Skip to main content

Advertisement

Log in

Advancement in Nutritional Value, Processing Methods, and Potential Applications of Pseudocereals in Dietary Food: A Review

  • REVIEW
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In this modern era, people are paying more attention to adopting healthy lifestyles and suitable nutritional diets. To meet the increasing demand, new food sources are continuously being identified. The present review focuses on underutilized cereal crops, commonly known as pseudo-cereals (Buckwheat, Quinoa, and Amaranth), and their nutritional products. The nutritional properties, amino acid profile, essential amino acid indices, protein efficiency ratio, nutritional index, and biological functions are higher in pseudo-cereals than other true crops. We comprehensively discussed pseudo-cereals’ characteristics and nutritional composition, bioactive components, and functional properties of pseudo-cereals. Also, the processing treatments and applications of pseudo-cereals as dietary food were discussed. Finally, the current challenges in using pseudo-cereals as dietary food supplements were analyzed, and recommendations were made for future studies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets used in the present study are available from the corresponding author on reasonable request.

References

  • Albarracín, M., De Greef, D. M., González, R. J., & Drago, S. R. (2015). Germination and extrusion as combined processes for reducing phytates and increasing phenolics content and antioxidant capacity of Oryza sativa L. whole grain flours. International Journal of Food Sciences and Nutrition, 66, 904–911.

    Article  PubMed  Google Scholar 

  • Al-Mamun, M. A., Husna, J., Khatun, M., Hasan, R., Kamruzzaman, M., Hoque, K. M. F., et al. (2016). Assessment of antioxidant, anticancer and antimicrobial activity of two vegetable species of Amaranthus in Bangladesh. BMC Complementary Alternative Medicine, 16, 15.

    Article  Google Scholar 

  • Alonso-Miravalles, L., & O’Mahony, J. A. (2018). Composition, protein profile and rheological properties of pseudocereal-based protein-rich ingredients. Foods, 7(5), 73.

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Qabba, M. M., El-Mowafy, M. A., Althwab, S. A., Alfheeaid, H. A., Aljutaily, T., & Barakat, H. (2020). Phenolic profile, antioxidant activity, and ameliorating efficacy of chenopodium quinoa sprouts against CCl4-induced oxidative stress in rats. Nutrients, 12, 2904. https://doi.org/10.3390/nu12102904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Jubete, L., Holse, M., Hansen, Å., Arendt, E. K., & Gallagher, E. (2009). Impact of baking on vitamin E content of pseudocereals amaranth, quinoa, and buckwheat. Cereal Chemistry, 86, 511–515.

    Article  CAS  Google Scholar 

  • Alvarez-Jubete, L., Arendt, E. K., & Gallagher, E. (2010a). Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends in Food Science & Technology, 21, 106–113.

    Article  CAS  Google Scholar 

  • Alvarez-Jubete, L., Wijngaard, H., Arendt, E. K., & Gallagher, E. (2010b). Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chemistry, 119, 770–778. https://doi.org/10.1016/j.foodchem.2009.07.032

    Article  CAS  Google Scholar 

  • Awika, J. M., & Duodu, K. G. (2017). Bioactive polyphenols and peptides in cowpea (Vigna unguiculata) and their health promoting properties: a review. Journal of Functional Foods, 38, 686–697.

    Article  CAS  Google Scholar 

  • Ayala-Nino, A., Rodríguez-Serrano, G. M., Jiménez-Alvarado, R., Bautista-Avila, M., Sánchez-Franco, J. A., González-Olivares, L. G., & Cepeda-Saez, A. (2019). Bioactivity of peptides released during lactic fermentation of amaranth proteins with potential cardiovascular protective effect: an in vitro study. Journal of Medicinal Food, 22, 976–981. https://doi.org/10.1089/jmf.2019.0039

    Article  CAS  PubMed  Google Scholar 

  • Bai, C. Z., Ji, H. J., Feng, M. L., Hao, X. L., Zhong, Q. M., Cui, X. D., & Wang, Z. H. (2015). Stimulation of dendritic cell maturation and induction of apoptosis in lymphoma cells by a stable lectin from buckwheat seeds. Genetics and Molecular Research, 14, 2162–2175. https://doi.org/10.4238/2015

    Article  PubMed  Google Scholar 

  • Bao, T., Wang, Y., Li, Y. T., Gowd, V., Niu, X. H., Yang, H. Y., Chen, L. S., & Chen, W. (2016). Antioxidant and antidiabetic properties of tartary buckwheat rice flavonoids after in vitro digestion. Journal of Zhejiang University. Science. B, 17, 941–951. https://doi.org/10.1631/jzus.B1600243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bender, D., Fraberger, V., Szepasvári, P., D’Amico, S., Tömösközi, S., Cavazzi, G., Jäger, H., Domig, K. J., & Schoenlechner, R. (2018). Effects of selected lactobacilli on the functional properties and stability of gluten-free sourdough bread. European Food ResEarch and TechnolOgy, 244, 1037–1046.

    Article  CAS  PubMed  Google Scholar 

  • Bender, D., Gratz, M., Vogt, S., Fauster, T., Wicki, B., Pichler, S., Kinner, M., Jäger, H., & Schoenlechner, R. (2019). Ohmic heating – A novel approach for gluten-free bread baking. Food and Bioprocess TechnolOgy, 12, 1603–1613.

    Article  CAS  Google Scholar 

  • Bender, D., & Schönlechner, R. (2020). Innovative approaches towards improved gluten-free bread properties. Journal of Cereal Science, 91, 102904.

    Article  CAS  Google Scholar 

  • Bock, P. D., Daelemans, L., Selis, L., Raes, K., Vermeir, P., Eeckhout, M., & Van Bockstaele, F. (2021). Comparison of the chemical and technological characteristics of wholemeal flours obtained from Amaranth (Amaranthus sp.), Quinoa (Chenopodium quinoa) and Buckwheat (Fagopyrum sp.) seeds. Foods, 10, 651.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolívar-Monsalve, J., Ceballos-González, C., Ramírez-Toro, C., & Bolívar, G. A. (2018). Reduction in saponin content and production of gluten-free cream soup base using quinoa fermented with Lactobacillus plantarum. Journal of Food Processing, 42, e13495.

    Article  Google Scholar 

  • Borges, J. T. S., Bonomo, R. C., Paula, C. D., Oliveira, L. C., & Cesário, M. C. (2010). Physicochemical and nutritional characteristics and uses of Quinoa (Chenopodium quinoa Willd.). Temas Agrários, 15(1), 9–23.

