Skip to main content
Log in

Electroanalytical Determination of Acetaminophen Using a Polymerised Carbon Nanotube Based Sensor

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, acetaminophen (AP), typically consumed as a painkiller, was sensitively detected using an electrochemical sensor through cyclic voltammetry. Therefore, special attention focused on fabricating a sensitive voltammetric sensor based on cetrimide (CA) incorporated on a poly oxalic acid modified carbon nanotube paste electrode (POAMCNTPE). The topographical features and electrochemical characterisations of unmodified and modified electrodes were compared using a variable pressure scanning electron microscope (VP-SEM) and electrochemical impedance spectroscopy (EIS). The scan rate study reveals that the redox reaction of the AP at the surface of the modified electrode was controlled by diffusion. The detection limit (DL) of 1.50 × 10−8 M and quantification limit (QL) of 5.02 × 10−8 M was gained by utilising differential pulse voltammetry (DPV). The constructed electrochemical sensor displayed acceptable repeatability, excellent stability, and adequate reproducibility. The prepared sensor exhibited an outstanding selectivity to detect the AP in the presence of dopamine (DA) and folic acid (FA). The practicability of the proposed electrode was examined to be successful towards the quantification of AP in both pharmaceutical and biological samples.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Kassa, and M. Amare, Cogent Chem. 5, 1 (2019). https://doi.org/10.1080/23312009.2019.1681607.

    Article  CAS  Google Scholar 

  2. J.L. Stringer, Basic Concepts in Pharmacology: What You Need to Know for Each Drug Class, 5th ed., (Mc Graw-Hill Professional, 2017).

    Google Scholar 

  3. F. Ellis, Paracetamol—A Curriculum Resource (London: Royal Society of Chemistry, 2002).

    Google Scholar 

  4. W.H. Martindale, The Extra Pharmacopoeia, 29th ed., (London: The Pharmaceutical Press, 1989), p. 32.

    Google Scholar 

  5. R. Chokkareddy, N. Thondavada, N.K. Bhajanthri, and G.G. Redhi, Anal. Methods. 11, 6204 (2019). https://doi.org/10.1039/c9ay01743g.

    Article  CAS  Google Scholar 

  6. R.T. Kachoosangi, G.G. Wildgoose, and R.G. Compton, Analytica chim. Acta. 618, 54 (2008). https://doi.org/10.1016/j.aca.2008.04.053.

    Article  CAS  Google Scholar 

  7. B. Habibi, M. Jahanbakhshi, and M.H. Pournaghi-Azar, Electrochim. Acta. 56, 2888 (2011). https://doi.org/10.1016/j.electacta.2010.12.079.

    Article  CAS  Google Scholar 

  8. M.T. Olaleye, and B.J. Rocha, Exp. Toxicol. Pathol. 59, 319 (2008). https://doi.org/10.1016/j.etp.2007.10.003.

    Article  CAS  Google Scholar 

  9. M. Mazer, and J. Perrone, J. Med. Toxicol. 4, 2 (2008). https://doi.org/10.1007/bf03160941.

    Article  Google Scholar 

  10. E. Hazai, L. Vereczkey, and K. Monostory, Biochem. Biophys. Res. Commun. 291, 1089 (2002). https://doi.org/10.1006/bbrc.2002.6541.

    Article  CAS  Google Scholar 

  11. M.E. Bosch, A.J.R. Sanchez, F.S. Rojas, and C.B. Ojeda, J. Pharm. Biomed. Anal. 42, 291 (2006). https://doi.org/10.1016/j.jpba.2006.04.007.

    Article  CAS  Google Scholar 

  12. S. Zhao, W. Bai, H. Yuan, and D. Xiao, Anal. Chim. Acta. 559, 195 (2006). https://doi.org/10.1016/j.aca.2005.11.071.

    Article  CAS  Google Scholar 

  13. W. Ruengsitagoon, S. Liawruangrath, and A. Townshend, Talanta 69, 976 (2006). https://doi.org/10.1016/j.talanta.2005.11.050.

    Article  CAS  Google Scholar 

  14. I. Baranowska, and B. Kowalski, Water Air Soil Pollut. 211, 417 (2010). https://doi.org/10.1007/s11270-009-0310-7.

    Article  CAS  Google Scholar 

  15. G.M. Hadad, S. Emara, and W.M.M. Mahmoud, Talanta 79, 1360 (2009). https://doi.org/10.1016/j.talanta.2009.06.003.

    Article  CAS  Google Scholar 

  16. N. Al-Zhoubi, J.E. Koundourellis, and S. Malamataris, J. Pharm. Biomed. Anal. 29, 459 (2002). https://doi.org/10.1016/S0731-7085(02)00098-5.

