 357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schüler, L. M., Santos, T., Pereira, H., Duarte, P., Katkam, N. G., Florindo, C., Schulze, P. S., Barreira, L., & Varela, J. C. (2020). Improved production of lutein and β-carotene by thermal and light intensity upshifts in the marine microalga Tetraselmis sp. CTP4. Algal Research, 45, 101732.

    Article  Google Scholar 

  41. Krichen, E., Rapaport, A., Le Floc’h, E., & Fouilland, E. (2019). Demonstration of facilitation between microalgae to face environmental stress. Scientific Reports, 9(1), 16076.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sharma, M., Bhat, R., Usmani, Z., McClements, D. J., Shukla, P., Raghavendra, V. B., & Gupta, V. K. (2021). Bio-based formulations for sustainable applications in agri-food-pharma. Biomolecules, 11(5), 768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, R., Cao, J., Zhu, W., & Lv, Y. (2023). Integration of pre-precipitation optimizing performance of culture medium prepared from salvaged cyanobacterial slurry. Chemosphere, 316, 137805.

    Article  CAS  PubMed  Google Scholar 

  44. Ricigliano, V. A. (2020). Microalgae as a promising and sustainable nutrition source for managed honey bees. Archives of Insect Biochemistry and Physiology, 104(1), e21658.

    Article  CAS  PubMed  Google Scholar 

  45. Panahi, Y., Khosroushahi, A. Y., Sahebkar, A., & Heidari, H. R. (2019). Impact of cultivation condition and media content on Chlorella vulgaris composition. Advanced Pharmaceutical Bulletin, 9(2), 182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Polanía, A. M., Londoño, L., Ramírez, C., Bolivar, G., & Aguilar, C. N. (2023). Valorization of pineapple waste as novel source of nutraceuticals and biofunctional compounds. Biomass Conversion and Biorefinery, 13(5), 3593–3618.

    Article  Google Scholar 

  47. Suleria, H. A., Barrow, C. J., & Dunshea, F. R. (2020). Screening and characterization of phenolic compounds and their antioxidant capacity in different fruit peels. Foods, 9(9), 1206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Carbonero-Pacheco, J., Moreno-García, J., Moreno, J., García-Martínez, T., & Mauricio, J. C. (2022). Revealing the yeast diversity of the flor biofilm microbiota in sherry wines through internal transcribed spacer-metabarcoding and matrix-assisted laser desorption/ionization time of flight mass spectrometry. Frontiers in Microbiology, 12, 825756.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sarwer, A., Hamed, S. M., Osman, A. I., Jamil, F., Al-Muhtaseb, A. A. H., Alhajeri, N. S., & Rooney, D. W. (2022). Algal biomass valorization for biofuel production and carbon sequestration: A review. Environmental Chemistry Letters, 20, 2797–2851.

    Article  CAS  Google Scholar 

  50. Kumar, Y., Kaur, S., Kheto, A., Munshi, M., Sarkar, A., Pandey, H. O., Tarafdar, A., & Sirohi, R. (2022). Cultivation of microalgae on food waste: Recent advances and way forward. Bioresource Technology, 363, 127834.

    Article  CAS  PubMed  Google Scholar 

  51. Bala, S., Garg, D., Sridhar, K., Inbaraj, B. S., Singh, R., Kamma, S., Tripathi, M., & Sharma, M. (2023). Transformation of agro-waste into value-added bioproducts and bioactive compounds: Micro/nano formulations and application in the agri-food-pharma sector. Bioengineering (Basel), 10(2), 152.

    Article  CAS  PubMed  Google Scholar 

  52. Pleissner, D., Lam, W. C., Sun, Z., & Lin, C. S. K. (2013). Food waste as nutrient source in heterotrophic microalgae cultivation. Bioresource Technology, 137, 139–146.

    Article  CAS  PubMed  Google Scholar 

  53. Lu, K., & Yip, Y. M. (2023). Therapeutic potential of bioactive flavonoids from citrus fruit peels toward obesity and diabetes mellitus. Future Pharmacology, 3(1), 14–37.

    Article  Google Scholar 

  54. Kumari, A., & Bharadvaja, N. (2023). A comprehensive review on algal nutraceuticals as prospective therapeutic agent for different diseases. 3 Biotech, 13(2), 44.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Udayan, A., Pandey, A. K., Sharma, P., Sreekumar, N., & Kumar, S. (2021). Emerging industrial applications of microalgae: Challenges and future perspectives. Systems Microbiology and Biomanufacturing, 1(4), 411–431.

    Article  CAS  Google Scholar 

  56. Patel, A. K., Vadrale, A. P., Singhania, R. R., Michaud, P., Pandey, A., Chen, S. J., Chen, C. W., & Dong, C. D. (2022). Algal polysaccharides: Current status and future prospects. Phytochemistry Reviews, 22, 1167–1196.