    Article  Google Scholar 

  • Bustos, A. Y., Gerez, C. L., Mohtar, L. G., Paz Zanini, V. I., Nazareno, M. A., Taranto, M. P., & Iturriaga, L. B. (2017). Lactic acid fermentation improved textural behaviour, phenolic compounds and antioxidant activity of chia (Salvia hispanica L.) dough. Food Technology and Biotechnology, 55, 381–389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capraro, J., De Benedetti, S., Di Dio, M., Bona, E., Abate, A., Antonia, P. C., & Scarafoni, A. (2020). Characterization of chenopodin isoforms from quinoa seeds and assessment of their potential anti-inflammatory activity in caco-2 cells. Biomolecules, 10, 795. https://doi.org/10.3390/biom10050795. PMID: 32455586 PMCID: PMC7277664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capriles, V. D., & Arêas, J. A. G. (2014). Novel approaches in gluten-free breadmaking: interface between food science, nutrition, and health. Comprehensive Reviews in Food Science and Food Safety, 13, 871–890. https://doi.org/10.1111/1541-4337.12091

    Article  CAS  Google Scholar 

  • Capuani, A., Behr, J., & Vogel, R. F. (2013). Influence of lactic acid bacteria on redox status and on proteolytic activity of buckwheat (Fagopyrum esculentum Moench) sourdoughs. International Journal of Food Microbiology, 165, 148–155.

    Article  CAS  PubMed  Google Scholar 

  • Carrizo, S. L., de LeBlanc, A. D. M., LeBlanc, J. G., & Rollán, G. C. (2020). Quinoa pasta fermented with lactic acid bacteria prevents nutritional deficiencies in mice. Food Research International, 127, 108735. https://doi.org/10.1016/j.foodres.2019.108735

    Article  CAS  PubMed  Google Scholar 

  • Castro-Alba, V., Lazarte, C. E., Perez-Rea, D., Carlsson, N. G., Almgren, A., Bergenståhl, B., & Ranfeldt, Y. (2019). Fermentation of pseudocereals quinoa, canihua, and amaranth to improve mineral accessibility through degradation of phytate. Journal of the Science of Food and Agriculture, 99, 5239–5248. https://doi.org/10.1002/jsfa.9793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Changan, S., Chaudhary, D. P., Kumar, S., Kumar, B., Kaul, J., Guleria, S., Jat, S. L., Singode, A., Tufchi, M., Langyan, S., & Yadav, O. P. (2017). Biochemical characterization of elite maize (Zea mays) germplasm for carotenoids composition. Indian Journal of Agricultural Sciences, 87, 46–50.

    Article  CAS  Google Scholar 

  • Chaudhary, D. P., Mandhania, S., & Sapna, K. R. (2012). Inter-relationship among nutritional quality parameters of maize Zea mays L. genotypes. Indian Journal of Agricultural Sciences, 82, 681–686.

    Article  Google Scholar 

  • Chauhan, A., Saxena, D., & Singh, S. (2015). Total dietary fibre and antioxidant activity of gluten free cookies made from raw and germinated amaranth (Amaranthus spp.) flour. LWT - Food Science and Technology, 63(2), 939–945. https://doi.org/10.1016/j.lwt.2015.03.115

    Article  CAS  Google Scholar 

  • Choi, J. Y., Lee, J. M., Lee, D. G., Cho, S., Yoon, Y. H., Cho, E. J., & Lee, S. (2015). The n-butanol fraction and rutin from tartary buckwheat improve cognition and memory in an in vivo model of amyloid-β-induced Alzheimer’s disease. Journal of Medicinal Food, 18, 631–641. https://doi.org/10.1089/jmf.2014.3292

    Article  CAS  PubMed  Google Scholar 

  • Coda, R., Rizzello, C. G., & Gobbetti, M. (2010). Use of sourdough fermentation and pseudocereals and leguminous flours for the making of a functional bread enriched of γ-aminobutyric acid (GABA). International Journal of Food Microbiology, 137(236–245), 68.

    Google Scholar 

  • Coelho, L. M., Silva, P. M., Martins, J. T., Pinheiro, A. C., & Vicente, A. A. (2018). Emerging opportunities in exploring the nutritional/functional value of amaranth. Food & Function, 9(11), 5499–5512.

    Article  CAS  Google Scholar 

  • Cornejo, F., Novillo, G., Villacrés, E., & Rosell, C. M. (2019). Evaluation of the physicochemical and nutritional changes in two amaranth species (Amaranthus quitensis and Amaranthus caudatus) after germination. Food Research International, 121, 933–939. https://doi.org/10.1016/j.foodres.2019.01.022

    Article  CAS  PubMed  Google Scholar 

  • d’Amour, C. B., Reitsma, F., Baiocchi, G., Barthel, S., Güneralp, B., Erb, K. H., Haberl, H., Creutzig, F., & Seto, K. C. (2017). Future urban land expansion and implications for global croplands. Proceedings of National Academy of Science, 114, 8939–8944.

    Article  ADS  Google Scholar 

  • Dabija, A., Ciocan, M. E., Chetrariu, A., & Codină, G. G. (2022). Buckwheat and Amaranth as Raw Materials for Brewing, a Review. Plants., 11(6), 756. https://doi.org/10.3390/plants11060756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dakhili, S., Abdolalizadeh, L., Hosseini, S. M., Shojaee-Aliabadi, S., & Mirmoghtadaie, L. (2019). Quinoa protein: composition, structure and functional properties. Food Chemistry, 299, 125161.

    Article  CAS  PubMed  Google Scholar 

  • Das, D., Jaiswal, M., Khan, F. N., Ahamad, S., & Kumar, S. (2020). PlantPepDB: a manually curated plant peptide database. Scientific Reports, 10, 1–8.

    Article  Google Scholar 

  • Del Hierro, J. N., Casado-Hidalgo, G., Reglero, G., & Martin, D. (2021). The hydrolysis of saponin-rich extracts from fenugreek and quinoa improves their pancreatic lipase inhibitory activity and hypocholesterolemic effect. Food Chemistry, 338, 128113. https://doi.org/10.1016/j.foodchem.2020.128113. PMID: 33092009.

    Article  CAS  Google Scholar 

  • Demir, B., & Bilgiçli, N. (2020). Changes in chemical and anti-nutritional properties of pasta enriched with raw and germinated quinoa (Chenopodium quinoa Willd.) flours. Journal of Food Science and Technology, 57(10), 3884–3892. https://doi.org/10.1007/s13197-020-04420-7. Epub 2020 Apr 11. PMID: 32904010; PMCID: PMC7447728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Divekar, M. T., Karunakaran, C., Lahlali, R., Kumar, S., Chelladurai, V., Liu, X., & Jayas, D. S. (2017). Effect of microwave treatment on the cooking and macronutrient qualities of pulses, Internationa. Journal of Food Properties, 20, 409–422.

    Article  CAS  Google Scholar 

  • do Nascimento, A. B., Fiates, G. M. R., dos Anjos, A., & Teixeira, E. (2014). Gluten-free is not enough–perception and suggestions of celiac consumers. International Journal of Food Science and Nutrition, 65, 394–398. https://doi.org/10.3109/09637486.2013.879286

    Article  CAS  Google Scholar 

  • Dzah, C. S., Duan, Y., Zhang, H., Authur, D. A., & Ma, H. (2020). Ultrasound- subcritical water-and ultrasound assisted subcritical water-derived Tartary buckwheat polyphenols show superior antioxidant activity and cytotoxicity in human liver carcinoma cells. International Food Research Journal, 137, 109598. https://doi.org/10.1016/j.foodres.2020.109598

    Article  CAS  Google Scholar 

  • Dziadek, K., Kopeć, A., Pastucha, E., Piątkowska, E., Leszczyńska, T., Pisulewska, E., Witkowicz, R., & Francik, R. (2016). Basic chemical composition and bioactive compounds content in selected cultivars of buckwheat whole seeds, dehulled seeds and hulls. Journal of Cereal Science, 69, 1–8.

