Skip to main content
Log in

A study on heat generation characteristics of Na3V2(PO4)3 cathode and hard carbon anode-based sodium-ion cells

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

We report here the heat generation and impedance characteristics of prototype 18650-sized sodium-ion cells using pristine Na3V2(PO4)3 (P-NVP) and modified Na3.2V1.8Zn0.2(PO4)3 (M-NVP) cathodes, hard carbon (HC) anode and an ether-based non-flammable electrolyte, 1 M NaBF4 in tetraglyme. Comparison of calorimetric studies performed on 18650-sized cells reveals lower heat generation in M-NVP versus HC compared to P-NVP versus HC owing to low internal resistance achieved as a result of Zn2+ doping in M-NVP. Both irreversible heat generation arose due to internal resistance and reversible heat generation caused by entropic changes in the electrode materials are elucidated. Furthermore, variation in subcomponents of internal resistance in both 18650-sized full cells and CR2016-sized half-cells is analysed by fitting electrochemical impedance spectra into equivalent circuit models. Individual contributions of anode and cathode to the impedance characteristics of the cells are determined by analysing impedance data of the half-cells using the distribution of relaxation times method. The results reveal lower diffusion resistance, as well as charge transfer resistance in M-NVP cells compared to P-NVP counterpart, accounting for the observed lower total internal resistance in M-NVP versus HC and thus lower heat generation in M-NVP versus HC cell than P-NVP versus HC cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

Abbreviations

∂U/∂T :

Entropic coefficient/V K1

C :

Capacitance/F

C p :

Specific heat capacity/kJ kg1 K1

\(\frac{{{\text{d}}T}}{{{\text{d}}t}}\) :

Temperature gradient/K s1

Est. :

Estimated

I :

Current/A

I p :

Pulse current/A

Im:

Imaginary

m :

Mass/kg

Q 1, Q 2 :

Constant phase elements

Q irr :

Irreversible heat generation/J

Q rev :

Reversible heat generation/J

Q total :

Total heat generation/J

R :

Resistance/Ω

R CEI :

Cathode–electrolyte interphase resistance/Ω

R ct :

Charge-transfer resistance/Ω

R d :

Diffusion resistance/Ω

Re:

Real

R i :

Internal resistance/Ω

R s :

Series resistance/Ω

R SEI :

Solid–electrolyte interphase resistance/Ω

R total :

Total resistance/Ω

T :

Instantaneous temperature/K

τ :

Time constant/s

V :

Cell voltage/V

Z :

Impedance/Ω

Δt :

Time step/s

References

  1. Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries. Chem Rev. 2014;114:11636–82. https://doi.org/10.1021/cr500192f.

    Article  CAS  PubMed  Google Scholar 

  2. Kubota K, Komaba S. Review—practical issues and future perspective for na-ion batteries. J Electrochem Soc. 2015;162:A2538–50. https://doi.org/10.1149/2.0151514jes.

    Article  CAS  Google Scholar 

  3. Yang H, Amiruddin S, Bang HJ, Sun YK, Prakash J. A review of li-ion cell chemistries and their potential use in hybrid electric vehicles. J Ind Eng Chem. 2006;12:12–38.

    CAS  Google Scholar 

  4. Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells. J Power Sour. 2003;113:81–100.

    Article  CAS  Google Scholar 

  5. Zhang J, Huang J, Li Z, Wu B, Nie Z, Sun Y, et al. Comparison and validation of methods for estimating heat generation rate of large-format lithium-ion batteries. J Therm Anal Calorim. 2014;117:447–61. https://doi.org/10.1007/s10973-014-3672-z.

    Article  CAS  Google Scholar 

  6. Hong J-S, Maleki H, Al Hallaj S, Redey L, Selman JR. Electrochemical-calorimetric studies of lithium-ion cells. J Electrochem Soc. 1998;145:1489. https://doi.org/10.1149/1.1838509.

    Article  CAS  Google Scholar 

  7. Bazinski SJ, Wang X. The influence of cell temperature on the entropic coefficient of a lithium iron phosphate (LFP) pouch cell. J Electrochem Soc. 2014;161:A168–75. https://doi.org/10.1149/2.082401jes.

    Article  CAS  Google Scholar 

  8. Balasundaram M, Ramar V, Yap C, Li Lu, Tay AAO, Balaya P. Heat loss distribution: impedance and thermal loss analyses in LiFePO4/graphite 18650 electrochemical cell. J Power Sour. 2016;328:413–21.