    Article  Google Scholar 

  57. Bhardwaj, K., Najda, A., Sharma, R., Nurzyńska-Wierdak, R., Dhanjal, D. S., Sharma, R., Manickam, S., Kabra, A., Kuča, K., & Bhardwaj, P. (2022). Fruit and vegetable peel-enriched functional foods: Potential avenues and health perspectives. Evidence-Based Complementary and Alternative Medicine. https://doi.org/10.1155/2022/8543881

    Article  PubMed  PubMed Central  Google Scholar 

  58. Nazir, A., Itrat, N., Shahid, A., Mushtaq, Z., Abdulrahman, S. A., Egbuna, C., Adetuyi, B. O., Khan, J., Uche, C. Z., & Toloyai, P. E. Y. (2022). Orange peel as source of nutraceuticals. Food and Agricultural byproducts as important source of valuable nutraceuticals (pp. 97–106). Springer.

    Chapter  Google Scholar 

  59. Mohammed, M. A., Ibrahim, B. M., Abdel-Latif, Y., Hassan, A. H., El Raey, M. A., Hassan, E. M., & El-Gengaihi, S. E. (2022). Pharmacological and metabolomic profiles of Musa acuminata wastes as a new potential source of anti-ulcerative colitis agents. Science and Reports, 2(1), 10595.

    Article  Google Scholar 

  60. Ogedjo, M., Kapoor, A., Kumar, P. S., Rangasamy, G., Ponnuchamy, M., Rajagopal, M., & Banerjee, P. N. (2022). Modeling of sugarcane bagasse conversion to levulinic acid using response surface methodology (RSM), artificial neural networks (ANN), and fuzzy inference system (FIS): A comparative evaluation. Fuel, 329, 125409.

    Article  CAS  Google Scholar 

  61. Sharoba, A. M., Farrag, M. A., & El-Salam, A. (2013). Utilization of some fruits and vegetables wastes as a source of dietary fibers in cake making. Journal of Food and Dairy Sciences, 4(9), 433–453.

    Article  Google Scholar 

  62. Estella, O. U., Onyegbunam, C. M., Egbuna, C., Mba, T., & Onyekere, P. F. (2022). Pawpaw peels as a source of nutraceuticals. In C. Egbuna, B. Sawicka, & J. Khan (Eds.), Food and agricultural byproducts as important source of valuable nutraceuticals (pp. 135–145). Springer.

    Chapter  Google Scholar 

  63. Noreen, S., Khan Naizi, M., Tufail, T., Hassan, F., & Awuchi, C. G. (2023). Nutraceutical, functional, and therapeutic properties of Garcinia cambogia: A review. International Journal of Food Properties, 26(1), 729–738.

    Article  CAS  Google Scholar 

  64. Manivannan, A., Lee, E. S., Han, K., Lee, H. E., & Kim, D. S. (2020). Versatile nutraceutical potentials of watermelon—A modest fruit loaded with pharmaceutically valuable phytochemicals. Molecules, 25(22), 5258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Omujal, F., Okullo, J. B. L., Bigirimana, C., Isubikalu, P., Agea, J. G., Malinga, M., Obaa, B. B., & Bizuru, E. (2022). Physico-chemical, proximate, mineral and bioactive composition of Garcinia buchananii baker fruit from Uganda and Rwanda. African Journal of Food, Agriculture, Nutrition and Development, 22(10), 18932–18948.

    Google Scholar 

  66. Aboim, J. B., Oliveira, D. T. D., Mescouto, V. A. D., Dos Reis, A. S., da Rocha Filho, G. N., Santos, A. V., Xavier, L. P., Santos, A. S., Gonçalves, E. C., & do Nascimento, L. A. S. (2019). Optimization of light intensity and NaNO3 concentration in Amazon cyanobacteria cultivation to produce biodiesel. Molecules, 24(12), 2326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Odejobi, O. J., Ajala, O. O., & Osuolale, F. N. (2023). Anaerobic co-digestion of kitchen waste and animal manure: A review of operating parameters, inhibiting factors, and pretreatment with their impact on process performance. Biomass Conversion and Biorefinery, 13(7), 5515–5531.

    Article  CAS  Google Scholar 

  68. Krishnaveni, T. R., Arunachalam, R., Chandrakumar, M., Parthasarathi, G., & Nisha, R. (2020). Potential review on palmyra (Borassus flabellifer L.). Advanced Resources, 21(9), 29–40.

    Article  Google Scholar 

  69. Ma, S., Wang, H., Li, J., Fu, Y., & Zhu, W. (2019). Methane production performances of different compositions in lignocellulosic biomass through anaerobic digestion. Energy, 189, 116190.

    Article  CAS  Google Scholar 

  70. Dunky, M. (2021). Wood adhesives based on natural resources: a critical review: Part III. Tannin-and lignin-based adhesives. Progress in Adhesion and Adhesives, 6, 383–529.