    Article  CAS  Google Scholar 

  • Espinosa-Ramírez, J., Rodríguez, A., De la Rosa-Millán, J., Heredia-Olea, E., Pérez-Carrillo, E., & Serna-Saldívar, S. O. (2021). Shear-induced enhancement of technofunctional properties of whole grain flours through extrusion. Food Hydrocolloids, 111, 106400. https://doi.org/10.1016/j.foodhyd.2020.106400

    Article  CAS  Google Scholar 

  • FAOSTAT. (2013). Retrieved May 14, 2022, from FAOSTAT gateway. http://faostat3.fao.org/browse/C/CC/E

  • FAOSTAT. (2018). Retrieved October 12, 2021, from http://www.fao.org/faostat/en/#data/QC

  • Fawale, O. S., Gbadamosi, S. O., Ige, M. M., & Kadiri, O. (2017). Effects of cooking and fermentation on the chemical composition, functional, and antinutritional properties of kariya (Hildergardia barteri) seeds. Food Science and Nutrition, 5, 1106–1115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng, L., Xie, Y., Peng, C., Liu, Y., & Wang, H. (2018). A novel antidiabetic food produced via solid-state fermentation of tartary buckwheat by L. plantarum TK9 and L. paracasei TK1501. Food Technology and Biotechnology, 56, 373–380. https://doi.org/10.17113/ftb.56.03.18.5540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira, T. A., & Arêas, J. A. G. (2010). Calcium bioavailability of raw and extruded amaranth grains. Food Science and Technology, 30, 532–538. https://doi.org/10.1590/S0101-20612010000200037

    Article  Google Scholar 

  • Fleddermann, M., Fechner, A., Rößler, A., Bähr, M., Pastor, A., Liebert, F., & Jahreis, G. (2013). Nutritional evaluation of rapeseed protein compared to soy protein for quality, plasma amino acids, and nitrogen balance–A randomized cross-over intervention study in humans. Clinical Nutrition, 32, 519–526. https://doi.org/10.1016/j.clnu.2012.11.005

    Article  CAS  PubMed  Google Scholar 

  • Fritz, M., Vecchi, B., Rinaldi, G., & Añón, M. C. (2011). Amaranth seed protein hydrolysates have in vivo and in vitro antihypertensive activity. Food Chemistry, 126, 878–884. https://doi.org/10.1016/j.foodchem.2010.11.065

    Article  CAS  Google Scholar 

  • Garg, N. K., Dahuja, A., Singh, A., & Chaudhary, D. P. (2020). Understanding the starch digestibility characteristics of Indian maize hybrids. Indian Journal of Experimental Biology, 58, 738–744.

    CAS  Google Scholar 

  • Giménez-Bastida, J. A., Laparra-Llopis, J. M., Baczek, N., & Zielinski, H. (2018). Buckwheat and buckwheat enriched products exert an anti-inflammatory effect on the myofibroblasts of colon CCD-18Co. Food & Function, 9, 3387–3397. https://doi.org/10.1039/C8FO00193F

    Article  Google Scholar 

  • Giusti, F., Caprioli, G., Ricciutelli, M., Vittori, S., & Sagratini, G. (2017). Determination of fourteen polyphenols in pulses by high performance liquid chromatography-diode array detection (HPLC-DAD) and correlation study with antioxidant activity and colour. Food Chemistry, 221, 689–697.

    Article  CAS  PubMed  Google Scholar 

  • Graf, B. L., Poulev, A., Kuhn, P., Grace, M. H., Lila, M. A., & Raskin, I. (2014). Quinoa seeds leach phytoecdysteroids and other compounds with anti-diabetic properties. Food Chemistry, 163, 178–185.

    Article  CAS  PubMed  Google Scholar 

  • Guardianelli, L. M., Salinas, M. V., & Puppo, M. C. (2019). Chemical and thermal properties of flours from germinated amaranth seeds. Journal of Food Measurement and Characterization, 13(2), 1078–1088. https://doi.org/10.1007/s11694-018-00023-1

    Article  Google Scholar 

  • Gulpinar, A. R., Orhan, I. E., Kan, A., Senol, F. S., Celik, S. A., & Kartal, M. (2012). Estimation of in vitro neuroprotective properties and quantification of rutin and fatty acids in buckwheat (Fagopyrum esculentum Moench) cultivated in Turkey. International Food Research Journal, 46, 536–543. https://doi.org/10.1016/j.foodres.2011.08.011

    Article  CAS  Google Scholar 

  • Guo, H., Richel, A., Hao, Y., Fan, X., Everaert, N., Yang, X., & Ren, G. (2020). Novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides released from quinoa protein by in silico proteolysis. Food Science and Nutrition, 8, 1415–1422. https://doi.org/10.1002/fsn3.1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handoyo, T., Meda, T., Urisu, A., Adachi, T., & Morita, M. (2006). Hypoallergenic buckwheat flour preparation by Rhizopus oligosporus and its application to soba noodle. Food Research International, 39, 598–605. https://doi.org/10.1016/j.foodres.2005.12.003

    Article  CAS  Google Scholar 

  • Hao, J., Wu, T., Li, H., Wang, W., & Liu, H. (2016). Dual effects of slightly acidic electrolyzed water (SAEW) treatment on the accumulation of γ-aminobutyric acid (GABA) and rutin in germinated buckwheat. Food Chemistry, 201, 87–93.

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Ledesma, B. (2019). Quinoa (Chenopodium quinoa Willd.) as source of bioactive compounds: a review. Bioactive Compounds in Health and Disease, 2, 27–47.

    Google Scholar 

  • Herrera, T., Navarro, D. H. J., Fornari, T., Reglero, G., & Martin, D. (2019). Inhibitory effect of quinoa and fenugreek extracts on pancreatic lipase and α-amylase under in vitro traditional conditions or intestinal simulated conditions. Food Chemistry, 270, 509–517. https://doi.org/10.1016/j.foodchem.2018.07.145. Epub 2018 Jul 23 PMID: 30174080.

    Article  CAS  PubMed  Google Scholar 

  • Houben, A., Götz, H., Mitzscherling, M., & Becker, T. (2010). Modification of the rheological behavior of amaranth (Amaranthus hypochondriacus) dough. Journal of Cereal Science, 51, 350–356.

    Article  Google Scholar 

  • Jan, R., Saxena, D. C., & Singh, S. (2016). Pasting, thermal, morphological, rheological and structural characteristics of Chenopodium (Chenopodium album) starch. LWT-Food Science and Technology, 66, 267–274.