    Article  CAS  Google Scholar 

  9. Manikandan B, Yap C, Balaya P. Towards understanding heat generation characteristics of Li-ion batteries by calorimetry, impedance, and potentiometry studies. J Electrochem Soc. 2017;164:A2794–800. https://doi.org/10.1149/2.1811712jes.

    Article  CAS  Google Scholar 

  10. Du K, Wang C, Subasinghe LU, Gajella SR, Law M, Rudola A, et al. A comprehensive study on the electrolyte, anode and cathode for developing commercial type non-flammable sodium-ion battery. Energy Storage Mater. 2020;29:287–99.

    Article  Google Scholar 

  11. Wang Q, Zhao X, Ye J, Sun Q, Ping P, Sun J. Thermal response of lithium-ion battery during charging and discharging under adiabatic conditions. J Therm Anal Calorim. 2016;124:417–28. https://doi.org/10.1007/s10973-015-5100-4.

    Article  CAS  Google Scholar 

  12. Archibald E, Kennedy R, Marr K, Jeevarajan J, Ezekoye O. Characterization of thermally induced runaway in pouch cells for propagation. Fire Technol. 2020;56:2467–90. https://doi.org/10.1007/s10694-020-00974-2.

    Article  Google Scholar 

  13. Abraham DP, Roth EP, Kostecki R, McCarthy K, MacLaren S, Doughty DH. Diagnostic examination of thermally abused high-power lithium-ion cells. J Power Sour. 2006;161:648–57.

    Article  CAS  Google Scholar 

  14. Al Hallaj S, Prakash J, Selman JR. Characterization of commercial Li-ion batteries using electrochemical–calorimetric measurements. J Power Sour. 2000;87:186–94.

    Article  CAS  Google Scholar 

  15. Onda K, Kameyama H, Hanamoto T, Ito K. Experimental study on heat generation behavior of small lithium-ion secondary batteries. J Electrochem Soc. 2003;150:A285. https://doi.org/10.1149/1.1543947.

    Article  CAS  Google Scholar 

  16. Yang H, Prakash J. Determination of the reversible and irreversible heats of a LiNi0.8Co0.15Al0.05O2/natural graphite cell using electrochemical-calorimetric technique. J Electrochem Soc. 2004;151:A1222. https://doi.org/10.1149/1.1765771.

    Article  CAS  Google Scholar 

  17. Liu G, Ouyang M, Lu L, Li J, Han X. Analysis of the heat generation of lithium-ion battery during charging and discharging considering different influencing factors. J Therm Anal Calorim. 2014;116:1001–10. https://doi.org/10.1007/s10973-013-3599-9.

    Article  CAS  Google Scholar 

  18. Schuster E, Ziebert C, Melcher A, Rohde M, Seifert HJ. Thermal behavior and electrochemical heat generation in a commercial 40 Ah lithium ion pouch cell. J Power Sour. 2015;286:580–9. https://doi.org/10.1016/j.jpowsour.2015.03.170.

    Article  CAS  Google Scholar 

  19. Yang C, Xin S, Mai L, You Y. Materials design for high-safety sodium-ion battery. Adv Energy Mater. 2021;11:2000974. https://doi.org/10.1002/aenm.202000974.

    Article  CAS  Google Scholar 

  20. Subasinghe LU, Gajella SR, Rudola A, Balaya P. Analysis of heat generation and impedance characteristics of Prussian blue analogue cathode-based 18650-type sodium-ion cells. J Electrochem Soc. 2020;167: 110504. https://doi.org/10.1149/1945-7111/ab9ee9.

    Article  CAS  Google Scholar 

  21. Huang J, Albero Blanquer L, Bonefacino J, Logan ER, Alves Dalla Corte D, Delacourt C, et al. Operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors. Nat Energy. 2020;5:674–83. https://doi.org/10.1038/s41560-020-0665-y.

    Article  CAS  Google Scholar 

  22. Zhao J, Zhao L, Chihara K, Okada S, Yamaki JI, Matsumoto S, et al. Electrochemical and thermal properties of hard carbon-type anodes for Na-ion batteries. J Power Sour. 2013;244:752–7. https://doi.org/10.1016/j.jpowsour.2013.06.109.

    Article  CAS  Google Scholar 

  23. Rudola A, Du K, Balaya P. Monoclinic sodium iron hexacyanoferrate cathode and non-flammable glyme-based electrolyte for inexpensive sodium-ion batteries. J Electrochem Soc. 2017;164:A1098–109. https://doi.org/10.1149/2.0701706jes.

