Skip to main content
Log in

Combined higher order non-convex total variation with overlapping group sparsity for impulse noise removal

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

A typical approach to eliminate impulse noise is to use the 1-norm for both the data fidelity term and the regularization terms. However, the 1-norm tends to over penalize signal entries which is one of its underpinnings. Hence, we propose a variational model that uses the non-convex p-norm, 0 < p < 1 for both the data fidelity and a second-order total variation regularization term combined with an overlapping group sparse regularizer. Specifically, to robustly eliminate impulse noise, the proposed method uses a non-convex data fidelity term. The hybrid combination of a second-order non-convex total variation and an overlapping group sparse regularization term is used to eliminate the remaining staircase artifacts while maintaining a sharp restored image. A mathematical formulation is derived and to implement it, the iterative re-weighted 1 (IRL1) based alternating direction method of multipliers (ADMM) is used to solve the constraints and the subproblems. Experimental results for image denoising and deblurring on several widely used standard images demonstrate that the proposed method performed better when compared to the 1-norm total variation (TV), total generalized variation (TGV) model, and the non-convex p-norm TV-based data fidelity model in terms of peak signal-to-noise ratio (PSNR) and structure similarity index measure (SSIM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Matlab codes can be downloaded at github.com/tarmiziAdam2005.

  2. The 1-TV model has been presented in several papers for example in [49] and [9]. We use the ADMM/ALM formulation that closely follows the paper of [9].

  3. We used the ADMM implementation provided by the authors of [15]. However, we did not use the predictor-corrector approach.

References

  1. Adam T, Paramesran R (2019) Image denoising using combined higher order non-convex total variation with overlapping group sparsity. Multidim Syst Sign Process 30:503–527

    Article  MathSciNet  MATH  Google Scholar 

  2. Adam T, Paramesran R (2020) Hybrid non-convex second-order total variation with applications to non-blind image deblurring. SIViP 14(1):115–123

    Article  Google Scholar 

  3. Alliney S (1992) Digital filters as absolute norm regularizers. IEEE Trans Signal Process 40(6):1548–1562

    Article  MATH  Google Scholar 

  4. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends®; Machine Learn 3(1):1–122

    Article  MATH  Google Scholar 

  5. Bredies K, Kunisch K, Pock T (2010) Total generalized variation. SIAM J Imaging Sci 3(3):492–526

    Article  MathSciNet  MATH  Google Scholar 

  6. Cai JF, Chan RH, Nikolova M (2010) Fast two-phase image deblurring under impulse noise. J Math Imaging Vision 36(1):46

    Article  MathSciNet  Google Scholar 

  7. Candes EJ, Wakin MB, Boyd SP (2008) Enhancing sparsity by reweighted 1 minimization. J Fourier Anal Appl 14(5-6):877–905

    Article  MathSciNet  MATH  Google Scholar 

  8. Chan RH, Tao M, Yuan X (2013) Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers. SIAM J Imaging Sci 6(1):680–697

    Article  MathSciNet  MATH  Google Scholar 

  9. Chan SH, Khoshabeh R, Gibson KB, Gill PE, Nguyen TQ (2011) An augmented lagrangian method for total variation video restoration. IEEE Trans Image Process 20(11):3097–3111

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen PY, Selesnick IW (2014) Group-sparse signal denoising: non-convex regularization, convex optimization. Signal Process IEEE Transactions on 62(13):3464–3478

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen X, Ng MK, Zhang C (2012) Non-lipschitz p-regularization and box constrained model for image restoration. IEEE Trans Image Process 21(12):4709–4721

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen X, Zhou W (2014) Convergence of the reweighted 1 minimization algorithm for 2-p minimization. Comput Optim Appl 59(1-2):47–61

    Article  MathSciNet  Google Scholar 

  13. Cui ZX, Fan Q (2018) A nonconvex+ nonconvex approach for image restoration with impulse noise removal. Appl Math Model 62:254–271

    Article  MathSciNet  MATH  Google Scholar 

  14. Fu B, Zhao X, Li Y, Wang X (2019) Patch-based contour prior image denoising for salt and pepper noise. Multimed Tools Appl 78(21):30,865–30,875