    Article  CAS  Google Scholar 

  • Jan, R., Saxena, D., & Singh, S. (2017). Effect of germination on nutritional, functional, pasting, and microstructural properties of chenopodium (Chenopodium album) flour. Journal of Food Processing and Preservation, 41(3), e12959. https://doi.org/10.1111/jfpp.12959

    Article  CAS  Google Scholar 

  • Jeong, Y. H., Hur, H. J., Lee, A. S., Lee, S. H., & Sung, M. J. (2020). Amaranthus mangostanus inhibits the differentiation of osteoclasts and prevents ovariectomy-induced bone loss. Evidence Based Complementary Alternative Medicine, 2020, 1927017. https://doi.org/10.1155/2020/1927017. PMCID: PMC7029261, PMID: 32089716.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin, H. M., & Wei, P. (2011). Anti-fatigue properties of tartary buckwheat extracts in mice. International Journal of Molecular Science, 12, 4770–4780. https://doi.org/10.3390/ijms12084770

    Article  CAS  Google Scholar 

  • Joshi, D. C., Chaudhari, G. V., Sood, S., Kant, L., Pattanayak, A., Zhang, K., & Zhou, M. (2019). Revisiting the versatile buckwheat: reinvigorating genetic gains through integrated breeding and genomics approach. Planta, 250(3), 783–801.

    Article  CAS  PubMed  Google Scholar 

  • Kalinova, J., & Dadakova, E. (2009). Rutin and total quercetin content in amaranth (Amaranthus spp.). Plant Foods for Human Nutrition, 64, 68–74.

    Article  CAS  PubMed  Google Scholar 

  • Kalpanadevi, V., & Mohan, V. R. (2013). Effect of processing on antinutrients and in vitro protein digestibility of the underutilized legume, Vigna unguiculata (L.) Walp subsp. Unguiculata. LWT-Food Science and Technology, 51, 455–461.

    Article  CAS  Google Scholar 

  • Kamal, H., Mudgil, P., Bhaskar, B., Fisayo, A. F., Gan, C. Y., & Maqsood, S. (2021). Amaranth proteins as potential source of bioactive peptides with enhanced inhibition of enzymatic markers linked with hypertension and diabetes. Journal of Cereal Science, 101, 103308. https://doi.org/10.1016/j.jcs.2021.103308

    Article  CAS  Google Scholar 

  • Kaur, C., Sethi, M., Devi, V., Chaudhary, D. P., Phagna, R. K., Singh, A., Bhushan, B., Langyan, S., & Rakshit, S. (2022). Optimization of protein quality assay in normal, opaque-2 and quality protein maize. Frontiers in Sustainable Food Systems, 6, 743019. https://doi.org/10.3389/fsufs.2022.743019

    Article  Google Scholar 

  • Kaur, S., Singh, N., & Rana, J. C. (2010). Amaranthus hypochondriacus and Amaranthus caudatus germplasm: characteristics of plants, grain and flours. Food Chemistry, 123, 1227–1234.

    Article  CAS  Google Scholar 

  • Kuktaite, R., Repo-Carrasco-Valencia, R., de Mendoza, C. C., Plivelic, T. S., Hall, S., & Johansson, E. (2021). Innovatively processed quinoa (Chenopodium quinoa Willd.) food: chemistry, structure and end-use characteristics. Journal of the Science of Food and Agriculture. https://doi.org/10.1002/jsfa.11214

    Article  PubMed  Google Scholar 

  • Kumar, S., Sangwan, S., Yadav, R., Langyan, S., & Singh, M. (2014). Maize carotenoid composition and biofortification for provitamin A activity. Maize: nutrition dynamics and novel uses (pp. 83–91). Springer.

    Chapter  Google Scholar 

  • Lamothe, L. M., Srichuwong, S., Reuhs, B. L., & Hamaker, B. R. (2015). Quinoa (Chenopodium quinoa W.) and amaranth (Amaranthus caudatus L.) provide dietary fibres high in pectic substances and xyloglucans. Food Chemistry, 167, 490–496.

    Article  CAS  PubMed  Google Scholar 

  • Langyan, S., Dar, Z. A., Chaudhary, D. P., Shekhar, J. C., Herlambang, S., El-Enshasy, H., Sayyed, R. Z., & Rakshit, S. (2021a). Analysis of nutritional quality attributes and their inter-relationship in maize inbred lines for sustainable livelihood. Sustainability, 13, 1–12. https://doi.org/10.3390/su13116137

    Article  CAS  Google Scholar 

  • Langyan, S., Khan, F. N., Yadava, P., Alhazmi, A., Mahmoud, S. F., Saleh, D. I., Zuan, A. T. K., & Kumar, A. (2021b). In silico proteolysis and analysis of bioactive peptides from sequences of fatty acid desaturase 3 (FAD3) of flaxseed protein. Saudi Journal of Biological Sciences, 28, 5480–5489. https://doi.org/10.1016/j.sjbs.2021.08.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langyan, S., Yadava, P., Khan, F. N., Bhardwaj, R., Tripathi, K., Bhardwaj, V., Bhardwaj, R., Gautam, R. K., & Kumar, A. (2022a). Nutritional and food composition survey of major pulses toward healthy, sustainable, and biofortified diets. Frontiers in Sustainable Food Systems, 6, 878269. https://doi.org/10.3389/fsufs.2022.878269

    Article  Google Scholar 

  • Langyan, S., Yadava, P., Khan, F. N., Dar, Z. A., Singh, R., & Kumar, A. (2022b). Sustaining protein nutrition through plant-based foods. Frontiers in Nutrition, 8, 1237. https://doi.org/10.3389/fnut.2021.772573

    Article  CAS  Google Scholar 

  • Lee, C. C., Shen, S. R., Lai, Y. J., & Wu, S. C. (2013). Rutin and quercetin, bioactive compounds from tartary buckwheat, prevent liver inflammatory injury. Food & Function, 4, 794–802. https://doi.org/10.1039/C3FO30389F

    Article  CAS  Google Scholar 

  • Li, F., Zhang, X., Zheng, S., Lu, K., Zhao, G., & Ming, J. (2016). The composition, antioxidant and antiproliferative capacities of phenolic compounds extracted from tartary buckwheat bran [Fagopyrum tartaricum (L.) Gaerth]. Journal of Functional Foods, 22, 145–155. https://doi.org/10.1016/j.jff.2016.01.027

    Article  CAS  Google Scholar 

  • Liberal, Â., Calhelha, R. C., Pereira, C., Adega, F., Barros, L., Dueñas, M., Santos-Buelga, C., Abreu, R. M., & Ferreira, I. C. (2016). A comparison of the bioactivity and phytochemical profile of three different cultivars of globe amaranth: red, white, and pink. Food & Function, 7, 679–688.