    Article  CAS  Google Scholar 

  24. Zhao J, He J, Ding X, Zhou J, Ma Y, Wu S, et al. A novel sol–gel synthesis route to NaVPO4F as cathode material for hybrid lithium ion batteries. J Power Sour. 2010;195:6854–9.

    Article  CAS  Google Scholar 

  25. Xia X, Dahn JR. NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes. Electrochem Solid-State Lett. 2012;15:A1. https://doi.org/10.1149/2.002201esl.

    Article  CAS  Google Scholar 

  26. Ruffo R, Fathi R, Kim DJ, Jung YH, Mari CM, Kim DK. Impedance analysis of Na0.44MnO2 positive electrode for reversible sodium batteries in organic electrolyte. Electrochim Acta. 2013;108:575–82. https://doi.org/10.1016/j.electacta.2013.07.009.

    Article  CAS  Google Scholar 

  27. Patra J, Huang H-T, Xue W, Wang C, Helal AS, Li J, et al. Moderately concentrated electrolyte improves solid–electrolyte interphase and sodium storage performance of hard carbon. Energy Storage Mater. 2019;16:146–54.

    Article  Google Scholar 

  28. Kehne P, Guhl C, Ma Q, Tietz F, Alff L, Hausbrand R, et al. Sc-substituted Nasicon solid electrolyte for an all-solid-state NaxCoO2/Nasicon/Na sodium model battery with stable electrochemical performance. J Power Sour. 2019;409:86–93.

    Article  CAS  Google Scholar 

  29. Zheng W, Gao R, Zhou T, Huang X. Enhanced electrochemical performance of Na3V2(PO4)3with Ni2+doping by a spray drying-assisted process for sodium ion batteries. Solid State Ionics. 2018;324:183–90. https://doi.org/10.1016/j.ssi.2018.07.006.

    Article  CAS  Google Scholar 

  30. Terada S, Susa H, Tsuzuki S, Mandai T, Ueno K, Dokko K, et al. Glyme-sodium bis(fluorosulfonyl)amide complex electrolytes for sodium ion batteries. J Phys Chem C. 2018;122:16589–99. https://doi.org/10.1021/acs.jpcc.8b04367.

    Article  CAS  Google Scholar 

  31. Law M, Ramar V, Balaya P. Synthesis, characterisation and enhanced electrochemical performance of nanostructured Na 2 FePO 4 F for sodium batteries. RSC Adv. 2015;5:50155–64.

    Article  CAS  Google Scholar 

  32. Law M, Ramar V, Balaya P. Na2MnSiO4as an attractive high capacity cathode material for sodium-ion battery. J Power Sour. 2017;359:277–84. https://doi.org/10.1016/j.jpowsour.2017.05.069.

    Article  CAS  Google Scholar 

  33. Law M, Balaya P. NaVPO4F with high cycling stability as a promising cathode for sodium-ion battery. Energy Storage Mater. 2018;10:102–13. https://doi.org/10.1016/j.ensm.2017.08.007.

    Article  Google Scholar 

  34. Ratnakumar BV, Smart MC, Whitcanack LD, Ewell RC. The impedance characteristics of Mars Exploration Rover Li-ion batteries. J Power Sour. 2006;159:1428–39.

    Article  CAS  Google Scholar 

  35. Onda K, Ohshima T, Nakayama M, Fukuda K, Araki T. Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles. J Power Sour. 2006;158:535–42.

    Article  CAS  Google Scholar 

  36. Jalkanen K, Aho T, Vuorilehto K. Entropy change effects on the thermal behavior of a LiFePO4/graphite lithium-ion cell at different states of charge. J Power Sour. 2013;243:354–60.

    Article  CAS  Google Scholar 

  37. Wang L, Zhao J, He X, Gao J, Li J, Wan C, et al. Electrochemical impedance spectroscopy (EIS) Study of LiNi 1/3 Co 1/3 Mn 1/3 O 2 for Li-ion batteries. Int J Electrochem Sci. 2012;7:345–53.

    CAS  Google Scholar 

  38. Tröltzsch U, Kanoun O, Tränkler H-R. Characterizing aging effects of lithium ion batteries by impedance spectroscopy. Electrochim Acta. 2006;51:1664–72.

    Article  Google Scholar 

  39. Schichlein H, Ivers-tiffe E, Ivers-tiffe E, Voigts M, Kru A, Schichlein H, et al. Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells. J Appl Electrochem. 2002;32:875–82. https://doi.org/10.1023/A:1020599525160.