    Article  Google Scholar 

  71. Viering, D. H., de Baaij, J. H., Walsh, S. B., Kleta, R., & Bockenhauer, D. (2017). Genetic causes of hypomagnesemia, a clinical overview. Pediatric Nephrology, 32, 1123–1135.

    Article  PubMed  Google Scholar 

  72. Zhang, L., Lee, Y. W., & Jahng, D. (2011). Anaerobic co-digestion of food waste and piggery wastewater: Focusing on the role of trace elements. Bioresource Technology, 102(8), 5048–5059.

    Article  CAS  PubMed  Google Scholar 

  73. Florencio, L., Field, J. A., & Lettinga, G. (1994). Importance of cobalt for individual trophic groups in an anaerobic methanol-degrading consortium. Applied and Environmental Microbiology, 60(1), 227–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kida, K., Shigematsu, T., Kijima, J., Numaguchi, M., Mochinaga, Y., Abe, N., & Morimura, S. (2001). Influence of Ni2+ and Co2+ on methanogenic activity and the amounts of coenzymes involved in methanogenesis. Journal of Bioscience and Bioengineering, 91(6), 590–595.

    Article  CAS  PubMed  Google Scholar 

  75. Bayram, B., Ozkan, G., Kostka, T., Capanoglu, E., & Esatbeyoglu, T. (2021). Valorization and application of fruit and vegetable wastes and by-products for food packaging materials. Molecules, 26(13), 4031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sahana, S. P., & Shirnalli, G. G. (2018). Effect of microalgae on physico–chemical properties of different dilutions of untreated and treated dairy industrial effluent. International Journal of Current Microbiology and Applied Sciences, 7(04), 2979–2993.

    Article  Google Scholar 

  77. Demirel, B., Yenigun, O., & Onay, T. T. (2005). Anaerobic treatment of dairy wastewaters: A review. Process Biochemistry, 40(8), 2583–2595.

    Article  CAS  Google Scholar 

  78. Fan, H., Wang, K., Wang, C., Yu, F., He, X., Ma, J., & Li, X. (2020). A comparative study on growth characters and nutrients removal from wastewater by two microalgae under optimized light regimes. Environmental Technology & Innovation, 19, 100849.

    Article  Google Scholar 

  79. Torregrosa-Crespo, J., Montero, Z., Fuentes, J. L., Reig García-Galbis, M., Garbayo, I., Vílchez, C., & Martínez-Espinosa, R. M. (2018). Exploring the valuable carotenoids for the large-scale production by marine microorganisms. Marine Drugs, 16(6), 203.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Prabakaran, P., & Ravindran, A. D. (2011). A comparative study on effective cell disruption methods for lipid extraction from microalgae. Letters in Applied Microbiology, 53(2), 150–154.

    Article  CAS  PubMed  Google Scholar 

  81. Wu, J., Gu, X., Yang, D., Xu, S., Wang, S., Chen, X., & Wang, Z. (2021). Bioactive substances and potentiality of marine microalgae. Food Science & Nutrition, 9(9), 5279–5292.

    Article  Google Scholar 

  82. Zhou, Y., Liu, L., Li, M., & Hu, C. (2022). Algal biomass valorisation to high-value chemicals and bioproducts: Recent advances, opportunities and challenges. Bioresource Technology, 344, 126371.

    Article  CAS  PubMed  Google Scholar 

  83. Meng, W., Mu, T., Sun, H., & Garcia-Vaquero, M. (2021). Phlorotannins: A review of extraction methods, structural characteristics, bioactivities, bioavailability, and future trends. Algal Research, 60, 102484.

    Article  Google Scholar 

  84. Ahmad, A., & Ashraf, S. S. (2023). Sustainable food and feed sources from microalgae: Food security and the circular bioeconomy. Algal Research, 74, 103185.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to ICAR for its continuous support of the All India Coordinated Research Project on Energy in Agriculture and Agro-based industries that helped in the completion of the study.

Author information

Authors and Affiliations

Authors

Contributions

S.B. (Ph.D. student) contributed to Data curation; Methodology; Software; Validation; and Writing of the original draft; D.G (Ph.D. student) contributed to Data curation and Writing, reviewing, & editing of the manuscript; U.G.P (Principal Scientist) contributed to Conceptualization; Data curation; Methodology; Project administration; Supervision; Validation; and Visualization; M.K. (Ph.D. student) contributed to Data curation; and Writing, reviewing, & editing of the manuscript; S.B (Senior Biochemist) contributed to Methodology; Project administration; Supervision; Validation; and Visualization.

Corresponding authors

Correspondence to Saroj Bala or Urmila Gupta Phutela.

Ethics declarations

Conflict of interest

The authors have declared no conflicts of interest for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bala, S., Garg, D., Phutela, U.G. et al. Oscillatoria sancta Cultivation Using Fruit and Vegetable Waste Formulated Media and Its Potential as a Functional Food: Assessment of Cultivation Optimization. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00883-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00883-z

Keywords

Navigation