    Article  Google Scholar 

  17. M.S.M. Quintino, K. Araki, H.E. Toma, and L. Angnes, Electroanalysis 14, 1629 (2002). https://doi.org/10.1002/elan.200290003.

    Article  CAS  Google Scholar 

  18. M.G. Gioia, P. Andreatta, S. Boschetti, and R. Gatti, J. Pharm. Biomed. Anal. 48, 331 (2008). https://doi.org/10.1016/j.jpba.2008.01.026.

    Article  CAS  Google Scholar 

  19. W. Lohmann, and U. Karst, Anal. Bioanal. Chem. 386, 1701 (2006). https://doi.org/10.1007/s00216-006-0801-y.

    Article  CAS  Google Scholar 

  20. H.G. Lou, H. Yuan, Z.R. Ruan, and B. Jiang, J. Chromatogr. B. 878, 682 (2010). https://doi.org/10.1016/j.jchromb.2010.01.005.

    Article  CAS  Google Scholar 

  21. M.K. Srivastava, S. Ahmad, D. Singh, and I.C. Shukla, Analyst. 110, 735 (1985). https://doi.org/10.1039/AN9851000735.

    Article  CAS  Google Scholar 

  22. G. Burgot, F. Auffret, and J.L. Burgot, Anal. Chim. Acta. 343, 125 (1997). https://doi.org/10.1016/s0003-2670(96)00613-7.

    Article  CAS  Google Scholar 

  23. Y.Z. Fang, D.J. Long, and J.N. Ye, Anal. Chim. Acta. 342, 13 (1997). https://doi.org/10.1016/S0003-2670(96)00619-8.

    Article  CAS  Google Scholar 

  24. A.R. Khaskheli, A. Shah, M.I. Bhanger, A. Niaz, and S. Mahesar, Spectrochim. Acta A Mol. Biomol. Spectrosc. 68, 747 (2007). https://doi.org/10.1016/j.saa.2006.12.055.

    Article  CAS  Google Scholar 

  25. H.M. Moghaddam, H. Beitollahi, S. Tajik, S. Jahani, H. Khabazzadeh, and R. Alizadeh, Russ. J. Electrochem. 53, 452 (2017). https://doi.org/10.1134/s1023193517050123.

    Article  CAS  Google Scholar 

  26. S. Tajik, Z. Dourandish, K. Zhang, H. Beitollahi, Q. Van Le, H.W. Jang, and M. Shokouhimehr, RSC Adv. 10, 15406 (2020). https://doi.org/10.1039/d0ra00799d.

    Article  CAS  Google Scholar 

  27. H.M. Moghaddam, S. Tajik, and H. Beitollahi, Microchem. J. 150, 104085 (2019). https://doi.org/10.1016/j.microc.2019.104085.

    Article  CAS  Google Scholar 

  28. H. Beitollahi, M.A. Khalilzadeh, S. Tajik, M. Safaei, K. Zhang, H.W. Jang, and M. Shokouhimehr, ACS Omega (2020). https://doi.org/10.1021/acsomega.9b03788.

    Article  Google Scholar 

  29. H. Beitollahi, H.M. Moghaddam, and S. Tajik, Anal. Lett. (2018). https://doi.org/10.1080/00032719.2018.1545132.

    Article  Google Scholar 

  30. H. Karimi-Maleh, M. Alizadeh, Y. Orooji, F. Karimi, M. Baghayeri, J. Rouhi, S. Tajik, H. Beitollahi, S. Agarwal, V.K. Gupta, S. Rajendran, S. Rostamnia, L. Fu, F. Saberi-Movahed, and S. Malekmohammadi, Ind. Eng. Chem. Res. 60, 816 (2021). https://doi.org/10.1021/acs.iecr.0c04698.

    Article  CAS  Google Scholar 

  31. F.G. Nejad, S. Tajik, H. Beitollahi, and I. Sheikhshoaie, Talanta 228, 122075 (2021).

    Article  Google Scholar 

  32. S. Tajik, H. Beitollahi, F.G. Nejad, Z. Dourandish, M.A. Khalilzadeh, H.W. Jang, R.A. Venditti, R.S. Varma, and M. Shokouhimehr, Ind. Eng. Chem. Res. 60, 1112 (2021). https://doi.org/10.1021/acs.iecr.0c04952.

