Skip to main content
Log in

The Dominant Effects of Hopping Conduction on the Seebeck Coefficient and the Hall Mobility in p-Type CuInTe2 and CuGaTe2

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Simultaneous fits to reported experimental data including the temperature dependence of the electrical conductivity, Seebeck coefficient, and Hall mobility on p-type samples of CuInTe2 and CuGaTe2 were performed based on a two-band model which includes hopping conduction in an impurity band. It was revealed for both materials that the Seebeck coefficient and the Hall mobility are dominated by hopping conduction in a wide temperature range around room temperature. The present cases of CuInTe2 and CuGaTe2 are rare cases in which hopping conduction occurs in impurity bands formed from impurity states involving native defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Neumann, D. Peters, B. Schumann, and G. Kuhn, Electrical-properties of CuGaTe2 epitaxial layers. Phys. Stat. Sol. A 52, 559 (1979).

    Article  CAS  Google Scholar 

  2. S.M. Wasim, G. Marcano, and G.S. Porras, Transport properties of ternary compounds. Jpn. J. Appl. Phys. 19, 133 (1980).

    Article  Google Scholar 

  3. S.M. Wasim, G.S. Porras, and R.D. Tomlinson, Some electrical characteristics of Zn and Cd doped CuInTe2. Phys. Stat. Sol. A 71, K73 (1982).

    Article  CAS  Google Scholar 

  4. S.M. Wasim, G.S. Porras, and R.D. Tomlinson, Some electrical characteristics of Cu-doped and In-doped CuInTe2. Phys. Stat. Sol. A 71, 523 (1982).

    Article  CAS  Google Scholar 

  5. A. Kosuga, T. Plirdpring, R. Higashine, M. Matsuzawa, K. Kurosaki, and S. Yamanaka, High-temperature thermoelectric properties of Cu1-xInTe2 with a chalcopyrite structure. Appl. Phys. Lett. 100, 042108 (2012).

    Article  Google Scholar 

  6. V. Kucek, C. Drasar, J. Navratil, T. Plechacek, and L. Benes, Thermoelectric properties of Ni-doped CuInTe2. J. Phys. Chem. Solids 83, 1 (2015).

    Article  Google Scholar 

  7. T. Plirdpring, K. Kurosaki, A. Kosuga, T. Day, S. Firdosy, V. Ravi, G.J. Snyder, A. Harnwunggmoung, T. Sugahara, Y. Ohishi, H. Muta, and S. Yamanaka, Chalcopyrite CuGaTe2: a high-efficiency bulk thermoelectric material. Adv. Mater. 24, 3622 (2012).

    Article  CAS  Google Scholar 

  8. J.W. Shen, Z.W. Chen, S.Q. Lin, L.L. Zheng, W. Li, and Y.Z. Pei, Single parabolic band behavior of thermoelectric p-type CuGaTe2. J. Mater. Chem. C 4, 209 (2016).

    Article  CAS  Google Scholar 

  9. F. Ahmed, N. Tsujii, and T. Mori, Thermoelectric properties of CuGa1-xMnxTe2: power factor enhancement by incorporation of magnetic ions. J. Mater. Chem. A 5, 7545 (2017).

    Article  CAS  Google Scholar 

  10. J. Zhang, L.L. Huang, C. Zhu, C.J. Zhou, B. Jabar, J.M. Li, X.G. Zhu, L. Wang, C.J. Song, H.X. Xin, D.X. Li, and Y. Qin, Design of domain structure and realization of ultralow thermal conductivity for record-high thermoelectric performance in chalcopyrite. Adv. Mater. 31, 1905210 (2019).

    Article  CAS  Google Scholar 

  11. M.Y. Wu, L.J. Zhu, S.X. Liu, M.Z. Song, F.D. Zhang, P.F. Liang, X.L. Chao, Z.P. Yang, J.Q. He, and D. Wu, Significantly enhanced thermoelectric performance achieved in CuGaTe2 through dual-element permutations at cation sites. Acs Appl. Mater. Interfaces 14, 30046 (2022).

    Article  CAS  Google Scholar 

  12. Y.P. Li, Q.S. Meng, Y. Deng, H. Zhou, Y.L. Gao, Y.Y. Li, J.F. Yang, and J.L. Cui, High thermoelectric performance of solid solutions CuGa1-xInxTe2 (x=0-1.0). Appl. Phys. Lett. 100, 231903 (2012).

