Skip to main content
Log in

Toward Concurrent Engineering of the M1-Based Catalytic Systems for Oxidative Dehydrogenation (ODH) of Alkanes

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

A Correction to this article was published on 05 December 2020

This article has been updated

Abstract

In the oxidative dehydrogenation (ODH) of alkanes, some important advances of the last decade have made it possible to accelerate the development and industrial insertion of the M1 based catalytic systems. These catalysts may be fine-tuned to account for the inevitable variability of different chemicals and impurities in the feedstocks. The latter may include, among others, different blends of shale gases, with different ratios of the C1-C3 alkanes and impurities such as sulfur, phosphorus, etc. In this article, we review the recent progress achieved in our understanding of the crystal structures and the oxidative dehydrogenation (ODH) reaction mechanisms of the multi-metal oxide (MMO) M1 catalyst. Firstly, the complex crystal structure of the M1 phases has been examined using quantum mechanics (QM), reactive force field (ReaxFF), and machine learning (ML) approaches. Secondly, we discussed the ODH mechanism on the M1 phase based on the QM simulations including the finite cluster model and the periodic slab model. Finally, we proposed a catalyst design approach to improve the selectivity of the M1 phase based upon the ODH reaction mechanism. We also briefly discuss the concept of the CE (“Concurrent Engineering”, introduced by the European Space Agency). The development of the CE concepts may be applied to the M1 catalytic systems in the future allowing businesses to be agile and react fast to the changing production conditions, thereby making them uniquely competitive in the ODH of alkanes and other areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 05 December 2020

    The original version of this article unfortunately contained an error. The authors would like to correct the error with this erratum.

Notes

  1. Private communication, Prof. John Monnier, University of South Carolina, October 1, 2019.

References

  1. Ren T, Patel M, Blok K (2006) Energy 31:425

    CAS  Google Scholar 

  2. Lemonidou AA, Vasalos IA (1989) Appl Catal 54:119

    CAS  Google Scholar 

  3. Gao X, Tang Z, Zhang H, Ji D, Lu G, Wang Z, Tan Z (2010) J Mol Catal A 325:36

    CAS  Google Scholar 

  4. Corma A, Huber GW, Sauvanaud L, O’Connor P (2007) J Catal 247:307

    CAS  Google Scholar 

  5. Cavani F, Ballarini N, Cericola A (2007) Catal Today 127:113

    CAS  Google Scholar 

  6. Sattler JJHB, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM (2014) Chem Rev 114:10613

    CAS  PubMed  Google Scholar 

  7. Grabowski R (2006) Catal Rev Sci Eng 48:199

    CAS  Google Scholar 

  8. Atanga MA, Rezaei F, Jawad A, Fitch M, Rownaghi AA (2018) Appl Catal B 220:429

    CAS  Google Scholar 

  9. Centi G, Cavani F, Trifirò F (2001) Selective oxidation by heterogeneous catalysis. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  10. Kang DB, Anderson AB (1985) J Am Chem Soc 107:7858

    CAS  Google Scholar 

  11. Thorsteinson EM, Wilson TP, Young FG, Kasai PH (1978) J Catal 52:116–132

    CAS  Google Scholar 

  12. Hinago H, Komada Y (2000) (Mitsubishi Chem Corp.). Ammoxidation catalyst for use in producing acrylonitrile or methacrylonitrile from propane or isobutane by ammoxidation. U.S. Patent 6,063,728, May 16, 2000

  13. D B et al (2013) Top Catal 56(18–20):1952–1962

    Google Scholar 

  14. Sun L, Chai Y, Dai W, Guangjun Wu, Guan N, Li L (2018) Catal Sci Technol 8:3044–3051

    CAS  Google Scholar 

  15. Vajda et al (2009) Nat Mater 8(3):213. https://doi.org/10.1038/nmat2384

    Article  CAS  PubMed  Google Scholar 

  16. A.Y. Borisevich, S. Wong, S.N. Rashkeev, M.V. Glazoff, S.J. Pennycook, S.T. Pantelides, Dual Nano-Particle/Substrate Control of Dehydrogenation Catalysis, Advanced Materials, vol.19, pp. 2129–2133 (2007). Also see; B. M. Weckhuysen, R. A. Schoonheydt, Alkane dehydrogenation over supported chromium catalysts, Catal. Today 1999, 51, 223.