    Article  Google Scholar 

  15. Gao Y, Liu F, Yang X (2017) Total generalized variation restoration with non-quadratic fidelity. Multidim Syst Sign Process 1–26

  16. Gong P, Zhang C, Lu Z, Huang J, Ye J (2013) A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems. In: International conference on machine learning, pp 37–45

  17. Gonzalez RC, Woods RE (2006) Digital image processing, 3rd edn. Prentice-Hall, Inc, Upper Saddle River

    Google Scholar 

  18. Gu G, Jiang S, Yang J (2017) A tvscad approach for image deblurring with impulsive noise. Inverse Problems 33(12):125,008

    Article  MathSciNet  MATH  Google Scholar 

  19. Hao Y, Xu J, Bai J (2014) Primal-dual method for the coupled variational model. Comput Electric Eng 40(3):808–818

    Article  Google Scholar 

  20. Jiang D (2017) A multi-parameter regularization model for deblurring images corrupted by impulsive noise. Circ Syst Signal Process 36(9):3702–3730

    Article  MathSciNet  MATH  Google Scholar 

  21. Jidesh P, Holla S (2018) Non-local total variation regularization models for image restoration. Comput Electric Eng 67:114–133

    Article  MATH  Google Scholar 

  22. Kuang S, Chao H, Li Q (2018) Matrix completion with capped nuclear norm via majorized proximal minimization. Neurocomputing 316:190–201

    Article  Google Scholar 

  23. Liu G, Huang TZ, Liu J, Lv XG (2015) Total variation with overlapping group sparsity for image deblurring under impulse noise. PloS One 10 (4):e0122,562

    Article  Google Scholar 

  24. Liu J, Huang TZ, Liu G, Wang S, Lv XG (2016) Total variation with overlapping group sparsity for speckle noise reduction. Neurocomputing 216:502–513

    Article  Google Scholar 

  25. Liu J, Huang TZ, Selesnick IW, Lv XG, Chen PY (2015) Image restoration using total variation with overlapping group sparsity. Inf Sci 295:232–246

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu Q, Yang C, Gu Y, So HC (2018) Robust sparse recovery via weakly convex optimization in impulsive noise. Signal Process 152:84–89

    Article  Google Scholar 

  27. Liu X (2019) Primal-dual method for hybrid regularizers-based image restoration with impulse noise. Circ Systems Signal Process 38:1318–1332

    Article  Google Scholar 

  28. Liu X (2019) Total generalized variation and shearlet transform based poissonian image deconvolution. Multimed Tools Appl 78(13):18,855–18,868

    Article  Google Scholar 

  29. Luo Y, Qin J, Xiang X, Tan Y, Liu Q, Xiang L (2020) Coverless real-time image information hiding based on image block matching and dense convolutional network. J Real-Time Image Proc 17(1):125–135

    Article  Google Scholar 

  30. Lyu Q, Lin Z, She Y, Zhang C (2013) A comparison of typical p minimization algorithms. Neurocomputing 119:413–424

    Article  Google Scholar 

  31. Nikolova M, Ng MK, Tam CP (2010) Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction. Image Processing IEEE Trans On 19(12):3073–3088

    Article  MathSciNet  MATH  Google Scholar 

  32. Papafitsoros K, Schönlieb C. B. (2014) A combined first and second order variational approach for image reconstruction. J Math Imaging Vision 48 (2):308–338

    Article  MathSciNet  MATH  Google Scholar 

  33. Peyré G., Fadili J (2011) Group sparsity with overlapping partition functions. In: Signal processing conference, 2011 19th european. IEEE, pp 303–307

  34. Qiao Z, Redler G, Tang S, Gui Z (2019) Comparison of tvcdm and ddctv algorithms in image reconstruction. Inverse Problems Sci Eng 1–20

  35. Ren D, Zhang H, Zhang D, Zuo W (2015) Fast total-variation based image restoration based on derivative alternated direction optimization methods. Neurocomputing 170:201–212

