Skip to main content
Log in

High-performance, three-dimensional and porous K3V2(PO4)3/C cathode material for potassium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

K3V2(PO4)3 (KVP) can be employed as a potential cathode material for potassium-ion batteries owing to its high theoretical capacity (106 mA h g−1). However, the inherently poor electronic conductivity of KVP severely restricts its electrochemical performance. In this study, a citric-acid-assisted sol–gel method was used to synthesise a three-dimensional porous-framework-supported K3V2(PO4)3/C composite material. A convenient three-dimensional channel and a conductive carbon skeleton were formed in a porous structure between K3V2(PO4)3 particle covered by in situ carbon layers. Among the fabricated composites, K3V2(PO4)3/C prepared at 800 °C exhibited an optimal discharge specific capacity (76 mA h g−1 at 20 mA g−1), superior rate performance (discharge capacity of 37 mA h g−1 at 400 mA/g), and cycling stability (discharge capacity of 43 mA h g−1 after 100 cycles at 200 mA g−1). The improved performance was attributed to the three-dimensional porous conductive structure. This structure can improve the electrical conductivity, increase the electrode/electrolyte contact surface area, accelerate the electrode kinetics, and enhance the structure stability. The strategy involving the synthesis of three-dimensional porous structures may enable the development of high-performance potassium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111:3577–3613. https://doi.org/10.1021/cr100290v

    Article  CAS  PubMed  Google Scholar 

  2. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29. https://doi.org/10.1038/nchem.2085

    Article  CAS  PubMed  Google Scholar 

  3. Li M, Lu J, Chen ZW, Amine K (2018) 30 years of lithium-ion batteries. Adv Mater 30:1800561. https://doi.org/10.1002/adma.201800561

    Article  CAS  Google Scholar 

  4. Kubota K, Dahbi M, Hosaka T, Kumakura S, Komaba S (2018) Towards K-ion and Na-ion batteries as “beyond Li-ion.” Chem Rec 18(4):459–479. https://doi.org/10.1002/tcr.201700057

    Article  CAS  PubMed  Google Scholar 

  5. Hosaka T, Kubota K, Hameed AS, Komaba S (2020) Research development on K-ion batteries. Chem Rev 120:6358–6466. https://doi.org/10.1021/acs.chemrev.9b00463

    Article  CAS  PubMed  Google Scholar 

  6. Wang MY, Zhang HM, Cui J, Yao SS, Shen X, Park TJ, Kim JK (2021) Recent advances in emerging nonaqueous K-ion batteries: from mechanistic insights to practical applications. Energy Storage Mater 39:305–346. https://doi.org/10.1016/j.ensm.2021.04.034

    Article  Google Scholar 

  7. Min X, Xiao J, Fang MH, Wang W, Zhao YJ, Liu YG, Abdelkader AM, Xi K, Kumar RV, Huang ZH (2021) Potassium-ion batteries: outlook on present and future technologies. Energy Environ Sci 14:2186–2243. https://doi.org/10.1039/d0ee02917c

    Article  CAS  Google Scholar 

  8. Komaba S, Hasegawa T, Dahbi M, Kubota K (2015) Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem Commun 60:172–175. https://doi.org/10.1016/j.elecom.2015.09.002

    Article  CAS  Google Scholar 

  9. Pramudita JC, Sehrawat D, Goonetilleke D, Sharma S (2017) An initial review of the status of electrode materials for potassium-ion batteries. Adv Energy Mater 7:1602911. https://doi.org/10.1002/aenm.201602911

    Article  CAS  Google Scholar 

  10. Sha M, Liu L, Zhao HP, Lei L (2020) Review on recent advances of cathode materials for potassium-ion batteries. Energy Environ Mater 3:56–66. https://doi.org/10.1002/eem2.12060

    Article  CAS  Google Scholar 

  11. Wu ZR, Zou J, Chen SL, Niu XB, Liu J, Wang LP (2021) Potassium-ion battery cathodes: Past, present, and prospects. J Power Sources 484:229307. https://doi.org/10.1016/j.jpowsour.2020.229307