    Article  CAS  Google Scholar 

  • Liu, W., Zhang, Y., Qiu, B., Fan, S., Ding, H., & Liu, Z. (2018). Quinoa whole grain diet compromises the changes of gut microbiota and colonic colitis induced by dextran Sulfate sodium in C57BL/6 mice. Scientific Reports, 8, 14916. https://doi.org/10.1038/s41598-018-33092-9

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • López, V. R. L., Razzeto, G. S., Giménez, M. S., & Escudero, N. L. (2011). Antioxidant properties of Amaranthus hypochondriacus seeds and their effect on the liver of alcohol-treated rats. Plant Foods for Human Nutrition, 66, 157–162. https://doi.org/10.1007/s11130-011-0218-4

    Article  CAS  PubMed  Google Scholar 

  • Lorusso, A., Verni, M., Montemurro, M., Coda, R., Gobbetti, M., & Rizzello, C. G. (2017). Use of fermented quinoa flour for pasta making and evaluation of the technological and nutritional features. LWT, 78, 215–221.

    Article  CAS  Google Scholar 

  • Maradini, A. M., Ribeiro, M., Da Silva, J. T., Pinheiro, H. M., Paes, J. B., & Dos Reis, J. S. (2017). Quinoa: nutritional, functional and antinutritional aspects. Critical Reviews in Food Science and Nutrition, 57(8), 1618–1630. https://doi.org/10.1080/10408398.2014.1001811

    Article  Google Scholar 

  • Martínez-Villaluenga, C., Peñas, E., & Hernández-Ledesma, B. (2020). Pseudocereal grains: nutritional value, health benefits and current applications for the development of gluten-free foods. Food and Chemical Toxicology, 137, 111178.

    Article  PubMed  Google Scholar 

  • Mir, N. A., Riar, C. S., & Singh, S. (2018). Nutritional constituents of pseudo cereals and their potential use in food systems: a review. Trends in Food Science & Technology, 75, 170–180.

    Article  CAS  Google Scholar 

  • Moroni, A. V., Zannini, E., Sensidoni, G., & Arendt, E. K. (2012). Exploitation of buckwheat sourdough for the production of wheat bread. European Food Research and Technology, 235, 659–668. https://doi.org/10.1007/s00217-012-1790-z

    Article  CAS  Google Scholar 

  • Moronta, J., Smaldini, P. L., Docena, G. H., & Añón, M. C. (2016). Peptides of amaranth were targeted as containing sequences with potential anti-inflammatory properties. Journal of Functional Foods, 21, 463–473. https://doi.org/10.1016/j.jff.2015.12.022

    Article  CAS  Google Scholar 

  • Mota, C., Nascimento, A. C., Santos, M., Delgado, I., Coelho, I., Rego, A., Matos, A. S., Torres, D., & Castanheira, I. (2016). The effect of cooking methods on the mineral content of quinoa (Chenopodium quinoa), amaranth (Amaranthus sp.) and buckwheat (Fagopyrum esculentum). Journal of Food Composition and Analysis, 49, 57–64. https://doi.org/10.1016/j.jfca.2016.02.006

    Article  CAS  Google Scholar 

  • Mudgil, P., Omar, L. S., Kamal, H., Kilari, B. P., & Maqsood, S. (2019). Multi-functional bioactive properties of intact and enzymatically hydrolysed quinoa and amaranth proteins. LWT, 110, 207–213. https://doi.org/10.1016/j.lwt.2019.04.084

    Article  CAS  Google Scholar 

  • Muyonga, J. H., Andabati, B., & Ssepuuya, G. (2014). Effect of heat processing on selected grain amaranth physicochemical properties. Food Science and Nutrition, 2, 9–16.

    Article  CAS  PubMed  Google Scholar 

  • NCBI. (2022). Retrieved July 22, 2022, from https://pubchem.ncbi.nlm.nih.gov/

  • Ng, C. Y., & Wang, M. (2021). The functional ingredients of quinoa (Chenopodium quinoa) and physiological effects of consuming quinoa: a review. Food Frontiers, 2, 329–356. https://doi.org/10.1002/fft2.109

    Article  CAS  Google Scholar 

  • Niland, B., & Cash, B. D. (2018). Health benefits and adverse effects of a gluten-free diet in non–celiac disease patients. Gastroentero Hepatology, 14, 82.

    Google Scholar 

  • Nongonierma, A. B., Le Maux, S., Dubrulle, C., Barre, C., & FitzGerald, R. J. (2015). Quinoa (Chenopodium quinoa Willd.) protein hydrolysates with in vitro dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant properties. Journal of Cereal Science, 65, 112–118.

    Article  CAS  Google Scholar 

  • Obaroakpo, J. U., Liu, L., Zhang, S., Lu, J., Pang, X., & Lv, J. (2019). α-Glucosidase and ACE dual inhibitory protein hydrolysates and peptide fractions of sprouted quinoa yoghurt beverages inoculated with Lactobacillus casei. Food Chemistry, 299, 124985. https://doi.org/10.1016/j.foodchem.2019.124985. Epub 2019 Jun 28. PMID: 31279127.

    Article  CAS  PubMed  Google Scholar 

  • Odongo, G. A., Schlotz, N., Baldermann, S., Neugart, S., Ngwene, B., Schreiner, M., & Lamy, E. (2018). Effects of Amaranthus cruentus L. on aflatoxin B1-and oxidative stress-induced DNA damage in human liver (HepG2) cells. Food Bioscience, 26, 42–48. https://doi.org/10.1016/j.fbio.2018.09.006

    Article  CAS  Google Scholar 

  • Ontiveros, N., López-Teros, V., de Jesús Vergara-Jiménez, M., Islas-Rubio, A. R., Cárdenas-Torres, F. I., Cuevas-Rodríguez, E. O., Reyes-Moreno, C., Granda-Restrepo, D. M., Lopera-Cardona, S., Ramírez-Torres, G. I., & Cabrera-Chávez, F. (2020). Amaranth-hydrolyzate enriched cookies reduce the systolic blood pressure in spontaneously hypertensive rats. Journal of Functional Foods, 64, 103613. https://doi.org/10.1016/j.jff.2019.103613

    Article  CAS  Google Scholar 

  • Patil, S. B., & Jena, S. (2020). Utilization of underrated pseudocereals of North East India: a systematic review. Nutrition and Food Science, 50, 1229–1240.

    Article  Google Scholar 

  • Pirzadah, T. B., & Malik, B. (2020). Pseudocereals as super foods of 21st century: recent technological interventions. Journal of Agricultural and Food Research, 2, 100052.

