Skip to main content

Advertisement

Log in

Application of a Molybdenum Carbide Electrode Enhanced the Biodegradability of Wheat Straw

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The disposal and management of wheat straw has become a major concern in wheat production countries because of its abundance. The potential of wheat straw as raw biomass could serve as a long-term sustainable resource if the lignocellulose polymer can be degraded efficiently. To break down this complex polymer and enhance the bioavailability of straw, we propose the application of stainless-steel-supported molybdenum carbide as the anode in electrochemical pretreatment. Our results indicate that the type of electrolyte used in electrolysis has a significant impact on the biodegradation efficiency of the polymer. Moreover, the data indicated that lignin was degraded by 7.4% in purified water and 6.2% in a NaOH system compared to the untreated group. The higher cellulose accessibility was confirmed by enzymatic hydrolysis in the NaOH system. The structural traits indicated that the bond energies of biomass lignocellulose were weakened to some extent in both purified water and NaOH systems. In addition, the enzymatic hydrolysis efficiency of straw treated by electrolysis with alkali electrolyte was significantly improved, and the yield of reducing sugar was increased by 17.9% and 116.8%, respectively, compared with those treated by NaOH alone and electrolysis, respectively. The results from our study also provide evidence that stainless-steel-supported molybdenum carbide along with an aqueous alkali (NaOH) can degrade the amorphous cellulose in lignocellulose and improve the bioavailability of straw effectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data sets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Reference

  1. FAO, Food and Agriculture Organization of the United Nations. Retrieved from https://fao.org (2018).

  2. J. Dai, B. Bean, B. Brown, W. Bruening, J. Edwards, M. Flowers, R. Karow, C. Lee, G. Morgan, and M. Ottman, Biomass Bioenergy 85, 223–227 (2016).

    Article  Google Scholar 

  3. K. Mehmood, S. Chang, S. Yu, L. Wang, P. Li, Z. Li, W. Liu, D. Rosenfeld, and J.H. Seinfeld, Environ. Chem. Lett. 16, 301–309 (2018).

    Article  CAS  Google Scholar 

  4. J. Singh, Environ. Qual. Manage. 28, 47–53 (2018).

    Article  Google Scholar 

  5. U. Riaz, G. Murtaza, and M. Farooq, Land Degrad. Dev. 29, 1343–1352 (2018).

    Article  Google Scholar 

  6. H. Wei, L. Wang, M. Hassan, and B. Xie, Bioresour. Technol. 256, 333–341 (2018).

    Article  CAS  Google Scholar 

  7. Q. Yu, R. Liu, K. Li, and R. Ma, Renew. Sust. Energ. Rev. 107, 51–58 (2019).

    Article  CAS  Google Scholar 

  8. C. Rojas, M. Cea, A. Iriarte, G. Valdés, R. Navia, and J.P. Cárdenas-R, Sustain. Mater. Technol. 20, e001 (2019).

    Google Scholar 

  9. R.M. Abdelhameed, M. El-Shahat, and H.E. Emam, Carbohydr. Polym. 247, 116695 (2020).

    Article  CAS  Google Scholar 

  10. H.E. Emam, H.B. Ahmed, E. Gomaa, M.H. Helal, and R.M. Abdelhameed, Recyclable photocatalyst composites based on Ag3VO4 and Ag2WO4@MOF@ cotton for effective discoloration of dye in visible light Cellulose 27, 7139–7155 (2020).

    Article  CAS  Google Scholar 

  11. H.E. Emam, and T.I. Shaheen, Investigation into the role of surface modification of cellulose nanocrystals with succinic anhydride in dye removal J. Polym. Environ. 27, 2419–2427 (2019).

    Article  CAS  Google Scholar 

  12. K. Liu, H. Du, T. Zheng, H. Liu, M. Zhang, H. Xie, X. Zhang, M. Ma, and C. Si, Recent advances in cellulose and its derivatives for oilfield applications Carbohydr. Polym. 259, 117740 (2021).

    Article  CAS  Google Scholar 

  13. C. Veluchamy, and A.S. Kalamdhad, Bioresour. Technol. 241, 1–9 (2017).

    Article  CAS  Google Scholar 

  14. S.-Q. Tian, R.-Y. Zhao, and Z.-C. Chen, Renew. Sust. Energ. Rev. 91, 483–489 (2018).

    Article  CAS  Google Scholar 

  15. J. Zhao, X. Tao, J. Li, Y. Jia, and T. Shao, Bioresour. Technol. 320, 1243 (2021).

    Google Scholar 

  16. Z. Yuan, G. Li, and E.L. Hegg, Bioresour. Technol. 266, 194–202 (2018).

    Article  CAS  Google Scholar 

  17. E.H. Koupaie, S. Dahadha, A.B. Lakeh, A. Azizi, and E. Elbeshbishy, J. Environ. Manage. 233, 774–784 (2019).

    Article  Google Scholar 

  18. M. Yadav, and V. Vivekanand, Bioresour. Technol. 321, 124523 (2021).

    Article  CAS  Google Scholar 

  19. S. Baluchová, A. Daňhel, H. Dejmková, V. Ostatná, M. Fojta, and K. Schwarzová-Pecková, Anal. Chim. Acta. 1077, 30–66 (2019).