    Article  CAS  Google Scholar 

  12. Hosaka T, Shimamura T, Kubota K, Komaba S (2019) Polyanionic compounds for potassium-ion batteries. Chem Rec 19:735–745. https://doi.org/10.1002/tcr.201800143

    Article  CAS  Google Scholar 

  13. Wang JY, Ouyang B, Kim H, Tian YS, Ceder G, Kim H (2021) Computational and experimental search for potential polyanionic K-ion cathode materials. J Mater Chem A 9:18564–21857. https://doi.org/10.1039/d1ta05300k

    Article  CAS  Google Scholar 

  14. Qu QT, Li L, Tian S, Guo WL, Wu YP, Holze R (2010) A cheap asymmetric supercapacitor with high energy at high power: activated carbon//K0.27MnO2·0.6H2O[J]. J Power Sources 195:2789–2794. https://doi.org/10.1016/j.jpowsour.2009.10.108

    Article  CAS  Google Scholar 

  15. Zhang L, Zhang B, Wang C, Dou Y, Zhang Q, Liu Y, Gao H, Al-Mamun M, Pang WK, Guo Z, Dou SX, Liu HK (2019) Constructing the best symmetric full K-ion battery with the NASICON-type K3V2(PO4)3. Nano Energy 60:432–439. https://doi.org/10.1016/j.nanoen.2019.03.085

    Article  CAS  Google Scholar 

  16. Han J, Li GN, Liu F, Wang M, Zhang Y, Hu L, Dai C, Xu M (2017) Investigation of K3V2(PO4)3/C nanocomposites as high-potential cathode materials for potassium-ion batteries. Chem Commun 53:1805–1808. https://doi.org/10.1039/C6CC10065A

    Article  CAS  Google Scholar 

  17. Zheng S, Cheng S, Xiao S, Hu L, Chen Z, Huang B, Liu Q, Yang J, Chen Q (2020) Partial replacement of K by Rb to improve electrochemical performance of K3V2(PO4)3 cathode material for potassium-ion batteries. J Alloys Compd 815:152379. https://doi.org/10.1016/j.jallcom.2019.152379

    Article  CAS  Google Scholar 

  18. Zhang X, Kuang X, Zhu H, Xiao N, Zhang Q, Rui X, Yu Y, Huang S (2020) Hybrid cathodes composed of K3V2(PO4)3 and carbon materials with boosted charge transfer for K-ion batteries [J]. Surface 3(1):1–10. https://doi.org/10.3390/surfaces3010001

    Article  CAS  Google Scholar 

  19. Jenkins T, Alarco JA, Mackinnon I (2021) Synthesis and characterization of a novel hydrated layered vanadium (III) phosphate phase K3V3(PO4)4·H2O: a functional cathode material for potassium-ion batterieS. ACS Omega 6(3):1917–1929. https://doi.org/10.1021/acsomega.0c04675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu Z, Yuan X, Zhang S, Wang J, Huang Q, Yu N, Zhu Y, Fu L, Wang F, Chen Y, Wu Y (2019) Three-dimensional ordered porous electrode materials for electrochemical energy storage. NPG Asia Mater 11:12. https://doi.org/10.1038/s41427-019-0112-3

    Article  CAS  Google Scholar 

  21. Delhez R, de Keijser ThR, Mittemeijer EJ, Langford J (1988) Size and strain parameters from peak profiles: sense and nonsense. Aust J Phys 41(2):213–228. https://doi.org/10.1071/PH880213

    Article  Google Scholar 

  22. Leineweber A (2011) Understanding anisotropic microstrain broadening in Rietveld refinement. Zeitschrift fur Kristallographie 226(12):905–923. https://doi.org/10.1524/zkri.2011.1413