    Article  CAS  Google Scholar 

  40. Schmidt JP, Berg P, Schönleber M, Weber A, Ivers-Tiffée E. The distribution of relaxation times as basis for generalized time-domain models for Li-ion batteries. J Power Sour. 2013;221:70–7. https://doi.org/10.1016/j.jpowsour.2012.07.100.

    Article  CAS  Google Scholar 

  41. Schmidt JP, Chrobak T, Ender M, Illig J, Klotz D, Ivers-Tiffée E. Studies on LiFePO4 as cathode material using impedance spectroscopy. J Power Sour. 2011;196:5342–8.

    Article  CAS  Google Scholar 

  42. Manikandan B, Ramar V, Yap C, Balaya P. Investigation of physico-chemical processes in lithium-ion batteries by deconvolution of electrochemical impedance spectra. J Power Sour. 2017;361:300–9. https://doi.org/10.1016/j.jpowsour.2017.07.006.

    Article  CAS  Google Scholar 

  43. Illig J, Schmidt JP, Weiss M, Weber A, Ivers-Tiffée E. Understanding the impedance spectrum of 18650 LiFePO4-cells. J Power Sour. 2013;239:670–9.

    Article  CAS  Google Scholar 

  44. Wan TH, Saccoccio M, Chen C, Ciucci F. Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochim Acta. 2015;184:483–99. https://doi.org/10.1016/j.electacta.2015.09.097.

    Article  CAS  Google Scholar 

  45. Laidler KJ. The development of the Arrhenius equation. J Chem Educ. 1984;61:494. https://doi.org/10.1021/ed061p494.

    Article  CAS  Google Scholar 

  46. Lu L, Han X, Li J, Hua J, Ouyang M. A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sour. 2013;226:272–88. https://doi.org/10.1016/j.jpowsour.2012.10.060.

    Article  CAS  Google Scholar 

  47. Saw LH, Ye Y, Tay AAO. Electrochemical-thermal analysis of 18650 Lithium Iron Phosphate cell. Energy Convers Manag. 2013;75:162–74. https://doi.org/10.1016/j.enconman.2013.05.040.

    Article  CAS  Google Scholar 

  48. Lu W, Yang H, Prakash J. Determination of the reversible and irreversible heats of LiNi0.8Co0.2O2/mesocarbon microbead Li-ion cell reactions using isothermal microcalorimetery. Electrochim Acta. 2006;51:1322–9.

    Article  CAS  Google Scholar 

  49. Hou H, Qiu X, Wei W, Zhang Y, Ji X. Carbon anode materials for advanced sodium-ion batteries. Adv Energy Mater. 2017;7:1602898. https://doi.org/10.1002/aenm.201602898.

    Article  CAS  Google Scholar 

  50. Zhang X, Rui X, Chen D, Tan H, Yang D, Huang S, et al. Na 3 V 2 (PO 4) 3: an advanced cathode for sodium-ion batteries. Nanoscale. 2019;11:2556–76.

    Article  CAS  Google Scholar 

  51. Renganathan S, Sikha G, Santhanagopalan S, White RE. Theoretical analysis of stresses in a lithium ion cell. J Electrochem Soc. 2010;157:A155. https://doi.org/10.1149/1.3261809.

    Article  CAS  Google Scholar 

  52. Linden D, Reddy TB. Handbook of batteries. 3rd ed. McGraw-Hill Companies Inc.; 2001.

    Google Scholar 

  53. Dou J, Kang X, Wumaier T, Hua N, Han Y, Xu G. Oxalic acid-assisted preparation of LiFePO4/C cathode material for lithium-ion batteries. J Solid State Electrochem. 2012;16:1925–31. https://doi.org/10.1007/s10008-011-1585-3.

    Article  CAS  Google Scholar 

  54. Ramar V, Balaya P. Enhancing the electrochemical kinetics of high voltage olivine LiMnPO4 by isovalent co-doping. Phys Chem Chem Phys. 2013;15:17240.

    Article  CAS  Google Scholar 

  55. Li H, Yu X, Bai Y, Wu F, Wu C, Liu L, et al. Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3 cathode materials for sodium ion batteries. J Mater Chem A. 2015;3:9578–86.

    Article  CAS  Google Scholar 

  56. Li H, Bai Y, Wu F, Ni Q, Wu C. Na-Rich Na 3+ x V 2–x Ni x (PO 4) 3 /C for sodium ion batteries: controlling the doping site and improving the electrochemical performances. ACS Appl Mater Interfaces. 2016;8:27779–87. https://doi.org/10.1021/acsami.6b09898.