    Article  Google Scholar 

  13. Y.T. Qin, P.F. Qiu, R.H. Liu, Y.L. Li, F. Hao, T.S. Zhang, D.D. Ren, X. Shi, and L.D. Chen, Optimized thermoelectric properties in pseudocubic diamond-like CuGaTe2 compounds. J. Mater. Chem. A 4, 1277 (2016).

    Article  CAS  Google Scholar 

  14. M.J. Iqbal, S. Galibert, S.M. Wasim, E. Hernandez, P. Bocaranda, and J. Leotin, Variable range hopping conduction in p-type CuInTe2. Phys. Stat. Sol. B. 219, 351 (2000).

    Article  CAS  Google Scholar 

  15. M. Rodriguez, C. Quiroga, I. Bonalde, E. Medina, S.M. Wasim, and G. Marin, Preexponential factor in variable-range hopping conduction in CuInTe2. Solid State Commun. 136, 228 (2005).

    Article  CAS  Google Scholar 

  16. L. Essaleh, S.M. Wasim, G. Marin, E. Choukri, and J. Galibert, Localization and electron-electron interaction effects in p-CuGaTe2. Phys. Stat. Sol. B 225, 203 (2001).

    Article  CAS  Google Scholar 

  17. L. Essaleh, J. Galibert, S.M. Wasim, and G. Marin, Metallic magnetoconductivity in copper gallium telluride. Phys. Stat. Sol. B. 240, 625 (2003).

    Article  CAS  Google Scholar 

  18. L. Essaleh, S. M. Wasim, In Magnetotransport properties of copper ternaries: New solar cells materials, NATO CCMS Workshop on Smart Materials for Energy, Comunications and Security, Marrakech, Morocco, Dec, 2007 Marrakech, Morocco, 2007 p. 127

  19. Y. Kajikawa, Effects of impurity-band conduction on thermoelectric properties of lightly doped p-type CoSb3. J. Appl. Phys. 116, 153710 (2014).

    Article  Google Scholar 

  20. Y. Kajikawa, Refined analysis of the transport properties of Co1-xNixSb3 according to a model including a deep donor level and the second lowest valleys of the conduction band. J. Alloys Compd. 621, 170 (2015).

    Article  CAS  Google Scholar 

  21. Y. Kajikawa, Multi-band analysis of temperature-dependent transport coefficients (conductivity, Hall, Seebeck, and Nernst) of Ni-doped CoSb3. J. Appl. Phys. 119, 055702 (2016).

    Article  Google Scholar 

  22. Y. Kajikawa, Multi-band analyses of the conductivity, the Hall coefficient, and the Seebeck coefficient of single crystal p-type β-FeSi2. J. Alloys Compd. 846, 155861 (2020).

    Article  CAS  Google Scholar 

  23. Y. Kajikawa, Hopping conduction in FeSi. I. The Hall, Seebeck, and Nernst effects due to hopping conduction in the top and bottom impurity Hubbard bands. AIP Adv. 11, 105210 (2021).

    Article  CAS  Google Scholar 

  24. Y. Kajikawa, Hopping thermopower in FeGa3. Int. J. Mod. Phys. B 37, 2350123 (2022).

    Article  Google Scholar 

  25. Y. Kajikawa, Analyses of low-temperature transport and thermoelectric properties of polycrystalline undoped n-ZrNiSn. AIP Adv. 11, 055108 (2021).

    Article  CAS  Google Scholar 

  26. Y. Kajikawa, Multi-band simultaneous fits of transport data on p-type ScNiSb with including impurity conduction. Int. J. Mod. Phys. B 36, 2250071 (2022).

    Article  CAS  Google Scholar 

  27. J.M. Adamczyk, L.C. Gomes, J.X. Qu, G.A. Rome, S.M. Baumann, E. Ertekin, and E.S. Toberer, Native defect engineering in CuInTe2. Chem. Mater. 33, 359 (2021).

    Article  CAS  Google Scholar 

  28. N.A. Poklonski, and V.F. Stelmakh, Screening of electrostatic fields in crystalline semiconductors by electrons hopping over defects. Phys. Stat. Sol. B. 117, 93 (1983).

    Article  Google Scholar 

  29. N.A. Poklonskiĭ, S.Y. Lopatin, and A.G. Zabrodskiĭ, A lattice model of nearest-neighbor hopping conduction and its application to neutron-doped Ge: Ga. Phys. Solid State 42, 441 (2000).

