Skip to main content

Advertisement

Log in

Electrical Conductivity of Er2O3-Doped c-ZrO2 Ceramics

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of Er2O3 addition on electrical conductivity of c-ZrO2 was investigated by analyzing the impedance spectra of undoped and various amounts of Er2O3-doped cubic zirconia (c-ZrO2). The undoped and 1-15 wt% Er2O3-doped c-ZrO2 powders were prepared via colloidal process. The doped powders were then pelletized under a pressure of 200 MPa. In addition, the undoped and Er2O3-doped c-ZrO2 specimens were sintered at 1500 °C for 1 h. The electrical conductivity of the specimens was measured using a frequency response analyzer in the frequency range of 100 mHz-13 MHz, in the temperature range of 300-800 °C. Electrical conductivity results indicate an increase in the conductivity with increase in the test temperature. The addition of 1 wt% Er2O3 into c-ZrO2 led to an increase in the grain interior, grain boundary, and total conductivities. The distortion caused by the addition of Er3+ cations in the c-ZrO2 lattice leads to an increase in the concentration of oxygen vacancies in the c-ZrO2 matrix, resulting in an enhancement in the electrical conductivities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Ramamoorthy, S. Ramasamy, and D. Sundararaman, Annealing Effects on Phase Transformation and Powder Microstructure of Nanocrystalline Zirconia Polymorphs, J. Mater. Res., 1999, 14(1), p 90–96

    Article  Google Scholar 

  2. M. Yashima, T. Hirose, S. Katano, Y. Suzuki, M. Kakihana, and M. Yoshimura, Structural Changes of ZrO2-CeO2 Solid Solutions around the Monoclinic-Tetragonal Phase Boundary, Phys. Rev. B: Condens. Matter., 1995, 51(13), p 8018–8025

    Article  Google Scholar 

  3. E.N.S. Muccillo, R.A. Rocha, and R. Muccillo, Preparation of Gd2O3-Doped ZrO2 by Polymeric Precursor Techniques, Mater. Lett., 2002, 53(4–5), p 353–358

    Article  Google Scholar 

  4. S.M. Ho, On the Structural Chemistry of Zirconium Oxide, Mater. Sci. Eng. A, 1982, 54, p 23–29

    Article  Google Scholar 

  5. Y. Arachi, H. Sakai, O. Yamamoto, Y. Takeda, and N. Imanishai, Electrical Conductivity of the ZrO2-Ln2O3 (Ln = lanthanides) System, Solid State Ion., 1999, 121(1–4), p 133–139

    Article  Google Scholar 

  6. X.J. Chen, K.A. Khor, S.H. Chan, and L.G. Yu, Influence of Microstructure on the Ionic conductivity of Yttria-Stabilized Zirconia Electrolyte, Mater. Sci. Eng. A, 2002, 335(1–2), p 246–252

    Article  Google Scholar 

  7. R. Scheps, Upconversion Laser Processes, Prog. Quantum Electron., 1996, 20(4), p 271–358

    Article  Google Scholar 

  8. J.R. Jurado, C. Moure, and P. Duran, Preparation, Microstructure and Electrical Properties of Erbia and Yttria-Doped Tetragonal Zirconia, J. Phys., 1986, 47(2), p 789–793

    Google Scholar 

  9. M.F. Souza and D.P.F. Souza, Liquid Phase Sintering of Re2O3-YSZ Ceramics: Part II, Grain Boundary Electrical Properties, J. Mater. Sci., 1999, 34, p 6107–6114

    Article  Google Scholar 

  10. P. Duran, J.R. Jurado, C. Moure, N. Valverde, and B.C.H. Steele, High oxygen ion conduction in some bismuth sesquioxide-yttrium sesquioxide (erbium sesquioxide) solid solutions, Mater. Chem. Phys., 1987, 18, p 287–294

    Article  Google Scholar 

  11. M.J. Verkerk and A.J. Burggraaf, Oxygen Transfer on Substituted ZrO2, Bi2O3, and CeO2 Electrolytes with Platinum Electrodes, J. Electrochem. Soc., 1983, 130, p 78–84

    Article  Google Scholar 

  12. K. Rajeswari, M.B. Suresh, D. Chakravarty, D. Das, and R. Johnson, Effect of Nano-Grain Size on the Ionic Conductivity of Spark Plasma Sintered 8YSZ Electrolyte, Int. J. Hydrogen Energy, 2012, 37(1), p 511–517

    Article  Google Scholar 

  13. K. Rajeswari, M.B. Suresh, U.S. Hareesh, Y.S. Rao, D. Das, and R. Johnson, Studies on Ionic Conductivity of Stabilized Zirconia Ceramics (8YSZ) Densified through Conventional and Non-Conventional Sintering Methodologies, Ceram. Int., 2011, 37(8), p 3557–3564