    Article  CAS  Google Scholar 

  23. Guo S, Bai Y, Geng Z, Wu F, Wu C (2019) Facile synthesis of Li3V2(PO4)3/C cathode material for lithium-ion battery via freeze-drying. J Energy Chem 32:159–165. https://doi.org/10.1016/j.jechem.2018.07.011

    Article  Google Scholar 

  24. Rui XH, Jin Y, Feng XY, Zhang LC, Chen CH (2011) A comparative study on the low-temperature performance of LiFePO4/C and Li3V2(PO4)3/C cathodes for lithium-ion batteries. J Power Sources 196(4):2109–2114. https://doi.org/10.1016/j.jpowsour.2010.10.063

    Article  CAS  Google Scholar 

  25. Wei Q, An Q, Chen D, Mai L, Chen S, Zhao Y, Hercule KM, Xu L, Minhas-Khan A, Zhang Q (2014) One-pot synthesized bicontinuous hierarchical Li3V2(PO4)3/C mesoporous nanowires for high-rate and ultralong-life lithium-ion batteries. Nano Lett 14(2):1042–1048. https://doi.org/10.1021/nl404709b

    Article  CAS  PubMed  Google Scholar 

  26. Vu A, Qian YQ, Stein A (2012) Porous electrode materials for lithium-ion batteries – how to prepare them and what makes them special. Adv Energy Mater 2(9):1056–1085. https://doi.org/10.1002/aenm.201200320

    Article  CAS  Google Scholar 

  27. Wu H, Du N, Wang J, Zang H, Yang D (2014) Three-dimensionally porous Fe3O4 as high-performance anode materials for lithium–ion batteries. J Power Sources 246:198–203. https://doi.org/10.1016/j.jpowsour.2013.07.063

    Article  CAS  Google Scholar 

  28. Zhang Z, Zhao X, Li J (2016) SnSex flowerlike composites as anode materials for sodium ion batteries. Mater Lett 162:169–172. https://doi.org/10.1016/j.matlet.2015.09.126

    Article  CAS  Google Scholar 

  29. Wang X, Niu C, Meng J, Hu P, Xu X, Wei X, Zhou L, Zhao LW, Yan M, Mai L (2015) Novel K3V2(PO4)3/C bundled nanowires as superior sodium-ion battery electrode with ultrahigh cycling stability. Adv Energy Mater 5(17):1500716. https://doi.org/10.1002/aenm.201500716

    Article  CAS  Google Scholar 

  30. Wang E, Chen M, Liu X, Liu Y, Guo H, Wu Z, Xiang W, Zhong B, Guo X, Chou S, Dou SX (2019) Organic cross-linker enabling a 3D porous skeleton-supported Na3V2(PO4)3/carbon composite for high power sodium-ion battery cathode. Small Methods 3(4):1800169. https://doi.org/10.1002/smtd.201800169

    Article  CAS  Google Scholar 

  31. Zhao L, Zhao H, Wang J, Zhang Y, Li Z, Du Z, Świerczek K, Hou Y (2021) Micro/nano Na3V2(PO4)3/N-doped carbon composites with a hierarchical porous structure for high-rate pouch-type sodium-ion full-cell performance. ACS Appl Mater Interfaces 13(7):8445–8454. https://doi.org/10.1021/acsami.0c21861

    Article  CAS  PubMed  Google Scholar 

  32. Liu J, Tang K, Song K, van Aken PA, Yu Y, Maier J (2014) Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries. Nanoscale 6:5081–5086. https://doi.org/10.1039/c3nr05329f

    Article  CAS  PubMed  Google Scholar 

  33. Sebastián D, Suelves I, Moliner R, Lázaro MJ (2010) The effect of the functionalization of carbon nanofibers on their electronic conductivity. Carbon 48(15):4421–4431. https://doi.org/10.1016/j.carbon.2010.07.059

    Article  CAS  Google Scholar 

  34. Fang Y, Xiao L, Ai X, Cao Y, Yang H (2015) Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv Mater 27(39):5895–5900. https://doi.org/10.1002/adma.201502018