    Article  Google Scholar 

  30. N.A. Poklonski, S.A. Vyrko, and A.G. Zabrodskii, The dipole model of narrowing of the energy gap between the Hubbard bands in slightly compensated semiconductors. Semiconductors 40, 394 (2006).

    Article  CAS  Google Scholar 

  31. Y. Kajikawa, Reappraisal of conduction and Hall effect due to impurity Hubbard bands in weakly compensated n-GaAs. Phys. Stat. Sol. B. 255, 1800063 (2018).

    Article  Google Scholar 

  32. Y. Kajikawa, Deconvolution of temperature dependence of conductivity, its reduced activation energy, and Hall-effect data for analysing impurity conduction in n-ZnSe. Phil. Mag. 100, 2018 (2020).

    Article  CAS  Google Scholar 

  33. H. Böttger, and V.V. Bryksin, The hopping Hall mobility in disordered systems. Solid State Commun. 23, 227 (1977).

    Article  Google Scholar 

  34. H. Böttger, and V.V. Bryksin, Hopping Conduction in Solids (Berlin: Akademie-Verlag, 1985).

    Book  Google Scholar 

  35. R. Mansfield, S. Abboudy, and P. Fozooni, Hopping conduction in n-type indium phosphide. Phil. Mag. B 57, 777 (1988).

    Article  CAS  Google Scholar 

  36. A. Yildiz, S.B. Lisesivdin, M. Kasap, and D. Mardare, Electrical properties of TiO2 thin films. J. Non-Cryst. Solids 354, 4944 (2008).

    Article  CAS  Google Scholar 

  37. O. Bleibaum, H. Böttger, and V.V. Bryksin, Effective-medium method for hopping transport in a magnetic field. Phys. Rev. B 56, 6698 (1997).

    Article  CAS  Google Scholar 

  38. N.F. Mott, and E.A. Davis, Electronic Processes in Non-Crystalline Materials (Oxford: Clarendon Press, 1971).

    Google Scholar 

  39. M. Jaime, M.B. Salamon, M. Rubinstein, R.E. Treece, J.S. Horwitz, and D.B. Chrisey, High-temperature thermopower in La2/3Ca1/3MnO3 films: evidence for polaronic transport. Phys. Rev. B 54, 11914 (1996).

    Article  CAS  Google Scholar 

  40. N. Van Lien, and D.D. Toi, Coulomb correlation effects in variable-range hopping thermopower. Phys. Lett. A 261, 108 (1999).

    Article  Google Scholar 

  41. Y. Yang, D.B. Zhou, and Z.Q. Li, Influence of hopping conduction on the thermopower of indium oxide thick films. Solid State Commun. 282, 45 (2018).

    Article  CAS  Google Scholar 

  42. Y. Kajikawa, Amphoteric-dopant model applied to multiband analysis of electric transport properties of n-type PdxCu1-xFeS2 including an impurity band. J. Electron. Mater. (2023). https://doi.org/10.1007/s11664-023-10511-w.

    Article  Google Scholar 

  43. C. Hamaguchi, Basic Semiconductor Physics, 2nd ed., (Berlin: Springer, 2010).

    Book  Google Scholar 

  44. M.V. Yakushev, C. Faugeras, A.V. Mudryi, and R.W. Martin, A magneto-reflectivity study of CuInTe2 single crystals. Phys. Stat. Sol. B. 257, 1900464 (2020).

    Article  CAS  Google Scholar 

  45. V. Riede, H. Sobotta, H. Neumann, H.X. Nguyen, W. Moller, and G. Kuhn, Infrared optical-properties of CuInTe2. Phys. Stat. Sol. B. 93, K93 (1979).

    Article  CAS  Google Scholar 

  46. V. Riede, H. Neumann, H.R. Sobotta, D. Tomlinson, E. Elliott, and L. Howarth, Infrared study of lattice and free carrier effects in p-type CuInTe2 single crystals. Solid State Commun. 33, 557 (1980).

    Article  CAS  Google Scholar 

  47. S.M. Wasim, and J.G. Albornoz, Electrical and optical properties of n-type and p-type CuInTe2. Phys. Stat. Sol. A 110, 575 (1988).

    Article  CAS  Google Scholar 

  48. G.S. Porras, M. Quintero, and S.M. Wasim, Electrical properties of (CuIn)1-zMn2zTe2 alloys. J. Appl. Phys. 67, 3382 (1990).