  17. Jinshu T, Jiangqiao T, Mingliang X, Zhaoxia Z, Shaolong W, Shuai W, Jingdong L, Yong W (20019) Sci Adv (Chemistry) v.5: Art. eaav8063

  18. Shi L, Wang D, Song W, Shao D, Zhang W-P, Lu A-H (2017) ChemCatChem 9:1788–1793

    CAS  Google Scholar 

  19. Grant JT, Carrero CA, Goeltl F, Venegas J, Mueller P, Burt SP, Specht SE, McDermott WP, Chieregato A, Hermans I (2016) Science 354:1570–1573

    CAS  PubMed  Google Scholar 

  20. Tian J, Lin J, Mingliang Xu, Wan S, Lin J, Wang Y (2018) Chem Eng Sci 186:142–151

    CAS  Google Scholar 

  21. Grant JT, McDermott WP, Venegas JM, Burt SP, Micka J, Phivilay SP, Carrero CA, Hermans I (2017) ChemCatChem 9:3623–3626

    CAS  Google Scholar 

  22. Goddard WA III, Mueller JE, Chenoweth K, van Duin ACT (2010) Catal Today 157:71–76

    CAS  Google Scholar 

  23. DeSanto P, Buttrey DJ, Grasselli RK, Lugmair CG, Volpe AF, Toby BH, Vogt T (2003) Top Catal 23:23–38

    CAS  Google Scholar 

  24. Pyrz WD, Blom DA, Vogt T, Buttrey DJ (2008) Angew Chem Int Ed 47:2788–2791

    CAS  Google Scholar 

  25. DeSanto P, Buttrey DJ, Grasselli RK, Lugmair CG, Volpe AF, Toby BH, Vogt TZ (2004) Kristallogr 219:152–165

    CAS  Google Scholar 

  26. Fu G, Xu X, Sautet P (2012) Angew Chem Int Ed 51:12854–12858

    CAS  Google Scholar 

  27. Cheng MJ, Goddard WA III (2016) Top Catal 59:1506–1517

    CAS  Google Scholar 

  28. Govindasamy A, Muthukumar K, Yu J, Xu Y, Guliants VV (2010) J Phys Chem C 114:4544–4549

    CAS  Google Scholar 

  29. Muthukumar K, Yu JJ, Xu Y, Guliants VV (2011) Top Catal 54:605–613

    CAS  Google Scholar 

  30. Yu J, Woo J, Borisevich A, Xu Y, Guliants VV (2012) Catal Commun 29:68–72

    CAS  Google Scholar 

  31. Yu J, Xu Y, Guliants VV (2014) Catal Today 238:28–34

    CAS  Google Scholar 

  32. Yu J, Xu Y, Guliants VV (2014) Top Catal 57:1145–1151

    CAS  Google Scholar 

  33. Cheng MJ, Goddard WA III (2015) J Am Chem Soc 137:13224–13227

    CAS  PubMed  Google Scholar 

  34. Annamalai L, Liu Y, Ezenwa S, Dang Y, Suib SL, Deshlahra P (2018) ACS Catal 8:7051–7067

    CAS  Google Scholar 

  35. Guliants VV, Bhandari R, Brongersma HH, Knoester A, Gaffney AM, Han S (2005) J Phys Chem B 109:10234–10242

    CAS  PubMed  Google Scholar 

  36. Guliants VV, Bhandari R, Swaminathan B, Vasudevan VK, Brongersma HH, Knoester A, Gaffney AM, Han S (2005) J Phys Chem B 109:24046–24055