    Article  Google Scholar 

  36. Ren W, Cao X, Pan J, Guo X, Zuo W, Yang MH (2016) Image deblurring via enhanced low-rank prior. IEEE Trans Image Process 25 (7):3426–3437

    Article  MathSciNet  MATH  Google Scholar 

  37. Ren Y, Tang L (2020) A nonconvex and nonsmooth anisotropic total variation model for image noise and blur removal. Multimed Tools Appl 79(1-2):1445–1473

    Article  Google Scholar 

  38. Rodríguez P (2013) Total variation regularization algorithms for images corrupted with different noise models: A review. J Electric Comput Eng 2013:10

    Article  MathSciNet  Google Scholar 

  39. Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica D Nonlinear Phenomena 60(1):259–268

    Article  MathSciNet  MATH  Google Scholar 

  40. Selesnick IW, Chen PY (2013) Total variation denoising with overlapping group sparsity. In: IEEE International conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 5696–5700

  41. Wang S, Huang TZ, Zhao XL, Mei JJ, Huang J (2017) Speckle noise removal in ultrasound images by first-and second-order total variation. Numer Algo 78:513–533

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang Y, Yang J, Yin W, Zhang Y (2008) A new alternating minimization algorithm for total variation image reconstruction. SIAM J Imaging Sci 1 (3):248–272

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang Y, Yin W, Zeng J (2019) Global convergence of admm in nonconvex nonsmooth optimization. J Sci Comput 78(1):29–63

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: From error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  45. Wen F, Liu P, Liu Y, Qiu RC, Yu W (2017) Robust sparse recovery in impulsive noise via p-1 optimization. IEEE Transactions on Signal Processing 65(1):105–118

    Article  MathSciNet  Google Scholar 

  46. Wen F, Pei L, Yang Y, Yu W, Liu P (2017) Efficient and robust recovery of sparse signal and image using generalized nonconvex regularization. IEEE Trans Comput Imaging 3(4):566–579

    Article  MathSciNet  Google Scholar 

  47. Wong RK, Lee T (2017) Matrix completion with noisy entries and outliers. J Machine Learn Res 18(1):5404–5428

    MathSciNet  MATH  Google Scholar 

  48. Wu C, Tai XC (2010) Augmented lagrangian method, dual methods, and split bregman iteration for rof, vectorial tv, and high order models. SIAM J Imaging Sci 3(3):300–339

    Article  MathSciNet  MATH  Google Scholar 

  49. Yang J, Zhang Y, Yin W (2009) An efficient tvl1 algorithm for deblurring multichannel images corrupted by impulsive noise. SIAM J Sci Comput 31(4):2842–2865

    Article  MathSciNet  MATH  Google Scholar 

  50. Yuan G (2019) Ghanem, b.: 0tv: A sparse optimization method for impulse noise image restoration. IEEE Trans Pattern Anal Machine Intell 41(2):352–364

    Article  Google Scholar 

  51. Zeng WJ, So HC (2018) Outlier-robust matrix completion via p-minimization. IEEE Trans Signal Process 66(5):1125–1140

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang B, Zhu G, Zhu Z (2020) A tv-log nonconvex approach for image deblurring with impulsive noise. Signal Process 174

  53. Zhang H, Tang L, Fang Z, Xiang C, Li C (2018) Nonconvex and nonsmooth total generalized variation model for image restoration. Signal Process 143:69–85

    Article  Google Scholar 

  54. Zhang J, Xie Z, Sun J, Zou X, Wang J (2020) A cascaded r-cnn with multiscale attention and imbalanced samples for traffic sign detection. IEEE Access 8:29,742–29,754

    Article  Google Scholar 

  55. Zhang X, Bai M, Ng MK (2017) Nonconvex-tv based image restoration with impulse noise removal. SIAM J Imaging Sci 10(3):1627–1667

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarmizi Adam.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adam, T., Paramesran, R., Mingming, Y. et al. Combined higher order non-convex total variation with overlapping group sparsity for impulse noise removal. Multimed Tools Appl 80, 18503–18530 (2021). https://doi.org/10.1007/s11042-021-10583-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-10583-y

Keywords

Navigation