    Article  Google Scholar 

  • Pongrac, P., Potisek, M., Fraś, A., Likar, M., Budič, B., Myszka, K., Boros, D., Nečemer, M., Kelemen, M., Vavpetič, P., & Pelicon, P. (2016). Composition of mineral elements and bioactive compounds in tartary buckwheat and wheat sprouts as affected by natural mineral-rich water. Journal of Cereal Science, 69, 9–16. https://doi.org/10.1016/j.jcs.2016.02.002

    Article  CAS  Google Scholar 

  • Popova, A., & Mihaylova, D. (2019). Antinutrients in plant-based foods: a review. The Open Biotechnology Journal, 13, 68–76. https://doi.org/10.2174/1874070701913010068

    Article  CAS  Google Scholar 

  • Priego-Poyato, S., Rodrigo-Garcia, M., Escudero-Feliu, J., Garcia-Costela, M., Lima-Cabello, E., Carazo-Gallego, A., & Jimenez-Lopez, J. C. (2021). Current advances research in nutraceutical compounds of legumes, pseudocereals and cereals. In J. C. Jimenez-Lopez (Ed.), Grain and seed proteins functionality. London: IntechOpen. https://doi.org/10.5772/intechopen.97782

    Chapter  Google Scholar 

  • Pritham, S. M., Revanna, M. L., Ravindra, U., Kalpana, B., Murthy, N., & Madhusudan. (2021). Physico-chemical, functional and anti-nutritional factors of the white bold quinoa (Chenopodium quinoa willd). International Journal of Chemical Studies, 9(2), 1103–1107. https://doi.org/10.22271/chemi.2021.v9.i2p.11967

    Article  CAS  Google Scholar 

  • Qiu, R., Wang, J., & Parkin, K. L. (2014). Isolation and identification of cytoprotective agents from nonpolar extracts of buckwheat flour. International Food Research Journal, 66, 86–92. https://doi.org/10.1016/j.foodres.2014.08.037

    Article  CAS  Google Scholar 

  • Quan, C., Ferreiro, S., & Cantón, O. (2018). Gluten-free diet: always as easy, useful, and healthy as people think? Journal of Child Science, 08, e75–e81. https://doi.org/10.1055/s-0038-1669381

    Article  Google Scholar 

  • Quiroga, A. V., Aphalo, P., Nardo, A. E., & Añón, M. C. (2017). In vitro modulation of renin–Angiotensin system enzymes by amaranth (Amaranthus hypochondriacus) protein-derived peptides: alternative mechanisms different from ace inhibition. Journal of Agricultural and Food Chemistry, 65, 7415–7423. https://doi.org/10.1021/acs.jafc.7b02240

    Article  CAS  PubMed  Google Scholar 

  • Quiroga, A. V., Barrio, D. A., & Añón, M. C. (2015). Amaranth lectin presents potential antitumor properties. LWT-Food Science and Technology, 60, 478–485. https://doi.org/10.1016/j.lwt.2014.07.035

    Article  CAS  Google Scholar 

  • Ramírez-Torres, G., Ontiveros, N., Lopez-Teros, V., Ibarra-Diarte, J. A., Reyes-Moreno, C., Cuevas-Rodríguez, E. O., & Cabrera-Chávez, F. (2017). Amaranth protein hydrolysates efficiently reduce systolic blood pressure in spontaneously hypertensive rats. Molecules, 22, 1905. https://doi.org/10.3390/molecules22111905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos Diaz, J. M., Sundarrajan, L., Kariluoto, S., Lampi, A. M., Tenitz, S., & Jouppila, K. (2017). Effect of extrusion cooking on physical properties and chemical composition of corn-based snacks containing amaranth and quinoa: application of partial least squares regression. Journal of Food Process Engineering, 40, e12320. https://doi.org/10.1111/jfpe.12320

    Article  CAS  Google Scholar 

  • Repo-Carrasco-Valencia, R. A., Encina, C. R., Binaghi, M. J., Greco, C. B., & Ronayne de Ferrer, P. A. (2010). Effects of roasting and boiling of quinoa, kiwicha and kañiwa on composition and availability of minerals in vitro. Journal of the Science of Food and Agriculture, 90, 2068–2073. https://doi.org/10.1002/jsfa.4053. PMID: 20582934.

    Article  CAS  PubMed  Google Scholar 

  • Rizzello, C. G., Lorusso, A., Montemurro, M., & Gobbetti, M. (2016). Use of sourdough made with quinoa (Chenopodium quinoa) flour and autochthonous selected lactic acid bacteria for enhancing the nutritional, textural and sensory features of white bread. Food Microbiology, 56, 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Rjeibi, I., Saad, A. B., & Hfaiedh, N. (2016). Oxidative damage and hepatotoxicity associated with deltamethrin in rats: the protective effects of Amaranthus spinosus seed extract. Biomedicine & Pharmacotherapy, 84, 853–860. https://doi.org/10.1016/j.biopha.2016.10.010

    Article  CAS  Google Scholar 

  • Rocchetti, G., Miragoli, F., Zacconi, C., Lucini, L., & Rebecchi, A. (2019a). Impact of cooking and fermentation by lactic acid bacteria on phenolic profile of quinoa and buckwheat seeds. Food Research International, 119, 886–894. https://doi.org/10.1016/j.foodres.2018.10.073

    Article  CAS  PubMed  Google Scholar 

  • Rocchetti, G., Lucini, L., Rodriguez, J. M. L., Barba, F. J., & Giuberti, G. (2019b). Gluten-free flours from cereals, pseudocereals and legumes: phenolic fingerprints and in vitro antioxidant properties. Food Chemistry, 271, 157–164.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez, J. P., Rahman, H., Thushar, S., & Singh, R. K. (2020). Healthy and resilient cereals and pseudo-cereals for marginal agriculture: molecular advances for improving nutrient bioavailability. Frontiers in Genetics, 11, 49. https://doi.org/10.3389/fgene.2020.00049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz, K. B., Khakimov, B., Søren, B. E., Søren, B., Stefania, B., & Sven-Erik, J. (2017). Quinoa seed coats as an expanding and sustainable source of bioactive compounds: an investigation of genotypic diversity in saponin profiles. Industrial Crops and Products, 104, 156–163. https://doi.org/10.1016/j.indcrop.2017.04.007

    Article  CAS  Google Scholar 

  • Rybicka, I., & Gliszczynska-Swiglo, A. (2017). Gluten-Free flours from different raw materials as the source of vitamin B1, B2, B3 and B6. Journal of Nutritional Science and Vitaminology, 63(2), 125–132.

    Article  CAS  PubMed  Google Scholar 

  • Sabbione, A. C., Rinaldi, G., Añón, M. C., & Scilingo, A. A. (2016). Antithrombotic effects of Amaranthus hypochondriacus proteins in rats. Plant Foods for Human Nutrition, 71, 19–27. https://doi.org/10.1007/s11130-015-0517-2

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-López, F., Robles-Olvera, V. J., Hidalgo-Morales, M., & Tsopmo, A. (2021). Angiotensin-I converting enzyme inhibitory activity of Amaranthus hypochondriacus seed protein hydrolysates produced with lactic bacteria and their peptidomic profiles. Food Chemistry, 363, 130320. https://doi.org/10.1016/j.foodchem.2021.130320

    Article  CAS  PubMed  Google Scholar 

  • Sandoval-Sicairos, E. S., Milán-Noris, A. K., Luna-Vital, D. A., Milán-Carrillo, J., & Montoya-Rodríguez, A. (2021). Anti-inflammatory and antioxidant effects of peptides released from germinated amaranth during in vitro simulated gastrointestinal digestion. Food Chemistry, 343, 128394. https://doi.org/10.1016/j.foodchem.2020.128394

    Article  CAS  PubMed  Google Scholar 

  • Sciarini, L. S., Steffolani, M. E., Fernández, A., Paesani, C., & Pérez, G. T. (2020). Gluten-free breadmaking affected by the particle size and chemical composition of quinoa and buckwheat flour fractions. Food Science and Technology International, 26, 321–332.