    Article  CAS  PubMed  Google Scholar 

  57. Nizamov FA, Togulev PN, Abdullin DR, Khantimerov SM, Balaya P, Suleimanov NM. Antisite defects and valence state of vanadium in Na3V2(PO4)3. Phys Solid State. 2016;58:475–80. https://doi.org/10.1134/S1063783416030240.

    Article  CAS  Google Scholar 

  58. Schweiger H-G, Obeidi O, Komesker O, Raschke A, Schiemann M, Zehner C, et al. Comparison of several methods for determining the internal resistance of lithium ion cells. Sensors. 2010;10:5604–25.

    Article  CAS  Google Scholar 

  59. Väli R, Jänes A, Lust E. Alkali-metal insertion processes on nanospheric hard carbon electrodes: an electrochemical impedance spectroscopy study. J Electrochem Soc. 2017;164:E3429–37. https://doi.org/10.1149/2.0431711jes.

    Article  CAS  Google Scholar 

  60. Xiao B, Soto FA, Gu M, Han KS, Song J, Wang H, et al. Lithium-pretreated hard carbon as high-performance sodium-ion battery anodes. Adv Energy Mater. 2018;8:1801441. https://doi.org/10.1002/aenm.201801441.

    Article  CAS  Google Scholar 

  61. Shaju KM, Subba Rao GV, Chowdari BVR. Influence of li-ion kinetics in the cathodic performance of layered Li(Ni1/3Co1/3Mn1/3)O2. J Electrochem Soc. 2004;151:A1324. https://doi.org/10.1149/1.1775218.

    Article  CAS  Google Scholar 

  62. Zaban A, Aurbach D. Impedance spectroscopy of lithium and nickel electrodes in propylene carbonate solutions of different lithium salts A comparative study. J Power Sour. 1995;54:289–95.

    Article  CAS  Google Scholar 

  63. Qiu S, Xiao L, Sushko ML, Han KS, Shao Y, Yan M, et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv Energy Mater. 2017;7:1700403. https://doi.org/10.1002/aenm.201700403.

    Article  CAS  Google Scholar 

  64. Wang K, Jin Y, Sun S, Huang Y, Peng J, Luo J, et al. Low-cost and high-performance hard carbon anode materials for sodium-ion batteries. ACS Omega. 2017;2:1687–95. https://doi.org/10.1021/acsomega.7b00259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gavrilova TP, Khantimerov SM, Fatykhov RR, Yatsyk IV, Cherosov MA, Lee HS, et al. Magnetic properties and vanadium oxidation state in α-Li3V2(PO4)3/C composite: magnetization and ESR measurements. Solid State Commun. 2021;323:114108.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Research Foundation (under the Energy Programme and administrated by Energy Market Authority), the Ministry of Education in Singapore and the National University of Singapore for funding. LUS thanks the Ministry of Education (MoE) in Singapore for research scholarship and extends his gratitude to Kang Du and Abhinav Tripathi for the support and guidance given.

Funding

This research is supported by National Research Foundation, under the Energy Programme and administrated by Energy Market Authority (EP Award No. NRF2015EWT-EIRP002-017/WBS No. R-265-000-568-279), Ministry of Education in Singapore (WBS No. R-265-000-510-112) and National University of Singapore (WBS No. R-261-510-001-646).

Author information

Authors and Affiliations

Authors

Contributions

LUS performed conceptualization, methodology, formal analysis, investigation, visualization, and writing—original draft. CW was involved in methodology, investigation, validation, and supplying 18,650 cells for the study. SRG contributed to methodology, investigation, validation, and resources related to 18,650 cell fabrication, funding acquisition—project schedule and budget planning, and writing—review and editing. ML done conceptualization, methodology, and investigation related to cathode material, and writing—review and editing. BM performed conceptualization, methodology, and resources related to thermal characterization, and writing—review and editing. PB contributed to conceptualization, resources, supervision, project administration, funding acquisition, and writing—review and editing.

Corresponding author

Correspondence to Palani Balaya.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subasinghe, L.U., Wang, C., Gajjela, S.R. et al. A study on heat generation characteristics of Na3V2(PO4)3 cathode and hard carbon anode-based sodium-ion cells. J Therm Anal Calorim 147, 8631–8649 (2022). https://doi.org/10.1007/s10973-021-11151-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11151-0

Keywords

Navigation