    Article  Google Scholar 

  49. G. Marin, S.M. Wasim, G.S. Perez, P. Bocaranda, and A.E. Mora, Compositional, structural, optical and electrical characterization of CuInTe2 grown by the tellurization of stoichiometric Cu and In in the liquid phase. J. Electron. Mater. 27, 1351 (1998).

    Article  CAS  Google Scholar 

  50. B. Kuhn, W. Kaefer, K. Fess, K. Friemelt, C. Turner, M. Wendl, and E. Bucher, Thermoelectric properties of CuIn1-xGaxTe2 single crystals. Phys. Stat. Sol. A 162, 661 (1997).

    Article  CAS  Google Scholar 

  51. W.F. Li, G.J. Yang, W. Zhang, and Z.W. Hou, Electronic structures and thermoelectric properties of CuMTe2 (M = Al, Ga, In) copper chalcopyrites: a first-principles study. Eur. Phys. J. B 88, 330 (2015).

    Article  Google Scholar 

  52. D.C. Look, and J.C. Manthuruthil, Electron and hole conductivity in CuInS2. J. Phys. Chem. Solids 37, 173 (1976).

    Article  CAS  Google Scholar 

  53. A. Amara, W. Rezaiki, A. Ferdi, A. Hendaoui, A. Drici, M. Guerioune, J.C. Bernede, and M. Morsli, Electrical properties of CuGaSe2 single crystals and polycrystalline coevaporated thin films. Phys. Stat. Sol. A 204, 1138 (2007).

    CAS  Google Scholar 

  54. B. Fernandez, and S.M. Wasim, Sound velocities and elastic moduli in CuInTe2 and CuInSe2. Phys. Stat. Sol. A 122, 235 (1990).

    Article  CAS  Google Scholar 

  55. B. Tell, J.L. Shay, and H.M. Kasper, Room-temperature electrical properties of 10 I-III-VI2 semiconductors. J. Appl. Phys. 43, 2469 (1972).

    Article  CAS  Google Scholar 

  56. R.H. Liu, L.L. Xi, H.L. Liu, X. Shi, W.Q. Zhang, and L.D. Chen, Ternary compound CuInTe2: a promising thermoelectric material with diamond-like structure. Chem. Commun. 48, 3818 (2012).

    Article  CAS  Google Scholar 

  57. Y. Cao, X.L. Su, F.C. Meng, T.P. Bailey, J.G. Zhao, H.Y. Xie, J. He, C. Uher, and X.F. Tang, Origin of the distinct thermoelectric transport properties of chalcopyrite ABTe2(A=Cu, Ag; B=Ga, In). Adv. Func. Mater. 30, 2005861 (2020).

    Article  CAS  Google Scholar 

  58. G. Marin, C. Rincon, S.M. Wasim, C. Power, and G.S. Perez, Temperature dependence of the fundamental absorption edge in CuInTe2. J. Appl. Phys. 81, 7580 (1997).

    Article  CAS  Google Scholar 

  59. J. Krustok, M. Groossberg, A. Jagomagi, M. Danilson, and J. Raudoja, Analysis of the edge emission of highly conductive CuGaTe2. Thin Solid Films 515, 6192 (2007).

    Article  CAS  Google Scholar 

  60. E.I. Rogacheva, Nonstoichiometry in the I-III-VI2 compounds, Ternary and Multinary Compounds. ed. R.D. Tomlinson, A.E. Hill, and R.D. Pilkington (Pittsburgh: Materials Research Society, 1998).

    Google Scholar 

  61. V. Kucek, C. Drasar, J. Kasparova, T. Plechacek, J. Navratil, M. Vlcek, and L. Benes, High-temperature thermoelectric properties of Hg-doped CuInTe2. J. Appl. Phys. 118, 125105 (2015).

    Article  Google Scholar 

  62. N. Cheng, R. Liu, S. Bai, X. Shi, and L. Chen, Enhanced thermoelectric performance in Cd doped CuInTe2 compounds. J. Appl. Phys. 115, 163705 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasutomo Kajikawa.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kajikawa, Y. The Dominant Effects of Hopping Conduction on the Seebeck Coefficient and the Hall Mobility in p-Type CuInTe2 and CuGaTe2. J. Electron. Mater. 52, 8303–8318 (2023). https://doi.org/10.1007/s11664-023-10735-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10735-w

Keywords

Navigation