    CAS  PubMed  Google Scholar 

  37. Grasselli RK, Buttrey DJ, DeSanto P, Burrington JD, Lugmair CG, Volpe AF, Weingand T (2004) Catal Today 91–92:251–258

    Google Scholar 

  38. Grasselli RK (2005) Catal Today 99:23–31

    CAS  Google Scholar 

  39. Goddard WA III, Liu L, Mueller JE, Pudar S, Nielsen RJ (2011) Top Catal 54:659–668

    CAS  Google Scholar 

  40. Li X, Buttrey DJ, Blom DA, Vogt T (2011) Top Catal 54:614–626

    CAS  Google Scholar 

  41. Murayama H, Vitry D, Ueda W, Fuchs G, Anne M, Dubois JL (2007) Appl Catal A 318:137–142

    CAS  Google Scholar 

  42. Ji H, Jung Y (2017) J Chem Phys 146:064103

    PubMed  Google Scholar 

  43. Sanchez JM, Ducastelle F, Gratias D (1984) Phys A 128:334–350

    Google Scholar 

  44. de Fontaine D (1994) Solid State Phys 47:33–176

    CAS  Google Scholar 

  45. Greeley J, Norskov JK, Mavrikakis M (2002) Ann Rev Phys Chem 53:319–348

    CAS  Google Scholar 

  46. Cheng MJ, Goddard WA III (2013) J Am Chem Soc 135:4600–4603

    CAS  PubMed  Google Scholar 

  47. Rozanska X, Fortrie R, Sauer J (2007) J Phys Chem C 111:6041–6050

    CAS  Google Scholar 

  48. Rozanska X, Sauer J (2009) J Phys Chem A 113:11586–11594

    CAS  PubMed  Google Scholar 

  49. Cheng MJ, Goddard WA, Fu R (2014) Top Catal 57:1171–1187

    CAS  Google Scholar 

  50. Lwin S, Diao W, Baroi C, Gaffney AM, Fushimi RR (2017) Catalysts 7:109

    Google Scholar 

  51. Cheng MJ, Fu R, Goddard WA (2014) Chem Commun 50:1748–1750

    CAS  Google Scholar 

  52. Ueda W, Vitry D, Katou T (2005) Catal Today 99:43–49

    CAS  Google Scholar 

  53. Oliver JM, Nieto JML, Botella P (2004) Catal Today 96:241–249

    CAS  Google Scholar 

  54. Grasselli RK, Burrington JD, Buttrey DJ, DeSanto P, Lugmair CG, Volpe AF, Weingand T (2003) Top Catal 23:5–22

    CAS  Google Scholar 

  55. Holmberg J, Grasselli RK, Andersson A (2004) Appl Catal A 270:121–134

    CAS  Google Scholar 

  56. Cheng MJ, Goddard WA III (2016) Top Catal. https://doi.org/10.1007/s11244-016-0669-9(2016)

    Article  Google Scholar 

  57. IEA. Energy statistics of OECD countries 2001/2002 and energy statistics of non-OECD countries 2001/2002 (2004 Edition). Paris: International Energy Agency; 2004.

  58. DOE. Manufacturing Consumption Energy Survey. Washington DC: Energy Information Administration of the US Department of Energy.