    Article  Google Scholar 

  20. N. Klidi, D. Clematis, M. Delucchi, A. Gadri, S. Ammar, and M. Panizza, J. Electroanal. Chem. 815, 16–23 (2018).

    Article  CAS  Google Scholar 

  21. P. Cai, H. Fan, S. Cao, J. Qi, S. Zhang, and G. Li, Electrochim. Acta 264, 128–139 (2018).

    Article  CAS  Google Scholar 

  22. E. Reichert, R. Wintringer, D.A. Volmer, and R. Hempelmann, Phys. Chem. Chem. Phys. 14, 5214–5221 (2012).

    Article  CAS  Google Scholar 

  23. S. Stiefel, J. Lölsberg, L. Kipshagen, R. Möller-Gulland, and M. Wessling, Electrochem. Commun. 61, 49–52 (2015).

    Article  CAS  Google Scholar 

  24. D. Shao, J. Liang, X. Cui, H. Xu, and W. Yan, Chem. Eng. J. 244, 288–295 (2014).

    Article  CAS  Google Scholar 

  25. T.K. Dier, D. Rauber, D. Durneata, R. Hempelmann, and D.A. Volmer, Sci. Rep. 7, 1–12 (2017).

    Article  CAS  Google Scholar 

  26. X. Hao, Y. Quansheng, S. Dan, Y. Honghui, L. Jidong, F. Jiangtao, and Y. Wei, J. Hazard. Mater. 286, 509–516 (2015).

    Article  CAS  Google Scholar 

  27. B. Xu, B. Zhang, M. Li, W. Huang, N. Chen, C. Feng, and L. Yao, J. Appl. Electrochem. 44, 797–806 (2014).

    Article  CAS  Google Scholar 

  28. A. Porta, L. Falbo, C.G. Visconti, L. Lietti, C. Bassano, and P. Deiana, Catal. Today 343, 38–47 (2020).

    Article  CAS  Google Scholar 

  29. Q. Zheng, T. Zhou, Y. Wang, X. Cao, S. Wu, M. Zhao, H. Wang, M. Xu, B. Zheng, and J. Zheng, Sci. Rep. 8, 1321 (2018).

    Article  Google Scholar 

  30. N.W. Childs, Rice Chem. Technol. 3, 23 (2004).

    Google Scholar 

  31. B.C. Saha, A. Biswas, and M.A. Cotta, J. Biobased Mater. Bio. 40, 3693–3700 (2005).

    CAS  Google Scholar 

  32. M.R. Haider, W.-L. Jiang, J.-L. Han, H.M.A. Sharif, Y.-C. Ding, H.-Y. Cheng, and A.-J. Wang, Appl. Catal. B-Environ. 256, 1177 (2019).

    Article  Google Scholar 

  33. Y. Huang, Q. Gong, X. Song, K. Feng, K. Nie, F. Zhao, Y. Wang, M. Zeng, J. Zhong, and Y. Li, ACS Nano 10, 11337–11343 (2016).

    Article  CAS  Google Scholar 

  34. X. Ren, J. Zhao, Q. Wei, Y. Ma, and X. Sun, ACS Cent. Sci. 5, 116–121 (2018).

    Article  Google Scholar 

  35. J.A. Schaidle, A.C. Lausche, and L.T. Thompson, J. Catal. 272, 235–245 (2010).

    Article  CAS  Google Scholar 

  36. X. Liu, S.M. Zicari, G. Liu, Y. Li, and R. Zhang, Bioresour. Technol. 185, 150–157 (2015).

    Article  CAS  Google Scholar 

  37. Z. Yuan, J. Long, T. Wang, R. Shu, Q. Zhang, and L. Ma, Energ. Convers. Manage. 101, 481–488 (2015).

    Article  CAS  Google Scholar 

  38. X. Yan, J.R. Cheng, Y.T. Wang, and M.J. Zhu, Bioresour. Technol. 301, 122756 (2020).

    Article  CAS  Google Scholar 

  39. Z. You, S.-Y. Pan, N. Sun, H. Kim, and P.-C. Chiang, J. Clean. Prod. 238, 117813 (2019).

    Article  CAS  Google Scholar 

  40. Y.Q. Jia, Y. Wen, X. Han, J. Qi, Z. Liu, S. Zhang, and G. Li, Catal. Sci. Technol. 8, 4665–4677 (2018).

    Article  CAS  Google Scholar 

  41. T.-C. Hsu, G.-L. Guo, W.-H. Chen, and W.-S. Hwang, Bioresour. Technol. 101, 4907–4913 (2010).

    Article  CAS  Google Scholar 

  42. S. Park, J.O. Baker, M.E. Himmel, P.A. Parilla, and D.K. Johnson, Biotechnol. Biofuels 3, 10 (2010).

    Article  Google Scholar 

  43. Y. He, Y. Pang, Y. Liu, X. Li, and K. Wang, Energy Fuels 22, 2775–2781 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the Natural Science Foundation of Jiangsu Province (BK20200816) and National Natural Science Foundation of China (41571476), Key University Science Research Project of Jiangsu Province (20KJB610009), Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX21_0378) and the Science and technology innovation project for overseas students in Nanjing. Yinghan Liu would like to thank Zhuang Li (Nanjing University of Information Science & Technology) for providing technical instruction in performing the experiments.

Author information

Authors and Affiliations

Authors

Contributions

HF, HLS, and SZ were responsible for the experiment design. YHL and PXQ performed the experiments and drafted the manuscript. CQW, HF, AR and carried out the data processing. All the authors revised the version of the manuscript. All the authors read and approved the version of the manuscript.

Corresponding author

Correspondence to Shuai Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, H., Liu, Y., Qiu, P.X. et al. Application of a Molybdenum Carbide Electrode Enhanced the Biodegradability of Wheat Straw. J. Electron. Mater. 51, 163–171 (2022). https://doi.org/10.1007/s11664-021-09243-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09243-6

Keywords

Navigation