    Article  CAS  PubMed  Google Scholar 

  35. Jiang Y, Yang Z, Li W, Zeng L, Pan F, Wang M, Wei X, Hu G, Gu L, Yu Y (2015) Nanoconfined carbon-coated Na3V2(PO4)3 particles in mesoporous carbon enabling ultralong cycle life for sodium-ion batteries. Adv Energy Mater 5(10):1402104. https://doi.org/10.1002/aenm.201402104

    Article  CAS  Google Scholar 

  36. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619. https://doi.org/10.1351/pac198557040603

    Article  CAS  Google Scholar 

  37. Ling R, Cai S, Xie D, Li X, Wang M, Lin Y, Jiang S, Shen K, Xiong K, Sun X (2018) Three-dimensional hierarchical porous Na3V2(PO4)3/C structure with high rate capability and cycling stability for sodium-ion batteries. Chem Eng J 353:264–272. https://doi.org/10.1016/j.cej.2018.07.118

    Article  CAS  Google Scholar 

  38. Jiang Y, Zhou X, Li D, Cheng X, Liu F, Yu Y (2018) Highly reversible Na storage in Na3V2(PO4)3 by optimizing nanostructure and rational surface engineering. Adv Energy Mater 8(16):1800068. https://doi.org/10.1002/aenm.201800068

    Article  CAS  Google Scholar 

  39. Gao H, Wang Y (2007) Preparation of (Gd, Y)AlO3:Eu3+ by citric-gel method and their photoluminescence under VUV excitation. J Lumin 122–123:997–999. https://doi.org/10.1016/j.jlumin.2006.01.349

    Article  CAS  Google Scholar 

  40. Zhou RS, Song JF, Yang QF, Xu XY, Xu JQ, Wang TG (2008) Syntheses, structures and magnetic properties of a series of 2D and 3D lanthanide complexes constructed by citric ligand. J Mol Struct 877(1–3):115–122. https://doi.org/10.1016/j.molstruc.2007.07.027

    Article  CAS  Google Scholar 

  41. Khanmohammadi M, Garmarudi AB (2012) Infrared spectroscopy in biodiagnostics: a green analytical approach. In: de la Guardia M, Garrigues S (Eds.) Handbook of green analytical chemistry. Wiley, pp 449–474. https://doi.org/10.1002/9781119940722.ch21

  42. Berto S, Daniele PG, Prenesti E, Laurenti E (2010) Interaction of oxovanadium (IV) with tricarboxylic ligands in aqueous solution: a thermodynamic and spectroscopic study. Inorg Chim Acta 363(13):3469–3476. https://doi.org/10.1016/j.ica.2010.06.047

    Article  CAS  Google Scholar 

  43. Burojevic S, Shweky I, Bino A, Summers DA, Thompson RC (1996) Synthesis, structure and magnetic properties of an asymmetric dinuclear oxocitratovanadate(IV) complex. Inorg Chim Acta 251(1–2):75–79. https://doi.org/10.1016/S0020-1693(96)05254-1

    Article  CAS  Google Scholar 

  44. Hennings D, Mayr W (1978) Thermal decomposition of (BaTi) citrates into barium titanate. J Solid State Chem 26(4):329–338. https://doi.org/10.1016/0022-4596(78)90167-6

    Article  CAS  Google Scholar 

  45. Liu H, Li J, Zhang Z, Gong Z, Yang Y (2003) The effects of sintering temperature and time on the structure and electrochemical performance of LiNi0.8Co0.2O2 cathode materials derived from sol–gel method. J Solid State Electrochem 7:456–462. https://doi.org/10.1007/s10008-002-0342-z

    Article  CAS  Google Scholar 

  46. Chen M, Zhang YG, Xing LD, Liao YH, Qiu YC, Yang SH, Li WS (2017) Morphology-conserved transformations of metal-based precursors to hierarchically porous micro-/nanostructures for electrochemical energy conversion and storage [J]. Adv Mater 29:1607015. https://doi.org/10.1002/adma.201607015