  59. Feyel S, Schrçder D, Rozanska X, Sauer J, Schwarz H (2006) Angew Chem 118, 4793; Angew Chem Int Ed 2006, 45:4677.

  60. Feyel S, Schrçder D, Schwarz H (2006) J Phys Chem A 110:2647

    CAS  PubMed  Google Scholar 

  61. Klisinska A, Loridant S, Grzybowska B, Stoch J, Gressel I (2006) Appl Catal A 309:17

    CAS  Google Scholar 

  62. Heracleous E, Vakros J, Lemonidou AA, Kordulis C (2004) Catal Today 91:289

    Google Scholar 

  63. Christodoulakis A, Heracleous E, Lemonidou AA, Boghosian S (2006) J Catal 242:16

    CAS  Google Scholar 

  64. Watson RB, Ozkan US (2000) J Catal 191:12

    CAS  Google Scholar 

  65. Heracleous E, Lemonidou AA (2006) J Catal 237:175

    CAS  Google Scholar 

  66. B. Solsona, J. M. Lopez Nieto, P. Concepcion, A. Dejoz, F. Ivars, M. I. Vazquez, J. Catal. 2011, 280, 28.

  67. Iwamoto M, Yoda Y, Egashira M, Seiyama T (1989) J Phys Chem 1976:80

    Google Scholar 

  68. Solsona B, Concepcion P, Demicol B, Hernandez S, Delgado JJ, Calvino JJ, LopezNieto JM (2012) J Catal 295:104

    CAS  Google Scholar 

  69. Ji L, Liu J, Chen X, Li M (1996) Catal Lett 39:247

    CAS  Google Scholar 

  70. Valenzuela RX, Bueno G, Cortes Corberan V, Xu Y, Chen C (2000) Catal. Today 61:43

    CAS  Google Scholar 

  71. Choudhary VR, Mulla SAR, Rane VH (1998) J Chem Technol Biotechnol 71:167

    CAS  Google Scholar 

  72. Lian JC, Finazzi E, Di Valentin C, Risse T, Gao HJ, Pacchioni G, Freund HJ (2008) Chem Phys Lett 450:308

    CAS  Google Scholar 

  73. Leveles L, Fuchs S, Seshan K, Lercher JA, Lefferts L (2002) Appl Catal A 227:287

    CAS  Google Scholar 

  74. Cherginets VL, Rebrova TP (1999) Electrochim Acta 45:469

    CAS  Google Scholar 

  75. Volkovich VA, Griffiths TR, Fray DJ, Fields M (1997) J Chem Soc Faraday Trans 93:3819

    CAS  Google Scholar 

  76. Botella P, Garcia-Gonzalez E, Dejoz A, LopezNieto JM, Vazquez MI, Gonzalez-Calbet J (2004) J Catal 225:428

    CAS  Google Scholar 

  77. Konya T, Katou T, Murayama T, Ishikawa S, Sadakane M, Buttrey D, Ueda W (2013) Catal. Sci Technol 3:380

    CAS  Google Scholar 

  78. Fang Chen N, Ueda W, Oshihara K (1999) Chem Commun 517.

  79. Adesina AA, Cant NW, Saberi-Moghaddam A, Szeto CHL, Trimm DL (1998) J Chem Technol Biotechnol 72:19

    CAS  Google Scholar 

  80. Lopez Nieto JM, Botella P, Vazquez MI, Dejoz A (1906) Chem Commun.

  81. USP 6,740,620B2, 5/24/04, Single Crystalline Phase Catalyst”

  82. USP 6,965,050, 11/15/05, Single Crystalline Phase Catalyst”

  83. Gartner CA, van Veen AC, Lercher JA (2013) ChemCatChem 5:3196

    Google Scholar 

  84. Botella P, Garcia-Gonzalez E, Lapez Nieto JM, Gonzlez-Calbet JM (2005) Solid State Sci 7:507

    CAS  Google Scholar 

  85. Melzer D, Xu P, Hartmann D, Zhu Y, Browning ND, Sanchez-Sanchez M, Lercher JA (2016) Angew Chem Int Ed 55:8873

    CAS  Google Scholar 

  86. Nieto JML, Botella P, Vazquez MI, Dejoz A (2002) Chem Commun 1906–1907.

  87. Shibuta Y, Ohno M, Takaki T (2018) Adv Theory Simul 1:1800065

    Google Scholar 

  88. Kresse G, Hafner J (1993) Phys Rev B 47:558

    CAS  Google Scholar 

  89. Kresse G, Joubert D (1999) Phys Rev B 59:1758

    CAS  Google Scholar 

  90. Kresse G, Furthmuller J (1996) Comput Mater Sci 6:15

    CAS  Google Scholar 

  91. Kresse G, Furthmuller J (1996) Phys Rev B 54:11169

    CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne M. Gaffney.