    Article  CAS  PubMed  Google Scholar 

  • Shreeja, K., Devi, S. S., Suneetha, W. J., & Prabhakar, B. N. (2021). Effect of germination on nutritional composition of common buckwheat (Fagopyrum esculentum Moench). International Research Journal of Pure & Applied Chemistry, 22, 1–7. https://doi.org/10.9734/irjpac/2021/v22i130350

    Article  CAS  Google Scholar 

  • Shukla, A., Srivastava, N., Suneja, P., Yadav, S. K., Hussain, Z., Rana, J. C., & Yadav, S. (2018). Genetic diversity analysis in Buckwheat germplasm for nutritional traits. Indian Journal of Experimental Biology, 56, 827–837.

    CAS  Google Scholar 

  • Sindhu, R., Beniwal, S. K., & Devi, A. (2019). Effect of grain processing on nutritional and physico-chemical, functional and pasting properties of amaranth and quinoa flours. Indian Journal of Traditional Knowledge, 18(3), 500–507.

    Google Scholar 

  • Singh, R., Langyan, S., Sangwan, S., Rohtagi, B., Khandelwal, A., & Shrivastava, M. (2022). Protein for human consumption from oilseed cakes: a review. Frontiers in Sustainable Food Systems, 6, 856401. https://doi.org/10.3389/fsufs.2022.856401

    Article  Google Scholar 

  • Sirotkin, A. V., Macejková, M., Tarko, A., Fabova, Z., Alwasel, S., & Harrath, A. H. (2021). Buckwheat, rooibos, and vitex extracts can mitigate adverse effects of xylene on ovarian cells in vitro. Environmental Science and Pollution Research, 28, 7431–7439. https://doi.org/10.1007/s11356-020-11082-7

    Article  CAS  PubMed  Google Scholar 

  • Siwatch, M., Yadav, R., & Yadav, B. (2019). Chemical, physicochemical, pasting and microstructural properties of amaranth (Amaranthus hypochondriacus) flour as affected by different processing treatments. Quality Assurance and Safety of Crops & Food, 11(1), 3–13. https://doi.org/10.3920/QAS2017.1226

    Article  CAS  Google Scholar 

  • Soares, R. A. M., Mendonça, S., De Castro, L. Í. A., Menezes, A. C. C. C. C., & Arêas, J. A. G. (2015). Major peptides from amaranth (Amaranthus cruentus) protein inhibit HMG-CoA reductase activity. International Journal of Molecular Sciences, 16, 4150–4160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stikić, R. I., Milinčić, D. D., Kostić, A. Ž, Jovanović, Z. B., Gašić, U. M., Tešić, ŽL., Djordjević, N. Z., Savić, S. K., Czekus, B. G., & Pešić, M. B. (2020). Polyphenolic profiles, antioxidant, and in vitro anticancer activities of the seeds of Puno and Titicaca quinoa cultivars. Cereal Chemistry, 97, 626–633.

    Article  Google Scholar 

  • Suárez, S., Aphalo, P., Rinaldi, G., Añón, M. C., & Quiroga, A. (2020). Effect of amaranth proteins on the RAS system. In vitro, in vivo and ex vivo assays. Food Chemistry, 308, 125601. https://doi.org/10.1016/j.foodchem.2019.125601

    Article  CAS  PubMed  Google Scholar 

  • Świątecka, D., Markiewicz, L. H., & Wroblewska, B. (2013). In vitro evaluation of the effect of the buckwheat protein hydrolysate on bacterial adhesion, physiology and cytokine secretion of Caco-2 cells. Central European Journal of Immunology, 8, 317–327. https://doi.org/10.5114/ceji.2013.37753

    Article  CAS  Google Scholar 

  • Świeca, M., Regula, J., Suliburska, J., Zlotek, U., Gawlik-Dziki, U., & Ferreira, I. M. (2020). Safeness of diets based on gluten-free buckwheat bread enriched with seeds and nuts-effect on oxidative and biochemical parameters in rat serum. Nutrients, 12, 41. https://doi.org/10.3390/nu12010041

    Article  CAS  Google Scholar 

  • Tang, Y., Li, X., Chen, P. X., Zhang, B., Liu, R., Hernandez, M., & Tsao, R. (2016). Assessing the fatty acid, carotenoid, and tocopherol compositions of amaranth and quinoa seeds grown in Ontario and their overall contribution to nutritional quality. Journal of Agricultural and Food Chemistry, 64(5), 1103–1110.

    Article  CAS  PubMed  Google Scholar 

  • Taniya, M. S., Reshma, M. V., Shanimol, P. S., Krishnan, G., & Priya, S. (2020). Bioactive peptides from amaranth seed protein hydrolysates induced apoptosis and antimigratory effects in breast cancer cells. Food Bioscience, 35, 100588. https://doi.org/10.1016/j.fbio.2020.100588

    Article  CAS  Google Scholar 

  • Tao, T., Pan, D., Zheng, Y. Y., & jun Ma, T. (2019). Optimization of hydrolyzed crude extract from tartary buckwheat protein and analysis of its hypoglycemic activity in vitro. IOP Conference Series: Environmental and Earth Sciences, 295(3), 032065. IOP Publishing.

    Google Scholar 

  • Thakur, P., & Kumar, K. (2019). Nutritional importance and processing aspects of Pseudocereals. Journal of Agricultural Engineering and Food Technology, 6, 155–160.

    Google Scholar 

  • Thakur, P., Kumar, K., Ahmed, N., et al. (2021a). Effect of soaking and germination treatments on nutritional, anti-nutritional, and bioactive properties of amaranth (Amaranthus hypochondriacus L.), quinoa (Chenopodium quinoa L.), and buckwheat (Fagopyrum esculentum L.). Current Research in Food Science, 4, 917–925. https://doi.org/10.1016/j.crfs.2021.11.019. PMID: 34927087; PMCID: PMC8646961.

  • Thakur, P., Kumar, K., & Dhaliwal, H. S. (2021b). Nutritional facts, bio-active components and processing aspects of pseudocereals: a comprehensive review. Food Bioscience, 42, 101170. https://doi.org/10.1016/J.FBIO.2021.101170

  • Tien, N. N. T., Trinh, L. N. D., Inoue, N., Morita, N., & Hung, P. V. (2018). Nutritional composition, bioactive compounds, and diabetic enzyme inhibition capacity of three varieties of buckwheat in Japan. Cereal Chemistry, 95(5), 615–624.

    Article  CAS  Google Scholar 

  • Tontul, İ, Kasimoglu, Z., Asik, S., Atbakan, T., & Topuz, A. (2018). Functional properties of chickpea protein isolates dried by refractance window drying. International Journal of Biological Macromolecules, 109, 1253–1259.