    Article  CAS  Google Scholar 

  47. Zhang X, Liu G, Zhou K, Jiao T, Zou Y, Wu Q, Chen X, Yang Y, Zheng J (2021) Enhancing cycle life of nickel-rich LiNi0.9Co0.05Mn0.05O2 via a highly fluorinated electrolyte additive-pentafluoropyridine. J Energy Mater 1:100005–100019. https://doi.org/10.20517/energymater.2021.07

    Article  Google Scholar 

  48. Kretschmer K, Sun B, Zhang J, Xie X, Liu H, Wang G (2017) 3D interconnected carbon fiber network-enabled ultralong life Na3V2(PO4)3@Carbon paper cathode for sodium-ion batteries. Small 13(9):1603318. https://doi.org/10.1002/smll.201603318

    Article  CAS  Google Scholar 

  49. Huang X, Yi X, Yang Q, Guo Z, Ren Y, Zeng X (2020) Outstanding electrochemical performance of N/S co-doped carbon/Na3V2(PO4)3 hybrid as the cathode of a sodium-ion battery. Ceram Int 46(18):28084–28090. https://doi.org/10.1016/j.ceramint.2020.07.303

    Article  CAS  Google Scholar 

  50. Cong X, Wang T, Shen J, Chen P, Yao H, Wang Z (2020) Na3V2(PO4)3/porous carbon skeleton embellished with ZIF-67 for sodium-ion storage. Inorg Chem 59(13):9252–9260. https://doi.org/10.1021/acs.inorgchem.0c01129

    Article  CAS  PubMed  Google Scholar 

  51. Chen Y, Cheng J, Wang Y, Wang C, He Z, Li D, Guo L (2020) Insights into the elevated electrochemical performance and kinetic characteristics of magnesium-substituted Na3V2−xMgx(PO4)3/C with superior rate capability and long lifespan. J Mater Sci 55:13141–13156. https://doi.org/10.1007/s10853-020-04962-3

    Article  CAS  Google Scholar 

  52. Cheng J, Chen Y, Wang Y, Wang C, He Z, Li D, Guo L (2020) Insights into the enhanced sodium storage property and kinetics based on the Zr/Si codoped Na3V2(PO4)3/C cathode with superior rate capability and long lifespan. J Power Sources 474:228632. https://doi.org/10.1016/j.jpowsour.2020.228632

    Article  CAS  Google Scholar 

  53. Chen Y, Cheng J, Wang C, He Z, Wang Y, Li D, Guo L (2021) Simultaneous modified Na2.9V1.9Zr0.1(PO4)3/C@rGO as a superior high rate and ultralong lifespan cathode for symmetric sodium ion batteries. Chem Eng J 413:127451. https://doi.org/10.1016/j.cej.2020.127451

    Article  CAS  Google Scholar 

  54. Zhang C, Guo D, Qin J, Mao B, Cao M (2017) Rational construction of Na3V2(PO4)3 nanoparticles encapsulated in 3D honeycomb carbon network as a cathode for sodium-ion batteries. Mater Lett 195:205–208. https://doi.org/10.1016/j.matlet.2017.02.121

    Article  CAS  Google Scholar 

Download references

Funding

The authors received financial support from the National Natural Science Foundation of China (51864005 and 51564002) and the Natural Science Foundation of Guangxi, China (2018GXNSFDA281014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Xuan Wen.

Additional information

This manuscript has not been published or presented elsewhere in part or in entirety and is not under consideration by another journal. We have read and understood your journal’s policies, and we believe that neither the manuscript nor the study violates any of these.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuai, HX., Lu, JF., Lv, XY. et al. High-performance, three-dimensional and porous K3V2(PO4)3/C cathode material for potassium-ion batteries. Ionics 28, 3817–3831 (2022). https://doi.org/10.1007/s11581-022-04612-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04612-5

Keywords

Navigation