    Article  CAS  Google Scholar 

  33. S. Tajik, H. Beitollahi, H.W. Jang, and M. Shokouhimehr, Talanta 232, 122379 (2021). https://doi.org/10.1016/j.talanta.2021.122379.

    Article  CAS  Google Scholar 

  34. H. Karimi-Maleh, Y. Orooji, F. Karimi, M. Alizadeh, M. Baghayeri, J. Rouchi, S. Tajik, H. Beitollahi, S. Agarwal, V.K. Gupta, S. Rajendran, A. Ayati, L. Fu, A.L. Sanati, B. Tanhaei, F. Sen, M. Nooshabadi, P.N. Asrami, and A. Othman, Biosens. Bioelectron. 184, 113252 (2021). https://doi.org/10.1016/j.bios.2021.113252.

    Article  CAS  Google Scholar 

  35. J.G. Manjunatha, Int. J. ChemTech Res. 6, 136 (2016).

    Google Scholar 

  36. H. Karimi-Maleh, F. Karimi, Y. Orooji, G. Mansouri, A. Razmjou, A. Aygun, and F. Sen, Sci. Rep. 10, 1 (2020). https://doi.org/10.1038/s41598-020-68663-2.

    Article  CAS  Google Scholar 

  37. M.M. Charithra, and J.G. Manjunatha, J. Electrochem. Sci. Eng. 10, 29 (2020). https://doi.org/10.5599/jese.717.

    Article  CAS  Google Scholar 

  38. J.G. Manjunatha, B.E. Kumara Swamy, M.T. Shreenivas, and G.P. Mamatha, Anal. Bioanal. Electrochem. 4, 225 (2012).

    Google Scholar 

  39. J.G. Manjunatha, M. Deraman, and N.H. Basri, Asian J. Pharm. Clin. Res. 8, 48 (2015).

    CAS  Google Scholar 

  40. H. Zhu, X. Wang, J. Liang, H. Lv, H. Tong, L. Ma, Y. Hu, G. Zhu, T. Zhang, Z. Tie, Z. Liu, Q. Li, L. Chen, J. Liu, and Z. Jin, Adv. Funct. Mater. 27, 1606604 (2017). https://doi.org/10.1002/adfm.201606604.

    Article  CAS  Google Scholar 

  41. B. Yoon, S.F. Liu, and T.M. Swager, Chem Mater. 28, 5916 (2016). https://doi.org/10.1021/acs.chemmater.6b02453.

    Article  CAS  Google Scholar 

  42. L. Li, P. Shi, L. Hua, J. An, Y. Gong, R. Chen, C. Yu, W. Hua, F. Xiu, J. Zhou, G. Gao, Z. Jin, G. Sun, and W. Huang, Nanoscale 10, 118 (2018). https://doi.org/10.1039/c7nr06219b.

    Article  CAS  Google Scholar 

  43. H. Luo, Z. Shi, N. Li, Z. Gu, and Q. Zhuang, Anal. Chem. 73, 915 (2001). https://doi.org/10.1021/ac000967l.

    Article  CAS  Google Scholar 

  44. C.P. Jonesa, K. Jurkschat, A. Crossley, and C.E. Banks, J. Iran. Chem. Soc. 5, 279 (2008). https://doi.org/10.1007/BF03246119.

    Article  Google Scholar 

  45. H. Karimi-Maleh, A.F. Shojaei, F. Karimi, K. Tabatabaeian, S. Shakeri, and R. Moradi, Biosens. Bioelectron. 86, 879 (2016). https://doi.org/10.1016/j.bios.2016.07.086.

    Article  CAS  Google Scholar 

  46. R.R. Moore, C.E. Banks, and R.G. Compton, Anal. Chem. 76, 2677 (2004). https://doi.org/10.1021/ac040017q.

    Article  CAS  Google Scholar 

  47. M. Ates, Mater. Sci. Eng. 33, 1853 (2013). https://doi.org/10.1016/j.msec.2013.01.035.

    Article  CAS  Google Scholar 

  48. J.G. Manjunatha, J. Electrochem. Sci. Eng. 7, 39 (2017). https://doi.org/10.5599/jese.368.

    Article  CAS  Google Scholar 

  49. M.M. Charithra, J.G. Manjunatha, and C. Raril, Adv. Pharm. Bull. 10, 247 (2020). https://doi.org/10.34172/apb.2020.029.