Ethics declarations

Conflicts of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: the co-author name has been corrected as William A. Goddard III.

Appendix 1 An Example of Molecular Dynamics Modeling of the ODH of Propane on M1

Appendix 1 An Example of Molecular Dynamics Modeling of the ODH of Propane on M1

The reaction mechanism of ODH of propane has been examined using the quantum mechanics simulations [33, 88,89,90,91]. However, the detailed reaction processes are not been fully known. Here we applied the ReaxFF [39] molecular dynamics (MD) simulations to examine the ODH of propane on M1 catalyst.

We first optimized the M1 crystal structure using the ReaxFF. It is quite complex because of the partial occupation of the sites Mo/Te/V. Here we used one possible crystal structure in which five V atoms are close to the Te S12 site [33]. This configuration is predicted to be efficient for the ODH process based on the QM simulations [33]. After the crystal is optimized, we constructed a five-layer slab model of M1-phase and added 5 propane (C3H8) molecules into the slab model. There are two surfaces in this model because of the periodic boundary condition.

The system was first equilibrated at temperature for 25 ps. Then we heated the system to a higher temperature of 500 K within 10 ps. To observe the ODH of C3H8 in short MD timescale, we applied the cook-off simulations in which the C3H8 molecules are heated from 500 to 3000 K within 25 ps. The M1 slab remained at 500 K to avoid the thermal degradation at high temperature. A time step of 0.25 fs was applied for integrating the equations of motion in the MD simulations.

To analyze the fragments in the ReaxFF MD simulations, we applied the molecular fragment recognition analysis algorithm using the connectivity matrix and bond orders at 0.25 ps intervals. Independent molecules are identified if their bond orders are smaller than 0.3, and then were assigned with specific ID numbers to track the reaction paths. The breaking or formation of bonds because of thermal fluctuations was avoided by a time window of 1.0 ps in which every bond must exist for 1.0 ps.

To uncover the chemical reactions of the propane on M1 phase, we first examined the important fragments including C3H8, C2H4, H2 and C2H6 as representatives during the ReaxFF MD cook-off simulation, as shown in Fig. 1. During the initial heating-up process, from 500 to 2500 K, no chemical reactions are observed. At ~ 2600 K, we observed the first reaction in which the C3H8 is decomposed to C2H5 and CH3. The C2H5 is decomposed to one C2H4 and one free H radical soon. Meanwhile the CH3 is bonded to the surface O. As the temperature continuously increase, more C3H8 molecules are decomposed, leading to the production of more C2H4 and H radicals. Some H radicals are combined in gas phase and form H2 molecules at ~ 2800 K. It is interesting to notice that one C3H6 fragment (CH3–CH = CH2) forms because the M1 phase absorbs H from C3H8 (Fig. 8)

We then examined the initial C3H8 decomposition mechanism, as shown in Fig. 2. The C3H8 molecule is dissociated into C2H5 and CH3; then, the CH3 is bonded to the O–Mo. The Mo is bonded to Te, suggesting that the Te may play some roles in the C3H8 decomposition. The initial decomposition does not occur in V-rich region as suggested by the QM simulations. This may be due to the small area of V-rich region in our model. It is interesting to notice that one C3H8 molecules are constrained in the hollow region on the lower left part of our supercell. However, this molecule is not decomposed in our simulation since only Mo atoms are in this hollow region. This suggests the importance of Te atoms in the C3H8 decomposition reaction (Fig. 9).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaffney, A.M., An, Q., Goddard, W.A. et al. Toward Concurrent Engineering of the M1-Based Catalytic Systems for Oxidative Dehydrogenation (ODH) of Alkanes. Top Catal 63, 1667–1681 (2020). https://doi.org/10.1007/s11244-020-01327-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01327-7

Keywords

Navigation