    Article  CAS  PubMed  Google Scholar 

  • United Nation. (2017). Retrieved April 12, 2022, from https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html

  • Upasana, U., & Yadav, L. (2022). Pseudocereals: a novel path towards healthy eating. In V. Y. Waisundara (Ed.), Pseudocereals. London: IntechOpen. https://doi.org/10.5772/intechopen.103708

    Chapter  Google Scholar 

  • USDA. (2022). Retrieved July 18, 2022, from https://fdc.nal.usda.gov/

  • Vagadia, B. H., Vanga, S. K., Singh, A., Gariepy, Y., & Raghavan, V. (2018). Comparison of conventional and microwave treatment on soymilk for inactivation of trypsin inhibitors and in vitro protein digestibility. Foods, 7, 6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Velarde-Salcedo, A. J., Barrera-Pacheco, A., Lara-González, S., Montero-Morán, G. M., Díaz-Gois, A., González de Mejia, E., & Barba de la Rosa, A. P. (2013). In vitro inhibition of dipeptidyl peptidase IV by peptides derived from the hydrolysis of amaranth (Amaranthus hypochondriacus L.) proteins. Food Chemistry, 136(2), 758–64. https://doi.org/10.1016/j.foodchem.2012.08.032. Epub 2012 Aug 25 PMID: 23122124.

    Article  CAS  PubMed  Google Scholar 

  • Vera, E. P., Alca, J. J., Saravia, G. R., Campioni, N. C., & Alpuy, I. J. (2019). Comparison of the lipid profile and tocopherol content of four Peruvian quinoa (Chenopodium quinoa Willd.) cultivars (‘Amarilla de Maranganí’, ‘Blanca de Juli’, INIA 415 ‘Roja Pasankalla’, INIA 420 ‘Negra Collana’) during germination. Journal of Cereal Science, 88, 132–137.

    Article  Google Scholar 

  • Vilcacundo, R., Martínez-Villaluenga, C., & Hernández-Ledesma, B. (2017). Release of dipeptidyl peptidase IV, α-amylase and α-glucosidase inhibitory peptides from quinoa (Chenopodium quinoa Willd.) during in vitro simulated gastrointestinal digestion. Journal of Functional Foods, 35, 531–539.

    Article  CAS  Google Scholar 

  • WronkoWska, H. Z. M. (2016). Gluten-free muffins based on fermented and unfermented buckwheat flour–content of selected elements. Journal of Food and Nutrition Research, 55, 108–113. https://doi.org/10.1007/s13197-017-2561-4

    Article  CAS  Google Scholar 

  • Xiao, Y., Wu, X., Yao, X., Chen, Y., Ho, C. T., He, C., Li, Z., & Wang, Y. (2021). Metabolite profiling, antioxidant and α-glucosidase inhibitory activities of buckwheat processed by solid-state fermentation with Eurotium cristatum YL-1. Food Research International, 143, 110262. https://doi.org/10.1016/j.foodres.2021.110262

    Article  CAS  PubMed  Google Scholar 

  • Xu, J. M., Fan, W., Jin, J. F., Lou, H. Q., Chen, W. W., Yang, J. L., et al. (2017). Transcriptome analysis of Al-induced genes in buckwheat (Fagopyrum esculentum Moench) root apex: new insight into Al toxicity and resistance mechanisms in an Al accumulating species. Frontiers in Plant Science, 8, 1141. https://doi.org/10.3389/fpls.2017.01141

    Article  PubMed  PubMed Central  Google Scholar 

  • Yasui, Y., Hirakawa, H., Oikawa, T., Toyoshima, M., Matsuzaki, C., Ueno, M., et al. (2016). Draft genome sequence of an inbred line of chenopodium quinoa, an allotetraploid crop with great environmental adaptability and outstanding nutritional properties. DNA Research 23, 535–546. https://doi.org/10.1093/dnares/dsw037

  • Yao, Y., Shi, Z., & Ren, G. (2014). Antioxidant and immunoregulatory activity of polysaccharides from quinoa (Chenopodium quinoa Willd.). International Journal of Molecular Science, 15, 19307–19318. https://doi.org/10.3390/ijms151019307. PMID: 25342323; PMCID: PMC4227275.

    Article  CAS  Google Scholar 

  • Zeyneb, H., Pei, H., Cao, X., Wang, Y., Win, Y., & Gong, L. (2021). In vitro study of the effect of quinoa and quinoa polysaccharides on human gut microbiota. Food Science and Nutrition. https://doi.org/10.1002/fsn3.2540

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, G., Xu, Z., Gao, Y., Huang, X., Zou, Y., & Yang, T. (2015). Effects of germination on the nutritional properties, phenolic profiles, and antioxidant activities of buckwheat. Journal of Food Science, 80(5), H1–H9. https://doi.org/10.1111/1750-3841.12830

    Article  CAS  Google Scholar 

  • Zhang, Q., & Xu, J. G. (2017). Determining the geographical origin of common buckwheat from China by multivariate analysis based on mineral elements, amino acids and vitamins. Scientific Reports, 7(1), 1–8.

    ADS  Google Scholar 

  • Zheng, Y., Wang, X., Zhuang, Y., Li, Y., Tian, H., Shi, P., & Li, G. (2019). Isolation of novel ACE-inhibitory and antioxidant peptides from quinoa bran albumin assisted with an in silico approach: characterization, in vivo antihypertension, and molecular docking. Molecules, 24, 4562. https://doi.org/10.3390/molecules24244562. PMID: 31842519; PMCID: PMC6943578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, X., Huang, L., Tang, W., Zhou, Y., Wang, Q., & Li, Z. (2013). A novel buckwheat protein with a beneficial effect in atherosclerosis was purified from Fagopyrum tataricum (L.). Archives of Biological Sciences, 65, 767–772. https://doi.org/10.2298/ABS1302767Z

    Article  Google Scholar 

  • Zieliński, H., Ciesarová, Z., Kukurová, K., Zielinska, D., Szawara-Nowak, D., Starowicz, M., & Wronkowska, M. (2017). Effect of fermented and unfermented buckwheat flour on functional properties of gluten-free muffins. Journal of Food Science and Technology, 54, 1425–1432.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zieliński, H., Honke, J., Bączek, N., Majkowska, A., & Wronkowska, M. (2019). Bioaccessibility of D-chiro-inositol from water biscuits formulated from buckwheat flours fermented by lactic acid bacteria and fungi. LWT, 106, 37–43.

    Article  Google Scholar 

  • Zieliński, H., Szawara-Nowak, D., & Wronkowska, M. (2020). Bioaccessibility of anti-AGEs activity, antioxidant capacity and phenolics from water biscuits prepared from fermented buckwheat flours. LWT, 123, 109051. https://doi.org/10.1016/j.lwt.2020.109051

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are highly indebted to ICAR (Indian Council of Agricultural Research), New Delhi for support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, S.L.; writing S.L, and F.N.K.; editing A.K.

Corresponding author

Correspondence to Sapna Langyan.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langyan, S., Khan, F.N. & Kumar, A. Advancement in Nutritional Value, Processing Methods, and Potential Applications of Pseudocereals in Dietary Food: A Review. Food Bioprocess Technol 17, 571–590 (2024). https://doi.org/10.1007/s11947-023-03109-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03109-x

Keywords

Navigation