    Article  Google Scholar 

  14. T.S. Zhang, S.H. Chan, W. Wang, K. Hbaieb, L.B. Kong, and J. Ma, Effect of Mn Addition on the Densification, Grain Growth and Ionic Conductivity of Pure and SiO2-Containing 8YSZ Electrolytes, Solid State Ion., 2009, 180(1), p 82–89

    Article  Google Scholar 

  15. T.S. Zhang, Z.H. Du, S. Li, L.B. Kong, X.C. Song, J. Lu, and J. Ma, Transitional Metal-Doped 8 mol% Yttria-Stabilized Zirconia Electrolytes, Solid State Ion., 2009, 180(23-25), p 1311–1317

    Article  Google Scholar 

  16. S. Tekeli, B. Aktaş, and M. Küçüktüvek, Microstructural and Mechanical Properties of Er2O3-ZrO2 Ceramics with Different Er2O3 Contents, High Temp. Mater. Processes, 2012, 31(6), p 701–706

    Google Scholar 

  17. M. Miyayama, H. Yanagida, and A. Asada, Effects of Al2O3 Additions on Resistivity and Microstructure of Yttria-Stabilized Zirconia, Am. Ceram. Soc. Bull., 1985, 64(4), p 660–664

    Google Scholar 

  18. J.E. Bauerle, Study of Solid Electrolyte Polarization by a Complex Admittance Method, J. Phys. Chem. Solids, 1969, 30(12), p 2657–2670

    Article  Google Scholar 

  19. X. Guo and R. Waser, Electrical Properties of the Grain Boundaries of Oxygen Ion Conductors: Acceptor-Doped Zirconia and Ceria, Prog. Mater. Sci., 2006, 51(2), p 151–210

    Article  Google Scholar 

  20. X. Guo and J. Maier, Grain Boundary Blocking Effect in Zirconia: A Schottky Barrier Analysis, J. Electrochem. Soc., 2001, 148(3), p E121–E126

    Article  Google Scholar 

  21. X. Guo, W. Sigle, and J. Maier, Blocking Grain Boundaries in Yttria-Doped and Undoped Ceria Ceramics of High Purity, J. Am. Ceram. Soc., 2003, 86(1), p 77–87

    Article  Google Scholar 

  22. S.P.S. Badwal, Grain-Boundary Resistivity in Zirconia-Based Materials-Effect of Sintering Temperature and Impurities, Solid State Ion., 1995, 76(1–2), p 67–80

    Article  Google Scholar 

  23. X. Guo, Roles of Alumina in Zirconia for Functional Applications, J. Am. Ceram. Soc., 2003, 86(11), p 1867–1873

    Article  Google Scholar 

  24. X. Guo and Z. Zhang, Grain Size Dependent Grain Boundary Defect Structure: Case of Doped Zirconia, Acta Mater., 2003, 51(9), p 2539–2547

    Article  Google Scholar 

  25. X. Guo and Y. Ding, Grain Boundary Space Charge Effect in Zirconia: Experimental Evidence, J. Electrochem. Soc., 2004, 151(1), p J1–J7

    Article  Google Scholar 

  26. M.C. Martin and M.L. Mecartney, Grain Boundary Ionic Conductivity of Yttrium Stabilized Zirconia as a Function of Silica Content and Grain Size, Solid State Ion., 2003, 161(1–2), p 67–79

    Article  Google Scholar 

  27. S. Tekeli, A. Kayis, O. Gurdal, and M. Guru, Microstructural and Electrical Conductivity Relationships in Alumina-Containing Yttria Stabilized Cubic Zirconia Used as a Solid Electrolyte in Solid Oxide Fuel Cells, J. Electrochem. Soc., 2007, 9(1), p 505–513

    Google Scholar 

  28. M.B. Ricoult, M. Badding, and Y. Thibault, Grain Boundary Segregation and Conductivity in Yttria-Stabilized Zirconia, Adv. Electronic Electrochem. Ceram., 2005, 179, p 185

    Google Scholar 

  29. M. Aoki, Y.M. Chiang, I. Kosacki, L.J.R. Lee, H. Tuller, and L. Yaping, Solute Segregation and Grain-Boundary Impedance in High-Purity Stabilized Zirconia, J. Am. Ceram. Soc., 1996, 79(5), p 1169–1180

    Article  Google Scholar 

  30. M.J. Verkerk, B.J. Middelhuis, and A.J. Burggraaf, Effect of Grain Boundaries on the Conductivity of High-Purity ZrO2-Y2O3 Ceramics, Solid State Ion., 1982, 6(2), p 159–170

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank Gazi University and Marmara University, Turkey, for the provision of laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bulent Aktas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aktas, B., Tekeli, S. & Kucuktuvek, M. Electrical Conductivity of Er2O3-Doped c-ZrO2 Ceramics. J. of Materi Eng and Perform 23, 349–355 (2014). https://doi.org/10.1007/s11665-013-0750-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0750-5

Keywords

Navigation