    Article  CAS  Google Scholar 

  50. J.G. Manjunatha, and G.K. Jayaprakash, Euarasian J. Anal. Chem. 14, 1 (2019). https://doi.org/10.29333/ejac/20190101.

    Article  CAS  Google Scholar 

  51. V. Prabhakara Rao, Y. Veera Manohara Reddy, M. Lavanya, M. Venu, and G. Madavi, Asian J. Chem. 28, 1828 (2016). https://doi.org/10.14233/ajchem.2016.19877.

    Article  CAS  Google Scholar 

  52. M.M. Charithra, and J.G. Manjunatha, ChemistrySelect 5, 9323 (2020). https://doi.org/10.1002/slct.202002626.

    Article  CAS  Google Scholar 

  53. P.K. Kalambate, B.J. Sanghavi, S.P. Karna, and A.K. Srivastava, Sens. Actuators B Chem. 213, 285 (2015). https://doi.org/10.1016/j.snb.2015.02.090.

    Article  CAS  Google Scholar 

  54. A.U. Alam, Y. Qin, M.M.R. Howlader, N.-X. Hu, and M. Jamal Deen, Sens. Actuators B. 254, 896 (2018). https://doi.org/10.1016/j.snb.2017.07.127.

    Article  CAS  Google Scholar 

  55. M. Amare, Heliyon 5, 1 (2019). https://doi.org/10.1016/j.heliyon.2019.e01663.

    Article  Google Scholar 

  56. M.M. Charithra, and J.G. Manjunatha, Mater. Chem. Phys. 262, 124293 (2021). https://doi.org/10.1016/j.matchemphys.2021.124293.

    Article  CAS  Google Scholar 

  57. J. Mocak, A. Bond, S. Mitchell, and G. Scollary, Pure Appl. Chem. 69, 297 (1997). https://doi.org/10.1351/pac199769020297.

    Article  CAS  Google Scholar 

  58. M. Behpour, S. Ghoreishi, M. Meshki, and H. Naemi, J. Anal. Chem. 69, 982 (2014). https://doi.org/10.1134/S1061934814100098.

    Article  CAS  Google Scholar 

  59. M.M. Barsan, C.T. Toledo, and C.M. Brett, J. Electroanal. Chem. 736, 8 (2015). https://doi.org/10.1016/j.jelechem.2014.10.026.

    Article  CAS  Google Scholar 

  60. A.A. Pasban, E.H. Nia, and M. Piryaei, J. Nanoanal. 4, 142 (2017). https://doi.org/10.22034/jna.2017.02.007.

    Article  Google Scholar 

  61. S.A. Atty, A.H. Ibrahim, and E.M. Hussien, J. Electrochem. Soc. 166, B1483 (2019). https://doi.org/10.1149/2.0961914jes.

    Article  CAS  Google Scholar 

  62. F.F. Hudari, E.H. Duarte, A.C. Pereira, L.H. Dall’Antonia, L.T. Kubota, and C.R.T. Tarley, J. Electroanal. Chem. 696, 52 (2013). https://doi.org/10.1016/j.jelechem.2013.01.033.

    Article  CAS  Google Scholar 

  63. S. Yilmaz, Z. Bas, M. Sadikoglu, S. Yagmur, and G. Saglikoglu, Int. J. Electrochem. Sci. 11, 6244 (2016). https://doi.org/10.20964/2016.07.74.

    Article  CAS  Google Scholar 

  64. H. Wang, S. Zhang, S. Li, and J. Qu, Talanta 178, 188 (2018). https://doi.org/10.1016/j.talanta.2017.09.021.

    Article  CAS  Google Scholar 

  65. C. Raril, and J.G. Manjunatha, Mod. Chem. Appl. 6, 1 (2018). https://doi.org/10.4172/2329-6798.1000263.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the SC/ST Fellowship No. MU/SCT RF/CR17/2017-18 Mangalore University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Manjunatha.

Ethics declarations

Conflict of interest

The authors confirm they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charithra, M.M., Manjunatha, J.G. Electroanalytical Determination of Acetaminophen Using a Polymerised Carbon Nanotube Based Sensor. J. Electron. Mater. 50, 6929–6940 (2021). https://doi.org/10.1007/s11664-021-09242-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09242-7

Keywords

Navigation